Search is not available for this dataset
image
imagewidth (px)
634
1.08k
label
class label
3 classes
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
0RoughnessB
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
1RoughnessC
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD
2RoughnessD

Surface Roughness Dataset

This is a dataset containing google image snapshots representing surface roughness categories of B, C, and D according to ASCE 7-16 26.7.2

Uses

This dataset is used for the NCSEA quick-start guide to work with machine learning models.

Data Structure

An example of data looks like

{'image': <PIL.PngImagePlugin.PngImageFile image mode=RGBA size=1350x1058>,
 'label': 0}

Data Split

train validation test
# of examples 66 15 11

Dataset Card Contact

Sheng Zheng
[email protected]

Downloads last month
48

Models trained or fine-tuned on sh-zheng/SurfaceRoughness