Datasets:

Modalities:
Text
Formats:
json
Languages:
Chinese
ArXiv:
Libraries:
Datasets
Dask
License:
tellarin commited on
Commit
734cd0a
·
1 Parent(s): 1e1a357

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +55 -0
README.md CHANGED
@@ -1,3 +1,58 @@
1
  ---
2
  license: cc-by-sa-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-sa-4.0
3
+ language:
4
+ - zh
5
+ task_categories:
6
+ - token-classification
7
+ dataset_info:
8
+ - config_name: zh_pud
9
+ splits:
10
+ - name: test
11
+ num_examples: 999
12
+ - config_name: zh_gsd
13
+ splits:
14
+ - name: test
15
+ num_examples: 499
16
+ - name: dev
17
+ num_examples: 499
18
+ - name: train
19
+ num_examples: 3996
20
+ - config_name: zh_gsdsimp
21
+ splits:
22
+ - name: test
23
+ num_examples: 499
24
+ - name: dev
25
+ num_examples: 499
26
+ - name: train
27
+ num_examples: 3996
28
  ---
29
+
30
+ # Dataset Card for Universal NER v1 in the Aya format - Chinese subset
31
+
32
+ This dataset is a format conversion for the Chinese data in the original Universal NER v1 into the Aya instruction format and it's released here under the same CC-BY-SA 4.0 license and conditions.
33
+
34
+ The dataset contains different subsets and their dev/test/train splits, depending on language. For more details, please refer to:
35
+
36
+ ## Dataset Details
37
+
38
+ For the original Universal NER dataset v1 and more details, please check https://huggingface.co/datasets/universalner/universal_ner.
39
+
40
+ For details on the conversion to the Aya instructions format, please see the complete version: https://huggingface.co/datasets/universalner/uner_llm_instructions
41
+
42
+
43
+ ## Citation
44
+
45
+ If you utilize this dataset version, feel free to cite/footnote the complete version at https://huggingface.co/datasets/universalner/uner_llm_instructions, but please also cite the *original dataset publication*.
46
+
47
+ **BibTeX:**
48
+
49
+ ```
50
+ @preprint{mayhew2023universal,
51
+ title={{Universal NER: A Gold-Standard Multilingual Named Entity Recognition Benchmark}},
52
+ author={Stephen Mayhew and Terra Blevins and Shuheng Liu and Marek Šuppa and Hila Gonen and Joseph Marvin Imperial and Börje F. Karlsson and Peiqin Lin and Nikola Ljubešić and LJ Miranda and Barbara Plank and Arij Riabi and Yuval Pinter},
53
+ year={2023},
54
+ eprint={2311.09122},
55
+ archivePrefix={arXiv},
56
+ primaryClass={cs.CL}
57
+ }
58
+ ```