Datasets:
tner
/

Modalities:
Text
Languages:
English
ArXiv:
Libraries:
Datasets
License:
tweetner7 / README.md
asahi417's picture
README
5f0f25a
---
language:
- en
license:
- other
multilinguality:
- monolingual
size_categories:
- 1k<10K
task_categories:
- token-classification
task_ids:
- named-entity-recognition
pretty_name: TweetNER7
---
# Dataset Card for "tner/tweetner7"
## Dataset Description
- **Repository:** [https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper)
- **Paper:** [https://arxiv.org/abs/2210.03797](https://arxiv.org/abs/2210.03797)
- **Dataset:** TweetNER7
- **Domain:** Twitter
- **Number of Entity:** 7
### Dataset Summary
This is the official repository of TweetNER7 (["Named Entity Recognition in Twitter:
A Dataset and Analysis on Short-Term Temporal Shifts, AACL main conference 2022"](https://arxiv.org/abs/2210.03797)), an NER dataset on Twitter with 7 entity labels. Each instance of TweetNER7 comes with a timestamp which distributes from September 2019 to August 2021.
The tweet collection used in TweetNER7 is same as what used in [TweetTopic](https://huggingface.co/datasets/cardiffnlp/tweet_topic_multi).
The dataset is integrated in [TweetNLP](https://tweetnlp.org/) too.
- Entity Types: `corperation`, `creative_work`, `event`, `group`, `location`, `product`, `person`
### Preprocessing
We pre-process tweets before the annotation to normalize some artifacts, converting URLs into a special token `{{URL}}` and non-verified usernames into `{{USERNAME}}`.
For verified usernames, we replace its display name (or account name) with symbols `{@}`.
For example, a tweet
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from @herbiehancock
via @bluenoterecords link below:
http://bluenote.lnk.to/AlbumOfTheWeek
```
is transformed into the following text.
```
Get the all-analog Classic Vinyl Edition
of "Takin' Off" Album from {@herbiehancock@}
via {@bluenoterecords@} link below: {{URL}}
```
A simple function to format tweet follows below.
```python
import re
from urlextract import URLExtract
extractor = URLExtract()
def format_tweet(tweet):
# mask web urls
urls = extractor.find_urls(tweet)
for url in urls:
tweet = tweet.replace(url, "{{URL}}")
# format twitter account
tweet = re.sub(r"\b(\s*)(@[\S]+)\b", r'\1{\2@}', tweet)
return tweet
target = """Get the all-analog Classic Vinyl Edition of "Takin' Off" Album from @herbiehancock via @bluenoterecords link below: http://bluenote.lnk.to/AlbumOfTheWeek"""
target_format = format_tweet(target)
print(target_format)
'Get the all-analog Classic Vinyl Edition of "Takin\' Off" Album from {@herbiehancock@} via {@bluenoterecords@} link below: {{URL}}'
```
We ask annotators to ignore those special tokens but label the verified users' mentions.
### Data Split
| split | number of instances | description |
|:------------------|------:|------:|
| train_2020 | 4616 | training dataset from September 2019 to August 2020 |
| train_2021 | 2495 | training dataset from September 2020 to August 2021 |
| train_all | 7111 | combined training dataset of `train_2020` and `train_2021` |
| validation_2020 | 576 | validation dataset from September 2019 to August 2020 |
| validation_2021 | 310 | validation dataset from September 2020 to August 2021 |
| test_2020 | 576 | test dataset from September 2019 to August 2020 |
| test_2021 | 2807 | test dataset from September 2020 to August 2021 |
| train_random | 4616 | randomly sampled training dataset with the same size as `train_2020` from `train_all` |
| validation_random | 576 | randomly sampled training dataset with the same size as `validation_2020` from `validation_all` |
| extra_2020 | 87880 | extra tweet without annotations from September 2019 to August 2020 |
| extra_2021 | 93594 | extra tweet without annotations from September 2020 to August 2021 |
For the temporal-shift setting, model should be trained on `train_2020` with `validation_2020` and evaluate on `test_2021`.
In general, model would be trained on `train_all`, the most representative training set with `validation_2021` and evaluate on `test_2021`.
## Dataset Structure
### Data Instances
An example of `train` looks as follows.
```
{
'tokens': ['Morning', '5km', 'run', 'with', '{{USERNAME}}', 'for', 'breast', 'cancer', 'awareness', '#', 'pinkoctober', '#', 'breastcancerawareness', '#', 'zalorafit', '#', 'zalorafitxbnwrc', '@', 'The', 'Central', 'Park', ',', 'Desa', 'Parkcity', '{{URL}}'],
'tags': [14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 2, 14, 2, 14, 14, 14, 14, 14, 14, 4, 11, 11, 11, 11, 14],
'id': '1183344337016381440',
'date': '2019-10-13'
}
```
### Label ID
The label2id dictionary can be found at [here](https://huggingface.co/datasets/tner/tweetner7/raw/main/dataset/label.json).
