repo_name
stringlengths
6
103
path
stringlengths
5
191
copies
stringlengths
1
4
size
stringlengths
4
6
content
stringlengths
986
970k
license
stringclasses
15 values
Xaroth/libzfs-python
libzfs/zdataset.py
1
5791
from . import bindings from .handle import LibZFSHandle from .utils.conversion import boolean_t libzfs = bindings.libzfs ffi = bindings.ffi zfs_type_t = bindings['zfs_type_t'] zprop_type_t = bindings['zprop_type_t'] zfs_prop_t = bindings['zfs_prop_t'] zprop_source_t = bindings['zprop_source_t'] ZFS_MAXNAMELEN = bindings['ZFS_MAXNAMELEN'] def _get_iterfunc(funcname, extra=False): func = getattr(bindings.libzfs, funcname) @LibZFSHandle.requires_refcount @LibZFSHandle.auto def _inner(self): datasets = [] @ffi.callback('zfs_iter_f') def _cb(hdl, arg=None): ds = ZDataset(hdl) datasets.append(ds) return 0 args = [_cb, bindings.ffi.NULL] if extra: args.insert(0, boolean_t(False)) func(self.hdl, *args) return datasets _inner.__name__ = funcname return property(_inner) class ZDatasetProperties(dict): _altnames = {} def __repr__(self): base = dict.__repr__(self) return "<%s: %s>" % (self.__class__.__name__, base) class ZDatasetPropSources(dict): _altnames = {} def __repr__(self): base = dict.__repr__(self) return "<%s: %s>" % (self.__class__.__name__, base) class ZDataset(object): _properties = None _propertysources = None _propertynames = None children = _get_iterfunc('zfs_iter_children') child_filesystems = _get_iterfunc('zfs_iter_filesystems') child_snapshots = _get_iterfunc('zfs_iter_snapshots', True) def reset_children(self): self._zfs_iter_children = None self._zfs_iter_filesystems = None self._zfs_iter_snapshots = None def __init__(self, hdl): self._hdl = hdl self._type = zfs_type_t(libzfs.zfs_get_type(hdl)) self._name = ffi.string(libzfs.zfs_get_name(hdl)) def __del__(self): if hasattr(self, '_hdl'): libzfs.zfs_close(self._hdl) def __repr__(self): return "<%s: %s: %r>" % (self.__class__.__name__, self._name, self._type) @property def type(self): return self._type @property def name(self): return self._name @property def guid(self): return self.properties.get(zfs_prop_t.ZFS_PROP_GUID) @property def hdl(self): return self._hdl @LibZFSHandle.requires_refcount @LibZFSHandle.auto def refresh_properties(self): self._properties = ZDatasetProperties() self._propertysources = ZDatasetPropSources() for prop in zfs_prop_t: if prop >= zfs_prop_t.ZFS_NUM_PROPS: continue if not bool(libzfs.zfs_prop_valid_for_type(int(prop), int(self._type), boolean_t(False))): continue sourceholder = ffi.new('zprop_source_t *') statbuf = ffi.new('char [%s]' % ZFS_MAXNAMELEN) ptype = zprop_type_t(libzfs.zfs_prop_get_type(int(prop))) value = None if ptype == zprop_type_t.PROP_TYPE_NUMBER: holder = ffi.new("uint64_t *") res = libzfs.zfs_prop_get_numeric(self.hdl, int(prop), holder, sourceholder, statbuf, ZFS_MAXNAMELEN) if res == 0: value = int(holder[0]) else: holder = ffi.new("char [%s]" % ZFS_MAXNAMELEN) res = libzfs.zfs_prop_get(self.hdl, int(prop), holder, ZFS_MAXNAMELEN, sourceholder, statbuf, ZFS_MAXNAMELEN, boolean_t(True)) if res == 0: value = ffi.string(holder) if prop not in ZDatasetProperties._altnames: name = bindings.ffi.string(bindings.libzfs.zfs_prop_to_name(int(prop))) ZDatasetProperties._altnames[prop] = name ZDatasetPropSources._altnames[prop] = name self._propertysources[prop] = zprop_source_t(sourceholder[0]) self._properties[prop] = value @property def properties(self): if self._properties is None: self.refresh_properties() return self._properties @property def propertysources(self): if self._propertysources is None: self.refresh_properties() return self._propertysources @property def propertynames(self): if self._propertynames is None: self.refresh_properties() return self._propertynames @classmethod @LibZFSHandle.requires_refcount def list(cls): datasets = [] @ffi.callback('zfs_iter_f') def _callback(handle, arg=None): zpool = ZDataset(handle) datasets.append(zpool) return 0 with LibZFSHandle() as hdl: libzfs.zfs_iter_root(hdl, _callback, ffi.NULL) return datasets @classmethod @LibZFSHandle.requires_refcount def get(cls, name=None, guid=None): if guid: guid = int(guid) datasets = cls.list() if name: datasets = [dataset for dataset in datasets if dataset.name == name] if guid: datasets = [dataset for dataset in datasets if dataset.guid == guid] if len(datasets) == 1: return datasets[0] raise KeyError("Could not find %s matching query" % cls.__name__) @classmethod @LibZFSHandle.requires_refcount def open(cls, name, zfs_type): try: zfs_type = zfs_type_t(int(zfs_type)) except ValueError: raise ValueError("Unknown zfs_type_t") with LibZFSHandle() as hdl: zhp = libzfs.zfs_open(hdl, name, zfs_type) if zhp == ffi.NULL: raise KeyError("Unknown dataset: %s" % name) return ZDataset(zhp)
mit
DonBeo/scikit-learn
examples/mixture/plot_gmm_selection.py
247
3223
""" ================================= Gaussian Mixture Model Selection ================================= This example shows that model selection can be performed with Gaussian Mixture Models using information-theoretic criteria (BIC). Model selection concerns both the covariance type and the number of components in the model. In that case, AIC also provides the right result (not shown to save time), but BIC is better suited if the problem is to identify the right model. Unlike Bayesian procedures, such inferences are prior-free. In that case, the model with 2 components and full covariance (which corresponds to the true generative model) is selected. """ print(__doc__) import itertools import numpy as np from scipy import linalg import matplotlib.pyplot as plt import matplotlib as mpl from sklearn import mixture # Number of samples per component n_samples = 500 # Generate random sample, two components np.random.seed(0) C = np.array([[0., -0.1], [1.7, .4]]) X = np.r_[np.dot(np.random.randn(n_samples, 2), C), .7 * np.random.randn(n_samples, 2) + np.array([-6, 3])] lowest_bic = np.infty bic = [] n_components_range = range(1, 7) cv_types = ['spherical', 'tied', 'diag', 'full'] for cv_type in cv_types: for n_components in n_components_range: # Fit a mixture of Gaussians with EM gmm = mixture.GMM(n_components=n_components, covariance_type=cv_type) gmm.fit(X) bic.append(gmm.bic(X)) if bic[-1] < lowest_bic: lowest_bic = bic[-1] best_gmm = gmm bic = np.array(bic) color_iter = itertools.cycle(['k', 'r', 'g', 'b', 'c', 'm', 'y']) clf = best_gmm bars = [] # Plot the BIC scores spl = plt.subplot(2, 1, 1) for i, (cv_type, color) in enumerate(zip(cv_types, color_iter)): xpos = np.array(n_components_range) + .2 * (i - 2) bars.append(plt.bar(xpos, bic[i * len(n_components_range): (i + 1) * len(n_components_range)], width=.2, color=color)) plt.xticks(n_components_range) plt.ylim([bic.min() * 1.01 - .01 * bic.max(), bic.max()]) plt.title('BIC score per model') xpos = np.mod(bic.argmin(), len(n_components_range)) + .65 +\ .2 * np.floor(bic.argmin() / len(n_components_range)) plt.text(xpos, bic.min() * 0.97 + .03 * bic.max(), '*', fontsize=14) spl.set_xlabel('Number of components') spl.legend([b[0] for b in bars], cv_types) # Plot the winner splot = plt.subplot(2, 1, 2) Y_ = clf.predict(X) for i, (mean, covar, color) in enumerate(zip(clf.means_, clf.covars_, color_iter)): v, w = linalg.eigh(covar) if not np.any(Y_ == i): continue plt.scatter(X[Y_ == i, 0], X[Y_ == i, 1], .8, color=color) # Plot an ellipse to show the Gaussian component angle = np.arctan2(w[0][1], w[0][0]) angle = 180 * angle / np.pi # convert to degrees v *= 4 ell = mpl.patches.Ellipse(mean, v[0], v[1], 180 + angle, color=color) ell.set_clip_box(splot.bbox) ell.set_alpha(.5) splot.add_artist(ell) plt.xlim(-10, 10) plt.ylim(-3, 6) plt.xticks(()) plt.yticks(()) plt.title('Selected GMM: full model, 2 components') plt.subplots_adjust(hspace=.35, bottom=.02) plt.show()
bsd-3-clause
jhaux/tensorflow
tensorflow/contrib/keras/python/keras/datasets/__init__.py
57
1290
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras datasets: utilities for downloading and pre-processing common datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from tensorflow.contrib.keras.python.keras.datasets import boston_housing from tensorflow.contrib.keras.python.keras.datasets import cifar10 from tensorflow.contrib.keras.python.keras.datasets import cifar100 from tensorflow.contrib.keras.python.keras.datasets import imdb from tensorflow.contrib.keras.python.keras.datasets import mnist from tensorflow.contrib.keras.python.keras.datasets import reuters
apache-2.0
tensorflow/tensorflow-experimental_link_static_libraries_once
tensorflow/python/data/kernel_tests/repeat_test.py
7
7738
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for `tf.data.Dataset.repeat()`.""" from absl.testing import parameterized import numpy as np from tensorflow.python.data.experimental.ops import random_access from tensorflow.python.data.kernel_tests import checkpoint_test_base from tensorflow.python.data.kernel_tests import test_base from tensorflow.python.data.ops import dataset_ops from tensorflow.python.framework import combinations from tensorflow.python.framework import dtypes from tensorflow.python.framework import errors from tensorflow.python.platform import test class RepeatTest(test_base.DatasetTestBase, parameterized.TestCase): @combinations.generate( combinations.times(test_base.default_test_combinations(), combinations.combine(count=[0, 3, 7]))) def testFiniteRepeat(self, count): """Test a dataset that repeats its input multiple times.""" components = (np.array(1), np.array([1, 2, 3]), np.array(37.0)) dataset = dataset_ops.Dataset.from_tensors(components).repeat(count) self.assertEqual( [c.shape for c in components], [shape for shape in dataset_ops.get_legacy_output_shapes(dataset)]) self.assertDatasetProduces(dataset, [components] * count) @combinations.generate(test_base.default_test_combinations()) def testInfiniteRepeat(self): # NOTE(mrry): There's not a good way to test that the sequence is infinite. components = (np.array(1), np.array([1, 2, 3]), np.array(37.0)) dataset = dataset_ops.Dataset.from_tensors(components).repeat(-1) self.assertEqual( [c.shape for c in components], [shape for shape in dataset_ops.get_legacy_output_shapes(dataset)]) get_next = self.getNext(dataset) for _ in range(17): results = self.evaluate(get_next()) for component, result_component in zip(components, results): self.assertAllEqual(component, result_component) @combinations.generate(test_base.default_test_combinations()) def testRepeatRepeat(self): """Test the composition of repeat datasets.""" components = (np.array(1), np.array([1, 2, 3]), np.array(37.0)) inner_count, outer_count = 7, 14 dataset = dataset_ops.Dataset.from_tensors(components).repeat( inner_count).repeat(outer_count) self.assertEqual( [c.shape for c in components], [shape for shape in dataset_ops.get_legacy_output_shapes(dataset)]) self.assertDatasetProduces(dataset, [components] * (inner_count * outer_count)) @combinations.generate(test_base.default_test_combinations()) def testName(self): dataset = dataset_ops.Dataset.from_tensors(42).repeat(1, name="repeat") self.assertDatasetProduces(dataset, [42]) class RepeatDatasetCheckpointTest(checkpoint_test_base.CheckpointTestBase, parameterized.TestCase): def _build_repeat_dataset(self, count, take_count=3): components = (np.arange(10),) return dataset_ops.Dataset.from_tensor_slices(components).take( take_count).repeat(count) @combinations.generate( combinations.times(test_base.default_test_combinations(), checkpoint_test_base.default_test_combinations())) def testFiniteRepeat(self, verify_fn): count = 10 verify_fn( self, lambda: self._build_repeat_dataset(count), num_outputs=(3 * count)) @combinations.generate( combinations.times(test_base.default_test_combinations(), checkpoint_test_base.default_test_combinations())) def testEmptyRepeat(self, verify_fn): verify_fn(self, lambda: self._build_repeat_dataset(0), num_outputs=0) @combinations.generate(test_base.default_test_combinations()) def testInfiniteRepeat(self): self.verify_unused_iterator( lambda: self._build_repeat_dataset(-1), 10, verify_exhausted=False) self.verify_multiple_breaks( lambda: self._build_repeat_dataset(-1), 20, verify_exhausted=False) self.verify_reset_restored_iterator( lambda: self._build_repeat_dataset(-1), 20, verify_exhausted=False) @combinations.generate( combinations.times(test_base.default_test_combinations(), checkpoint_test_base.default_test_combinations())) def testInfiniteEmptyRepeat(self, verify_fn): verify_fn(self, lambda: self._build_repeat_dataset(-1, 0), num_outputs=0) class RepeatRandomAccessTest(test_base.DatasetTestBase, parameterized.TestCase): @combinations.generate( combinations.times(test_base.default_test_combinations(), combinations.combine(index=[-1, 6, 7]))) def testInvalidIndex(self, index): dataset = dataset_ops.Dataset.from_tensor_slices([1, 2, 3]).repeat(2) with self.assertRaises(errors.OutOfRangeError): self.evaluate(random_access.at(dataset, index=index)) @combinations.generate( combinations.times(test_base.default_test_combinations(), combinations.combine(index=[-1, 0]))) def testEmptyDataset(self, index): dataset = dataset_ops.Dataset.from_tensor_slices([]).repeat(2) with self.assertRaises(errors.OutOfRangeError): self.evaluate(random_access.at(dataset, index=index)) @combinations.generate( combinations.times(test_base.default_test_combinations(), combinations.combine(elements=[0, 5, 10], count=[0, 3, 8]))) def testFiniteRepeat(self, elements, count): dataset = dataset_ops.Dataset.range(elements).repeat(count) expected_dataset = np.tile( np.arange( start=0, stop=elements, step=1, dtype=dtypes.int64.as_numpy_dtype), count) for i in range(elements * count): self.assertEqual( self.evaluate(random_access.at(dataset, index=i)), expected_dataset[i]) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine( elements=[0, 3, 5], count_1=[0, 1, 2], count_2=[3, 4, 5]))) def testRepeatRepeat(self, elements, count_1, count_2): dataset = dataset_ops.Dataset.range(elements).repeat(count_1).repeat( count_2) expected_dataset = np.tile( np.arange( start=0, stop=elements, step=1, dtype=dtypes.int64.as_numpy_dtype), count_1 * count_2) for i in range(elements * count_1 * count_2): self.assertEqual( self.evaluate(random_access.at(dataset, index=i)), expected_dataset[i]) @combinations.generate( combinations.times( test_base.default_test_combinations(), combinations.combine(elements=[3, 5], count=[None, -1, -2]))) def testInfiniteRepeat(self, elements, count): dataset = dataset_ops.Dataset.range(elements).repeat(count=count) # Datasets with infinite cardinality do not support random access. with self.assertRaises(errors.FailedPreconditionError): self.evaluate(random_access.at(dataset, index=0)) if __name__ == "__main__": test.main()
apache-2.0
jgomezdans/grabba_grabba_hey
grabba_grabba_hey/sentinel3_downloader.py
2
9042
