eladsegal commited on
Commit
f9b7595
·
1 Parent(s): 2cdb235

Update metrics/scrolls.py

Browse files
Files changed (1) hide show
  1. metrics/scrolls.py +26 -6
metrics/scrolls.py CHANGED
@@ -31,24 +31,44 @@ Returns: depending on the Scrolls subset, one or several of:
31
  "exact_match": Exact Match score
32
  "f1": F1 score
33
  "rouge": ROUGE score
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
34
  Examples:
35
  predictions = ["exact match example", "hello there", "general kenobi"] # List[str]
36
  references = [["exact match example"], ["hello", "hi there"], ["commander kenobi"]] # List[List[str]]
37
 
38
- >>> scrolls_metric = datasets.load_metric('src/metrics/scrolls.py', 'gov_report') # 'gov_report' or any of ["qmsum", "summ_screen_fd"]
39
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
40
  >>> print(results)
41
- {'rouge/rouge1': 72.2222, 'rouge/rouge2': 33.3333, 'rouge/rougeL': 72.2222, 'rouge/rougeLsum': 72.2222, 'rouge/geometric_mean': 55.8136, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667}
 
 
42
 
43
- >>> scrolls_metric = datasets.load_metric('src/metrics/scrolls.py', 'contract_nli') # 'contract_nli' or any of ["quality", "quality_hard"]
44
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
45
  >>> print(results)
46
- {'exact_match': 33.3333, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667}
 
47
 
48
- >>> scrolls_metric = datasets.load_metric('src/metrics/scrolls.py', 'narrative_qa') # 'narrative_qa' or any of ["qasper"]
49
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
50
  >>> print(results)
51
- {'f1': 72.2222, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667}
 
52
  """
53
 
54
  DATASET_TO_METRICS = {
 
31
  "exact_match": Exact Match score
32
  "f1": F1 score
33
  "rouge": ROUGE score
34
+
35
+ Use the following code to download the metric:
36
+ ```
37
+ import os, shutil
38
+ from huggingface_hub import hf_hub_download
39
+ def download_metric():
40
+ scrolls_metric_path = hf_hub_download(repo_id="datasets/tau/scrolls", filename="metrics/scrolls.py")
41
+ updated_scrolls_metric_path = (
42
+ os.path.dirname(scrolls_metric_path) + os.path.basename(scrolls_metric_path).replace(".", "_") + ".py"
43
+ )
44
+ shutil.copy(scrolls_metric_path, updated_scrolls_metric_path)
45
+ return updated_scrolls_metric_path
46
+
47
+ scrolls_metric_path = download_metric()
48
+ ```
49
+
50
  Examples:
51
  predictions = ["exact match example", "hello there", "general kenobi"] # List[str]
52
  references = [["exact match example"], ["hello", "hi there"], ["commander kenobi"]] # List[List[str]]
53
 
54
+ >>> scrolls_metric = datasets.load_metric(scrolls_metric_path, 'gov_report') # 'gov_report' or any of ["qmsum", "summ_screen_fd"]
55
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
56
  >>> print(results)
57
+ {'rouge/rouge1': 72.2222, 'rouge/rouge2': 33.3333, 'rouge/rougeL': 72.2222, 'rouge/rougeLsum': 72.2222, 'rouge/geometric_mean': 55.8136,
58
+ 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 55.8136,
59
+ 'display_keys': ['rouge/rouge1', 'rouge/rouge2', 'rouge/rougeL'], 'display': [72.2222, 33.3333, 72.2222]}
60
 
61
+ >>> scrolls_metric = datasets.load_metric(scrolls_metric_path, 'contract_nli') # 'contract_nli' or "quality"
62
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
63
  >>> print(results)
64
+ {'exact_match': 33.3333, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 33.3333,
65
+ 'display_keys': ['exact_match'], 'display': [33.3333]}
66
 
67
+ >>> scrolls_metric = datasets.load_metric(scrolls_metric_path, 'narrative_qa') # 'narrative_qa' or "qasper"
68
  >>> results = scrolls_metric.compute(predictions=predictions, references=references)
69
  >>> print(results)
70
+ {'f1': 72.2222, 'num_predicted': 3, 'mean_prediction_length_characters': 14.6667, 'scrolls_score': 72.2222,
71
+ 'display_keys': ['f1'], 'display': [72.2222]}
72
  """
73
 
74
  DATASET_TO_METRICS = {