Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
English
Size:
100K - 1M
License:
# coding=utf-8 | |
# Copyright 2020 HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition""" | |
import os | |
import datasets | |
logger = datasets.logging.get_logger(__name__) | |
_CITATION = """\ | |
@inproceedings{derczynski2013twitter, | |
title={Twitter part-of-speech tagging for all: Overcoming sparse and noisy data}, | |
author={Derczynski, Leon and Ritter, Alan and Clark, Sam and Bontcheva, Kalina}, | |
booktitle={Proceedings of the international conference recent advances in natural language processing ranlp 2013}, | |
pages={198--206}, | |
year={2013} | |
} | |
""" | |
_DESCRIPTION = """\ | |
Part-of-speech information is basic NLP task. However, Twitter text | |
is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style. | |
This data is the vote-constrained bootstrapped data generate to support state-of-the-art results. | |
The data is about 1.5 million English tweets annotated for part-of-speech using Ritter's extension of the PTB tagset. | |
The tweets are from 2012 and 2013, tokenized using the GATE tokenizer and tagged | |
jointly using the CMU ARK tagger and Ritter's T-POS tagger. Only when both these taggers' outputs | |
are completely compatible over a whole tweet, is that tweet added to the dataset. | |
This data is recommend for use a training data **only**, and not evaluation data. | |
For more details see https://gate.ac.uk/wiki/twitter-postagger.html and https://aclanthology.org/R13-1026.pdf | |
""" | |
_URL = "http://downloads.gate.ac.uk/twitter/twitter_bootstrap_corpus.tar.gz" | |
_TRAINING_FILE = "gate_twitter_bootstrap_corpus.1543K.tokens" | |
class TwitterPosVcbConfig(datasets.BuilderConfig): | |
"""BuilderConfig for TwitterPosVcb""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig forConll2003. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(TwitterPosVcbConfig, self).__init__(**kwargs) | |
class TwitterPosVcb(datasets.GeneratorBasedBuilder): | |
"""TwitterPosVcb dataset.""" | |
BUILDER_CONFIGS = [ | |
TwitterPosVcbConfig(name="twitter-pos-vcb", version=datasets.Version("1.0.0"), description="English Twitter PoS bootstrap dataset"), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"tokens": datasets.Sequence(datasets.Value("string")), | |
"pos_tags": datasets.Sequence( | |
datasets.features.ClassLabel( | |
names=[ | |
'"', | |
"''", | |
"#", | |
"$", | |
"(", | |
")", | |
",", | |
".", | |
":", | |
"``", | |
"CC", | |
"CD", | |
"DT", | |
"EX", | |
"FW", | |
"IN", | |
"JJ", | |
"JJR", | |
"JJS", | |
"LS", | |
"MD", | |
"NN", | |
"NNP", | |
"NNPS", | |
"NNS", | |
"NN|SYM", | |
"PDT", | |
"POS", | |
"PRP", | |
"PRP$", | |
"RB", | |
"RBR", | |
"RBS", | |
"RP", | |
"SYM", | |
"TO", | |
"UH", | |
"VB", | |
"VBD", | |
"VBG", | |
"VBN", | |
"VBP", | |
"VBZ", | |
"WDT", | |
"WP", | |
"WP$", | |
"WRB", | |
"RT", | |
"HT", | |
"USR", | |
"URL", | |
] | |
) | |
), | |
} | |
), | |
supervised_keys=None, | |
homepage="https://gate.ac.uk/wiki/twitter-postagger.html", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
downloaded_file = dl_manager.download_and_extract(_URL) | |
data_files = { | |
"train": os.path.join(downloaded_file, _TRAINING_FILE), | |
} | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}), | |
] | |
def _generate_examples(self, filepath): | |
logger.info("⏳ Generating examples from = %s", filepath) | |
with open(filepath, encoding="utf-8") as f: | |
guid = 0 | |
for line in f: | |
tokens = [] | |
pos_tags = [] | |
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n": | |
continue | |
else: | |
# twitter-pos-vcb gives one seq per line, as token_tag | |
annotated_words = line.strip().split(' ') | |
tokens = ['_'.join(token.split('_')[:-1]) for token in annotated_words] | |
pos_tags = [token.split('_')[-1] for token in annotated_words] | |
yield guid, { | |
"id": str(guid), | |
"tokens": tokens, | |
"pos_tags": pos_tags, | |
} | |
guid += 1 | |