```python
{
"B-corporation": 0,
"B-creative_work": 1,
"B-event": 2,
"B-group": 3,
"B-location": 4,
"B-person": 5,
"B-product": 6,
"I-corporation": 7,
"I-creative_work": 8,
"I-event": 9,
"I-group": 10,
"I-location": 11,
"I-person": 12,
"I-product": 13,
"O": 14
}
```
## Models
See full evaluation metrics [here](https://github.com/asahi417/tner/blob/master/MODEL_CARD.md#models-for-tweetner7).
### Main Models
| Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|------------------:|------------------:|
| [`tner/roberta-large-tweetner7-all`](https://huggingface.co/tner/roberta-large-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 65.75 | 61.25 |
| [`tner/roberta-base-tweetner7-all`](https://huggingface.co/tner/roberta-base-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co/roberta-base) | 65.16 | 60.81 |
| [`tner/twitter-roberta-base-2019-90m-tweetner7-all`](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) | 65.68 | 61 |
| [`tner/twitter-roberta-base-dec2020-tweetner7-all`](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) | 65.26 | 60.7 |
| [`tner/bertweet-large-tweetner7-all`](https://huggingface.co/tner/bertweet-large-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 66.46 | 61.87 |
| [`tner/bertweet-base-tweetner7-all`](https://huggingface.co/tner/bertweet-base-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co/vinai/bertweet-base) | 65.36 | 60.52 |
| [`tner/bert-large-tweetner7-all`](https://huggingface.co/tner/bert-large-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co/bert-large) | 63.58 | 59 |
| [`tner/bert-base-tweetner7-all`](https://huggingface.co/tner/bert-base-tweetner7-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co/bert-base) | 62.3 | 57.59 |
| [`tner/roberta-large-tweetner7-continuous`](https://huggingface.co/tner/roberta-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 66.02 | 60.9 |
| [`tner/roberta-base-tweetner7-continuous`](https://huggingface.co/tner/roberta-base-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co/roberta-base) | 65.47 | 60.01 |
| [`tner/twitter-roberta-base-2019-90m-tweetner7-continuous`](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) | 65.87 | 61.07 |
| [`tner/twitter-roberta-base-dec2020-tweetner7-continuous`](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) | 65.51 | 60.57 |
| [`tner/bertweet-large-tweetner7-continuous`](https://huggingface.co/tner/bertweet-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 66.41 | 61.66 |
| [`tner/bertweet-base-tweetner7-continuous`](https://huggingface.co/tner/bertweet-base-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co/vinai/bertweet-base) | 65.84 | 61.02 |
| [`tner/bert-large-tweetner7-continuous`](https://huggingface.co/tner/bert-large-tweetner7-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co/bert-large) | 63.2 | 57.67 |
| [`tner/roberta-large-tweetner7-2021`](https://huggingface.co/tner/roberta-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.05 | 59.11 |
| [`tner/roberta-base-tweetner7-2021`](https://huggingface.co/tner/roberta-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co/roberta-base) | 61.76 | 57 |
| [`tner/twitter-roberta-base-dec2020-tweetner7-2021`](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) | 63.98 | 58.91 |
| [`tner/bertweet-large-tweetner7-2021`](https://huggingface.co/tner/bertweet-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 62.9 | 58.13 |
| [`tner/bertweet-base-tweetner7-2021`](https://huggingface.co/tner/bertweet-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co/vinai/bertweet-base) | 63.09 | 57.35 |
| [`tner/bert-large-tweetner7-2021`](https://huggingface.co/tner/bert-large-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co/bert-large) | 59.75 | 53.93 |
| [`tner/bert-base-tweetner7-2021`](https://huggingface.co/tner/bert-base-tweetner7-2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co/bert-base) | 60.67 | 55.5 |
| [`tner/roberta-large-tweetner7-2020`](https://huggingface.co/tner/roberta-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.76 | 60 |
| [`tner/roberta-base-tweetner7-2020`](https://huggingface.co/tner/roberta-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co/roberta-base) | 64.21 | 59.11 |
| [`tner/twitter-roberta-base-2019-90m-tweetner7-2020`](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) | 64.28 | 59.31 |
| [`tner/twitter-roberta-base-dec2020-tweetner7-2020`](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) | 62.87 | 58.26 |
| [`tner/bertweet-large-tweetner7-2020`](https://huggingface.co/tner/bertweet-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 64.01 | 59.47 |
| [`tner/bertweet-base-tweetner7-2020`](https://huggingface.co/tner/bertweet-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co/vinai/bertweet-base) | 64.06 | 59.44 |
| [`tner/bert-large-tweetner7-2020`](https://huggingface.co/tner/bert-large-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co/bert-large) | 61.43 | 56.14 |
| [`tner/bert-base-tweetner7-2020`](https://huggingface.co/tner/bert-base-tweetner7-2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co/bert-base) | 60.09 | 54.67 |
Model description follows below.