#!/usr/bin/env python """ A simple interface to download Sentinel-1 and Sentinel-2 datasets from the COPERNICUS Sentinel Hub. """ from functools import partial import hashlib import os import datetime import sys import xml.etree.cElementTree as ET import re import requests from concurrent import futures import logging logging.basicConfig(level=logging.INFO) LOG = logging.getLogger(__name__) logging.getLogger("requests").setLevel(logging.CRITICAL) logging.getLogger("urllib3").setLevel(logging.CRITICAL) # hub_url = "https://scihub.copernicus.eu/dhus/search?q=" #hub_url = "https://scihub.copernicus.eu/s3hub/search?q=" hub_url= "https://scihub.copernicus.eu/apihub/search?q=" requests.packages.urllib3.disable_warnings() def calculate_md5(fname): hasher = hashlib.md5() with open(fname, "rb") as f: for chunk in iter(lambda: f.read(4096), b""): hasher.update(chunk) return hasher.hexdigest().upper() def do_query(query, user="guest", passwd="guest"): """ A simple function to pass a query to the Sentinel scihub website. If successful this function will return the XML file back for further processing. query: str A query string, such as "https://scihub.copernicus.eu/dhus/odata/v1/" "Products?$orderby=IngestionDate%20desc&$top=100&$skip=100" Returns: The relevant XML file, or raises error """ r = requests.get(query, auth=(user, passwd), verify=False) if r.status_code == 200: return r.text else: raise IOError("Something went wrong! Error code %d" % r.status_code) def download_product(source, target, user="guest", passwd="guest"): """ Download a product from the SentinelScihub site, and save it to a named local disk location given by ``target``. source: str A product fully qualified URL target: str A filename where to download the URL specified """ md5_source = source.replace("$value", "/Checksum/Value/$value") r = requests.get(md5_source, auth=(user, passwd), verify=False) md5 = r.text if os.path.exists(target): md5_file = calculate_md5(target) if md5 == md5_file: return chunks = 1048576 # 1MiB... while True: LOG.debug("Getting %s" % source) r = requests.get(source, auth=(user, passwd), stream=True, verify=False) if not r.ok: raise IOError("Can't start download... [%s]" % source) file_size = int(r.headers['content-length']) LOG.info("Downloading to -> %s" % target) LOG.info("%d bytes..." % file_size) with open(target, 'wb') as fp: cntr = 0 dload = 0 for chunk in r.iter_content(chunk_size=chunks): if chunk: cntr += 1 if cntr > 100: dload += cntr * chunks LOG.info("\tWriting %d/%d [%5.2f %%]" % (dload, file_size, 100. * float(dload) / float(file_size))) sys.stdout.flush() cntr = 0 fp.write(chunk) fp.flush() os.fsync(fp) md5_file = calculate_md5(target) if md5_file == md5: break return def parse_xml(xml): """ Parse an OData XML file to havest some relevant information re products available and so on. It will return a list of dictionaries, with one dictionary per product returned from the query. Each dicionary will have a number of keys (see ``fields_of_interest``), as well as ``link`` and ``qui """ fields_of_interest = ["filename", "identifier", "instrumentshortname", "orbitnumber", "orbitdirection", "producttype", "beginposition", "endposition"] tree = ET.ElementTree(ET.fromstring(xml)) # Search for all the acquired images... granules = [] for elem in tree.iter(tag="{http://www.w3.org/2005/Atom}entry"): granule = {} for img in elem.getchildren(): if img.tag.find("id") >= 0: granule['id'] = img.text if img.tag.find("link") and img.attrib.has_key("href"): if img.attrib['href'].find("Quicklook") >= 0: granule['quicklook'] = img.attrib['href'] elif img.attrib['href'].find("$value") >= 0: granule['link'] = img.attrib['href'].replace("$value", "") if img.attrib.has_key("name"): if img.attrib['name'] in fields_of_interest: granule[img.attrib['name']] = img.text granules.append(granule) return granules # print img.tag, img.attrib, img.text # for x in img.getchildren(): def download_sentinel(location, input_start_date, input_sensor, output_dir, input_end_date=None, username="guest", password="guest"): input_sensor = input_sensor.upper() sensor_list = ["S1", "S2", "S3"] if not input_sensor in sensor_list: raise ValueError("Sensor can only be S1, S2 or S3. You provided %s" % input_sensor) else: if input_sensor.upper() == "S1": sensor = "Sentinel-1" elif input_sensor.upper() == "S2": sensor = "Sentinel-2" elif input_sensor.upper() == "S3": sensor= "Sentinel-3" sensor_str = 'platformname:%s' % sensor #sensor_str = 'filename:%s' % input_sensor.upper() try: start_date = datetime.datetime.strptime(input_start_date, "%Y.%m.%d").isoformat() except ValueError: try: start_date = datetime.datetime.strptime(input_start_date, "%Y-%m-%d").isoformat() except ValueError: start_date = datetime.datetime.strptime(input_start_date, "%Y/%j").isoformat() start_date = start_date + "Z" if input_end_date is None: end_date = "NOW" else: try: end_date = datetime.datetime.strptime(input_end_date, "%Y.%m.%d").isoformat() except ValueError: try: end_date = datetime.datetime.strptime(input_end_date, "%Y-%m-%d").isoformat() except ValueError: end_date = datetime.datetime.strptime(input_end_date, "%Y/%j").isoformat() if len(location) == 2: location_str = 'footprint:"Intersects(%f, %f)"' % (location[0], location[1]) elif len(location) == 4: location_str = 'footprint:"Intersects( POLYGON(( " + \ "%f %f, %f %f, %f %f, %f %f, %f %f) ))"' % ( location[0], location[0], location[0], location[1], location[1], location[1], location[1], location[0], location[0], location[0]) time_str = 'beginposition:[%s TO %s]' % (start_date, end_date) query = "%s AND %s AND %s" % (location_str, time_str, sensor_str) query = "%s%s" % (hub_url, query) # query = "%s%s" % ( hub_url, urllib2.quote(query ) ) LOG.debug(query) import pdb;pdb.set_trace() result = do_query(query, user=username, passwd=password) granules = parse_xml(result) if not os.path.exists(output_dir): os.mkdir(output_dir) ret_files = [] for granule in granules: download_product(granule['link'] + "$value", os.path.join(output_dir, granule['filename'].replace("SAFE", "zip")), user=username, passwd=password) ret_files.append(os.path.join(output_dir, granule['filename'].replace("SAFE", "zip"))) return granules, ret_files if __name__ == "__main__": # location = (43.3650, -8.4100) # input_start_date = "2015.01.01" # input_end_date = None # username = "guest" # password = "guest" # input_sensor = "S2" # output_dir = "/data/selene/ucfajlg/tmp/" # granules, retfiles = download_sentinel ( location, input_start_date, # input_sensor, output_dir ) lng = -8.4100 lat = 43.3650 #lat = 39.0985 # Barrax #lng = -2.1082 #lat = 28.55 # Libya 4 #lng = 23.39 print "Testing S2 on COPERNICUS scientific hub" location=(lat,lng) input_start_date="2017.1.1" input_sensor="S3" output_dir="/tmp/" username="s3guest" password="s3guest" print "Set username and password variables for Sentinel hub!!!" download_sentinel(location, input_start_date, input_sensor, output_dir, input_end_date=None, username=username, password=password)
gpl-2.0
alexsavio/palladium
palladium/julia.py
2
3851
from julia import Julia from sklearn.metrics import accuracy_score from sklearn.preprocessing import LabelEncoder from palladium.interfaces import Model from palladium.util import logger from palladium.util import timer def make_bridge(): # pragma: no cover with timer(logger.info, "Creating Julia bridge"): return Julia() class AbstractModel(Model): def __init__(self, fit_func, predict_func, fit_kwargs=None, predict_kwargs=None, encode_labels=False): """ Instantiates a model with the given *fit_func* and *predict_func* written in Julia. :param str fit_func: The dotted name of the Julia function to use for fitting. The function must take as its first two arguments the *X* and *y* arrays. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *fit_func* will be used as the first argument to *predict_func*. :param str predict_func: Similar to *fit_func*, this is the dotted name of the Julia function used for prediction. The first argument of this function is the return value of *fit_func*. The second argument is the *X* data array. All elements of the optional *fit_kwargs* dictionary will be passed on to the Julia function as keyword arguments. The return value of *predict_func* is considered to be the target array *y*. :param bool encode_labels: If set to *True*, the *y* target array will be automatically encoded using a :class:`sklearn.preprocessing.LabelEncoder`, which is useful if you have string labels but your Julia function only accepts numeric labels. """ self.fit_func = fit_func self.predict_func = predict_func self.encode_labels = encode_labels self.fit_kwargs = fit_kwargs or {} self.predict_kwargs = predict_kwargs or {} def fit(self, X, y): self._initialize_julia() if self.encode_labels: self.enc_ = LabelEncoder() y = self.enc_.fit_transform(y) self.fitted_ = self.fit_func_(X.T, y, **self.fit_kwargs) return self def predict(self, X): X = X.astype(float) y_pred = self.predict_func_(self.fitted_, X.T, **self.predict_kwargs) if self.encode_labels: y_pred = self.enc_.inverse_transform(y_pred) return y_pred def _initialize_julia(self): fit_1, fit_2 = self.fit_func.rsplit('.', 1) predict_1, predict_2 = self.predict_func.rsplit('.', 1) bridge = self.bridge_ = make_bridge() bridge.call("import {}".format(fit_1)) bridge.call("import {}".format(predict_1)) self.fit_func_ = bridge.eval(self.fit_func) self.predict_func_ = bridge.eval(self.predict_func) def __getstate__(self): state = self.__dict__.copy() # Serialize the fitted attribute in Julia: iobuf = self.bridge_.eval("IOBuffer()") self.bridge_.eval('serialize')(iobuf, self.fitted_) iobuf.seek(0) state['fitted_'] = iobuf.read() del state['fit_func_'] del state['predict_func_'] del state['bridge_'] return state def __setstate__(self, state): self.__dict__.update(state) self._initialize_julia() # Deserialize the fitted Julia attribute: fitted = state['fitted_'] iobuf = self.bridge_.eval("IOBuffer()") iobuf.write(fitted) iobuf.seek(0) self.fitted_ = self.bridge_.eval('deserialize')(iobuf) class ClassificationModel(AbstractModel): def score(self, X, y): return accuracy_score(self.predict(X), y)
apache-2.0
arabenjamin/scikit-learn
sklearn/datasets/mlcomp.py
286
3855
# Copyright (c) 2010 Olivier Grisel <[email protected]> # License: BSD 3 clause """Glue code to load http://mlcomp.org data as a scikit.learn dataset""" import os import numbers from sklearn.datasets.base import load_files def _load_document_classification(dataset_path, metadata, set_=None, **kwargs): if set_ is not None: dataset_path = os.path.join(dataset_path, set_) return load_files(dataset_path, metadata.get('description'), **kwargs) LOADERS = { 'DocumentClassification': _load_document_classification, # TODO: implement the remaining domain formats } def load_mlcomp(name_or_id, set_="raw", mlcomp_root=None, **kwargs): """Load a datasets as downloaded from http://mlcomp.org Parameters ---------- name_or_id : the integer id or the string name metadata of the MLComp dataset to load set_ : select the portion to load: 'train', 'test' or 'raw' mlcomp_root : the filesystem path to the root folder where MLComp datasets are stored, if mlcomp_root is None, the MLCOMP_DATASETS_HOME environment variable is looked up instead. **kwargs : domain specific kwargs to be passed to the dataset loader. Read more in the :ref:`User Guide <datasets>`. Returns ------- data : Bunch Dictionary-like object, the interesting attributes are: 'filenames', the files holding the raw to learn, 'target', the classification labels (integer index), 'target_names', the meaning of the labels, and 'DESCR', the full description of the dataset. Note on the lookup process: depending on the type of name_or_id, will choose between integer id lookup or metadata name lookup by looking at the unzipped archives and metadata file. TODO: implement zip dataset loading too """ if mlcomp_root is None: try: mlcomp_root = os.environ['MLCOMP_DATASETS_HOME'] except KeyError: raise ValueError("MLCOMP_DATASETS_HOME env variable is undefined") mlcomp_root = os.path.expanduser(mlcomp_root) mlcomp_root = os.path.abspath(mlcomp_root) mlcomp_root = os.path.normpath(mlcomp_root) if not os.path.exists(mlcomp_root): raise ValueError("Could not find folder: " + mlcomp_root) # dataset lookup if isinstance(name_or_id, numbers.Integral): # id lookup dataset_path = os.path.join(mlcomp_root, str(name_or_id)) else: # assume name based lookup dataset_path = None expected_name_line = "name: " + name_or_id for dataset in os.listdir(mlcomp_root): metadata_file = os.path.join(mlcomp_root, dataset, 'metadata') if not os.path.exists(metadata_file): continue with open(metadata_file) as f: for line in f: if line.strip() == expected_name_line: dataset_path = os.path.join(mlcomp_root, dataset) break if dataset_path is None: raise ValueError("Could not find dataset with metadata line: " + expected_name_line) # loading the dataset metadata metadata = dict() metadata_file = os.path.join(dataset_path, 'metadata') if not os.path.exists(metadata_file): raise ValueError(dataset_path + ' is not a valid MLComp dataset') with open(metadata_file) as f: for line in f: if ":" in line: key, value = line.split(":", 1) metadata[key.strip()] = value.strip() format = metadata.get('format', 'unknow') loader = LOADERS.get(format) if loader is None: raise ValueError("No loader implemented for format: " + format) return loader(dataset_path, metadata, set_=set_, **kwargs)
bsd-3-clause
heli522/scikit-learn
sklearn/cluster/__init__.py
359
1228
""" The :mod:`sklearn.cluster` module gathers popular unsupervised clustering algorithms. """ from .spectral import spectral_clustering, SpectralClustering from .mean_shift_ import (mean_shift, MeanShift, estimate_bandwidth, get_bin_seeds) from .affinity_propagation_ import affinity_propagation, AffinityPropagation from .hierarchical import (ward_tree, AgglomerativeClustering, linkage_tree, FeatureAgglomeration) from .k_means_ import k_means, KMeans, MiniBatchKMeans from .dbscan_ import dbscan, DBSCAN from .bicluster import SpectralBiclustering, SpectralCoclustering from .birch import Birch __all__ = ['AffinityPropagation', 'AgglomerativeClustering', 'Birch', 'DBSCAN', 'KMeans', 'FeatureAgglomeration', 'MeanShift', 'MiniBatchKMeans', 'SpectralClustering', 'affinity_propagation', 'dbscan', 'estimate_bandwidth', 'get_bin_seeds', 'k_means', 'linkage_tree', 'mean_shift', 'spectral_clustering', 'ward_tree', 'SpectralBiclustering', 'SpectralCoclustering']
bsd-3-clause
Samuc/Proyecto-IV
lib/python2.7/site-packages/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
gpl-2.0
sherbondy/simple-flash
jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
mit
was4444/chromium.src
third_party/jinja2/visitor.py
1402
3316
# -*- coding: utf-8 -*- """ jinja2.visitor ~~~~~~~~~~~~~~ This module implements a visitor for the nodes. :copyright: (c) 2010 by the Jinja Team. :license: BSD. """ from jinja2.nodes import Node class NodeVisitor(object): """Walks the abstract syntax tree and call visitor functions for every node found. The visitor functions may return values which will be forwarded by the `visit` method. Per default the visitor functions for the nodes are ``'visit_'`` + class name of the node. So a `TryFinally` node visit function would be `visit_TryFinally`. This behavior can be changed by overriding the `get_visitor` function. If no visitor function exists for a node (return value `None`) the `generic_visit` visitor is used instead. """ def get_visitor(self, node): """Return the visitor function for this node or `None` if no visitor exists for this node. In that case the generic visit function is used instead. """ method = 'visit_' + node.__class__.__name__ return getattr(self, method, None) def visit(self, node, *args, **kwargs): """Visit a node.""" f = self.get_visitor(node) if f is not None: return f(node, *args, **kwargs) return self.generic_visit(node, *args, **kwargs) def generic_visit(self, node, *args, **kwargs): """Called if no explicit visitor function exists for a node.""" for node in node.iter_child_nodes(): self.visit(node, *args, **kwargs) class NodeTransformer(NodeVisitor): """Walks the abstract syntax tree and allows modifications of nodes. The `NodeTransformer` will walk the AST and use the return value of the visitor functions to replace or remove the old node. If the return value of the visitor function is `None` the node will be removed from the previous location otherwise it's replaced with the return value. The return value may be the original node in which case no replacement takes place. """ def generic_visit(self, node, *args, **kwargs): for field, old_value in node.iter_fields(): if isinstance(old_value, list): new_values = [] for value in old_value: if isinstance(value, Node): value = self.visit(value, *args, **kwargs) if value is None: continue elif not isinstance(value, Node): new_values.extend(value) continue new_values.append(value) old_value[:] = new_values elif isinstance(old_value, Node): new_node = self.visit(old_value, *args, **kwargs) if new_node is None: delattr(node, field) else: setattr(node, field, new_node) return node def visit_list(self, node, *args, **kwargs): """As transformers may return lists in some places this method can be used to enforce a list as return value. """ rv = self.visit(node, *args, **kwargs) if not isinstance(rv, list): rv = [rv] return rv
bsd-3-clause
