trojblue commited on
Commit
92eccb2
·
verified ·
1 Parent(s): 617bafb

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -45
README.md CHANGED
@@ -180,51 +180,6 @@ This dataset can be used to:
180
  - Compare against previous metadata versions to track changes, tag evolution, and historical trends
181
 
182
 
183
- ## Dataset Creation
184
-
185
- We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present.
186
- For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes.
187
-
188
- The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet:
189
-
190
- ```python
191
- import pandas as pd
192
- from pandarallel import pandarallel
193
-
194
- # Initialize pandarallel
195
- pandarallel.initialize(nb_workers=4, progress_bar=True)
196
-
197
- def flatten_dict(d, parent_key='', sep='_'):
198
- """
199
- Flattens a nested dictionary.
200
- """
201
- items = []
202
- for k, v in d.items():
203
- new_key = f"{parent_key}{sep}{k}" if parent_key else k
204
- if isinstance(v, dict):
205
- items.extend(flatten_dict(v, new_key, sep=sep).items())
206
- elif isinstance(v, list):
207
- items.append((new_key, ', '.join(map(str, v))))
208
- else:
209
- items.append((new_key, v))
210
- return dict(items)
211
-
212
- def extract_all_illust_info(json_content):
213
- """
214
- Parses and flattens Danbooru JSON into a pandas Series.
215
- """
216
- flattened_data = flatten_dict(json_content)
217
- return pd.Series(flattened_data)
218
-
219
- def dicts_to_dataframe_parallel(dicts):
220
- """
221
- Converts a list of dicts to a flattened DataFrame using pandarallel.
222
- """
223
- df = pd.DataFrame(dicts)
224
- flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1)
225
- return flattened_df
226
- ```
227
-
228
  ## Dataset Structure
229
 
230
  Below is a partial overview of the DataFrame columns, derived directly from the Danbooru JSONs:
@@ -376,6 +331,52 @@ Index(['approver_id', 'bit_flags', 'created_at', 'down_score', 'fav_count',
376
  </div>
377
 
378
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
379
  ### Recommendations
380
 
381
  Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed.
 
180
  - Compare against previous metadata versions to track changes, tag evolution, and historical trends
181
 
182
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
183
  ## Dataset Structure
184
 
185
  Below is a partial overview of the DataFrame columns, derived directly from the Danbooru JSONs:
 
331
  </div>
332
 
333
 
334
+ ## Dataset Creation
335
+
336
+ We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present.
337
+ For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes.
338
+
339
+ The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet:
340
+
341
+ ```python
342
+ import pandas as pd
343
+ from pandarallel import pandarallel
344
+
345
+ # Initialize pandarallel
346
+ pandarallel.initialize(nb_workers=4, progress_bar=True)
347
+
348
+ def flatten_dict(d, parent_key='', sep='_'):
349
+ """
350
+ Flattens a nested dictionary.
351
+ """
352
+ items = []
353
+ for k, v in d.items():
354
+ new_key = f"{parent_key}{sep}{k}" if parent_key else k
355
+ if isinstance(v, dict):
356
+ items.extend(flatten_dict(v, new_key, sep=sep).items())
357
+ elif isinstance(v, list):
358
+ items.append((new_key, ', '.join(map(str, v))))
359
+ else:
360
+ items.append((new_key, v))
361
+ return dict(items)
362
+
363
+ def extract_all_illust_info(json_content):
364
+ """
365
+ Parses and flattens Danbooru JSON into a pandas Series.
366
+ """
367
+ flattened_data = flatten_dict(json_content)
368
+ return pd.Series(flattened_data)
369
+
370
+ def dicts_to_dataframe_parallel(dicts):
371
+ """
372
+ Converts a list of dicts to a flattened DataFrame using pandarallel.
373
+ """
374
+ df = pd.DataFrame(dicts)
375
+ flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1)
376
+ return flattened_df
377
+ ```
378
+
379
+
380
  ### Recommendations
381
 
382
  Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed.