File size: 13,537 Bytes
21ec5fe 94ecabc 57a7c76 94ecabc 6626d47 4cf10f7 94ecabc 21ec5fe 94ecabc f9b7595 94ecabc 57a7c76 94ecabc f9b7595 94ecabc 57a7c76 94ecabc f9b7595 94ecabc 57a7c76 94ecabc f9b7595 94ecabc 21ec5fe 94ecabc 57a7c76 94ecabc 57a7c76 94ecabc 21ec5fe 94ecabc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 |
""" SCROLLS benchmark metric. """
from collections import defaultdict
from copy import deepcopy
import datasets
import evaluate
# fmt: off
from .rouge import compute_rouge, postprocess_text as rouge_postprocess_text # From: https://huggingface.co/datasets/tau/scrolls/raw/main/metrics/rouge.py
from .exact_match import compute_exact_match # From: https://huggingface.co/datasets/tau/scrolls/raw/main/metrics/exact_match.py
from .f1 import compute_f1 # From: https://huggingface.co/datasets/tau/scrolls/raw/main/metrics/f1.py
# fmt: on
_CITATION = """\
@misc{shaham2022scrolls,
title={SCROLLS: Standardized CompaRison Over Long Language Sequences},
author={Uri Shaham and Elad Segal and Maor Ivgi and Avia Efrat and Ori Yoran and Adi Haviv and Ankit Gupta and Wenhan Xiong and Mor Geva and Jonathan Berant and Omer Levy},
year={2022},
eprint={2201.03533},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
"""
_DESCRIPTION = """\
SCROLLS: Standardized CompaRison Over Long Language Sequences.
A suite of natural language datasets that require reasoning over long texts.
https://scrolls-benchmark.com/
"""
_KWARGS_DESCRIPTION = """
Compute Scrolls evaluation metric associated to each Scrolls dataset.
Args:
predictions: list of predictions to score.
Each prediction should be a string.
references: list of lists of references for each example.
Each reference should be a string.
Returns: depending on the Scrolls subset, one or several of:
"exact_match": Exact Match score
"f1": F1 score
"rouge": ROUGE score
Use the following code to download the metric:
```
import os, shutil
from huggingface_hub import hf_hub_download
def download_metric():
scrolls_metric_path = hf_hub_download(repo_id="datasets/tau/scrolls", filename="metrics/scrolls.py")
updated_scrolls_metric_path = (
os.path.dirname(scrolls_metric_path) + os.path.basename(scrolls_metric_path).replace(".", "_") + ".py"
)
shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
return updated_scrolls_metric_path
scrolls_metric_path = download_metric()
```
Examples:
predictions = ["exact match example", "hello there", "general kenobi"] # List[str]
references = [["exact match example"], ["hello", "hi there"], ["commander kenobi"]] # List[List[str]]
>>> scrolls_metric = evaluate.load(scrolls_metric_path, 'gov_report') # 'gov_report' or any of ["qmsum", "summ_screen_fd"]
>>> results = scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'rouge/rouge1': 72.2222, 'rouge/rouge2': 33.3333, 'rouge/rougeL': 72.2222, 'rouge/rougeLsum': 72.2222, 'rouge/geometric_mean': 55.8136,
'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 55.8136,
'display_keys': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL'], 'display': [72.2222, 33.3333, 72.2222]}
>>> scrolls_metric = evaluate.load(scrolls_metric_path, 'contract_nli') # 'contract_nli' or "quality"
>>> results = scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'exact_match': 33.3333, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 33.3333,
'display_keys': ['exact_match'], 'display': [33.3333]}
>>> scrolls_metric = evaluate.load(scrolls_metric_path, 'narrative_qa') # 'narrative_qa' or "qasper"
>>> results = scrolls_metric.compute(predictions=predictions, references=references)
>>> print(results)
{'f1': 72.2222, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 72.2222,
'display_keys': ['f1'], 'display': [72.2222]}
"""
DATASET_TO_METRICS = {
"contract_nli": {
"metrics_to_compute": ["exact_match"],
"scrolls_score_key": "exact_match",
"display_keys": ["exact_match"],
},
"gov_report": {
"metrics_to_compute": ["rouge"],
"scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"narrative_qa": {
"metrics_to_compute": ["f1"],
"scrolls_score_key": "f1",
"display_keys": ["f1"],
},
"qasper": {
"metrics_to_compute": ["f1"],
"scrolls_score_key": "f1",
"display_keys": ["f1"],
},
"qmsum": {
"metrics_to_compute": ["rouge"],
"scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"summ_screen_fd": {
"metrics_to_compute": ["rouge"],
"scrolls_score_key": "rouge/geometric_mean",
"display_keys": ["rouge/rouge1", "rouge/rouge2", "rouge/rougeL"],
},
"quality": {
"metrics_to_compute": ["exact_match"],
"scrolls_score_key": "exact_match",
"display_keys": ["exact_match"],
},
"quality_hard": {
"metrics_to_compute": ["exact_match"],
"scrolls_score_key": None,
"display_keys": ["exact_match"],
},
}
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Scrolls(evaluate.Metric):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._compute_helper_kwargs_fn = {
"rouge": lambda: {
"metric_fn": compute_rouge,
"agg_fn": max,
"metric_fn_kwargs": {"use_stemmer": False},
"metric_returns_per_example": True,
"transform_single_input_fn": lambda text: rouge_postprocess_text(text),
"transform_result_fn": lambda output: {
key: (value[0] if isinstance(value, list) else value).fmeasure * 100
for key, value in output.items()
},
"transform_aggregated_result_fn": lambda output: output.update(
{"geometric_mean": (output["rouge1"] * output["rouge2"] * output["rougeL"]) ** (1.0 / 3.0)}
)
or output,
},
"exact_match": lambda: {
"metric_fn": compute_exact_match,
"agg_fn": None, # compute_exact_match already takes max
"transform_result_fn": lambda output: {None: output},
},
"f1": lambda: {
"metric_fn": compute_f1,
"agg_fn": None, # compute_f1 already takes max
"transform_result_fn": lambda output: {None: output},
},
}
custom_metrics = (
[metric for metric in self.config_name.split(",") if len(metric) > 0]
if self.config_name.startswith(",")
else None
)
if custom_metrics is not None:
for metric in custom_metrics:
if metric not in self._compute_helper_kwargs_fn:
raise KeyError(
f"You should supply a metric name selected in {list(self._compute_helper_kwargs_fn.keys())}"
)
self._metrics_to_compute = custom_metrics
else:
if self.config_name not in DATASET_TO_METRICS:
raise KeyError(f"You should supply a configuration name selected in {list(DATASET_TO_METRICS.keys())}")
self._metrics_to_compute = DATASET_TO_METRICS[self.config_name]["metrics_to_compute"]
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string"),
"references": datasets.Sequence(datasets.Value("string")),
}
),
codebase_urls=[],
reference_urls=[],
)
def convert_from_map_format(self, id_to_pred, id_to_labels):
index_to_id = list(id_to_pred.keys())
predictions = [id_to_pred[id_] for id_ in index_to_id]
references = [id_to_labels[id_] for id_ in index_to_id]
return {"predictions": predictions, "references": references}
def _compute(self, predictions, references):
metrics = {}
for metric in self._metrics_to_compute:
result = _compute_helper(
deepcopy(predictions),
deepcopy(references),
**self._compute_helper_kwargs_fn[metric](),
)
metrics.update(
{(f"{metric}/{key}" if key is not None else metric): value for key, value in result.items()}
)
metrics["num_predicted"] = len(predictions)
prediction_lengths = [len(prediction) for prediction in predictions]
metrics["mean_prediction_length_characters"] = sum(prediction_lengths) / len(prediction_lengths)
metrics = {key: round(value, 4) for key, value in metrics.items()}
if self.config_name in DATASET_TO_METRICS:
scrolls_score_key = DATASET_TO_METRICS[self.config_name]["scrolls_score_key"]
if scrolls_score_key is not None:
metrics["scrolls_score"] = metrics[scrolls_score_key]
else:
metrics["scrolls_score"] = None
display_keys = DATASET_TO_METRICS[self.config_name]["display_keys"]
metrics["display_keys"] = display_keys
metrics["display"] = []
for display_key in display_keys:
metrics["display"].append(metrics[display_key])
return metrics
def _compute_helper(
predictions,
references,
metric_fn,
agg_fn,
metric_fn_kwargs=None,
transform_single_input_fn=None,
transform_result_fn=None,
transform_aggregated_result_fn=None,
metric_returns_per_example=False,
):
if metric_fn_kwargs is None:
metric_fn_kwargs = {}
if agg_fn is None:
assert metric_returns_per_example is False
if transform_single_input_fn is not None:
predictions = [transform_single_input_fn(prediction) for prediction in predictions]
references = [
[transform_single_input_fn(reference) for reference in reference_list] for reference_list in references
]
if transform_result_fn is None:
transform_result_fn = lambda x: x
do_transform_result = False
else:
do_transform_result = True
if transform_aggregated_result_fn is None:
transform_aggregated_result_fn = lambda x: x
if agg_fn is not None:
# Required when the metric doesn't do the aggregation we need
scores = defaultdict(list)
if metric_returns_per_example is False:
# If when given a list of prediction and references the metric returns an aggregated score,
# we need to compute the metric for each prediction and reference and then aggregate the results.
# This is only an issue when we want to get the best aggregated score (e.g. max) for prediction
# with multiple references.
for prediction, reference_list in zip(predictions, references):
prediction_scores = defaultdict(list)
for reference in reference_list:
result = transform_result_fn(metric_fn([prediction], [reference], **metric_fn_kwargs))
for key in result:
prediction_scores[key].append(result[key])
for key in prediction_scores:
scores[key].append(agg_fn(prediction_scores[key]))
else:
# Flatten the references and then aggregate per prediction with agg_fn
mapping = [[] for _ in range(len(predictions))]
flattened_predictions = []
flattened_references = []
for i, prediction in enumerate(predictions):
for reference in references[i]:
flattened_predictions.append(prediction)
flattened_references.append(reference)
mapping[i].append(len(flattened_references) - 1)
results = metric_fn(flattened_predictions, flattened_references, **metric_fn_kwargs)
if isinstance(results, dict):
# Convert a dictionary with lists per key to a list with dictionary with the same keys per element
results_list = [{k: None for k in results} for _ in range(len(flattened_predictions))]
for k, v in results.items():
for i in range(len(v)):
results_list[i][k] = v[i]
else:
results_list = results
if do_transform_result:
for i in range(len(results_list)):
results_list[i] = transform_result_fn(results_list[i])
for reference_indexes in mapping:
prediction_scores = defaultdict(list)
for reference_index in reference_indexes:
result = results_list[reference_index]
for key in result:
prediction_scores[key].append(result[key])
for key in prediction_scores:
scores[key].append(agg_fn(prediction_scores[key]))
return transform_aggregated_result_fn({key: sum(value) / len(value) for key, value in scores.items()})
else:
return transform_aggregated_result_fn(
transform_result_fn(metric_fn(predictions, references, **metric_fn_kwargs))
)
|