tapomayukh/projects_in_python
sandbox_tapo/src/skin_related/BMED_8813_HAP/Scaling/best_kNN_PC/cross_validate_objects_kNN_PC_BMED_8813_HAP_scaled_method_I.py
1
4363
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/BMED_8813_HAP/Data') from data_method_I import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 123: j=0 while j < 90: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_2 = ['Can-Edge-1']*5 + ['Book-Edge-1']*5 + ['Brown-Cardboard-Box-Edge-1']*5 + ['Cinder-Block-Edge-1']*5 + ['Tin-Box-Edge-1']*5 + ['White-Cardboard-Box-Edge-1']*5 + ['Can-Surface']*5 + ['Book-Surface']*5 + ['Brown-Cardboard-Box-Surface']*5 + ['Cinder-Block-Surface']*5 + ['Tin-Box-Surface']*5 + ['White-Cardboard-Box-Surface']*5 + ['Can-Edge-2']*5 + ['Book-Edge-2']*5 + ['Brown-Cardboard-Box-Edge-2']*5 + ['Cinder-Block-Edge-2']*5 + ['Tin-Box-Edge-2']*5 + ['White-Cardboard-Box-Edge-2']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_2) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) #Projected Data: Y = (W.T)*B m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((90,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
heli522/scikit-learn
benchmarks/bench_sparsify.py
320
3372
""" Benchmark SGD prediction time with dense/sparse coefficients. Invoke with ----------- $ kernprof.py -l sparsity_benchmark.py $ python -m line_profiler sparsity_benchmark.py.lprof Typical output -------------- input data sparsity: 0.050000 true coef sparsity: 0.000100 test data sparsity: 0.027400 model sparsity: 0.000024 r^2 on test data (dense model) : 0.233651 r^2 on test data (sparse model) : 0.233651 Wrote profile results to sparsity_benchmark.py.lprof Timer unit: 1e-06 s File: sparsity_benchmark.py Function: benchmark_dense_predict at line 51 Total time: 0.532979 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 51 @profile 52 def benchmark_dense_predict(): 53 301 640 2.1 0.1 for _ in range(300): 54 300 532339 1774.5 99.9 clf.predict(X_test) File: sparsity_benchmark.py Function: benchmark_sparse_predict at line 56 Total time: 0.39274 s Line # Hits Time Per Hit % Time Line Contents ============================================================== 56 @profile 57 def benchmark_sparse_predict(): 58 1 10854 10854.0 2.8 X_test_sparse = csr_matrix(X_test) 59 301 477 1.6 0.1 for _ in range(300): 60 300 381409 1271.4 97.1 clf.predict(X_test_sparse) """ from scipy.sparse.csr import csr_matrix import numpy as np from sklearn.linear_model.stochastic_gradient import SGDRegressor from sklearn.metrics import r2_score np.random.seed(42) def sparsity_ratio(X): return np.count_nonzero(X) / float(n_samples * n_features) n_samples, n_features = 5000, 300 X = np.random.randn(n_samples, n_features) inds = np.arange(n_samples) np.random.shuffle(inds) X[inds[int(n_features / 1.2):]] = 0 # sparsify input print("input data sparsity: %f" % sparsity_ratio(X)) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[n_features/2:]] = 0 # sparsify coef print("true coef sparsity: %f" % sparsity_ratio(coef)) y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] print("test data sparsity: %f" % sparsity_ratio(X_test)) ############################################################################### clf = SGDRegressor(penalty='l1', alpha=.2, fit_intercept=True, n_iter=2000) clf.fit(X_train, y_train) print("model sparsity: %f" % sparsity_ratio(clf.coef_)) def benchmark_dense_predict(): for _ in range(300): clf.predict(X_test) def benchmark_sparse_predict(): X_test_sparse = csr_matrix(X_test) for _ in range(300): clf.predict(X_test_sparse) def score(y_test, y_pred, case): r2 = r2_score(y_test, y_pred) print("r^2 on test data (%s) : %f" % (case, r2)) score(y_test, clf.predict(X_test), 'dense model') benchmark_dense_predict() clf.sparsify() score(y_test, clf.predict(X_test), 'sparse model') benchmark_sparse_predict()
bsd-3-clause
heli522/scikit-learn
sklearn/svm/tests/test_bounds.py
277
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
arabenjamin/scikit-learn
sklearn/svm/tests/test_bounds.py
277
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
DonBeo/scikit-learn
sklearn/svm/tests/test_bounds.py
277
2541
import nose from nose.tools import assert_equal, assert_true from sklearn.utils.testing import clean_warning_registry import warnings import numpy as np from scipy import sparse as sp from sklearn.svm.bounds import l1_min_c from sklearn.svm import LinearSVC from sklearn.linear_model.logistic import LogisticRegression dense_X = [[-1, 0], [0, 1], [1, 1], [1, 1]] sparse_X = sp.csr_matrix(dense_X) Y1 = [0, 1, 1, 1] Y2 = [2, 1, 0, 0] def test_l1_min_c(): losses = ['squared_hinge', 'log'] Xs = {'sparse': sparse_X, 'dense': dense_X} Ys = {'two-classes': Y1, 'multi-class': Y2} intercepts = {'no-intercept': {'fit_intercept': False}, 'fit-intercept': {'fit_intercept': True, 'intercept_scaling': 10}} for loss in losses: for X_label, X in Xs.items(): for Y_label, Y in Ys.items(): for intercept_label, intercept_params in intercepts.items(): check = lambda: check_l1_min_c(X, Y, loss, **intercept_params) check.description = ('Test l1_min_c loss=%r %s %s %s' % (loss, X_label, Y_label, intercept_label)) yield check def test_l2_deprecation(): clean_warning_registry() with warnings.catch_warnings(record=True) as w: assert_equal(l1_min_c(dense_X, Y1, "l2"), l1_min_c(dense_X, Y1, "squared_hinge")) assert_equal(w[0].category, DeprecationWarning) def check_l1_min_c(X, y, loss, fit_intercept=True, intercept_scaling=None): min_c = l1_min_c(X, y, loss, fit_intercept, intercept_scaling) clf = { 'log': LogisticRegression(penalty='l1'), 'squared_hinge': LinearSVC(loss='squared_hinge', penalty='l1', dual=False), }[loss] clf.fit_intercept = fit_intercept clf.intercept_scaling = intercept_scaling clf.C = min_c clf.fit(X, y) assert_true((np.asarray(clf.coef_) == 0).all()) assert_true((np.asarray(clf.intercept_) == 0).all()) clf.C = min_c * 1.01 clf.fit(X, y) assert_true((np.asarray(clf.coef_) != 0).any() or (np.asarray(clf.intercept_) != 0).any()) @nose.tools.raises(ValueError) def test_ill_posed_min_c(): X = [[0, 0], [0, 0]] y = [0, 1] l1_min_c(X, y) @nose.tools.raises(ValueError) def test_unsupported_loss(): l1_min_c(dense_X, Y1, 'l1')
bsd-3-clause
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Final/best_kNN_PCA/4-categories/24/test11_cross_validate_categories_24_1200ms.py
1
4733
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/24') from data_24 import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Rigid-Fixed']*35 + ['Rigid-Movable']*35 + ['Soft-Fixed']*35 + ['Soft-Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((140,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
DonBeo/scikit-learn
examples/applications/plot_outlier_detection_housing.py
241
5577
""" ==================================== Outlier detection on a real data set ==================================== This example illustrates the need for robust covariance estimation on a real data set. It is useful both for outlier detection and for a better understanding of the data structure. We selected two sets of two variables from the Boston housing data set as an illustration of what kind of analysis can be done with several outlier detection tools. For the purpose of visualization, we are working with two-dimensional examples, but one should be aware that things are not so trivial in high-dimension, as it will be pointed out. In both examples below, the main result is that the empirical covariance estimate, as a non-robust one, is highly influenced by the heterogeneous structure of the observations. Although the robust covariance estimate is able to focus on the main mode of the data distribution, it sticks to the assumption that the data should be Gaussian distributed, yielding some biased estimation of the data structure, but yet accurate to some extent. The One-Class SVM algorithm First example ------------- The first example illustrates how robust covariance estimation can help concentrating on a relevant cluster when another one exists. Here, many observations are confounded into one and break down the empirical covariance estimation. Of course, some screening tools would have pointed out the presence of two clusters (Support Vector Machines, Gaussian Mixture Models, univariate outlier detection, ...). But had it been a high-dimensional example, none of these could be applied that easily. Second example -------------- The second example shows the ability of the Minimum Covariance Determinant robust estimator of covariance to concentrate on the main mode of the data distribution: the location seems to be well estimated, although the covariance is hard to estimate due to the banana-shaped distribution. Anyway, we can get rid of some outlying observations. The One-Class SVM is able to capture the real data structure, but the difficulty is to adjust its kernel bandwidth parameter so as to obtain a good compromise between the shape of the data scatter matrix and the risk of over-fitting the data. """ print(__doc__) # Author: Virgile Fritsch <[email protected]> # License: BSD 3 clause import numpy as np from sklearn.covariance import EllipticEnvelope from sklearn.svm import OneClassSVM import matplotlib.pyplot as plt import matplotlib.font_manager from sklearn.datasets import load_boston # Get data X1 = load_boston()['data'][:, [8, 10]] # two clusters X2 = load_boston()['data'][:, [5, 12]] # "banana"-shaped # Define "classifiers" to be used classifiers = { "Empirical Covariance": EllipticEnvelope(support_fraction=1., contamination=0.261), "Robust Covariance (Minimum Covariance Determinant)": EllipticEnvelope(contamination=0.261), "OCSVM": OneClassSVM(nu=0.261, gamma=0.05)} colors = ['m', 'g', 'b'] legend1 = {} legend2 = {} # Learn a frontier for outlier detection with several classifiers xx1, yy1 = np.meshgrid(np.linspace(-8, 28, 500), np.linspace(3, 40, 500)) xx2, yy2 = np.meshgrid(np.linspace(3, 10, 500), np.linspace(-5, 45, 500)) for i, (clf_name, clf) in enumerate(classifiers.items()): plt.figure(1) clf.fit(X1) Z1 = clf.decision_function(np.c_[xx1.ravel(), yy1.ravel()]) Z1 = Z1.reshape(xx1.shape) legend1[clf_name] = plt.contour( xx1, yy1, Z1, levels=[0], linewidths=2, colors=colors[i]) plt.figure(2) clf.fit(X2) Z2 = clf.decision_function(np.c_[xx2.ravel(), yy2.ravel()]) Z2 = Z2.reshape(xx2.shape) legend2[clf_name] = plt.contour( xx2, yy2, Z2, levels=[0], linewidths=2, colors=colors[i]) legend1_values_list = list( legend1.values() ) legend1_keys_list = list( legend1.keys() ) # Plot the results (= shape of the data points cloud) plt.figure(1) # two clusters plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X1[:, 0], X1[:, 1], color='black') bbox_args = dict(boxstyle="round", fc="0.8") arrow_args = dict(arrowstyle="->") plt.annotate("several confounded points", xy=(24, 19), xycoords="data", textcoords="data", xytext=(13, 10), bbox=bbox_args, arrowprops=arrow_args) plt.xlim((xx1.min(), xx1.max())) plt.ylim((yy1.min(), yy1.max())) plt.legend((legend1_values_list[0].collections[0], legend1_values_list[1].collections[0], legend1_values_list[2].collections[0]), (legend1_keys_list[0], legend1_keys_list[1], legend1_keys_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("accessibility to radial highways") plt.xlabel("pupil-teacher ratio by town") legend2_values_list = list( legend2.values() ) legend2_keys_list = list( legend2.keys() ) plt.figure(2) # "banana" shape plt.title("Outlier detection on a real data set (boston housing)") plt.scatter(X2[:, 0], X2[:, 1], color='black') plt.xlim((xx2.min(), xx2.max())) plt.ylim((yy2.min(), yy2.max())) plt.legend((legend2_values_list[0].collections[0], legend2_values_list[1].collections[0], legend2_values_list[2].collections[0]), (legend2_values_list[0], legend2_values_list[1], legend2_values_list[2]), loc="upper center", prop=matplotlib.font_manager.FontProperties(size=12)) plt.ylabel("% lower status of the population") plt.xlabel("average number of rooms per dwelling") plt.show()
bsd-3-clause
arabenjamin/scikit-learn
sklearn/linear_model/tests/test_ridge.py
129
22974
import numpy as np import scipy.sparse as sp from scipy import linalg from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_almost_equal from sklearn.utils.testing import assert_array_almost_equal from sklearn.utils.testing import assert_equal from sklearn.utils.testing import assert_array_equal from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_raise_message from sklearn.utils.testing import ignore_warnings from sklearn import datasets from sklearn.metrics import mean_squared_error from sklearn.metrics import make_scorer from sklearn.metrics import get_scorer from sklearn.linear_model.base import LinearRegression from sklearn.linear_model.ridge import ridge_regression from sklearn.linear_model.ridge import Ridge from sklearn.linear_model.ridge import _RidgeGCV from sklearn.linear_model.ridge import RidgeCV from sklearn.linear_model.ridge import RidgeClassifier from sklearn.linear_model.ridge import RidgeClassifierCV from sklearn.linear_model.ridge import _solve_cholesky from sklearn.linear_model.ridge import _solve_cholesky_kernel from sklearn.grid_search import GridSearchCV from sklearn.cross_validation import KFold diabetes = datasets.load_diabetes() X_diabetes, y_diabetes = diabetes.data, diabetes.target ind = np.arange(X_diabetes.shape[0]) rng = np.random.RandomState(0) rng.shuffle(ind) ind = ind[:200] X_diabetes, y_diabetes = X_diabetes[ind], y_diabetes[ind] iris = datasets.load_iris() X_iris = sp.csr_matrix(iris.data) y_iris = iris.target DENSE_FILTER = lambda X: X SPARSE_FILTER = lambda X: sp.csr_matrix(X) def test_ridge(): # Ridge regression convergence test using score # TODO: for this test to be robust, we should use a dataset instead # of np.random. rng = np.random.RandomState(0) alpha = 1.0 for solver in ("svd", "sparse_cg", "cholesky", "lsqr"): # With more samples than features n_samples, n_features = 6, 5 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_equal(ridge.coef_.shape, (X.shape[1], )) assert_greater(ridge.score(X, y), 0.47) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.47) # With more features than samples n_samples, n_features = 5, 10 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=alpha, solver=solver) ridge.fit(X, y) assert_greater(ridge.score(X, y), .9) if solver == "cholesky": # Currently the only solver to support sample_weight. ridge.fit(X, y, sample_weight=np.ones(n_samples)) assert_greater(ridge.score(X, y), 0.9) def test_primal_dual_relationship(): y = y_diabetes.reshape(-1, 1) coef = _solve_cholesky(X_diabetes, y, alpha=[1e-2]) K = np.dot(X_diabetes, X_diabetes.T) dual_coef = _solve_cholesky_kernel(K, y, alpha=[1e-2]) coef2 = np.dot(X_diabetes.T, dual_coef).T assert_array_almost_equal(coef, coef2) def test_ridge_singular(): # test on a singular matrix rng = np.random.RandomState(0) n_samples, n_features = 6, 6 y = rng.randn(n_samples // 2) y = np.concatenate((y, y)) X = rng.randn(n_samples // 2, n_features) X = np.concatenate((X, X), axis=0) ridge = Ridge(alpha=0) ridge.fit(X, y) assert_greater(ridge.score(X, y), 0.9) def test_ridge_sample_weights(): rng = np.random.RandomState(0) for solver in ("cholesky", ): for n_samples, n_features in ((6, 5), (5, 10)): for alpha in (1.0, 1e-2): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) coefs = ridge_regression(X, y, alpha=alpha, sample_weight=sample_weight, solver=solver) # Sample weight can be implemented via a simple rescaling # for the square loss. coefs2 = ridge_regression( X * np.sqrt(sample_weight)[:, np.newaxis], y * np.sqrt(sample_weight), alpha=alpha, solver=solver) assert_array_almost_equal(coefs, coefs2) # Test for fit_intercept = True est = Ridge(alpha=alpha, solver=solver) est.fit(X, y, sample_weight=sample_weight) # Check using Newton's Method # Quadratic function should be solved in a single step. # Initialize sample_weight = np.sqrt(sample_weight) X_weighted = sample_weight[:, np.newaxis] * ( np.column_stack((np.ones(n_samples), X))) y_weighted = y * sample_weight # Gradient is (X*coef-y)*X + alpha*coef_[1:] # Remove coef since it is initialized to zero. grad = -np.dot(y_weighted, X_weighted) # Hessian is (X.T*X) + alpha*I except that the first # diagonal element should be zero, since there is no # penalization of intercept. diag = alpha * np.ones(n_features + 1) diag[0] = 0. hess = np.dot(X_weighted.T, X_weighted) hess.flat[::n_features + 2] += diag coef_ = - np.dot(linalg.inv(hess), grad) assert_almost_equal(coef_[0], est.intercept_) assert_array_almost_equal(coef_[1:], est.coef_) def test_ridge_shapes(): # Test shape of coef_ and intercept_ rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y1 = y[:, np.newaxis] Y = np.c_[y, 1 + y] ridge = Ridge() ridge.fit(X, y) assert_equal(ridge.coef_.shape, (n_features,)) assert_equal(ridge.intercept_.shape, ()) ridge.fit(X, Y1) assert_equal(ridge.coef_.shape, (1, n_features)) assert_equal(ridge.intercept_.shape, (1, )) ridge.fit(X, Y) assert_equal(ridge.coef_.shape, (2, n_features)) assert_equal(ridge.intercept_.shape, (2, )) def test_ridge_intercept(): # Test intercept with multiple targets GH issue #708 rng = np.random.RandomState(0) n_samples, n_features = 5, 10 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) Y = np.c_[y, 1. + y] ridge = Ridge() ridge.fit(X, y) intercept = ridge.intercept_ ridge.fit(X, Y) assert_almost_equal(ridge.intercept_[0], intercept) assert_almost_equal(ridge.intercept_[1], intercept + 1.) def test_toy_ridge_object(): # Test BayesianRegression ridge classifier # TODO: test also n_samples > n_features X = np.array([[1], [2]]) Y = np.array([1, 2]) clf = Ridge(alpha=0.0) clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_almost_equal(clf.predict(X_test), [1., 2, 3, 4]) assert_equal(len(clf.coef_.shape), 1) assert_equal(type(clf.intercept_), np.float64) Y = np.vstack((Y, Y)).T clf.fit(X, Y) X_test = [[1], [2], [3], [4]] assert_equal(len(clf.coef_.shape), 2) assert_equal(type(clf.intercept_), np.ndarray) def test_ridge_vs_lstsq(): # On alpha=0., Ridge and OLS yield the same solution. rng = np.random.RandomState(0) # we need more samples than features n_samples, n_features = 5, 4 y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) ridge = Ridge(alpha=0., fit_intercept=False) ols = LinearRegression(fit_intercept=False) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) ridge.fit(X, y) ols.fit(X, y) assert_almost_equal(ridge.coef_, ols.coef_) def test_ridge_individual_penalties(): # Tests the ridge object using individual penalties rng = np.random.RandomState(42) n_samples, n_features, n_targets = 20, 10, 5 X = rng.randn(n_samples, n_features) y = rng.randn(n_samples, n_targets) penalties = np.arange(n_targets) coef_cholesky = np.array([ Ridge(alpha=alpha, solver="cholesky").fit(X, target).coef_ for alpha, target in zip(penalties, y.T)]) coefs_indiv_pen = [ Ridge(alpha=penalties, solver=solver, tol=1e-6).fit(X, y).coef_ for solver in ['svd', 'sparse_cg', 'lsqr', 'cholesky']] for coef_indiv_pen in coefs_indiv_pen: assert_array_almost_equal(coef_cholesky, coef_indiv_pen) # Test error is raised when number of targets and penalties do not match. ridge = Ridge(alpha=penalties[:3]) assert_raises(ValueError, ridge.fit, X, y) def _test_ridge_loo(filter_): # test that can work with both dense or sparse matrices n_samples = X_diabetes.shape[0] ret = [] ridge_gcv = _RidgeGCV(fit_intercept=False) ridge = Ridge(alpha=1.0, fit_intercept=False) # generalized cross-validation (efficient leave-one-out) decomp = ridge_gcv._pre_compute(X_diabetes, y_diabetes) errors, c = ridge_gcv._errors(1.0, y_diabetes, *decomp) values, c = ridge_gcv._values(1.0, y_diabetes, *decomp) # brute-force leave-one-out: remove one example at a time errors2 = [] values2 = [] for i in range(n_samples): sel = np.arange(n_samples) != i X_new = X_diabetes[sel] y_new = y_diabetes[sel] ridge.fit(X_new, y_new) value = ridge.predict([X_diabetes[i]])[0] error = (y_diabetes[i] - value) ** 2 errors2.append(error) values2.append(value) # check that efficient and brute-force LOO give same results assert_almost_equal(errors, errors2) assert_almost_equal(values, values2) # generalized cross-validation (efficient leave-one-out, # SVD variation) decomp = ridge_gcv._pre_compute_svd(X_diabetes, y_diabetes) errors3, c = ridge_gcv._errors_svd(ridge.alpha, y_diabetes, *decomp) values3, c = ridge_gcv._values_svd(ridge.alpha, y_diabetes, *decomp) # check that efficient and SVD efficient LOO give same results assert_almost_equal(errors, errors3) assert_almost_equal(values, values3) # check best alpha ridge_gcv.fit(filter_(X_diabetes), y_diabetes) alpha_ = ridge_gcv.alpha_ ret.append(alpha_) # check that we get same best alpha with custom loss_func f = ignore_warnings scoring = make_scorer(mean_squared_error, greater_is_better=False) ridge_gcv2 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv2.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv2.alpha_, alpha_) # check that we get same best alpha with custom score_func func = lambda x, y: -mean_squared_error(x, y) scoring = make_scorer(func) ridge_gcv3 = RidgeCV(fit_intercept=False, scoring=scoring) f(ridge_gcv3.fit)(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv3.alpha_, alpha_) # check that we get same best alpha with a scorer scorer = get_scorer('mean_squared_error') ridge_gcv4 = RidgeCV(fit_intercept=False, scoring=scorer) ridge_gcv4.fit(filter_(X_diabetes), y_diabetes) assert_equal(ridge_gcv4.alpha_, alpha_) # check that we get same best alpha with sample weights ridge_gcv.fit(filter_(X_diabetes), y_diabetes, sample_weight=np.ones(n_samples)) assert_equal(ridge_gcv.alpha_, alpha_) # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T ridge_gcv.fit(filter_(X_diabetes), Y) Y_pred = ridge_gcv.predict(filter_(X_diabetes)) ridge_gcv.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge_gcv.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=5) return ret def _test_ridge_cv(filter_): n_samples = X_diabetes.shape[0] ridge_cv = RidgeCV() ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) cv = KFold(n_samples, 5) ridge_cv.set_params(cv=cv) ridge_cv.fit(filter_(X_diabetes), y_diabetes) ridge_cv.predict(filter_(X_diabetes)) assert_equal(len(ridge_cv.coef_.shape), 1) assert_equal(type(ridge_cv.intercept_), np.float64) def _test_ridge_diabetes(filter_): ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), y_diabetes) return np.round(ridge.score(filter_(X_diabetes), y_diabetes), 5) def _test_multi_ridge_diabetes(filter_): # simulate several responses Y = np.vstack((y_diabetes, y_diabetes)).T n_features = X_diabetes.shape[1] ridge = Ridge(fit_intercept=False) ridge.fit(filter_(X_diabetes), Y) assert_equal(ridge.coef_.shape, (2, n_features)) Y_pred = ridge.predict(filter_(X_diabetes)) ridge.fit(filter_(X_diabetes), y_diabetes) y_pred = ridge.predict(filter_(X_diabetes)) assert_array_almost_equal(np.vstack((y_pred, y_pred)).T, Y_pred, decimal=3) def _test_ridge_classifiers(filter_): n_classes = np.unique(y_iris).shape[0] n_features = X_iris.shape[1] for clf in (RidgeClassifier(), RidgeClassifierCV()): clf.fit(filter_(X_iris), y_iris) assert_equal(clf.coef_.shape, (n_classes, n_features)) y_pred = clf.predict(filter_(X_iris)) assert_greater(np.mean(y_iris == y_pred), .79) n_samples = X_iris.shape[0] cv = KFold(n_samples, 5) clf = RidgeClassifierCV(cv=cv) clf.fit(filter_(X_iris), y_iris) y_pred = clf.predict(filter_(X_iris)) assert_true(np.mean(y_iris == y_pred) >= 0.8) def _test_tolerance(filter_): ridge = Ridge(tol=1e-5) ridge.fit(filter_(X_diabetes), y_diabetes) score = ridge.score(filter_(X_diabetes), y_diabetes) ridge2 = Ridge(tol=1e-3) ridge2.fit(filter_(X_diabetes), y_diabetes) score2 = ridge2.score(filter_(X_diabetes), y_diabetes) assert_true(score >= score2) def test_dense_sparse(): for test_func in (_test_ridge_loo, _test_ridge_cv, _test_ridge_diabetes, _test_multi_ridge_diabetes, _test_ridge_classifiers, _test_tolerance): # test dense matrix ret_dense = test_func(DENSE_FILTER) # test sparse matrix ret_sparse = test_func(SPARSE_FILTER) # test that the outputs are the same if ret_dense is not None and ret_sparse is not None: assert_array_almost_equal(ret_dense, ret_sparse, decimal=3) def test_ridge_cv_sparse_svd(): X = sp.csr_matrix(X_diabetes) ridge = RidgeCV(gcv_mode="svd") assert_raises(TypeError, ridge.fit, X) def test_ridge_sparse_svd(): X = sp.csc_matrix(rng.rand(100, 10)) y = rng.rand(100) ridge = Ridge(solver='svd') assert_raises(TypeError, ridge.fit, X, y) def test_class_weights(): # Test class weights. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # we give a small weights to class 1 clf = RidgeClassifier(class_weight={1: 0.001}) clf.fit(X, y) # now the hyperplane should rotate clock-wise and # the prediction on this point should shift assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([-1])) # check if class_weight = 'balanced' can handle negative labels. clf = RidgeClassifier(class_weight='balanced') clf.fit(X, y) assert_array_equal(clf.predict([[0.2, -1.0]]), np.array([1])) # class_weight = 'balanced', and class_weight = None should return # same values when y has equal number of all labels X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0]]) y = [1, 1, -1, -1] clf = RidgeClassifier(class_weight=None) clf.fit(X, y) clfa = RidgeClassifier(class_weight='balanced') clfa.fit(X, y) assert_equal(len(clfa.classes_), 2) assert_array_almost_equal(clf.coef_, clfa.coef_) assert_array_almost_equal(clf.intercept_, clfa.intercept_) def test_class_weight_vs_sample_weight(): """Check class_weights resemble sample_weights behavior.""" for clf in (RidgeClassifier, RidgeClassifierCV): # Iris is balanced, so no effect expected for using 'balanced' weights clf1 = clf() clf1.fit(iris.data, iris.target) clf2 = clf(class_weight='balanced') clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Inflate importance of class 1, check against user-defined weights sample_weight = np.ones(iris.target.shape) sample_weight[iris.target == 1] *= 100 class_weight = {0: 1., 1: 100., 2: 1.} clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target) assert_almost_equal(clf1.coef_, clf2.coef_) # Check that sample_weight and class_weight are multiplicative clf1 = clf() clf1.fit(iris.data, iris.target, sample_weight ** 2) clf2 = clf(class_weight=class_weight) clf2.fit(iris.data, iris.target, sample_weight) assert_almost_equal(clf1.coef_, clf2.coef_) def test_class_weights_cv(): # Test class weights for cross validated ridge classifier. X = np.array([[-1.0, -1.0], [-1.0, 0], [-.8, -1.0], [1.0, 1.0], [1.0, 0.0]]) y = [1, 1, 1, -1, -1] clf = RidgeClassifierCV(class_weight=None, alphas=[.01, .1, 1]) clf.fit(X, y) # we give a small weights to class 1 clf = RidgeClassifierCV(class_weight={1: 0.001}, alphas=[.01, .1, 1, 10]) clf.fit(X, y) assert_array_equal(clf.predict([[-.2, 2]]), np.array([-1])) def test_ridgecv_store_cv_values(): # Test _RidgeCV's store_cv_values attribute. rng = rng = np.random.RandomState(42) n_samples = 8 n_features = 5 x = rng.randn(n_samples, n_features) alphas = [1e-1, 1e0, 1e1] n_alphas = len(alphas) r = RidgeCV(alphas=alphas, store_cv_values=True) # with len(y.shape) == 1 y = rng.randn(n_samples) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_alphas)) # with len(y.shape) == 2 n_responses = 3 y = rng.randn(n_samples, n_responses) r.fit(x, y) assert_equal(r.cv_values_.shape, (n_samples, n_responses, n_alphas)) def test_ridgecv_sample_weight(): rng = np.random.RandomState(0) alphas = (0.1, 1.0, 10.0) # There are different algorithms for n_samples > n_features # and the opposite, so test them both. for n_samples, n_features in ((6, 5), (5, 10)): y = rng.randn(n_samples) X = rng.randn(n_samples, n_features) sample_weight = 1 + rng.rand(n_samples) cv = KFold(n_samples, 5) ridgecv = RidgeCV(alphas=alphas, cv=cv) ridgecv.fit(X, y, sample_weight=sample_weight) # Check using GridSearchCV directly parameters = {'alpha': alphas} fit_params = {'sample_weight': sample_weight} gs = GridSearchCV(Ridge(), parameters, fit_params=fit_params, cv=cv) gs.fit(X, y) assert_equal(ridgecv.alpha_, gs.best_estimator_.alpha) assert_array_almost_equal(ridgecv.coef_, gs.best_estimator_.coef_) def test_raises_value_error_if_sample_weights_greater_than_1d(): # Sample weights must be either scalar or 1D n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights_OK = rng.randn(n_samples) ** 2 + 1 sample_weights_OK_1 = 1. sample_weights_OK_2 = 2. sample_weights_not_OK = sample_weights_OK[:, np.newaxis] sample_weights_not_OK_2 = sample_weights_OK[np.newaxis, :] ridge = Ridge(alpha=1) # make sure the "OK" sample weights actually work ridge.fit(X, y, sample_weights_OK) ridge.fit(X, y, sample_weights_OK_1) ridge.fit(X, y, sample_weights_OK_2) def fit_ridge_not_ok(): ridge.fit(X, y, sample_weights_not_OK) def fit_ridge_not_ok_2(): ridge.fit(X, y, sample_weights_not_OK_2) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok) assert_raise_message(ValueError, "Sample weights must be 1D array or scalar", fit_ridge_not_ok_2) def test_sparse_design_with_sample_weights(): # Sample weights must work with sparse matrices n_sampless = [2, 3] n_featuress = [3, 2] rng = np.random.RandomState(42) sparse_matrix_converters = [sp.coo_matrix, sp.csr_matrix, sp.csc_matrix, sp.lil_matrix, sp.dok_matrix ] sparse_ridge = Ridge(alpha=1., fit_intercept=False) dense_ridge = Ridge(alpha=1., fit_intercept=False) for n_samples, n_features in zip(n_sampless, n_featuress): X = rng.randn(n_samples, n_features) y = rng.randn(n_samples) sample_weights = rng.randn(n_samples) ** 2 + 1 for sparse_converter in sparse_matrix_converters: X_sparse = sparse_converter(X) sparse_ridge.fit(X_sparse, y, sample_weight=sample_weights) dense_ridge.fit(X, y, sample_weight=sample_weights) assert_array_almost_equal(sparse_ridge.coef_, dense_ridge.coef_, decimal=6) def test_raises_value_error_if_solver_not_supported(): # Tests whether a ValueError is raised if a non-identified solver # is passed to ridge_regression wrong_solver = "This is not a solver (MagritteSolveCV QuantumBitcoin)" exception = ValueError message = "Solver %s not understood" % wrong_solver def func(): X = np.eye(3) y = np.ones(3) ridge_regression(X, y, alpha=1., solver=wrong_solver) assert_raise_message(exception, message, func) def test_sparse_cg_max_iter(): reg = Ridge(solver="sparse_cg", max_iter=1) reg.fit(X_diabetes, y_diabetes) assert_equal(reg.coef_.shape[0], X_diabetes.shape[1])
bsd-3-clause
irhete/predictive-monitoring-benchmark
experiments/BucketFactory.py
1
1595
import EncoderFactory from bucketers.ClusterBasedBucketer import ClusterBasedBucketer from bucketers.StateBasedBucketer import StateBasedBucketer from bucketers.PrefixLengthBucketer import PrefixLengthBucketer from bucketers.NoBucketer import NoBucketer from bucketers.KNNBucketer import KNNBucketer from sklearn.cluster import KMeans def get_bucketer(method, encoding_method=None, case_id_col=None, cat_cols=None, num_cols=None, n_clusters=None, random_state=None, n_neighbors=None): if method == "cluster": bucket_encoder = EncoderFactory.get_encoder(method=encoding_method, case_id_col=case_id_col, dynamic_cat_cols=cat_cols, dynamic_num_cols=num_cols) clustering = KMeans(n_clusters, random_state=random_state) return ClusterBasedBucketer(encoder=bucket_encoder, clustering=clustering) elif method == "state": bucket_encoder = EncoderFactory.get_encoder(method=encoding_method, case_id_col=case_id_col, dynamic_cat_cols=cat_cols, dynamic_num_cols=num_cols) return StateBasedBucketer(encoder=bucket_encoder) elif method == "single": return NoBucketer(case_id_col=case_id_col) elif method == "prefix": return PrefixLengthBucketer(case_id_col=case_id_col) elif method == "knn": bucket_encoder = EncoderFactory.get_encoder(method=encoding_method, case_id_col=case_id_col, dynamic_cat_cols=cat_cols, dynamic_num_cols=num_cols) return KNNBucketer(encoder=bucket_encoder, n_neighbors=n_neighbors) else: print("Invalid bucketer type") return None
apache-2.0
arabenjamin/scikit-learn
benchmarks/bench_plot_ward.py
288
1260
