Datasets:
Tasks:
Token Classification
Modalities:
Text
Sub-tasks:
part-of-speech
Languages:
English
Size:
100K - 1M
License:
File size: 6,722 Bytes
48b1c1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 |
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = """\
@inproceedings{derczynski2013twitter,
title={Twitter part-of-speech tagging for all: Overcoming sparse and noisy data},
author={Derczynski, Leon and Ritter, Alan and Clark, Sam and Bontcheva, Kalina},
booktitle={Proceedings of the international conference recent advances in natural language processing ranlp 2013},
pages={198--206},
year={2013}
}
"""
_DESCRIPTION = """\
Part-of-speech information is basic NLP task. However, Twitter text
is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style.
This data is the vote-constrained bootstrapped data generate to support state-of-the-art results.
The data is about 1.5 million English tweets annotated for part-of-speech using Ritter's extension of the PTB tagset.
The tweets are from 2012 and 2013, tokenized using the GATE tokenizer and tagged
jointly using the CMU ARK tagger and Ritter's T-POS tagger. Only when both these taggers' outputs
are completely compatible over a whole tweet, is that tweet added to the dataset.
This data is recommend for use a training data **only**, and not evaluation data.
For more details see https://gate.ac.uk/wiki/twitter-postagger.html and https://aclanthology.org/R13-1026.pdf
"""
_URL = "http://downloads.gate.ac.uk/twitter/twitter_bootstrap_corpus.tar.gz"
_TRAINING_FILE = "gate_twitter_bootstrap_corpus.1543K.tokens"
class TwitterPosVcbConfig(datasets.BuilderConfig):
"""BuilderConfig for TwitterPosVcb"""
def __init__(self, **kwargs):
"""BuilderConfig forConll2003.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(TwitterPosVcbConfig, self).__init__(**kwargs)
class TwitterPosVcb(datasets.GeneratorBasedBuilder):
"""TwitterPosVcb dataset."""
BUILDER_CONFIGS = [
TwitterPosVcbConfig(name="twitter-pos-vcb", version=datasets.Version("1.0.0"), description="English Twitter PoS bootstrap dataset"),
]
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"pos_tags": datasets.Sequence(
datasets.features.ClassLabel(
names=[
'"',
"''",
"#",
"$",
"(",
")",
",",
".",
":",
"``",
"CC",
"CD",
"DT",
"EX",
"FW",
"IN",
"JJ",
"JJR",
"JJS",
"LS",
"MD",
"NN",
"NNP",
"NNPS",
"NNS",
"NN|SYM",
"PDT",
"POS",
"PRP",
"PRP$",
"RB",
"RBR",
"RBS",
"RP",
"SYM",
"TO",
"UH",
"VB",
"VBD",
"VBG",
"VBN",
"VBP",
"VBZ",
"WDT",
"WP",
"WP$",
"WRB",
"RT",
"HT",
"USR",
"URL",
]
)
),
}
),
supervised_keys=None,
homepage="https://gate.ac.uk/wiki/twitter-postagger.html",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
downloaded_file = dl_manager.download_and_extract(_URL)
data_files = {
"train": os.path.join(downloaded_file, _TRAINING_FILE),
}
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
]
def _generate_examples(self, filepath):
logger.info("⏳ Generating examples from = %s", filepath)
with open(filepath, encoding="utf-8") as f:
guid = 0
for line in f:
tokens = []
pos_tags = []
if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
continue
else:
# twitter-pos-vcb gives one seq per line, as token_tag
annotated_words = line.strip().split(' ')
tokens = ['_'.join(token.split('_')[:-1]) for token in annotated_words]
pos_tags = [token.split('_')[-1] for token in annotated_words]
yield guid, {
"id": str(guid),
"tokens": tokens,
"pos_tags": pos_tags,
}
guid += 1
|