File size: 6,722 Bytes
48b1c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Lint as: python3
"""Introduction to the CoNLL-2003 Shared Task: Language-Independent Named Entity Recognition"""

import os

import datasets


logger = datasets.logging.get_logger(__name__)


_CITATION = """\
@inproceedings{derczynski2013twitter,
  title={Twitter part-of-speech tagging for all: Overcoming sparse and noisy data},
  author={Derczynski, Leon and Ritter, Alan and Clark, Sam and Bontcheva, Kalina},
  booktitle={Proceedings of the international conference recent advances in natural language processing ranlp 2013},
  pages={198--206},
  year={2013}
}
"""

_DESCRIPTION = """\
Part-of-speech information is basic NLP task. However, Twitter text
is difficult to part-of-speech tag: it is noisy, with linguistic errors and idiosyncratic style.
This data is the vote-constrained bootstrapped data generate to support state-of-the-art results.

The data is about 1.5 million English tweets annotated for part-of-speech using Ritter's extension of the PTB tagset.
The tweets are from 2012 and 2013, tokenized using the GATE tokenizer and tagged
jointly using the CMU ARK tagger and Ritter's T-POS tagger. Only when both these taggers' outputs
are completely compatible over a whole tweet, is that tweet added to the dataset.

This data is recommend for use a training data **only**, and not evaluation data.

For more details see https://gate.ac.uk/wiki/twitter-postagger.html and https://aclanthology.org/R13-1026.pdf
"""

_URL = "http://downloads.gate.ac.uk/twitter/twitter_bootstrap_corpus.tar.gz"
_TRAINING_FILE = "gate_twitter_bootstrap_corpus.1543K.tokens"


class TwitterPosVcbConfig(datasets.BuilderConfig):
    """BuilderConfig for TwitterPosVcb"""

    def __init__(self, **kwargs):
        """BuilderConfig forConll2003.

        Args:
          **kwargs: keyword arguments forwarded to super.
        """
        super(TwitterPosVcbConfig, self).__init__(**kwargs)


class TwitterPosVcb(datasets.GeneratorBasedBuilder):
    """TwitterPosVcb dataset."""

    BUILDER_CONFIGS = [
        TwitterPosVcbConfig(name="twitter-pos-vcb", version=datasets.Version("1.0.0"), description="English Twitter PoS bootstrap dataset"),
    ]

    def _info(self):
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=datasets.Features(
                {
                    "id": datasets.Value("string"),
                    "tokens": datasets.Sequence(datasets.Value("string")),
                    "pos_tags": datasets.Sequence(
                        datasets.features.ClassLabel(
                            names=[
                                '"',
                                "''",
                                "#",
                                "$",
                                "(",
                                ")",
                                ",",
                                ".",
                                ":",
                                "``",
                                "CC",
                                "CD",
                                "DT",
                                "EX",
                                "FW",
                                "IN",
                                "JJ",
                                "JJR",
                                "JJS",
                                "LS",
                                "MD",
                                "NN",
                                "NNP",
                                "NNPS",
                                "NNS",
                                "NN|SYM",
                                "PDT",
                                "POS",
                                "PRP",
                                "PRP$",
                                "RB",
                                "RBR",
                                "RBS",
                                "RP",
                                "SYM",
                                "TO",
                                "UH",
                                "VB",
                                "VBD",
                                "VBG",
                                "VBN",
                                "VBP",
                                "VBZ",
                                "WDT",
                                "WP",
                                "WP$",
                                "WRB",
                                "RT",
                                "HT",
                                "USR",
                                "URL",
                            ]
                        )
                    ),
                }
            ),
            supervised_keys=None,
            homepage="https://gate.ac.uk/wiki/twitter-postagger.html",
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        """Returns SplitGenerators."""
        downloaded_file = dl_manager.download_and_extract(_URL)
        data_files = {
            "train": os.path.join(downloaded_file, _TRAINING_FILE),
        }

        return [
            datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
        ]

    def _generate_examples(self, filepath):
        logger.info("⏳ Generating examples from = %s", filepath)
        with open(filepath, encoding="utf-8") as f:
            guid = 0
            for line in f:
                tokens = []
                pos_tags = []
                if line.startswith("-DOCSTART-") or line.strip() == "" or line == "\n":
                    continue
                else:
                    # twitter-pos-vcb gives one seq per line, as token_tag
                    annotated_words = line.strip().split(' ')
                    tokens = ['_'.join(token.split('_')[:-1]) for token in annotated_words]
                    pos_tags = [token.split('_')[-1] for token in annotated_words]
                    yield guid, {
                        "id": str(guid),
                        "tokens": tokens,
                        "pos_tags": pos_tags,
                    }
                    guid += 1