Update README.md
Browse files
README.md
CHANGED
@@ -165,27 +165,70 @@ A refreshed, Parquet-formatted metadata dump of Danbooru, current as of January
|
|
165 |
|
166 |
## Uses
|
167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
168 |
|
169 |
This dataset can be used to:
|
170 |
- Retrieve the full Danbooru image set via the metadata’s URLs
|
171 |
- Train or fine-tune an image tagger
|
172 |
- Compare against previous metadata versions to track changes, tag evolution, and historical trends
|
173 |
|
174 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
|
176 |
```python
|
177 |
-
|
|
|
178 |
|
179 |
-
|
180 |
-
|
181 |
-
```
|
182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
|
184 |
## Dataset Structure
|
185 |
|
186 |
Below is a partial overview of the DataFrame columns, derived directly from the Danbooru JSONs:
|
187 |
|
188 |
-
**column values preview:**
|
189 |
|
190 |
```python
|
191 |
import unibox as ub
|
@@ -333,495 +376,6 @@ Index(['approver_id', 'bit_flags', 'created_at', 'down_score', 'fav_count',
|
|
333 |
</div>
|
334 |
|
335 |
|
336 |
-
**memory size preview**:
|
337 |
-
|
338 |
-
<div>
|
339 |
-
<style scoped>
|
340 |
-
.dataframe tbody tr th:only-of-type {
|
341 |
-
vertical-align: middle;
|
342 |
-
}
|
343 |
-
.dataframe tbody tr th {
|
344 |
-
vertical-align: top;
|
345 |
-
}
|
346 |
-
.dataframe thead th {
|
347 |
-
text-align: right;
|
348 |
-
}
|
349 |
-
</style>
|
350 |
-
<table border="1" class="dataframe">
|
351 |
-
<thead>
|
352 |
-
<tr style="text-align: right;">
|
353 |
-
<th></th>
|
354 |
-
<th>Column</th>
|
355 |
-
<th>Memory Usage</th>
|
356 |
-
<th>Readable Memory Usage</th>
|
357 |
-
<th>Dtype</th>
|
358 |
-
</tr>
|
359 |
-
</thead>
|
360 |
-
<tbody>
|
361 |
-
<tr>
|
362 |
-
<th>37</th>
|
363 |
-
<td>media_asset_variants</td>
|
364 |
-
<td>6504773310</td>
|
365 |
-
<td>6.06 GB</td>
|
366 |
-
<td>object</td>
|
367 |
-
</tr>
|
368 |
-
<tr>
|
369 |
-
<th>50</th>
|
370 |
-
<td>tag_string</td>
|
371 |
-
<td>4010312632</td>
|
372 |
-
<td>3.73 GB</td>
|
373 |
-
<td>object</td>
|
374 |
-
</tr>
|
375 |
-
<tr>
|
376 |
-
<th>54</th>
|
377 |
-
<td>tag_string_general</td>
|
378 |
-
<td>3219096004</td>
|
379 |
-
<td>3.00 GB</td>
|
380 |
-
<td>object</td>
|
381 |
-
</tr>
|
382 |
-
<tr>
|
383 |
-
<th>19</th>
|
384 |
-
<td>large_file_url</td>
|
385 |
-
<td>1120901064</td>
|
386 |
-
<td>1.04 GB</td>
|
387 |
-
<td>object</td>
|
388 |
-
</tr>
|
389 |
-
<tr>
|
390 |
-
<th>7</th>
|
391 |
-
<td>file_url</td>
|
392 |
-
<td>1091768146</td>
|
393 |
-
<td>1.02 GB</td>
|
394 |
-
<td>object</td>
|
395 |
-
</tr>
|
396 |
-
<tr>
|
397 |
-
<th>40</th>
|
398 |
-
<td>preview_file_url</td>
|
399 |
-
<td>1083377159</td>
|
400 |
-
<td>1.01 GB</td>
|
401 |
-
<td>object</td>
|
402 |
-
</tr>
|
403 |
-
<tr>
|
404 |
-
<th>43</th>
|
405 |
-
<td>source</td>
|
406 |
-
<td>1028480196</td>
|
407 |
-
<td>980.84 MB</td>
|
408 |
-
<td>object</td>
|
409 |
-
</tr>
|
410 |
-
<tr>
|
411 |
-
<th>34</th>
|
412 |
-
<td>media_asset_pixel_hash</td>
|
413 |
-
<td>766839397</td>
|
414 |
-
<td>731.32 MB</td>
|
415 |
-
<td>object</td>
|
416 |
-
</tr>
|
417 |
-
<tr>
|
418 |
-
<th>33</th>
|
419 |
-
<td>media_asset_md5</td>
|
420 |
-
<td>749456967</td>
|
421 |
-
<td>714.74 MB</td>
|
422 |
-
<td>object</td>
|
423 |
-
</tr>
|
424 |
-
<tr>
|
425 |
-
<th>23</th>
|
426 |
-
<td>md5</td>
|
427 |
-
<td>749456967</td>
|
428 |
-
<td>714.74 MB</td>
|
429 |
-
<td>object</td>
|
430 |
-
</tr>
|
431 |
-
<tr>
|
432 |
-
<th>2</th>
|
433 |
-
<td>created_at</td>
|
434 |
-
<td>740990878</td>
|
435 |
-
<td>706.66 MB</td>
|
436 |
-
<td>object</td>
|
437 |
-
</tr>
|
438 |
-
<tr>
|
439 |
-
<th>36</th>
|
440 |
-
<td>media_asset_updated_at</td>
|
441 |
-
<td>740990878</td>
|
442 |
-
<td>706.66 MB</td>
|
443 |
-
<td>object</td>
|
444 |
-
</tr>
|
445 |
-
<tr>
|
446 |
-
<th>24</th>
|
447 |
-
<td>media_asset_created_at</td>
|
448 |
-
<td>740990878</td>
|
449 |
-
<td>706.66 MB</td>
|
450 |
-
<td>object</td>
|
451 |
-
</tr>
|
452 |
-
<tr>
|
453 |
-
<th>57</th>
|
454 |
-
<td>updated_at</td>
|
455 |
-
<td>740990878</td>
|
456 |
-
<td>706.66 MB</td>
|
457 |
-
<td>object</td>
|
458 |
-
</tr>
|
459 |
-
<tr>
|
460 |
-
<th>52</th>
|
461 |
-
<td>tag_string_character</td>
|
462 |
-
<td>735974700</td>
|
463 |
-
<td>701.88 MB</td>
|
464 |
-
<td>object</td>
|
465 |
-
</tr>
|
466 |
-
<tr>
|
467 |
-
<th>55</th>
|
468 |
-
<td>tag_string_meta</td>
|
469 |
-
<td>734235943</td>
|
470 |
-
<td>700.22 MB</td>
|
471 |
-
<td>object</td>
|
472 |
-
</tr>
|
473 |
-
<tr>
|
474 |
-
<th>53</th>
|
475 |
-
<td>tag_string_copyright</td>
|
476 |
-
<td>664510146</td>
|
477 |
-
<td>633.73 MB</td>
|
478 |
-
<td>object</td>
|
479 |
-
</tr>
|
480 |
-
<tr>
|
481 |
-
<th>51</th>
|
482 |
-
<td>tag_string_artist</td>
|
483 |
-
<td>588454689</td>
|
484 |
-
<td>561.19 MB</td>
|
485 |
-
<td>object</td>
|
486 |
-
</tr>
|
487 |
-
<tr>
|
488 |
-
<th>27</th>
|
489 |
-
<td>media_asset_file_key</td>
|
490 |
-
<td>557435694</td>
|
491 |
-
<td>531.61 MB</td>
|
492 |
-
<td>object</td>
|
493 |
-
</tr>
|
494 |
-
<tr>
|
495 |
-
<th>35</th>
|
496 |
-
<td>media_asset_status</td>
|
497 |
-
<td>542818899</td>
|
498 |
-
<td>517.67 MB</td>
|
499 |
-
<td>object</td>
|
500 |