""" Benchmark scikit-learn's Ward implement compared to SciPy's """ import time import numpy as np from scipy.cluster import hierarchy import pylab as pl from sklearn.cluster import AgglomerativeClustering ward = AgglomerativeClustering(n_clusters=3, linkage='ward') n_samples = np.logspace(.5, 3, 9) n_features = np.logspace(1, 3.5, 7) N_samples, N_features = np.meshgrid(n_samples, n_features) scikits_time = np.zeros(N_samples.shape) scipy_time = np.zeros(N_samples.shape) for i, n in enumerate(n_samples): for j, p in enumerate(n_features): X = np.random.normal(size=(n, p)) t0 = time.time() ward.fit(X) scikits_time[j, i] = time.time() - t0 t0 = time.time() hierarchy.ward(X) scipy_time[j, i] = time.time() - t0 ratio = scikits_time / scipy_time pl.figure("scikit-learn Ward's method benchmark results") pl.imshow(np.log(ratio), aspect='auto', origin="lower") pl.colorbar() pl.contour(ratio, levels=[1, ], colors='k') pl.yticks(range(len(n_features)), n_features.astype(np.int)) pl.ylabel('N features') pl.xticks(range(len(n_samples)), n_samples.astype(np.int)) pl.xlabel('N samples') pl.title("Scikit's time, in units of scipy time (log)") pl.show()
bsd-3-clause
DonBeo/scikit-learn
examples/covariance/plot_lw_vs_oas.py
247
2903
""" ============================= Ledoit-Wolf vs OAS estimation ============================= The usual covariance maximum likelihood estimate can be regularized using shrinkage. Ledoit and Wolf proposed a close formula to compute the asymptotically optimal shrinkage parameter (minimizing a MSE criterion), yielding the Ledoit-Wolf covariance estimate. Chen et al. proposed an improvement of the Ledoit-Wolf shrinkage parameter, the OAS coefficient, whose convergence is significantly better under the assumption that the data are Gaussian. This example, inspired from Chen's publication [1], shows a comparison of the estimated MSE of the LW and OAS methods, using Gaussian distributed data. [1] "Shrinkage Algorithms for MMSE Covariance Estimation" Chen et al., IEEE Trans. on Sign. Proc., Volume 58, Issue 10, October 2010. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from scipy.linalg import toeplitz, cholesky from sklearn.covariance import LedoitWolf, OAS np.random.seed(0) ############################################################################### n_features = 100 # simulation covariance matrix (AR(1) process) r = 0.1 real_cov = toeplitz(r ** np.arange(n_features)) coloring_matrix = cholesky(real_cov) n_samples_range = np.arange(6, 31, 1) repeat = 100 lw_mse = np.zeros((n_samples_range.size, repeat)) oa_mse = np.zeros((n_samples_range.size, repeat)) lw_shrinkage = np.zeros((n_samples_range.size, repeat)) oa_shrinkage = np.zeros((n_samples_range.size, repeat)) for i, n_samples in enumerate(n_samples_range): for j in range(repeat): X = np.dot( np.random.normal(size=(n_samples, n_features)), coloring_matrix.T) lw = LedoitWolf(store_precision=False, assume_centered=True) lw.fit(X) lw_mse[i, j] = lw.error_norm(real_cov, scaling=False) lw_shrinkage[i, j] = lw.shrinkage_ oa = OAS(store_precision=False, assume_centered=True) oa.fit(X) oa_mse[i, j] = oa.error_norm(real_cov, scaling=False) oa_shrinkage[i, j] = oa.shrinkage_ # plot MSE plt.subplot(2, 1, 1) plt.errorbar(n_samples_range, lw_mse.mean(1), yerr=lw_mse.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_mse.mean(1), yerr=oa_mse.std(1), label='OAS', color='r') plt.ylabel("Squared error") plt.legend(loc="upper right") plt.title("Comparison of covariance estimators") plt.xlim(5, 31) # plot shrinkage coefficient plt.subplot(2, 1, 2) plt.errorbar(n_samples_range, lw_shrinkage.mean(1), yerr=lw_shrinkage.std(1), label='Ledoit-Wolf', color='g') plt.errorbar(n_samples_range, oa_shrinkage.mean(1), yerr=oa_shrinkage.std(1), label='OAS', color='r') plt.xlabel("n_samples") plt.ylabel("Shrinkage") plt.legend(loc="lower right") plt.ylim(plt.ylim()[0], 1. + (plt.ylim()[1] - plt.ylim()[0]) / 10.) plt.xlim(5, 31) plt.show()
bsd-3-clause
rdevon/cortex
tests/built_ins/networks/test_fully_connected.py
1
1421
from cortex.built_ins.networks.fully_connected import FullyConnectedNet from torch import nn def test_fully_connected_build(): """ Asserts: True if a the FullyConnectedNet has correct layers and attributes. """ dim_in = 4096 dim_out = 10 dim_h = 64 dim_ex = None nonlinearity = 'ReLU' n_levels = None output_nonlinearity = None layer_args = {} expected_name_linear = 'linear_({}/{})'.format(dim_in, dim_h) expected_name_relu = 'linear_({}/{})_{}'.format(dim_in, dim_h, 'ReLU') expected_name_out = 'linear_({}/{})_{}'.format(dim_h, dim_out, 'out') fully_connected_net = FullyConnectedNet(dim_in, dim_out, dim_h, dim_ex, nonlinearity, n_levels, output_nonlinearity, **layer_args) layers = list(fully_connected_net.models._modules.items()) assert layers[0][0] == expected_name_linear assert layers[1][0] == expected_name_relu assert layers[2][0] == expected_name_out assert isinstance(layers[0][1], nn.modules.linear.Linear) assert isinstance(layers[1][1], nn.modules.activation.ReLU) assert isinstance(layers[2][1], nn.modules.linear.Linear) assert layers[0][1].in_features == dim_in assert layers[0][1].out_features == dim_h assert layers[2][1].in_features == dim_h assert layers[2][1].out_features == dim_out
bsd-3-clause
DonBeo/scikit-learn
sklearn/feature_extraction/tests/test_dict_vectorizer.py
274
3790
# Authors: Lars Buitinck <[email protected]> # Dan Blanchard <[email protected]> # License: BSD 3 clause from random import Random import numpy as np import scipy.sparse as sp from numpy.testing import assert_array_equal from sklearn.utils.testing import (assert_equal, assert_in, assert_false, assert_true) from sklearn.feature_extraction import DictVectorizer from sklearn.feature_selection import SelectKBest, chi2 def test_dictvectorizer(): D = [{"foo": 1, "bar": 3}, {"bar": 4, "baz": 2}, {"bar": 1, "quux": 1, "quuux": 2}] for sparse in (True, False): for dtype in (int, np.float32, np.int16): for sort in (True, False): for iterable in (True, False): v = DictVectorizer(sparse=sparse, dtype=dtype, sort=sort) X = v.fit_transform(iter(D) if iterable else D) assert_equal(sp.issparse(X), sparse) assert_equal(X.shape, (3, 5)) assert_equal(X.sum(), 14) assert_equal(v.inverse_transform(X), D) if sparse: # CSR matrices can't be compared for equality assert_array_equal(X.A, v.transform(iter(D) if iterable else D).A) else: assert_array_equal(X, v.transform(iter(D) if iterable else D)) if sort: assert_equal(v.feature_names_, sorted(v.feature_names_)) def test_feature_selection(): # make two feature dicts with two useful features and a bunch of useless # ones, in terms of chi2 d1 = dict([("useless%d" % i, 10) for i in range(20)], useful1=1, useful2=20) d2 = dict([("useless%d" % i, 10) for i in range(20)], useful1=20, useful2=1) for indices in (True, False): v = DictVectorizer().fit([d1, d2]) X = v.transform([d1, d2]) sel = SelectKBest(chi2, k=2).fit(X, [0, 1]) v.restrict(sel.get_support(indices=indices), indices=indices) assert_equal(v.get_feature_names(), ["useful1", "useful2"]) def test_one_of_k(): D_in = [{"version": "1", "ham": 2}, {"version": "2", "spam": .3}, {"version=3": True, "spam": -1}] v = DictVectorizer() X = v.fit_transform(D_in) assert_equal(X.shape, (3, 5)) D_out = v.inverse_transform(X) assert_equal(D_out[0], {"version=1": 1, "ham": 2}) names = v.get_feature_names() assert_true("version=2" in names) assert_false("version" in names) def test_unseen_or_no_features(): D = [{"camelot": 0, "spamalot": 1}] for sparse in [True, False]: v = DictVectorizer(sparse=sparse).fit(D) X = v.transform({"push the pram a lot": 2}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) X = v.transform({}) if sparse: X = X.toarray() assert_array_equal(X, np.zeros((1, 2))) try: v.transform([]) except ValueError as e: assert_in("empty", str(e)) def test_deterministic_vocabulary(): # Generate equal dictionaries with different memory layouts items = [("%03d" % i, i) for i in range(1000)] rng = Random(42) d_sorted = dict(items) rng.shuffle(items) d_shuffled = dict(items) # check that the memory layout does not impact the resulting vocabulary v_1 = DictVectorizer().fit([d_sorted]) v_2 = DictVectorizer().fit([d_shuffled]) assert_equal(v_1.vocabulary_, v_2.vocabulary_)
bsd-3-clause
heli522/scikit-learn
sklearn/svm/tests/test_svm.py
115
31653
""" Testing for Support Vector Machine module (sklearn.svm) TODO: remove hard coded numerical results when possible """ import numpy as np import itertools from numpy.testing import assert_array_equal, assert_array_almost_equal from numpy.testing import assert_almost_equal from scipy import sparse from nose.tools import assert_raises, assert_true, assert_equal, assert_false from sklearn.base import ChangedBehaviorWarning from sklearn import svm, linear_model, datasets, metrics, base from sklearn.cross_validation import train_test_split from sklearn.datasets import make_classification, make_blobs from sklearn.metrics import f1_score from sklearn.metrics.pairwise import rbf_kernel from sklearn.utils import check_random_state from sklearn.utils import ConvergenceWarning from sklearn.utils.validation import NotFittedError from sklearn.utils.testing import assert_greater, assert_in, assert_less from sklearn.utils.testing import assert_raises_regexp, assert_warns from sklearn.utils.testing import assert_warns_message, assert_raise_message from sklearn.utils.testing import ignore_warnings # toy sample X = [[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]] Y = [1, 1, 1, 2, 2, 2] T = [[-1, -1], [2, 2], [3, 2]] true_result = [1, 2, 2] # also load the iris dataset iris = datasets.load_iris() rng = check_random_state(42) perm = rng.permutation(iris.target.size) iris.data = iris.data[perm] iris.target = iris.target[perm] def test_libsvm_parameters(): # Test parameters on classes that make use of libsvm. clf = svm.SVC(kernel='linear').fit(X, Y) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.support_vectors_, (X[1], X[3])) assert_array_equal(clf.intercept_, [0.]) assert_array_equal(clf.predict(X), Y) def test_libsvm_iris(): # Check consistency on dataset iris. # shuffle the dataset so that labels are not ordered for k in ('linear', 'rbf'): clf = svm.SVC(kernel=k).fit(iris.data, iris.target) assert_greater(np.mean(clf.predict(iris.data) == iris.target), 0.9) assert_array_equal(clf.classes_, np.sort(clf.classes_)) # check also the low-level API model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64)) pred = svm.libsvm.predict(iris.data, *model) assert_greater(np.mean(pred == iris.target), .95) model = svm.libsvm.fit(iris.data, iris.target.astype(np.float64), kernel='linear') pred = svm.libsvm.predict(iris.data, *model, kernel='linear') assert_greater(np.mean(pred == iris.target), .95) pred = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_greater(np.mean(pred == iris.target), .95) # If random_seed >= 0, the libsvm rng is seeded (by calling `srand`), hence # we should get deteriministic results (assuming that there is no other # thread calling this wrapper calling `srand` concurrently). pred2 = svm.libsvm.cross_validation(iris.data, iris.target.astype(np.float64), 5, kernel='linear', random_seed=0) assert_array_equal(pred, pred2) def test_single_sample_1d(): # Test whether SVCs work on a single sample given as a 1-d array clf = svm.SVC().fit(X, Y) clf.predict(X[0]) clf = svm.LinearSVC(random_state=0).fit(X, Y) clf.predict(X[0]) def test_precomputed(): # SVC with a precomputed kernel. # We test it with a toy dataset and with iris. clf = svm.SVC(kernel='precomputed') # Gram matrix for train data (square matrix) # (we use just a linear kernel) K = np.dot(X, np.array(X).T) clf.fit(K, Y) # Gram matrix for test data (rectangular matrix) KT = np.dot(T, np.array(X).T) pred = clf.predict(KT) assert_raises(ValueError, clf.predict, KT.T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.support_, [1, 3]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. KT = np.zeros_like(KT) for i in range(len(T)): for j in clf.support_: KT[i, j] = np.dot(T[i], X[j]) pred = clf.predict(KT) assert_array_equal(pred, true_result) # same as before, but using a callable function instead of the kernel # matrix. kernel is just a linear kernel kfunc = lambda x, y: np.dot(x, y.T) clf = svm.SVC(kernel=kfunc) clf.fit(X, Y) pred = clf.predict(T) assert_array_equal(clf.dual_coef_, [[-0.25, .25]]) assert_array_equal(clf.intercept_, [0]) assert_array_almost_equal(clf.support_, [1, 3]) assert_array_equal(pred, true_result) # test a precomputed kernel with the iris dataset # and check parameters against a linear SVC clf = svm.SVC(kernel='precomputed') clf2 = svm.SVC(kernel='linear') K = np.dot(iris.data, iris.data.T) clf.fit(K, iris.target) clf2.fit(iris.data, iris.target) pred = clf.predict(K) assert_array_almost_equal(clf.support_, clf2.support_) assert_array_almost_equal(clf.dual_coef_, clf2.dual_coef_) assert_array_almost_equal(clf.intercept_, clf2.intercept_) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) # Gram matrix for test data but compute KT[i,j] # for support vectors j only. K = np.zeros_like(K) for i in range(len(iris.data)): for j in clf.support_: K[i, j] = np.dot(iris.data[i], iris.data[j]) pred = clf.predict(K) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) clf = svm.SVC(kernel=kfunc) clf.fit(iris.data, iris.target) assert_almost_equal(np.mean(pred == iris.target), .99, decimal=2) def test_svr(): # Test Support Vector Regression diabetes = datasets.load_diabetes() for clf in (svm.NuSVR(kernel='linear', nu=.4, C=1.0), svm.NuSVR(kernel='linear', nu=.4, C=10.), svm.SVR(kernel='linear', C=10.), svm.LinearSVR(C=10.), svm.LinearSVR(C=10.), ): clf.fit(diabetes.data, diabetes.target) assert_greater(clf.score(diabetes.data, diabetes.target), 0.02) # non-regression test; previously, BaseLibSVM would check that # len(np.unique(y)) < 2, which must only be done for SVC svm.SVR().fit(diabetes.data, np.ones(len(diabetes.data))) svm.LinearSVR().fit(diabetes.data, np.ones(len(diabetes.data))) def test_linearsvr(): # check that SVR(kernel='linear') and LinearSVC() give # comparable results diabetes = datasets.load_diabetes() lsvr = svm.LinearSVR(C=1e3).fit(diabetes.data, diabetes.target) score1 = lsvr.score(diabetes.data, diabetes.target) svr = svm.SVR(kernel='linear', C=1e3).fit(diabetes.data, diabetes.target) score2 = svr.score(diabetes.data, diabetes.target) assert np.linalg.norm(lsvr.coef_ - svr.coef_) / np.linalg.norm(svr.coef_) < .1 assert np.abs(score1 - score2) < 0.1 def test_svr_errors(): X = [[0.0], [1.0]] y = [0.0, 0.5] # Bad kernel clf = svm.SVR(kernel=lambda x, y: np.array([[1.0]])) clf.fit(X, y) assert_raises(ValueError, clf.predict, X) def test_oneclass(): # Test OneClassSVM clf = svm.OneClassSVM() clf.fit(X) pred = clf.predict(T) assert_array_almost_equal(pred, [-1, -1, -1]) assert_array_almost_equal(clf.intercept_, [-1.008], decimal=3) assert_array_almost_equal(clf.dual_coef_, [[0.632, 0.233, 0.633, 0.234, 0.632, 0.633]], decimal=3) assert_raises(ValueError, lambda: clf.coef_) def test_oneclass_decision_function(): # Test OneClassSVM decision function clf = svm.OneClassSVM() rnd = check_random_state(2) # Generate train data X = 0.3 * rnd.randn(100, 2) X_train = np.r_[X + 2, X - 2] # Generate some regular novel observations X = 0.3 * rnd.randn(20, 2) X_test = np.r_[X + 2, X - 2] # Generate some abnormal novel observations X_outliers = rnd.uniform(low=-4, high=4, size=(20, 2)) # fit the model clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.1) clf.fit(X_train) # predict things y_pred_test = clf.predict(X_test) assert_greater(np.mean(y_pred_test == 1), .9) y_pred_outliers = clf.predict(X_outliers) assert_greater(np.mean(y_pred_outliers == -1), .9) dec_func_test = clf.decision_function(X_test) assert_array_equal((dec_func_test > 0).ravel(), y_pred_test == 1) dec_func_outliers = clf.decision_function(X_outliers) assert_array_equal((dec_func_outliers > 0).ravel(), y_pred_outliers == 1) def test_tweak_params(): # Make sure some tweaking of parameters works. # We change clf.dual_coef_ at run time and expect .predict() to change # accordingly. Notice that this is not trivial since it involves a lot # of C/Python copying in the libsvm bindings. # The success of this test ensures