Datasets:
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
Error code: DatasetGenerationError Exception: ArrowInvalid Message: Float value 2.1 was truncated converting to int64 Traceback: Traceback (most recent call last): File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single writer.write_table(table) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table pa_table = table_cast(pa_table, self._schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast return cast_table_to_schema(table, schema) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2245, in cast_table_to_schema arrays = [ File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2246, in <listcomp> cast_array_to_feature( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in wrapper return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1795, in <listcomp> return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks]) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2102, in cast_array_to_feature return array_cast( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1797, in wrapper return func(array, *args, **kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1949, in array_cast return array.cast(pa_type) File "pyarrow/array.pxi", line 996, in pyarrow.lib.Array.cast File "/src/services/worker/.venv/lib/python3.9/site-packages/pyarrow/compute.py", line 404, in cast return call_function("cast", [arr], options, memory_pool) File "pyarrow/_compute.pyx", line 590, in pyarrow._compute.call_function File "pyarrow/_compute.pyx", line 385, in pyarrow._compute.Function.call File "pyarrow/error.pxi", line 154, in pyarrow.lib.pyarrow_internal_check_status File "pyarrow/error.pxi", line 91, in pyarrow.lib.check_status pyarrow.lib.ArrowInvalid: Float value 2.1 was truncated converting to int64 The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response parquet_operations = convert_to_parquet(builder) File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet builder.download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare self._download_and_prepare( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare self._prepare_split(split_generator, **prepare_split_kwargs) File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split for job_id, done, content in self._prepare_split_single( File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1897, in _prepare_split_single raise DatasetGenerationError("An error occurred while generating the dataset") from e datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
pointid
string | lgbtqia2+_practicality
float64 | lgbtqia2+_inclusivity