-
</tr>
|
501 |
-
<tr>
|
502 |
-
<th>26</th>
|
503 |
-
<td>media_asset_file_ext</td>
|
504 |
-
<td>516984380</td>
|
505 |
-
<td>493.03 MB</td>
|
506 |
-
<td>object</td>
|
507 |
-
</tr>
|
508 |
-
<tr>
|
509 |
-
<th>5</th>
|
510 |
-
<td>file_ext</td>
|
511 |
-
<td>516984380</td>
|
512 |
-
<td>493.03 MB</td>
|
513 |
-
<td>object</td>
|
514 |
-
</tr>
|
515 |
-
<tr>
|
516 |
-
<th>41</th>
|
517 |
-
<td>rating</td>
|
518 |
-
<td>499738034</td>
|
519 |
-
<td>476.59 MB</td>
|
520 |
-
<td>object</td>
|
521 |
-
</tr>
|
522 |
-
<tr>
|
523 |
-
<th>21</th>
|
524 |
-
<td>last_commented_at</td>
|
525 |
-
<td>259587166</td>
|
526 |
-
<td>247.56 MB</td>
|
527 |
-
<td>object</td>
|
528 |
-
</tr>
|
529 |
-
<tr>
|
530 |
-
<th>20</th>
|
531 |
-
<td>last_comment_bumped_at</td>
|
532 |
-
<td>252905426</td>
|
533 |
-
<td>241.19 MB</td>
|
534 |
-
<td>object</td>
|
535 |
-
</tr>
|
536 |
-
<tr>
|
537 |
-
<th>22</th>
|
538 |
-
<td>last_noted_at</td>
|
539 |
-
<td>247393688</td>
|
540 |
-
<td>235.93 MB</td>
|
541 |
-
<td>object</td>
|
542 |
-
</tr>
|
543 |
-
<tr>
|
544 |
-
<th>1</th>
|
545 |
-
<td>bit_flags</td>
|
546 |
-
<td>68929384</td>
|
547 |
-
<td>65.74 MB</td>
|
548 |
-
<td>int64</td>
|
549 |
-
</tr>
|
550 |
-
<tr>
|
551 |
-
<th>49</th>
|
552 |
-
<td>tag_count_meta</td>
|
553 |
-
<td>68929384</td>
|
554 |
-
<td>65.74 MB</td>
|
555 |
-
<td>int64</td>
|
556 |
-
</tr>
|
557 |
-
<tr>
|
558 |
-
<th>42</th>
|
559 |
-
<td>score</td>
|
560 |
-
<td>68929384</td>
|
561 |
-
<td>65.74 MB</td>
|
562 |
-
<td>int64</td>
|
563 |
-
</tr>
|
564 |
-
<tr>
|
565 |
-
<th>38</th>
|
566 |
-
<td>parent_id</td>
|
567 |
-
<td>68929384</td>
|
568 |
-
<td>65.74 MB</td>
|
569 |
-
<td>float64</td>
|
570 |
-
</tr>
|
571 |
-
<tr>
|
572 |
-
<th>39</th>
|
573 |
-
<td>pixiv_id</td>
|
574 |
-
<td>68929384</td>
|
575 |
-
<td>65.74 MB</td>
|
576 |
-
<td>float64</td>
|
577 |
-
</tr>
|
578 |
-
<tr>
|
579 |
-
<th>30</th>
|
580 |
-
<td>media_asset_image_height</td>
|
581 |
-
<td>68929384</td>
|
582 |
-
<td>65.74 MB</td>
|
583 |
-
<td>int64</td>
|
584 |
-
</tr>
|
585 |
-
<tr>
|
586 |
-
<th>29</th>
|
587 |
-
<td>media_asset_id</td>
|
588 |
-
<td>68929384</td>
|
589 |
-
<td>65.74 MB</td>
|
590 |
-
<td>int64</td>
|
591 |
-
</tr>
|
592 |
-
<tr>
|
593 |
-
<th>31</th>
|
594 |
-
<td>media_asset_image_width</td>
|
595 |
-
<td>68929384</td>
|
596 |
-
<td>65.74 MB</td>
|
597 |
-
<td>int64</td>
|
598 |
-
</tr>
|
599 |
-
<tr>
|
600 |
-
<th>28</th>
|
601 |
-
<td>media_asset_file_size</td>
|
602 |
-
<td>68929384</td>
|
603 |
-
<td>65.74 MB</td>
|
604 |
-
<td>int64</td>
|
605 |
-
</tr>
|
606 |
-
<tr>
|
607 |
-