that the mapping between libsvm and # the python classifier is complete. clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, Y) assert_array_equal(clf.dual_coef_, [[-.25, .25]]) assert_array_equal(clf.predict([[-.1, -.1]]), [1]) clf._dual_coef_ = np.array([[.0, 1.]]) assert_array_equal(clf.predict([[-.1, -.1]]), [2]) def test_probability(): # Predict probabilities using SVC # This uses cross validation, so we use a slightly bigger testing set. for clf in (svm.SVC(probability=True, random_state=0, C=1.0), svm.NuSVC(probability=True, random_state=0)): clf.fit(iris.data, iris.target) prob_predict = clf.predict_proba(iris.data) assert_array_almost_equal( np.sum(prob_predict, 1), np.ones(iris.data.shape[0])) assert_true(np.mean(np.argmax(prob_predict, 1) == clf.predict(iris.data)) > 0.9) assert_almost_equal(clf.predict_proba(iris.data), np.exp(clf.predict_log_proba(iris.data)), 8) def test_decision_function(): # Test decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm # multi class: clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(iris.data, iris.target) dec = np.dot(iris.data, clf.coef_.T) + clf.intercept_ assert_array_almost_equal(dec, clf.decision_function(iris.data)) # binary: clf.fit(X, Y) dec = np.dot(X, clf.coef_.T) + clf.intercept_ prediction = clf.predict(X) assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) assert_array_almost_equal( prediction, clf.classes_[(clf.decision_function(X) > 0).astype(np.int)]) expected = np.array([-1., -0.66, -1., 0.66, 1., 1.]) assert_array_almost_equal(clf.decision_function(X), expected, 2) # kernel binary: clf = svm.SVC(kernel='rbf', gamma=1, decision_function_shape='ovo') clf.fit(X, Y) rbfs = rbf_kernel(X, clf.support_vectors_, gamma=clf.gamma) dec = np.dot(rbfs, clf.dual_coef_.T) + clf.intercept_ assert_array_almost_equal(dec.ravel(), clf.decision_function(X)) def test_decision_function_shape(): # check that decision_function_shape='ovr' gives # correct shape and is consistent with predict clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(iris.data, iris.target) dec = clf.decision_function(iris.data) assert_equal(dec.shape, (len(iris.data), 3)) assert_array_equal(clf.predict(iris.data), np.argmax(dec, axis=1)) # with five classes: X, y = make_blobs(n_samples=80, centers=5, random_state=0) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovr').fit(X_train, y_train) dec = clf.decision_function(X_test) assert_equal(dec.shape, (len(X_test), 5)) assert_array_equal(clf.predict(X_test), np.argmax(dec, axis=1)) # check shape of ovo_decition_function=True clf = svm.SVC(kernel='linear', C=0.1, decision_function_shape='ovo').fit(X_train, y_train) dec = clf.decision_function(X_train) assert_equal(dec.shape, (len(X_train), 10)) # check deprecation warning clf.decision_function_shape = None msg = "change the shape of the decision function" dec = assert_warns_message(ChangedBehaviorWarning, msg, clf.decision_function, X_train) assert_equal(dec.shape, (len(X_train), 10)) def test_svr_decision_function(): # Test SVR's decision_function # Sanity check, test that decision_function implemented in python # returns the same as the one in libsvm X = iris.data y = iris.target # linear kernel reg = svm.SVR(kernel='linear', C=0.1).fit(X, y) dec = np.dot(X, reg.coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) # rbf kernel reg = svm.SVR(kernel='rbf', gamma=1).fit(X, y) rbfs = rbf_kernel(X, reg.support_vectors_, gamma=reg.gamma) dec = np.dot(rbfs, reg.dual_coef_.T) + reg.intercept_ assert_array_almost_equal(dec.ravel(), reg.decision_function(X).ravel()) def test_weight(): # Test class weights clf = svm.SVC(class_weight={1: 0.1}) # we give a small weights to class 1 clf.fit(X, Y) # so all predicted values belong to class 2 assert_array_almost_equal(clf.predict(X), [2] * 6) X_, y_ = make_classification(n_samples=200, n_features=10, weights=[0.833, 0.167], random_state=2) for clf in (linear_model.LogisticRegression(), svm.LinearSVC(random_state=0), svm.SVC()): clf.set_params(class_weight={0: .1, 1: 10}) clf.fit(X_[:100], y_[:100]) y_pred = clf.predict(X_[100:]) assert_true(f1_score(y_[100:], y_pred) > .3) def test_sample_weights(): # Test weights on individual samples # TODO: check on NuSVR, OneClass, etc. clf = svm.SVC() clf.fit(X, Y) assert_array_equal(clf.predict(X[2]), [1.]) sample_weight = [.1] * 3 + [10] * 3 clf.fit(X, Y, sample_weight=sample_weight) assert_array_equal(clf.predict(X[2]), [2.]) # test that rescaling all samples is the same as changing C clf = svm.SVC() clf.fit(X, Y) dual_coef_no_weight = clf.dual_coef_ clf.set_params(C=100) clf.fit(X, Y, sample_weight=np.repeat(0.01, len(X))) assert_array_almost_equal(dual_coef_no_weight, clf.dual_coef_) def test_auto_weight(): # Test class weights for imbalanced data from sklearn.linear_model import LogisticRegression # We take as dataset the two-dimensional projection of iris so # that it is not separable and remove half of predictors from # class 1. # We add one to the targets as a non-regression test: class_weight="balanced" # used to work only when the labels where a range [0..K). from sklearn.utils import compute_class_weight X, y = iris.data[:, :2], iris.target + 1 unbalanced = np.delete(np.arange(y.size), np.where(y > 2)[0][::2]) classes = np.unique(y[unbalanced]) class_weights = compute_class_weight('balanced', classes, y[unbalanced]) assert_true(np.argmax(class_weights) == 2) for clf in (svm.SVC(kernel='linear'), svm.LinearSVC(random_state=0), LogisticRegression()): # check that score is better when class='balanced' is set. y_pred = clf.fit(X[unbalanced], y[unbalanced]).predict(X) clf.set_params(class_weight='balanced') y_pred_balanced = clf.fit(X[unbalanced], y[unbalanced],).predict(X) assert_true(metrics.f1_score(y, y_pred, average='weighted') <= metrics.f1_score(y, y_pred_balanced, average='weighted')) def test_bad_input(): # Test that it gives proper exception on deficient input # impossible value of C assert_raises(ValueError, svm.SVC(C=-1).fit, X, Y) # impossible value of nu clf = svm.NuSVC(nu=0.0) assert_raises(ValueError, clf.fit, X, Y) Y2 = Y[:-1] # wrong dimensions for labels assert_raises(ValueError, clf.fit, X, Y2) # Test with arrays that are non-contiguous. for clf in (svm.SVC(), svm.LinearSVC(random_state=0)): Xf = np.asfortranarray(X) assert_false(Xf.flags['C_CONTIGUOUS']) yf = np.ascontiguousarray(np.tile(Y, (2, 1)).T) yf = yf[:, -1] assert_false(yf.flags['F_CONTIGUOUS']) assert_false(yf.flags['C_CONTIGUOUS']) clf.fit(Xf, yf) assert_array_equal(clf.predict(T), true_result) # error for precomputed kernelsx clf = svm.SVC(kernel='precomputed') assert_raises(ValueError, clf.fit, X, Y) # sample_weight bad dimensions clf = svm.SVC() assert_raises(ValueError, clf.fit, X, Y, sample_weight=range(len(X) - 1)) # predict with sparse input when trained with dense clf = svm.SVC().fit(X, Y) assert_raises(ValueError, clf.predict, sparse.lil_matrix(X)) Xt = np.array(X).T clf.fit(np.dot(X, Xt), Y) assert_raises(ValueError, clf.predict, X) clf = svm.SVC() clf.fit(X, Y) assert_raises(ValueError, clf.predict, Xt) def test_sparse_precomputed(): clf = svm.SVC(kernel='precomputed') sparse_gram = sparse.csr_matrix([[1, 0], [0, 1]]) try: clf.fit(sparse_gram, [0, 1]) assert not "reached" except TypeError as e: assert_in("Sparse precomputed", str(e)) def test_linearsvc_parameters(): # Test possible parameter combinations in LinearSVC # Generate list of possible parameter combinations losses = ['hinge', 'squared_hinge', 'logistic_regression', 'foo'] penalties, duals = ['l1', 'l2', 'bar'], [True, False] X, y = make_classification(n_samples=5, n_features=5) for loss, penalty, dual in itertools.product(losses, penalties, duals): clf = svm.LinearSVC(penalty=penalty, loss=loss, dual=dual) if ((loss, penalty) == ('hinge', 'l1') or (loss, penalty, dual) == ('hinge', 'l2', False) or (penalty, dual) == ('l1', True) or loss == 'foo' or penalty == 'bar'): assert_raises_regexp(ValueError, "Unsupported set of arguments.*penalty='%s.*" "loss='%s.*dual=%s" % (penalty, loss, dual), clf.fit, X, y) else: clf.fit(X, y) # Incorrect loss value - test if explicit error message is raised assert_raises_regexp(ValueError, ".*loss='l3' is not supported.*", svm.LinearSVC(loss="l3").fit, X, y) # FIXME remove in 1.0 def test_linearsvx_loss_penalty_deprecations(): X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the %s will be removed in %s") # LinearSVC # loss l1/L1 --> hinge assert_warns_message(DeprecationWarning, msg % ("l1", "hinge", "loss='l1'", "1.0"), svm.LinearSVC(loss="l1").fit, X, y) # loss l2/L2 --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("L2", "squared_hinge", "loss='L2'", "1.0"), svm.LinearSVC(loss="L2").fit, X, y) # LinearSVR # loss l1/L1 --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("L1", "epsilon_insensitive", "loss='L1'", "1.0"), svm.LinearSVR(loss="L1").fit, X, y) # loss l2/L2 --> squared_epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("l2", "squared_epsilon_insensitive", "loss='l2'", "1.0"), svm.LinearSVR(loss="l2").fit, X, y) # FIXME remove in 0.18 def test_linear_svx_uppercase_loss_penalty(): # Check if Upper case notation is supported by _fit_liblinear # which is called by fit X, y = [[0.0], [1.0]], [0, 1] msg = ("loss='%s' has been deprecated in favor of " "loss='%s' as of 0.16. Backward compatibility" " for the uppercase notation will be removed in %s") # loss SQUARED_hinge --> squared_hinge assert_warns_message(DeprecationWarning, msg % ("SQUARED_hinge", "squared_hinge", "0.18"), svm.LinearSVC(loss="SQUARED_hinge").fit, X, y) # penalty L2 --> l2 assert_warns_message(DeprecationWarning, msg.replace("loss", "penalty") % ("L2", "l2", "0.18"), svm.LinearSVC(penalty="L2").fit, X, y) # loss EPSILON_INSENSITIVE --> epsilon_insensitive assert_warns_message(DeprecationWarning, msg % ("EPSILON_INSENSITIVE", "epsilon_insensitive", "0.18"), svm.LinearSVR(loss="EPSILON_INSENSITIVE").fit, X, y) def test_linearsvc(): # Test basic routines using LinearSVC clf = svm.LinearSVC(random_state=0).fit(X, Y) # by default should have intercept assert_true(clf.fit_intercept) assert_array_equal(clf.predict(T), true_result) assert_array_almost_equal(clf.intercept_, [0], decimal=3) # the same with l1 penalty clf = svm.LinearSVC(penalty='l1', loss='squared_hinge', dual=False, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty with dual formulation clf = svm.LinearSVC(penalty='l2', dual=True, random_state=0).fit(X, Y) assert_array_equal(clf.predict(T), true_result) # l2 penalty, l1 loss clf = svm.LinearSVC(penalty='l2', loss='hinge', dual=True, random_state=0) clf.fit(X, Y) assert_array_equal(clf.predict(T), true_result) # test also decision function dec = clf.decision_function(T) res = (dec > 0).astype(np.int) + 1 assert_array_equal(res, true_result) def test_linearsvc_crammer_singer(): # Test LinearSVC with crammer_singer multi-class svm ovr_clf = svm.LinearSVC(random_state=0).fit(iris.data, iris.target) cs_clf = svm.LinearSVC(multi_class='crammer_singer', random_state=0) cs_clf.fit(iris.data, iris.target) # similar prediction for ovr and crammer-singer: assert_true((ovr_clf.predict(iris.data) == cs_clf.predict(iris.data)).mean() > .9) # classifiers shouldn't be the same assert_true((ovr_clf.coef_ != cs_clf.coef_).all()) # test decision function assert_array_equal(cs_clf.predict(iris.data), np.argmax(cs_clf.decision_function(iris.data), axis=1)) dec_func = np.dot(iris.data, cs_clf.coef_.T) + cs_clf.intercept_ assert_array_almost_equal(dec_func, cs_clf.decision_function(iris.data)) def test_crammer_singer_binary(): # Test Crammer-Singer formulation in the binary case X, y = make_classification(n_classes=2, random_state=0) for fit_intercept in (True, False): acc = svm.LinearSVC(fit_intercept=fit_intercept, multi_class="crammer_singer", random_state=0).fit(X, y).score(X, y) assert_greater(acc, 0.9) def test_linearsvc_iris(): # Test that LinearSVC gives plausible predictions on the iris dataset # Also, test symbolic class names (classes_). target = iris.target_names[iris.target] clf = svm.LinearSVC(random_state=0).fit(iris.data, target) assert_equal(set(clf.classes_), set(iris.target_names)) assert_greater(np.mean(clf.predict(iris.data) == target), 0.8) dec = clf.decision_function(iris.data) pred = iris.target_names[np.argmax(dec, 1)] assert_array_equal(pred, clf.predict(iris.data)) def test_dense_liblinear_intercept_handling(classifier=svm.LinearSVC): # Test that dense liblinear honours intercept_scaling param X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = classifier(fit_intercept=True, penalty='l1', loss='squared_hinge', dual=False, C=4, tol=1e-7, random_state=0) assert_true(clf.intercept_scaling == 1, clf.intercept_scaling) assert_true(clf.fit_intercept) # when intercept_scaling is low the intercept value is highly "penalized" # by regularization clf.intercept_scaling = 1 clf.fit(X, y) assert_almost_equal(clf.intercept_, 0, decimal=5) # when intercept_scaling is sufficiently high, the intercept value # is not affected by regularization clf.intercept_scaling = 100 clf.fit(X, y) intercept1 = clf.intercept_ assert_less(intercept1, -1) # when intercept_scaling is sufficiently high, the intercept value # doesn't depend on intercept_scaling value clf.intercept_scaling = 1000 clf.fit(X, y) intercept2 = clf.intercept_ assert_array_almost_equal(intercept1, intercept2, decimal=2) def test_liblinear_set_coef(): # multi-class case clf = svm.LinearSVC().fit(iris.data, iris.target) values = clf.decision_function(iris.data) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(iris.data) assert_array_almost_equal(values, values2) # binary-class case X = [[2, 1], [3, 1], [1, 3], [2, 3]] y = [0, 0, 1, 1] clf = svm.LinearSVC().fit(X, y) values = clf.decision_function(X) clf.coef_ = clf.coef_.copy() clf.intercept_ = clf.intercept_.copy() values2 = clf.decision_function(X) assert_array_equal(values, values2) def test_immutable_coef_property(): # Check that primal coef modification are not silently ignored svms = [ svm.SVC(kernel='linear').fit(iris.data, iris.target), svm.NuSVC(kernel='linear').fit(iris.data, iris.target), svm.SVR(kernel='linear').fit(iris.data, iris.target), svm.NuSVR(kernel='linear').fit(iris.data, iris.target), svm.OneClassSVM(kernel='linear').fit(iris.data), ] for clf in svms: assert_raises(AttributeError, clf.__setattr__, 'coef_', np.arange(3)) assert_raises((RuntimeError, ValueError), clf.coef_.__setitem__, (0, 0), 0) def test_linearsvc_verbose(): # stdout: redirect import os stdout = os.dup(1) # save original stdout os.dup2(os.pipe()[1], 1) # replace it # actual call clf = svm.LinearSVC(verbose=1) clf.fit(X, Y) # stdout: restore os.dup2(stdout, 1) # restore original stdout def test_svc_clone_with_callable_kernel(): # create SVM with callable linear kernel, check that results are the same # as with built-in linear kernel svm_callable = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, decision_function_shape='ovr') # clone for checking clonability with lambda functions.. svm_cloned = base.clone(svm_callable) svm_cloned.fit(iris.data, iris.target) svm_builtin = svm.SVC(kernel='linear', probability=True, random_state=0, decision_function_shape='ovr') svm_builtin.fit(iris.data, iris.target) assert_array_almost_equal(svm_cloned.dual_coef_, svm_builtin.dual_coef_) assert_array_almost_equal(svm_cloned.intercept_, svm_builtin.intercept_) assert_array_equal(svm_cloned.predict(iris.data), svm_builtin.predict(iris.data)) assert_array_almost_equal(svm_cloned.predict_proba(iris.data), svm_builtin.predict_proba(iris.data), decimal=4) assert_array_almost_equal(svm_cloned.decision_function(iris.data), svm_builtin.decision_function(iris.data)) def test_svc_bad_kernel(): svc = svm.SVC(kernel=lambda x, y: x) assert_raises(ValueError, svc.fit, X, Y) def test_timeout(): a = svm.SVC(kernel=lambda x, y: np.dot(x, y.T), probability=True, random_state=0, max_iter=1) assert_warns(ConvergenceWarning, a.fit, X, Y) def test_unfitted(): X = "foo!" # input validation not required when SVM not fitted clf = svm.SVC() assert_raises_regexp(Exception, r".*\bSVC\b.*\bnot\b.*\bfitted\b", clf.predict, X) clf = svm.NuSVR() assert_raises_regexp(Exception, r".*\bNuSVR\b.*\bnot\b.*\bfitted\b", clf.predict, X) # ignore convergence warnings from max_iter=1 @ignore_warnings def test_consistent_proba(): a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_1 = a.fit(X, Y).predict_proba(X) a = svm.SVC(probability=True, max_iter=1, random_state=0) proba_2 = a.fit(X, Y).predict_proba(X) assert_array_almost_equal(proba_1, proba_2) def test_linear_svc_convergence_warnings(): # Test that warnings are raised if model does not converge lsvc = svm.LinearSVC(max_iter=2, verbose=1) assert_warns(ConvergenceWarning, lsvc.fit, X, Y) assert_equal(lsvc.n_iter_, 2) def test_svr_coef_sign(): # Test that SVR(kernel="linear") has coef_ with the right sign. # Non-regression test for #2933. X = np.random.RandomState(21).randn(10, 3) y = np.random.RandomState(12).randn(10) for svr in [svm.SVR(kernel='linear'), svm.NuSVR(kernel='linear'), svm.LinearSVR()]: svr.fit(X, y) assert_array_almost_equal(svr.predict(X), np.dot(X, svr.coef_.ravel()) + svr.intercept_) def test_linear_svc_intercept_scaling(): # Test that the right error message is thrown when intercept_scaling <= 0 for i in [-1, 0]: lsvc = svm.LinearSVC(intercept_scaling=i) msg = ('Intercept scaling is %r but needs to be greater than 0.' ' To disable fitting an intercept,' ' set fit_intercept=False.' % lsvc.intercept_scaling) assert_raise_message(ValueError, msg, lsvc.fit, X, Y) def test_lsvc_intercept_scaling_zero(): # Test that intercept_scaling is ignored when fit_intercept is False lsvc = svm.LinearSVC(fit_intercept=False) lsvc.fit(X, Y) assert_equal(lsvc.intercept_, 0.) def test_hasattr_predict_proba(): # Method must be (un)available before or after fit, switched by # `probability` param G = svm.SVC(probability=True) assert_true(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_true(hasattr(G, 'predict_proba')) G = svm.SVC(probability=False) assert_false(hasattr(G, 'predict_proba')) G.fit(iris.data, iris.target) assert_false(hasattr(G, 'predict_proba')) # Switching to `probability=True` after fitting should make # predict_proba available, but calling it must not work: G.probability = True assert_true(hasattr(G, 'predict_proba')) msg = "predict_proba is not available when fitted with probability=False" assert_raise_message(NotFittedError, msg, G.predict_proba, iris.data)