float64 | lgbtqia2+_aesthetics
float64 | lgbtqia2+_accessibility
float64 | handicapped_practicality
float64 | handicapped_inclusivity
float64 | handicapped_aesthetics
float64 | handicapped_accessibility
float64 | elderly_female_practicality
float64 | elderly_female_inclusivity
float64 | elderly_female_aesthetics
float64 | elderly_female_accessibility
float64 | elderly_male_practicality
int64 | elderly_male_inclusivity
int64 | elderly_male_aesthetics
int64 | elderly_male_accessibility
int64 | young_male_practicality
int64 | young_male_inclusivity
int64 | young_male_aesthetics
int64 | young_male_accessibility
int64 | young_female_practicality
float64 | young_female_inclusivity
float64 | young_female_aesthetics
float64 | young_female_accessibility
float64 | group_practicality
float64 | group_inclusivity
float64 | group_aesthetics
float64 | group_accessibility
float64 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
i01 | 2.5 | 2.5 | 4 | 2 | 2 | 2 | 4 | 2 | 2.7 | 2.3 | 2.7 | 2.7 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2.4 | 2.3 | 2.7 | 2.2 | 2.2 | 2.3 | 3.1 | 2.1 |
i02 | 3 | 2.5 | 2 | 3 | 3 | 2 | 2 | 3 | 2.7 | 2.3 | 2 | 3.7 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 2.4 | 2.1 | 2 | 3.2 | 2.5 | 2.5 | 2.2 | 2.5 |
i03 | 3.5 | 2 | 1.5 | 3 | 2 | 1 | 2 | 3 | 2.7 | 2.7 | 1.7 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2.2 | 1.7 | 1.7 | 2.5 | 2.5 | 2.8 | 1.8 | 3 |
i04 | 2.5 | 3 | 3 | 3.5 | 1 | 2 | 1 | 1 | 2.7 | 3 | 2.3 | 3 | 2 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2.2 | 2.8 | 2.1 | 2.3 | 3 | 3 | 3 | 4 |
i05 | 3.5 | 3 | 3.5 | 2.5 | 2 | 2 | 2 | 2 | 1.7 | 1.7 | 3.3 | 1.7 | 3 | 3 | 3 | 3 | 3 | 2 | 2 | 2 | 2.4 | 2.2 | 2.6 | 2.2 | 1.7 | 1.7 | 3.3 | 1.7 |
i06 | 3 | 2.5 | 2.5 | 2 | 4 | 2 | 1 | 4 | 2.7 | 2.7 | 1.7 | 2.3 | 3 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 3.2 | 2.2 | 1.9 | 2.6 | 3 | 2 | 2 | 1 |
i07 | 2.5 | 1.5 | 3 | 2 | 2 | 2 | 3 | 2 | 2.3 | 1.7 | 2 | 2.3 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2.1 | 1.9 | 2 | 1.6 | 2 | 1 | 2 | 1 |
i08 | 2.5 | 1.5 | 1 | 1.5 | 3 | 2 | 1 | 2 | 1.3 | 1 | 1 | 1.7 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1.8 | 1.3 | 1 | 1.4 | 1.9 | 1.3 | 1.3 | 1.4 |
i09 | 2 | 3 | 3.5 | 3.5 | 2 | 2 | 3 | 4 | 1.7 | 1.7 | 2 | 1.3 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1.7 | 1.9 | 2 | 1.8 | 2 | 3 | 2 | 2 |
i10 | 3.5 | 2.5 | 2 | 2.5 | 3 | 2 | 1 | 3 | 2.7 | 2.7 | 2.3 | 2.7 | 3 | 2 | 2 | 1 | 3 | 3 | 2 | 2 | 2.9 | 2.4 | 1.8 | 2.2 | 2.8 | 2.5 | 1.5 | 2.5 |
i11 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 4 | 1.7 | 1 | 1.3 | 2.3 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 1.9 | 1.5 | 1.3 | 2.3 | 2.2 | 1.5 | 1 | 2.5 |