<th>12</th>
|
608 |
-
<td>id</td>
|
609 |
-
<td>68929384</td>
|
610 |
-
<td>65.74 MB</td>
|
611 |
-
<td>int64</td>
|
612 |
-
</tr>
|
613 |
-
<tr>
|
614 |
-
<th>0</th>
|
615 |
-
<td>approver_id</td>
|
616 |
-
<td>68929384</td>
|
617 |
-
<td>65.74 MB</td>
|
618 |
-
<td>float64</td>
|
619 |
-
</tr>
|
620 |
-
<tr>
|
621 |
-
<th>4</th>
|
622 |
-
<td>fav_count</td>
|
623 |
-
<td>68929384</td>
|
624 |
-
<td>65.74 MB</td>
|
625 |
-
<td>int64</td>
|
626 |
-
</tr>
|
627 |
-
<tr>
|
628 |
-
<th>3</th>
|
629 |
-
<td>down_score</td>
|
630 |
-
<td>68929384</td>
|
631 |
-
<td>65.74 MB</td>
|
632 |
-
<td>int64</td>
|
633 |
-
</tr>
|
634 |
-
<tr>
|
635 |
-
<th>6</th>
|
636 |
-
<td>file_size</td>
|
637 |
-
<td>68929384</td>
|
638 |
-
<td>65.74 MB</td>
|
639 |
-
<td>int64</td>
|
640 |
-
</tr>
|
641 |
-
<tr>
|
642 |
-
<th>25</th>
|
643 |
-
<td>media_asset_duration</td>
|
644 |
-
<td>68929384</td>
|
645 |
-
<td>65.74 MB</td>
|
646 |
-
<td>float64</td>
|
647 |
-
</tr>
|
648 |
-
<tr>
|
649 |
-
<th>14</th>
|
650 |
-
<td>image_width</td>
|
651 |
-
<td>68929384</td>
|
652 |
-
<td>65.74 MB</td>
|
653 |
-
<td>int64</td>
|
654 |
-
</tr>
|
655 |
-
<tr>
|
656 |
-
<th>13</th>
|
657 |
-
<td>image_height</td>
|
658 |
-
<td>68929384</td>
|
659 |
-
<td>65.74 MB</td>
|
660 |
-
<td>int64</td>
|
661 |
-
</tr>
|
662 |
-
<tr>
|
663 |
-
<th>44</th>
|
664 |
-
<td>tag_count</td>
|
665 |
-
<td>68929384</td>
|
666 |
-
<td>65.74 MB</td>
|
667 |
-
<td>int64</td>
|
668 |
-
</tr>
|
669 |
-
<tr>
|
670 |
-
<th>48</th>
|
671 |
-
<td>tag_count_general</td>
|
672 |
-
<td>68929384</td>
|
673 |
-
<td>65.74 MB</td>
|
674 |
-
<td>int64</td>
|
675 |
-
</tr>
|
676 |
-
<tr>
|
677 |
-
<th>47</th>
|
678 |
-
<td>tag_count_copyright</td>
|
679 |
-
<td>68929384</td>
|
680 |
-
<td>65.74 MB</td>
|
681 |
-
<td>int64</td>
|
682 |
-
</tr>
|
683 |
-
<tr>
|
684 |
-
<th>46</th>
|
685 |
-
<td>tag_count_character</td>
|
686 |
-
<td>68929384</td>
|
687 |
-
<td>65.74 MB</td>
|
688 |
-
<td>int64</td>
|
689 |
-
</tr>
|
690 |
-
<tr>
|
691 |
-
<th>56</th>
|
692 |
-
<td>up_score</td>
|
693 |
-
<td>68929384</td>
|
694 |
-
<td>65.74 MB</td>
|
695 |
-
<td>int64</td>
|
696 |
-
</tr>
|
697 |
-
<tr>
|
698 |
-
<th>45</th>
|
699 |
-
<td>tag_count_artist</td>
|
700 |
-
<td>68929384</td>
|
701 |
-
<td>65.74 MB</td>
|
702 |
-
<td>int64</td>
|
703 |
-
</tr>
|
704 |
-
<tr>
|
705 |
-
<th>58</th>
|
706 |
-
<td>uploader_id</td>
|
707 |
-
<td>68929384</td>
|
708 |
-
<td>65.74 MB</td>
|
709 |
-
<td>int64</td>
|
710 |
-
</tr>
|
711 |
-
<tr>
|
712 |
-
<th>10</th>
|
713 |
-
<td>has_large</td>
|
714 |
-
<td>8616173</td>
|
715 |
-
<td>8.22 MB</td>
