Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
json
Languages:
Chinese
Size:
10K - 100K
ArXiv:
License:
File size: 1,884 Bytes
1e1a357 734cd0a 1e1a357 734cd0a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
license: cc-by-sa-4.0
language:
- zh
task_categories:
- token-classification
dataset_info:
- config_name: zh_pud
splits:
- name: test
num_examples: 999
- config_name: zh_gsd
splits:
- name: test
num_examples: 499
- name: dev
num_examples: 499
- name: train
num_examples: 3996
- config_name: zh_gsdsimp
splits:
- name: test
num_examples: 499
- name: dev
num_examples: 499
- name: train
num_examples: 3996
---
# Dataset Card for Universal NER v1 in the Aya format - Chinese subset
This dataset is a format conversion for the Chinese data in the original Universal NER v1 into the Aya instruction format and it's released here under the same CC-BY-SA 4.0 license and conditions.
The dataset contains different subsets and their dev/test/train splits, depending on language. For more details, please refer to:
## Dataset Details
For the original Universal NER dataset v1 and more details, please check https://huggingface.co/datasets/universalner/universal_ner.
For details on the conversion to the Aya instructions format, please see the complete version: https://huggingface.co/datasets/universalner/uner_llm_instructions
## Citation
If you utilize this dataset version, feel free to cite/footnote the complete version at https://huggingface.co/datasets/universalner/uner_llm_instructions, but please also cite the *original dataset publication*.
**BibTeX:**
```
@preprint{mayhew2023universal,
title={{Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark}},
author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riabi and Yuval Pinter},
year={2023},
eprint={2311.09122},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
``` |