i12 | 2 | 1.5 | 2.5 | 1.5 | 2 | 2 | 2 | 3 | 1.7 | 1.7 | 1.7 | 2.3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1.7 | 1.7 | 1.7 | 2.1 | 1 | 1 | 1 | 1 |
i13 | 3 | 2.5 | 2 | 3 | 3 | 2 | 1 | 3 | 2 | 2.3 | 2.3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 2.5 | 1.8 | 2.1 | 2.8 | 3 | 2 | 1.5 | 2.8 |
i14 | 3.5 | 4 | 4 | 3 | 2 | 3 | 2 | 2 | 3 | 2.3 | 2.7 | 2.3 | 2 | 3 | 2 | 3 | 3 | 3 | 4 | 3 | 2.5 | 2.8 | 2.7 | 2.6 | 3.2 | 2.5 | 2.8 | 2.4 |
i15 | 3.5 | 2 | 1.5 | 2 | 3 | 2 | 1 | 3 | 2.7 | 2.3 | 1.7 | 2.7 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2.7 | 1.8 | 1.2 | 2.4 | 2.5 | 2.3 | 1.3 | 2.8 |
i16 | 3 | 2.5 | 3.5 | 3 | 1 | 1 | 1 | 1 | 3.3 | 3.3 | 2.7 | 3.7 | 3 | 1 | 3 | 1 | 4 | 4 | 3 | 3 | 2.8 | 2.3 | 2.4 | 2.2 | 2.6 | 2.3 | 1.6 | 2.1 |
i17 | 2 | 2 | 2.5 | 2 | 3 | 2 | 1 | 3 | 2 | 1.7 | 1.7 | 2.7 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1.7 | 1.4 | 2.4 | 2 | 2 | 2 | 2 |
i18 | 3.5 | 3.5 | 2 | 3.5 | 1 | 1 | 1 | 1 | 3.7 | 3.3 | 3.7 | 3.3 | 4 | 2 | 3 | 2 | 4 | 4 | 3 | 3 | 3.2 | 2.6 | 2.7 | 2.3 | 2.2 | 2.5 | 1.5 | 2 |
i19 | 2.5 | 1.5 | 3 | 1.5 | 1 | 1 | 3 | 1 | 2.3 | 1.3 | 2.7 | 1 | 3 | 2 | 4 | 2 | 3 | 2 | 3 | 2 | 2.3 | 1.6 | 3.2 | 1.5 | 3 | 1 | 3 | 1 |
i20 | 3.5 | 1 | 1 | 1.5 | 4 | 2 | 1 | 4 | 2 | 2.3 | 1.3 | 2.7 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 2.8 | 1.8 | 1.3 | 2.7 | 2.6 | 2 | 1.9 | 2.6 |
i21 | 2.1 | 2.5 | 4 | 2 | 3 | 2 | 4 | 3 | 2.7 | 2.3 | 2.7 | 2.7 | 3 | 3 | 2 | 2 | 2 | 2.1 | 2 | 2 | 2.4 | 2.3 | 2.7 | 2.2 | 2 | 2.3 | 3.1 | 2.1 |
i22 | 2.3 | 2.5 | 2.5 | 3 | 3.5 | 2.2 | 2 | 3 | 2.7 | 2.3 | 2 | 3.7 | 2.5 | 2 | 2 | 3 | 2 | 2.5 | 2 | 3 | 2.4 | 2.1 | 2 | 3.2 | 2.2 | 2.5 | 2.2 | 2.5 |
i23 | 3.3 | 2 | 1.5 | 3 | 2.4 | 1 | 2 | 3 | 2.7 | 2.7 | 1.7 | 3.2 | 2 | 1.5 | 1 | 2 | 2 | 2 | 2 | 2.5 | 2.2 | 1.7 | 1.7 | 2.5 | 2.5 | 2.8 | 1.8 | 3 |
i24 | 2.9 | 3 | 3 | 3.5 | 1 | 2.3 | 1 | 1 | 2.9 | 3 | 2.3 | 3 | 2 | 3 | 2 | 3 | 3 | 3 | 3 | 2 | 2.2 | 2.8 | 2.3 | 2.3 | 3 | 3 | 3 | 4 |
i25 | 3.5 | 3.5 | 3.5 | 2.5 | 2 | 2 | 2.5 | 2 | 1.7 | 1.7 | 3.3 | 1.7 | 3 | 3 | 3 | 3 | 3.1 | 2 | 2 | 2 | 2.4 | 2.2 | 2.6 | 2.2 | 1.8 | 1.7 | 3.3 | 1.7 |
i26 | 3 | 2.7 | 2.5 | 2.6 | 4 | 2 | 1 | 4 | 2.7 | 2.2 | 1.7 | 2.3 | 3 | 2 | 3 | 2 | 3 | 2.3 | 2 | 2 | 3.5 | 2.2 | 1.9 | 2.6 | 3 | 2 | 2 | 1 |
i27 | 3.5 | 1.5 | 3 | 2.5 | 2 | 2 | 3 | 2 | 2.3 | 1.7 | 2 | 2.3 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2.1 | 1.9 | 2 | 1.6 | 2 | 1 | 2 | 1 |
i28 | 2 | 1.5 | 1 | 1.5 | 3 | 2 | 1.5 | 2 | 1.3 | 1 | 1 | 1.7 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1.8 | 1.5 | 1 | 1.4 | 1.9 | 1.3 | 1.3 | 1.4 |