|
716 |
-
<td>bool</td>
|
717 |
-
</tr>
|
718 |
-
<tr>
|
719 |
-
<th>15</th>
|
720 |
-
<td>is_banned</td>
|
721 |
-
<td>8616173</td>
|
722 |
-
<td>8.22 MB</td>
|
723 |
-
<td>bool</td>
|
724 |
-
</tr>
|
725 |
-
<tr>
|
726 |
-
<th>16</th>
|
727 |
-
<td>is_deleted</td>
|
728 |
-
<td>8616173</td>
|
729 |
-
<td>8.22 MB</td>
|
730 |
-
<td>bool</td>
|
731 |
-
</tr>
|
732 |
-
<tr>
|
733 |
-
<th>17</th>
|
734 |
-
<td>is_flagged</td>
|
735 |
-
<td>8616173</td>
|
736 |
-
<td>8.22 MB</td>
|
737 |
-
<td>bool</td>
|
738 |
-
</tr>
|
739 |
-
<tr>
|
740 |
-
<th>11</th>
|
741 |
-
<td>has_visible_children</td>
|
742 |
-
<td>8616173</td>
|
743 |
-
<td>8.22 MB</td>
|
744 |
-
<td>bool</td>
|
745 |
-
</tr>
|
746 |
-
<tr>
|
747 |
-
<th>18</th>
|
748 |
-
<td>is_pending</td>
|
749 |
-
<td>8616173</td>
|
750 |
-
<td>8.22 MB</td>
|
751 |
-
<td>bool</td>
|
752 |
-
</tr>
|
753 |
-
<tr>
|
754 |
-
<th>8</th>
|
755 |
-
<td>has_active_children</td>
|
756 |
-
<td>8616173</td>
|
757 |
-
<td>8.22 MB</td>
|
758 |
-
<td>bool</td>
|
759 |
-
</tr>
|
760 |
-
<tr>
|
761 |
-
<th>9</th>
|
762 |
-
<td>has_children</td>
|
763 |
-
<td>8616173</td>
|
764 |
-
<td>8.22 MB</td>
|
765 |
-
<td>bool</td>
|
766 |
-
</tr>
|
767 |
-
<tr>
|
768 |
-
<th>32</th>
|
769 |
-
<td>media_asset_is_public</td>
|
770 |
-
<td>8616173</td>
|
771 |
-
<td>8.22 MB</td>
|
772 |
-
<td>bool</td>
|
773 |
-
</tr>
|
774 |
-
</tbody>
|
775 |
-
</table>
|
776 |
-
</div>
|
777 |
-
|
778 |
-
## Dataset Creation
|
779 |
-
|
780 |
-
We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present.
|
781 |
-
For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes.
|
782 |
-
|
783 |
-
The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet:
|
784 |
-
|
785 |
-
```python
|
786 |
-
import pandas as pd
|
787 |
-
from pandarallel import pandarallel
|
788 |
-
|
789 |
-
# Initialize pandarallel
|
790 |
-
pandarallel.initialize(nb_workers=4, progress_bar=True)
|
791 |
-
|
792 |
-
def flatten_dict(d, parent_key='', sep='_'):
|
793 |
-
"""
|
794 |
-
Flattens a nested dictionary.
|
795 |
-
"""
|
796 |
-
items = []
|
797 |
-
for k, v in d.items():
|
798 |
-
new_key = f"{parent_key}{sep}{k}" if parent_key else k
|
799 |
-
if isinstance(v, dict):
|
800 |
-
items.extend(flatten_dict(v, new_key, sep=sep).items())
|
801 |
-
elif isinstance(v, list):
|
802 |
-
items.append((new_key, ', '.join(map(str, v))))
|
803 |
-
else:
|
804 |
-
items.append((new_key, v))
|
805 |
-
return dict(items)
|
806 |
-
|
807 |
-
def extract_all_illust_info(json_content):
|
808 |
-
"""
|
809 |
-
Parses and flattens Danbooru JSON into a pandas Series.