bsd-3-clause
arabenjamin/scikit-learn
examples/neighbors/plot_digits_kde_sampling.py
250
2022
""" ========================= Kernel Density Estimation ========================= This example shows how kernel density estimation (KDE), a powerful non-parametric density estimation technique, can be used to learn a generative model for a dataset. With this generative model in place, new samples can be drawn. These new samples reflect the underlying model of the data. """ import numpy as np import matplotlib.pyplot as plt from sklearn.datasets import load_digits from sklearn.neighbors import KernelDensity from sklearn.decomposition import PCA from sklearn.grid_search import GridSearchCV # load the data digits = load_digits() data = digits.data # project the 64-dimensional data to a lower dimension pca = PCA(n_components=15, whiten=False) data = pca.fit_transform(digits.data) # use grid search cross-validation to optimize the bandwidth params = {'bandwidth': np.logspace(-1, 1, 20)} grid = GridSearchCV(KernelDensity(), params) grid.fit(data) print("best bandwidth: {0}".format(grid.best_estimator_.bandwidth)) # use the best estimator to compute the kernel density estimate kde = grid.best_estimator_ # sample 44 new points from the data new_data = kde.sample(44, random_state=0) new_data = pca.inverse_transform(new_data) # turn data into a 4x11 grid new_data = new_data.reshape((4, 11, -1)) real_data = digits.data[:44].reshape((4, 11, -1)) # plot real digits and resampled digits fig, ax = plt.subplots(9, 11, subplot_kw=dict(xticks=[], yticks=[])) for j in range(11): ax[4, j].set_visible(False) for i in range(4): im = ax[i, j].imshow(real_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) im = ax[i + 5, j].imshow(new_data[i, j].reshape((8, 8)), cmap=plt.cm.binary, interpolation='nearest') im.set_clim(0, 16) ax[0, 5].set_title('Selection from the input data') ax[5, 5].set_title('"New" digits drawn from the kernel density model') plt.show()
bsd-3-clause
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Feature_Comparison/multiple_features/results/test10_cross_validate_categories_1200ms_scaled_method_v_force_motion.py
1
4711
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/Scaled') from data_method_V import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) ###### Sanity Check ###### i=0 n=0 while i < 82: j=0 while j < 140: if X[i,j] != X[i,j]: print X[i,j] print i,j n=n+1 j = j+1 i=i+1 print n ########################## print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov if __name__ == '__main__': Fmat = np.row_stack([Fmat_original[0:41,:], Fmat_original[82:123,:]]) # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:2] m_W, n_W = np.shape(W) print 'Reduced Dimension Eigenvector Shape:',m_W, n_W # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but sometimes useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) print 'Z-Score Shape:', m_Z, n_Z #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) print 'Transposed Projected Data Shape:', m_Y, n_Y #Using PYMVPA PCA_data = np.array(Y.T) PCA_label_1 = ['Rigid-Fixed']*35 + ['Rigid-Movable']*35 + ['Soft-Fixed']*35 + ['Soft-Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=3) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) print ds1.samples.shape cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) print error print cvterr.confusion.asstring(description=False) figure(1) cvterr.confusion.plot(numbers='True') #show() # Variances figure(2) title('Variances of PCs') stem(range(len(perc_total)),perc_total,'--b') axis([-0.3,30.3,0,1.2]) grid('True') show()
mit
arabenjamin/scikit-learn
examples/ensemble/plot_adaboost_hastie_10_2.py
352
3576
""" ============================= Discrete versus Real AdaBoost ============================= This example is based on Figure 10.2 from Hastie et al 2009 [1] and illustrates the difference in performance between the discrete SAMME [2] boosting algorithm and real SAMME.R boosting algorithm. Both algorithms are evaluated on a binary classification task where the target Y is a non-linear function of 10 input features. Discrete SAMME AdaBoost adapts based on errors in predicted class labels whereas real SAMME.R uses the predicted class probabilities. .. [1] T. Hastie, R. Tibshirani and J. Friedman, "Elements of Statistical Learning Ed. 2", Springer, 2009. .. [2] J. Zhu, H. Zou, S. Rosset, T. Hastie, "Multi-class AdaBoost", 2009. """ print(__doc__) # Author: Peter Prettenhofer <[email protected]>, # Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn import datasets from sklearn.tree import DecisionTreeClassifier from sklearn.metrics import zero_one_loss from sklearn.ensemble import AdaBoostClassifier n_estimators = 400 # A learning rate of 1. may not be optimal for both SAMME and SAMME.R learning_rate = 1. X, y = datasets.make_hastie_10_2(n_samples=12000, random_state=1) X_test, y_test = X[2000:], y[2000:] X_train, y_train = X[:2000], y[:2000] dt_stump = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1) dt_stump.fit(X_train, y_train) dt_stump_err = 1.0 - dt_stump.score(X_test, y_test) dt = DecisionTreeClassifier(max_depth=9, min_samples_leaf=1) dt.fit(X_train, y_train) dt_err = 1.0 - dt.score(X_test, y_test) ada_discrete = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME") ada_discrete.fit(X_train, y_train) ada_real = AdaBoostClassifier( base_estimator=dt_stump, learning_rate=learning_rate, n_estimators=n_estimators, algorithm="SAMME.R") ada_real.fit(X_train, y_train) fig = plt.figure() ax = fig.add_subplot(111) ax.plot([1, n_estimators], [dt_stump_err] * 2, 'k-', label='Decision Stump Error') ax.plot([1, n_estimators], [dt_err] * 2, 'k--', label='Decision Tree Error') ada_discrete_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_test)): ada_discrete_err[i] = zero_one_loss(y_pred, y_test) ada_discrete_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_discrete.staged_predict(X_train)): ada_discrete_err_train[i] = zero_one_loss(y_pred, y_train) ada_real_err = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_test)): ada_real_err[i] = zero_one_loss(y_pred, y_test) ada_real_err_train = np.zeros((n_estimators,)) for i, y_pred in enumerate(ada_real.staged_predict(X_train)): ada_real_err_train[i] = zero_one_loss(y_pred, y_train) ax.plot(np.arange(n_estimators) + 1, ada_discrete_err, label='Discrete AdaBoost Test Error', color='red') ax.plot(np.arange(n_estimators) + 1, ada_discrete_err_train, label='Discrete AdaBoost Train Error', color='blue') ax.plot(np.arange(n_estimators) + 1, ada_real_err, label='Real AdaBoost Test Error', color='orange') ax.plot(np.arange(n_estimators) + 1, ada_real_err_train, label='Real AdaBoost Train Error', color='green') ax.set_ylim((0.0, 0.5)) ax.set_xlabel('n_estimators') ax.set_ylabel('error rate') leg = ax.legend(loc='upper right', fancybox=True) leg.get_frame().set_alpha(0.7) plt.show()
bsd-3-clause
tensorflow/tensorflow-experimental_link_static_libraries_once
tensorflow/tools/compatibility/ast_edits.py
10
39593
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Upgrader for Python scripts according to an API change specification.""" import ast import collections import os import re import shutil import sys import tempfile import traceback import pasta # Some regular expressions we will need for parsing FIND_OPEN = re.compile(r"^\s*(\[).*$") FIND_STRING_CHARS = re.compile(r"['\"]") INFO = "INFO" WARNING = "WARNING" ERROR = "ERROR" ImportRename = collections.namedtuple( "ImportRename", ["new_name", "excluded_prefixes"]) def full_name_node(name, ctx=ast.Load()): """Make an Attribute or Name node for name. Translate a qualified name into nested Attribute nodes (and a Name node). Args: name: The name to translate to a node. ctx: What context this name is used in. Defaults to Load() Returns: A Name or Attribute node. """ names = name.split(".") names.reverse() node = ast.Name(id=names.pop(), ctx=ast.Load()) while names: node = ast.Attribute(value=node, attr=names.pop(), ctx=ast.Load()) # Change outermost ctx to the one given to us (inner ones should be Load). node.ctx = ctx return node def get_arg_value(node, arg_name, arg_pos=None): """Get the value of an argument from a ast.Call node. This function goes through the positional and keyword arguments to check whether a given argument was used, and if so, returns its value (the node representing its value). This cannot introspect *args or **args, but it safely handles *args in Python3.5+. Args: node: The ast.Call node to extract arg values from. arg_name: The name of the argument to extract. arg_pos: The position of the argument (in case it's passed as a positional argument). Returns: A tuple (arg_present, arg_value) containing a boolean indicating whether the argument is present, and its value in case it is. """ # Check keyword args if arg_name is not None: for kw in node.keywords: if kw.arg == arg_name: return (True, kw.value) # Check positional args if arg_pos is not None: idx = 0 for arg in node.args: if sys.version_info[:2] >= (3, 5) and isinstance(arg, ast.Starred): continue # Can't parse Starred if idx == arg_pos: return (True, arg) idx += 1 return (False, None) def uses_star_args_in_call(node): """Check if an ast.Call node uses arbitrary-length positional *args. This function works with the AST call node format of Python3.5+ as well as the different AST format of earlier versions of Python. Args: node: The ast.Call node to check arg values for. Returns: True if the node uses starred variadic positional args or keyword args. False if it does not. """ if sys.version_info[:2] >= (3, 5): # Check for an *args usage in python 3.5+ for arg in node.args: if isinstance(arg, ast.Starred): return True else: if node.starargs: return True return False def uses_star_kwargs_in_call(node): """Check if an ast.Call node uses arbitrary-length **kwargs. This function works with the AST call node format of Python3.5+ as well as the different AST format of earlier versions of Python. Args: node: The ast.Call node to check arg values for. Returns: True if the node uses starred variadic positional args or keyword args. False if it does not. """ if sys.version_info[:2] >= (3, 5): # Check for a **kwarg usage in python 3.5+ for keyword in node.keywords: if keyword.arg is None: return True else: if node.kwargs: return True return False def uses_star_args_or_kwargs_in_call(node): """Check if an ast.Call node uses arbitrary-length *args or **kwargs. This function works with the AST call node format of Python3.5+ as well as the different AST format of earlier versions of Python. Args: node: The ast.Call node to check arg values for. Returns: True if the node uses starred variadic positional args or keyword args. False if it does not. """ return uses_star_args_in_call(node) or uses_star_kwargs_in_call(node) def excluded_from_module_rename(module, import_rename_spec): """Check if this module import should not be renamed. Args: module: (string) module name. import_rename_spec: ImportRename instance. Returns: True if this import should not be renamed according to the import_rename_spec. """ for excluded_prefix in import_rename_spec.excluded_prefixes: if module.startswith(excluded_prefix): return True return False class APIChangeSpec: """This class defines the transformations that need to happen. This class must provide the following fields: * `function_keyword_renames`: maps function names to a map of old -> new argument names * `symbol_renames`: maps function names to new function names * `change_to_function`: a set of function names that have changed (for notifications) * `function_reorders`: maps functions whose argument order has changed to the list of arguments in the new order * `function_warnings`: maps full names of functions to warnings that will be printed out if the function is used. (e.g. tf.nn.convolution()) * `function_transformers`: maps function names to custom handlers * `module_deprecations`: maps module names to warnings that will be printed if the module is still used after all other transformations have run * `import_renames`: maps import name (must be a short name without '.') to ImportRename instance. For an example, see `TFAPIChangeSpec`. """ def preprocess(self, root_node): # pylint: disable=unused-argument """Preprocess a parse tree. Return a preprocessed node, logs and errors.""" return root_node, [], [] def clear_preprocessing(self): """Restore this APIChangeSpec to before it preprocessed a file. This is needed if preprocessing a file changed any rewriting rules. """ pass class NoUpdateSpec(APIChangeSpec): """A specification of an API change which doesn't change anything.""" def __init__(self): self.function_handle = {} self.function_reorders = {} self.function_keyword_renames = {} self.symbol_renames = {} self.function_warnings = {} self.change_to_function = {} self.module_deprecations = {} self.function_transformers = {} self.import_renames = {} class _PastaEditVisitor(ast.NodeVisitor): """AST Visitor that processes function calls. Updates function calls from old API version to new API version using a given change spec. """ def __init__(self, api_change_spec): self._api_change_spec = api_change_spec self._log = [] # Holds 4-tuples: severity, line, col, msg. self._stack = [] # Allow easy access to parents. # Overridden to maintain a stack of nodes to allow for parent access def visit(self, node): self._stack.append(node) super(_PastaEditVisitor, self).visit(node) self._stack.pop() @property def errors(self): return [log for log in self._log if log[0] == ERROR] @property def warnings(self): return [log for log in self._log if log[0] == WARNING] @property def warnings_and_errors(self): return [log for log in self._log if log[0] in (WARNING, ERROR)] @property def info(self): return [log for log in self._log if log[0] == INFO] @property def log(self): return self._log def add_log(self, severity, lineno, col, msg): self._log.append((severity, lineno, col, msg)) print("%s line %d:%d: %s" % (severity, lineno, col, msg)) def add_logs(self, logs): """Record a log and print it. The log should be a tuple `(severity, lineno, col_offset, msg)`, which will be printed and recorded. It is part of the log available in the `self.log` property. Args: logs: The logs to add. Must be a list of tuples `(severity, lineno, col_offset, msg)`. """ self._log.extend(logs) for log in logs: print("%s line %d:%d: %s" % log) def _get_applicable_entries(self, transformer_field, full_name, name): """Get all list entries indexed by name that apply to full_name or name.""" # Transformers are indexed to full name, name, or no name # as a performance optimization. function_transformers = getattr(self._api_change_spec, transformer_field, {}) glob_name = "*." + name if name else None transformers = [] if full_name in function_transformers: transformers.append(function_transformers[full_name]) if glob_name in function_transformers: transformers.append(function_transformers[glob_name]) if "*" in function_transformers: transformers.append(function_transformers["*"]) return transformers def _get_applicable_dict(self, transformer_field, full_name, name): """Get all dict entries indexed by name that apply to full_name or name.""" # Transformers are indexed to full name, name, or no name # as a performance optimization. function_transformers = getattr(self._api_change_spec, transformer_field, {}) glob_name = "*." + name if name else None transformers = function_transformers.get("*", {}).copy() transformers.update(function_transformers.get(glob_name, {})) transformers.update(function_transformers.get(full_name, {})) return transformers def _get_full_name(self, node): """Traverse an Attribute node to generate a full name, e.g., "tf.foo.bar". This is the inverse of `full_name_node`. Args: node: A Node of type Attribute. Returns: a '.'