i29 | 2.5 | 3 | 3.5 | 3.5 | 2 | 2 | 3 | 4 | 1.7 | 1.7 | 2 | 1.3 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1 | 1.7 | 1.9 | 2 | 1.8 | 2 | 3 | 2 | 2.5 |
i30 | 2.5 | 2.5 | 2 | 2.5 | 3 | 2 | 1 | 3 | 2.7 | 2.7 | 2.3 | 2.7 | 3 | 2 | 2 | 1 | 2 | 3 | 2 | 2 | 2.9 | 2.4 | 1.8 | 2.2 | 2.5 | 2.5 | 1.5 | 2.5 |
i31 | 3 | 2 | 2.6 | 2 | 2 | 1 | 1 | 3.5 | 1.7 | 1 | 1.3 | 2.3 | 2 | 1 | 1 | 1.1 | 2 | 3 | 2 | 2 | 1.9 | 1.5 | 1.3 | 2.3 | 2.2 | 1.5 | 1 | 2.5 |
i32 | 2.5 | 1.8 | 2.5 | 1.5 | 2 | 2 | 2 | 3 | 1.7 | 1.7 | 1.7 | 2.3 | 2 | 2 | 2 | 2 | 1 | 1.1 | 1 | 1 | 1.7 | 1.7 | 1.7 | 2.1 | 1 | 1 | 1.3 | 1 |
i33 | 3 | 2.5 | 2 | 3 | 3.6 | 2 | 1 | 3 | 2 | 2.3 | 2.3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 2.5 | 1.8 | 2.1 | 2.3 | 3 | 2 | 1.5 | 2.4 |
i34 | 3.5 | 3.5 | 4 | 3 | 2 | 3 | 2 | 2 | 3 | 2.8 | 2.7 | 2.3 | 2 | 3 | 2 | 3 | 3 | 3 | 4 | 3 | 2.5 | 2.8 | 2 | 2.6 | 3.2 | 2.5 | 2.8 | 2.4 |
i35 | 3 | 2 | 1.5 | 2 | 3 | 2 | 1 | 3 | 2.7 | 2.9 | 1.7 | 2.7 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2.7 | 1.8 | 1.2 | 2.4 | 2.5 | 2.3 | 1.3 | 2.3 |
i36 | 3 | 2.5 | 3.5 | 2 | 1 | 1 | 1 | 1 | 3.3 | 3.3 | 2.7 | 3.7 | 3 | 1 | 3 | 1 | 4 | 4 | 3 | 3 | 2.8 | 2.3 | 2.8 | 2.2 | 2.6 | 2.3 | 1.6 | 2.1 |
i37 | 2 | 2 | 2.8 | 2 | 3 | 2 | 1 | 3 | 2 | 1.7 | 1.6 | 2.7 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1.7 | 1.6 | 2.4 | 2 | 2 | 2 | 2 |
i38 | 3.5 | 3.5 | 2 | 3.4 | 1 | 1 | 1 | 1 | 3.7 | 3.5 | 3.7 | 3.3 | 4 | 2 | 3 | 2 | 4 | 4 | 3 | 3 | 3.2 | 2.6 | 2.5 | 2.3 | 2.2 | 2.5 | 1.5 | 2 |
i39 | 2.5 | 1.5 | 3 | 1.5 | 1 | 2 | 3 | 1 | 2.3 | 1.3 | 2.8 | 1 | 3 | 2 | 4 | 2 | 3 | 2 | 3 | 2 | 2.3 | 1.9 | 3.2 | 1.5 | 3 | 1 | 3 | 1 |
i40 | 3 | 1 | 1 | 2.5 | 4 | 2 | 1 | 4 | 2 | 2.3 | 1.6 | 2.7 | 3 | 2 | 2 | 3 | 2 | 1 | 1 | 1.5 | 2.8 | 1.8 | 1.3 | 2.7 | 2.6 | 2 | 1.9 | 2.6 |
i41 | 2.7 | 2.5 | 4 | 2 | 2 | 2 | 3.5 | 2 | 2.7 | 2.3 | 2.7 | 2.7 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2.4 | 2.3 | 2.7 | 2.2 | 2.2 | 2.3 | 3.1 | 2.1 |
i42 | 3 | 2.5 | 2 | 3 | 3 | 2 | 2 | 3 | 2.7 | 2.3 | 2 | 3.7 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 3 | 2.4 | 2.1 | 2 | 3.2 | 2.5 | 2.5 | 2.2 | 2.5 |
i43 | 3 | 2 | 1.5 | 3 | 2 | 1 | 2 | 3 | 2.7 | 2.7 | 1.8 | 3 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2.2 | 1.7 | 1.7 | 2.5 | 2.5 | 2 | 1.8 | 3 |
i44 | 3.5 | 3 | 3 | 3.5 | 1.5 | 2 | 1 | 1.5 | 2.7 | 3 | 2.3 | 2 | 2 | 3 | 2 | 3 | 3 | 3.5 | 3 | 2 | 2.4 | 2.8 | 2.1 | 2.3 | 3 | 3 | 3 | 3.8 |
i45 | 3.5 | 3 | 3.5 | 2.5 | 2.5 | 2 | 2 | 2 | 1.7 | 1.7 | 3.3 | 1.7 | 3 | 3 | 3.5 | 3 | 3 | 2 | 2 | 2 | 2.4 | 2.2 | 2.6 | 2.4 | 1.7 | 1.7 | 3.3 | 1.7 |
i46 | 3.5 | 2.5 | 2.5 | 2 | 4 | 2 | 1 | 4 | 2.7 | 2.7 | 1.7 | 2.6 | 3 | 2 | 3 | 2 | 3 | 2 | 2 | 2 | 3.4 | 2.2 | 1.9 | 2.6 | 3 | 2 | 2 | 1 |