|
810 |
-
"""
|
811 |
-
flattened_data = flatten_dict(json_content)
|
812 |
-
return pd.Series(flattened_data)
|
813 |
-
|
814 |
-
def dicts_to_dataframe_parallel(dicts):
|
815 |
-
"""
|
816 |
-
Converts a list of dicts to a flattened DataFrame using pandarallel.
|
817 |
-
"""
|
818 |
-
df = pd.DataFrame(dicts)
|
819 |
-
flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1)
|
820 |
-
return flattened_df
|
821 |
-
```
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
### Recommendations
|
826 |
|
827 |
Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed.
|
|
|
165 |
|
166 |
## Uses
|
167 |
|
168 |
+
The dataset can be loaded or filtered with the Huggingface `datasets` library:
|
169 |
+
|
170 |
+
```python
|
171 |
+
from datasets import Dataset, load_dataset
|
172 |
+
|
173 |
+
danbooru_dataset = load_dataset("trojblue/danbooru2025-metadata", split="train")
|
174 |
+
df = danbooru_dataset.to_pandas()
|
175 |
+
```
|
176 |
|
177 |
This dataset can be used to:
|
178 |
- Retrieve the full Danbooru image set via the metadata’s URLs
|
179 |
- Train or fine-tune an image tagger
|
180 |
- Compare against previous metadata versions to track changes, tag evolution, and historical trends
|
181 |
|
182 |
+
|
183 |
+
## Dataset Creation
|
184 |
+
|
185 |
+
We scraped all post IDs on Danbooru from 1 up to the latest. Some restricted tags (e.g. `loli`) were hidden by the site and require a gold account to access, so they are not present.
|
186 |
+
For a more complete (but older) metadata reference, you may wish to combine this with Danbooru2021 or similar previous scrapes.
|
187 |
+
|
188 |
+
The scraping process used a pool of roughly 400 IPs over six hours, ensuring consistent tag definitions. Below is a simplified example of the process used to convert the metadata into Parquet:
|
189 |
|
190 |
```python
|
191 |
+
import pandas as pd
|
192 |
+
from pandarallel import pandarallel
|
193 |
|
194 |
+
# Initialize pandarallel
|
195 |
+
pandarallel.initialize(nb_workers=4, progress_bar=True)
|
|
|
196 |
|
197 |
+
def flatten_dict(d, parent_key='', sep='_'):
|
198 |
+
"""
|
199 |
+
Flattens a nested dictionary.
|
200 |
+
"""
|
201 |
+
items = []
|
202 |
+
for k, v in d.items():
|
203 |
+
new_key = f"{parent_key}{sep}{k}" if parent_key else k
|
204 |
+
if isinstance(v, dict):
|
205 |
+
items.extend(flatten_dict(v, new_key, sep=sep).items())
|
206 |
+
elif isinstance(v, list):
|
207 |
+
items.append((new_key, ', '.join(map(str, v))))
|
208 |
+
else:
|
209 |
+
items.append((new_key, v))
|
210 |
+
return dict(items)
|
211 |
+
|
212 |
+
def extract_all_illust_info(json_content):
|
213 |
+
"""
|
214 |
+
Parses and flattens Danbooru JSON into a pandas Series.
|
215 |
+
"""
|
216 |
+
flattened_data = flatten_dict(json_content)
|
217 |
+
return pd.Series(flattened_data)
|
218 |
+
|
219 |
+
def dicts_to_dataframe_parallel(dicts):
|
220 |
+
"""
|
221 |
+
Converts a list of dicts to a flattened DataFrame using pandarallel.
|
222 |
+
"""
|
223 |
+
df = pd.DataFrame(dicts)
|
224 |
+
flattened_df = df.parallel_apply(lambda row: extract_all_illust_info(row.to_dict()), axis=1)
|
225 |
+
return flattened_df
|
226 |
+
```
|
227 |
|
228 |
## Dataset Structure
|
229 |
|
230 |
Below is a partial overview of the DataFrame columns, derived directly from the Danbooru JSONs:
|
231 |
|
|
|
232 |
|
233 |
```python
|
234 |
import unibox as ub
|
|
|
376 |
</div>
|
377 |
|
378 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
379 |
### Recommendations
|
380 |
|
381 |
Users should be aware of potential biases and limitations, including the presence of adult content in some tags. More details and mitigations may be needed.
|