* Model with suffix `-all`: Model fine-tuned on `train_all` and validated on `validation_2021`.
* Model with suffix `-continuous`: Model fine-tuned on `train_2021` continuously after fine-tuning on `train_2020` and validated on `validation_2021`.
* Model with suffix `-2021`: Model fine-tuned only on `train_2021` and validated on `validation_2021`.
* Model with suffix `-2020`: Model fine-tuned only on `train_2021` and validated on `validation_2020`.
### Sub Models (used in ablation study)
- Model fine-tuned only on `train_random` and validated on `validation_2020`.
| Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) |
|:------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------|------------------:|------------------:|
| [`tner/roberta-large-tweetner7-random`](https://huggingface.co/tner/roberta-large-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 66.33 | 60.96 |
| [`tner/twitter-roberta-base-2019-90m-tweetner7-random`](https://huggingface.co/tner/twitter-roberta-base-2019-90m-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-2019-90m`](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m) | 63.29 | 58.5 |
| [`tner/roberta-base-tweetner7-random`](https://huggingface.co/tner/roberta-base-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-base`](https://huggingface.co/roberta-base) | 64.04 | 59.23 |
| [`tner/twitter-roberta-base-dec2020-tweetner7-random`](https://huggingface.co/tner/twitter-roberta-base-dec2020-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2020`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020) | 64.72 | 59.97 |
| [`tner/bertweet-large-tweetner7-random`](https://huggingface.co/tner/bertweet-large-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large`](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021vinai/bertweet-large) | 64.86 | 60.49 |
| [`tner/bertweet-base-tweetner7-random`](https://huggingface.co/tner/bertweet-base-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`vinai/bertweet-base`](https://huggingface.co/vinai/bertweet-base) | 65.55 | 59.58 |
| [`tner/bert-large-tweetner7-random`](https://huggingface.co/tner/bert-large-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-large`](https://huggingface.co/bert-large) | 62.39 | 57.54 |
| [`tner/bert-base-tweetner7-random`](https://huggingface.co/tner/bert-base-tweetner7-random) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`bert-base`](https://huggingface.co/bert-base) | 60.91 | 55.92 |
- Model fine-tuned on the self-labeled dataset on `extra_{2020,2021}` and validated on `validation_2020`.
| Model (link) | Data | Language Model | Micro F1 (2021) | Macro F1 (2021) |
|:----------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------|:--------------------------------------------------------|------------------:|------------------:|
| [`tner/roberta-large-tweetner7-selflabel2020`](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2020) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.56 | 59.63 |
| [`tner/roberta-large-tweetner7-selflabel2021`](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2021) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.6 | 59.45 |
| [`tner/roberta-large-tweetner7-2020-selflabel2020-all`](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2020-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 65.46 | 60.39 |
| [`tner/roberta-large-tweetner7-2020-selflabel2021-all`](https://huggingface.co/tner/roberta-large-tweetner7-2020-selflabel2021-all) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.52 | 59.45 |
| [`tner/roberta-large-tweetner7-selflabel2020-continuous`](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2020-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 65.15 | 60.23 |
| [`tner/roberta-large-tweetner7-selflabel2021-continuous`](https://huggingface.co/tner/roberta-large-tweetner7-selflabel2021-continuous) | [`tweetner7`](https://huggingface.co/datasets/tner/tweetner7) | [`roberta-large`](https://huggingface.co/roberta-large) | 64.48 | 59.41 |
Model description follows below.
* Model with suffix `-self2020`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7).
* Model with suffix `-self2021`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7).
* Model with suffix `-2020-self2020-all`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7). Combined training dataset of `extra_2020` and `train_2020`.
* Model with suffix `-2020-self2021-all`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7). Combined training dataset of `extra_2021` and `train_2020`.
* Model with suffix `-2020-self2020-continuous`: Fine-tuning on the self-annotated data of `extra_2020` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7). Fine-tuning on `train_2020` and continuing fine-tuning on `extra_2020`.
* Model with suffix `-2020-self2021-continuous`: Fine-tuning on the self-annotated data of `extra_2021` split of [tweetner7](https://huggingface.co/datasets/tner/tweetner7). Fine-tuning on `train_2020` and continuing fine-tuning on `extra_2020`.
### Reproduce Experimental Result
To reproduce the experimental result on our AACL paper, please see the repository
[https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper](https://github.com/asahi417/tner/tree/master/examples/tweetner7_paper).
## Citation Information
```
@inproceedings{ushio-etal-2022-tweet,
title = "{N}amed {E}ntity {R}ecognition in {T}witter: {A} {D}ataset and {A}nalysis on {S}hort-{T}erm {T}emporal {S}hifts",
author = "Ushio, Asahi and
Neves, Leonardo and
Silva, Vitor and
Barbieri, Francesco. and
Camacho-Collados, Jose",
booktitle = "The 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
month = nov,
year = "2022",
address = "Online",
publisher = "Association for Computational Linguistics",
}
```