i47 | 2.5 | 1.5 | 3 | 3 | 2 | 2 | 3 | 2 | 2.3 | 1.7 | 3 | 2.3 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 1 | 2.1 | 1.9 | 2 | 1.6 | 2 | 1 | 2 | 1 |
i48 | 2 | 1.5 | 1.5 | 1.5 | 3 | 2 | 1 | 2 | 1.3 | 1 | 1 | 1.7 | 1 | 1.5 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1.3 | 1 | 1.4 | 2 | 1.3 | 1.3 | 1.4 |
i49 | 3 | 3 | 3.5 | 3.5 | 2 | 2 | 3 | 4 | 1.7 | 1.7 | 2 | 1.3 | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 1.4 | 1.7 | 1.9 | 2 | 1.8 | 2 | 3 | 2 | 2 |
i50 | 3.5 | 2.5 | 2 | 3.5 | 3 | 2 | 1 | 3 | 2.7 | 2.7 | 2.3 | 3.7 | 3 | 2 | 2 | 1.5 | 3 | 3 | 2 | 2 | 2.9 | 2.4 | 2 | 2.2 | 2.8 | 2.5 | 1.5 | 2.5 |
i51 | 3 | 2 | 2 | 2 | 2 | 1 | 1 | 4 | 1.7 | 1 | 1.3 | 2.3 | 2 | 1 | 1 | 1 | 2 | 3 | 2 | 2 | 1.9 | 1.5 | 1.3 | 2.3 | 2.2 | 1.5 | 1 | 2.5 |
i52 | 2 | 1 | 2.5 | 1.5 | 2 | 2.5 | 2 | 3 | 1.7 | 1.7 | 2.7 | 2.3 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1.7 | 1.7 | 1.7 | 2.1 | 2 | 1 | 1 | 1 |
i53 | 3 | 2.5 | 2.5 | 3 | 3 | 2 | 1 | 3.5 | 2.4 | 2.3 | 2.3 | 3 | 3 | 1 | 3 | 3 | 2 | 2 | 2 | 2 | 2.5 | 1.8 | 2.1 | 2.8 | 3 | 2 | 1.5 | 2.8 |
i54 | 3.5 | 3.5 | 4 | 3.5 | 2 | 3 | 2.5 | 2 | 3 | 2.3 | 2.7 | 2.5 | 2 | 3 | 2 | 3 | 3 | 3 | 4 | 3 | 2.5 | 2.8 | 2.7 | 2.6 | 3.2 | 2.5 | 2.8 | 2.4 |
i55 | 3.5 | 2 | 1.5 | 2 | 3 | 2 | 1 | 3 | 2.8 | 2.3 | 1.7 | 2.7 | 3 | 1 | 1 | 2 | 2 | 2 | 1 | 2 | 2.7 | 1.8 | 1.2 | 2.4 | 2.5 | 2.3 | 1.3 | 2.8 |
i56 | 3.5 | 3.5 | 3.5 | 3 | 1 | 1 | 1.5 | 1 | 3.3 | 3.8 | 2.7 | 3.7 | 3 | 1 | 3.3 | 1 | 4 | 4 | 3 | 3 | 2.8 | 2.3 | 2.4 | 2.2 | 2.6 | 2.3 | 1.6 | 2.1 |
i57 | 2 | 1.5 | 2.5 | 2 | 2 | 2 | 1 | 3 | 2 | 1.7 | 1.7 | 2.7 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1.7 | 1.8 | 2.4 | 2 | 3 | 2 | 2 |
i58 | 4 | 3.5 | 2 | 3.5 | 1 | 1 | 1 | 1 | 3.7 | 3.3 | 3.7 | 3.3 | 4 | 2 | 3 | 2 | 4 | 3.5 | 3 | 3 | 3.2 | 2.6 | 3 | 2.3 | 0.2 | 3.5 | 1.5 | 2 |
i59 | 2.5 | 2 | 3 | 1 | 1 | 1 | 3 | 1 | 2.3 | 1.3 | 2 | 1 | 3 | 2 | 3 | 2 | 3 | 2 | 3 | 2.5 | 2.3 | 1.6 | 3.2 | 1.5 | 3 | 1 | 3 | 1 |
i60 | 3 | 1 | 1.5 | 2 | 4 | 2 | 1 | 3 | 2 | 2.3 | 1.3 | 2.7 | 2 | 2 | 2 | 3 | 2 | 1 | 1 | 1 | 2.8 | 2 | 1.3 | 2.7 | 2.6 | 2 | 2 | 2.6 |
StreetReview Dataset
Overview
StreetReview is a curated dataset designed to evaluate the inclusivity, accessibility, aesthetics, and practicality of urban streetscapes, particularly in a multicultural city context. Focused on Montréal, Canada, the dataset combines diverse demographic evaluations with rich metadata and street-view imagery. It aims to advance research in urban planning, public space design, and machine learning applications for creating inclusive and user-friendly urban environments.
Dataset Structure
The StreetReview dataset is organized as follows:
Root Directory
metadata.csv
: Comprehensive metadata for each evaluation point.street_eval/
: CSV files containing evaluation data for individual street sections.street_img/
: Street-view images categorized by street and section.
Street Image Data
Images are stored in street_img/
and organized into folders by street and section, with three perspectives per section (_main
, _head
, _tail
). Example structure:
street_img/
├── i01_cote_sainte_catherine_main/
│ ├── main_001.jpg
│ ├── main_002.jpg
│ ...
└── i02_rue_berri_main/
├── main_001.jpg
├── main_002.jpg
...
Street Evaluation Data
Evaluation data is stored in street_eval/
as CSV files named after their corresponding street section. Example:
street_eval/
├── i01_evaluations.csv
├── i02_evaluations.csv
...
Methodology
Participatory Evaluation Process
The dataset was created using a participatory approach to capture diverse urban experiences:
- Individual Evaluation: Participants rated 20 street on four criteria using a color-coded system.
- Group Evaluation: In focus groups, participants reassessed images collectively and refined their evaluations.
Data Collection
- Participants: 28 individuals contributed to criteria development; 12 participated in detailed evaluations.
- Evaluation Points: 60 points across 20 streets, with two images per point.
- Dataset Expansion: Up to 250 images per point, rotated for diversity.
Data Fields
Metadata
The metadata.csv
file contains attributes such as:
Field | Description |
---|---|
point_id |
Unique identifier |
sidewalk_width |
Width of sidewalks |
greenery_presence |
Presence of greenery |
building_height |
Height of adjacent buildings |
... | ... |
Evaluations
Each CSV file in street_eval/
includes ratings from various demographic groups. Ratings are based on a 1-4 scale. For example, a score of 1 for accessibility means "not accessible," scores of 2 or 3 indicate "average accessibility," and a score of 4 represents "highest accessibility."
Field | Description |
---|---|
lgbtqia2+_accessibility |
Accessibility rating by LGBTQIA2+ |
elderly_male_practicality |
Practicality rating by elderly males |
group_inclusivity |
Inclusivity rating by groups of 3-5 diverse individuals |
... | ... |
Usage
Cloning the Repository
Clone the repository with:
git clone https://huggingface.co/datasets/rsdmu/streetreview
Example Code
import pandas as pd
from PIL import Image
import os
# Load metadata
metadata = pd.read_csv('metadata.csv')
# Load evaluation data
eval_data = pd.read_csv('street_eval/i01_evaluations.csv')
# Display an image
image_path = 'street_img/i01_cote_sainte_catherine_main/main_001.jpg'
image = Image.open(image_path)
image.show()
License
Licensed under Creative Commons Attribution 4.0 International (CC BY 4.0).
Citing StreetReview
@dataset{streetreview2024,
title = {StreetReview Dataset: Evaluating Urban Streetscapes for Inclusivity and Accessibility},
author = {Rashid Mushkani},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/rsdmu/streetreview}
}
Contributing
We welcome contributions! Please fork the repository, make changes, and submit a pull request.
Contact
For inquiries, contact:
- Email: Rashid Mushkani
- Website: Rashid Mushkani
- GitHub: RSDMU
© 2024 RSDMU. All rights reserved.
- Downloads last month
- 6