-delimited full-name or None if node was not Attribute or Name. i.e. `foo()+b).bar` returns None, while `a.b.c` would return "a.b.c". """ curr = node items = [] while not isinstance(curr, ast.Name): if not isinstance(curr, ast.Attribute): return None items.append(curr.attr) curr = curr.value items.append(curr.id) return ".".join(reversed(items)) def _maybe_add_warning(self, node, full_name): """Adds an error to be printed about full_name at node.""" function_warnings = self._api_change_spec.function_warnings if full_name in function_warnings: level, message = function_warnings[full_name] message = message.replace("<function name>", full_name) self.add_log(level, node.lineno, node.col_offset, "%s requires manual check. %s" % (full_name, message)) return True else: return False def _maybe_add_module_deprecation_warning(self, node, full_name, whole_name): """Adds a warning if full_name is a deprecated module.""" warnings = self._api_change_spec.module_deprecations if full_name in warnings: level, message = warnings[full_name] message = message.replace("<function name>", whole_name) self.add_log(level, node.lineno, node.col_offset, "Using member %s in deprecated module %s. %s" % (whole_name, full_name, message)) return True else: return False def _maybe_add_call_warning(self, node, full_name, name): """Print a warning when specific functions are called with selected args. The function _print_warning_for_function matches the full name of the called function, e.g., tf.foo.bar(). This function matches the function name that is called, as long as the function is an attribute. For example, `tf.foo.bar()` and `foo.bar()` are matched, but not `bar()`. Args: node: ast.Call object full_name: The precomputed full name of the callable, if one exists, None otherwise. name: The precomputed name of the callable, if one exists, None otherwise. Returns: Whether an error was recorded. """ # Only look for *.-warnings here, the other will be handled by the Attribute # visitor. Also, do not warn for bare functions, only if the call func is # an attribute. warned = False if isinstance(node.func, ast.Attribute): warned = self._maybe_add_warning(node, "*." + name) # All arg warnings are handled here, since only we have the args arg_warnings = self._get_applicable_dict("function_arg_warnings", full_name, name) variadic_args = uses_star_args_or_kwargs_in_call(node) for (kwarg, arg), (level, warning) in sorted(arg_warnings.items()): present, _ = get_arg_value(node, kwarg, arg) or variadic_args if present: warned = True warning_message = warning.replace("<function name>", full_name or name) template = "%s called with %s argument, requires manual check: %s" if variadic_args: template = ("%s called with *args or **kwargs that may include %s, " "requires manual check: %s") self.add_log(level, node.lineno, node.col_offset, template % (full_name or name, kwarg, warning_message)) return warned def _maybe_rename(self, parent, node, full_name): """Replace node (Attribute or Name) with a node representing full_name.""" new_name = self._api_change_spec.symbol_renames.get(full_name, None) if new_name: self.add_log(INFO, node.lineno, node.col_offset, "Renamed %r to %r" % (full_name, new_name)) new_node = full_name_node(new_name, node.ctx) ast.copy_location(new_node, node) pasta.ast_utils.replace_child(parent, node, new_node) return True else: return False def _maybe_change_to_function_call(self, parent, node, full_name): """Wraps node (typically, an Attribute or Expr) in a Call.""" if full_name in self._api_change_spec.change_to_function: if not isinstance(parent, ast.Call): # ast.Call's constructor is really picky about how many arguments it # wants, and also, it changed between Py2 and Py3. new_node = ast.Call(node, [], []) pasta.ast_utils.replace_child(parent, node, new_node) ast.copy_location(new_node, node) self.add_log(INFO, node.lineno, node.col_offset, "Changed %r to a function call" % full_name) return True return False def _maybe_add_arg_names(self, node, full_name): """Make args into keyword args if function called full_name requires it.""" function_reorders = self._api_change_spec.function_reorders if full_name in function_reorders: if uses_star_args_in_call(node): self.add_log(WARNING, node.lineno, node.col_offset, "(Manual check required) upgrading %s may require " "re-ordering the call arguments, but it was passed " "variable-length positional *args. The upgrade " "script cannot handle these automatically." % full_name) reordered = function_reorders[full_name] new_keywords = [] idx = 0 for arg in node.args: if sys.version_info[:2] >= (3, 5) and isinstance(arg, ast.Starred): continue # Can't move Starred to keywords keyword_arg = reordered[idx] keyword = ast.keyword(arg=keyword_arg, value=arg) new_keywords.append(keyword) idx += 1 if new_keywords: self.add_log(INFO, node.lineno, node.col_offset, "Added keywords to args of function %r" % full_name) node.args = [] node.keywords = new_keywords + (node.keywords or []) return True return False def _maybe_modify_args(self, node, full_name, name): """Rename keyword args if the function called full_name requires it.""" renamed_keywords = self._get_applicable_dict("function_keyword_renames", full_name, name) if not renamed_keywords: return False if uses_star_kwargs_in_call(node): self.add_log(WARNING, node.lineno, node.col_offset, "(Manual check required) upgrading %s may require " "renaming or removing call arguments, but it was passed " "variable-length *args or **kwargs. The upgrade " "script cannot handle these automatically." % (full_name or name)) modified = False new_keywords = [] for keyword in node.keywords: argkey = keyword.arg if argkey in renamed_keywords: modified = True if renamed_keywords[argkey] is None: lineno = getattr(keyword, "lineno", node.lineno) col_offset = getattr(keyword, "col_offset", node.col_offset) self.add_log(INFO, lineno, col_offset, "Removed argument %s for function %s" % ( argkey, full_name or name)) else: keyword.arg = renamed_keywords[argkey] lineno = getattr(keyword, "lineno", node.lineno) col_offset = getattr(keyword, "col_offset", node.col_offset) self.add_log(INFO, lineno, col_offset, "Renamed keyword argument for %s from %s to %s" % ( full_name, argkey, renamed_keywords[argkey])) new_keywords.append(keyword) else: new_keywords.append(keyword) if modified: node.keywords = new_keywords return modified def visit_Call(self, node): # pylint: disable=invalid-name """Handle visiting a call node in the AST. Args: node: Current Node """ assert self._stack[-1] is node # Get the name for this call, so we can index stuff with it. full_name = self._get_full_name(node.func) if full_name: name = full_name.split(".")[-1] elif isinstance(node.func, ast.Name): name = node.func.id elif isinstance(node.func, ast.Attribute): name = node.func.attr else: name = None # Call standard transformers for this node. # Make sure warnings come first, since args or names triggering warnings # may be removed by the other transformations. self._maybe_add_call_warning(node, full_name, name) # Make all args into kwargs self._maybe_add_arg_names(node, full_name) # Argument name changes or deletions self._maybe_modify_args(node, full_name, name) # Call transformers. These have the ability to modify the node, and if they # do, will return the new node they created (or the same node if they just # changed it). The are given the parent, but we will take care of # integrating their changes into the parent if they return a new node. # # These are matched on the old name, since renaming is performed by the # Attribute visitor, which happens later. transformers = self._get_applicable_entries("function_transformers", full_name, name) parent = self._stack[-2] if transformers: if uses_star_args_or_kwargs_in_call(node): self.add_log(WARNING, node.lineno, node.col_offset, "(Manual check required) upgrading %s may require " "modifying call arguments, but it was passed " "variable-length *args or **kwargs. The upgrade " "script cannot handle these automatically." % (full_name or name)) for transformer in transformers: logs = [] new_node = transformer(parent, node, full_name, name, logs) self.add_logs(logs) if new_node and new_node is not node: pasta.ast_utils.replace_child(parent, node, new_node) node = new_node self._stack[-1] = node self.generic_visit(node) def visit_Attribute(self, node): # pylint: disable=invalid-name """Handle bare Attributes i.e. [tf.foo, tf.bar].""" assert self._stack[-1] is node full_name = self._get_full_name(node) if full_name: parent = self._stack[-2] # Make sure the warning comes first, otherwise the name may have changed self._maybe_add_warning(node, full_name) # Once we did a modification, node is invalid and not worth inspecting # further. Also, we only perform modifications for simple nodes, so # There'd be no point in descending further. if self._maybe_rename(parent, node, full_name): return if self._maybe_change_to_function_call(parent, node, full_name): return # The isinstance check is enough -- a bare Attribute is never root. i = 2 while isinstance(self._stack[-i], ast.Attribute): i += 1 whole_name = pasta.dump(self._stack[-(i-1)]) self._maybe_add_module_deprecation_warning(node, full_name, whole_name) self.generic_visit(node) def visit_Import(self, node): # pylint: disable=invalid-name """Handle visiting an import node in the AST. Args: node: Current Node """ new_aliases = [] import_updated = False import_renames = getattr(self._api_change_spec, "import_renames", {}) max_submodule_depth = getattr(self._api_change_spec, "max_submodule_depth", 1) inserts_after_imports = getattr(self._api_change_spec, "inserts_after_imports", {}) # This loop processes imports in the format # import foo as f, bar as b for import_alias in node.names: all_import_components = import_alias.name.split(".") # Look for rename, starting with longest import levels. found_update = False for i in reversed(list(range(1, max_submodule_depth + 1))): import_component = all_import_components[0] for j in range(1, min(i, len(all_import_components))): import_component += "." + all_import_components[j] import_rename_spec = import_renames.get(import_component, None) if not import_rename_spec or excluded_from_module_rename( import_alias.name, import_rename_spec): continue new_name = ( import_rename_spec.new_name + import_alias.name[len(import_component):]) # If current import is # import foo # then new import should preserve imported name: # import new_foo as foo # This happens when module has just one component. new_asname = import_alias.asname if not new_asname and "." not in import_alias.name: new_asname = import_alias.name new_alias = ast.alias(name=new_name, asname=new_asname) new_aliases.append(new_alias) import_updated = True found_update = True # Insert any followup lines that should happen after this import. full_import = (import_alias.name, import_alias.asname) insert_offset = 1 for line_to_insert in inserts_after_imports.get(full_import, []): assert self._stack[-1] is node parent = self._stack[-2] new_line_node = pasta.parse(line_to_insert) ast.copy_location(new_line_node, node) parent.body.insert( parent.body.index(node) + insert_offset, new_line_node) insert_offset += 1 # Insert a newline after the import if necessary old_suffix = pasta.base.formatting.get(node, "suffix") if old_suffix is None: old_suffix = os.linesep if os.linesep not in old_suffix: pasta.base.formatting.set(node, "suffix", old_suffix + os.linesep) # Apply indentation to new node. pasta.base.formatting.set(new_line_node, "prefix", pasta.base.formatting.get(node, "prefix")) pasta.base.formatting.set(new_line_node, "suffix", os.linesep) self.add_log( INFO, node.lineno, node.col_offset, "Adding `%s` after import of %s" % (new_line_node, import_alias.name)) # Find one match, break if found_update: break # No rename is found for all levels if not found_update: new_aliases.append(import_alias) # no change needed # Replace the node if at least one import needs to be updated. if import_updated: assert self._stack[-1] is node parent = self._stack[-2] new_node = ast.Import(new_aliases) ast.copy_location(new_node, node) pasta.ast_utils.replace_child(parent, node, new_node) self.add_log( INFO, node.lineno, node.col_offset, "Changed import from %r to %r." % (pasta.dump(node), pasta.dump(new_node))) self.generic_visit(node) def visit_ImportFrom(self, node): # pylint: disable=invalid-name """Handle visiting an import-from node in the AST. Args: node: Current Node """ if not node.module: self.generic_visit(node) return from_import = node.module # Look for rename based on first component of from-import. # i.e. based on foo in foo.bar. from_import_first_component = from_import.split(".")[0] import_renames = getattr(self._api_change_spec, "import_renames", {}) import_rename_spec = import_renames.get(from_import_first_component, None) if not import_rename_spec: self.generic_visit(node) return # Split module aliases into the ones that require import update # and those that don't. For e.g. if we want to rename "a" to "b" # unless we import "a.c" in the following: # from a import c, d # we want to update import for "d" but not for "c". updated_aliases = [] same_aliases = [] for import_alias in node.names: full_module_name = "%s.%s" % (from_import, import_alias.name) if excluded_from_module_rename(full_module_name, import_rename_spec): same_aliases.append(import_alias) else: updated_aliases.append(import_alias) if not updated_aliases: self.generic_visit(node) return assert self._stack[-1] is node parent = self._stack[-2] # Replace first component of from-import with new name. new_from_import = ( import_rename_spec.new_name + from_import[len(from_import_first_component):]) updated_node = ast.ImportFrom(new_from_import, updated_aliases, node.level) ast.copy_location(updated_node, node) pasta.ast_utils.replace_child(parent, node, updated_node) # If some imports had to stay the same, add another import for them. additional_import_log = "" if same_aliases: same_node = ast.ImportFrom(from_import, same_aliases, node.level, col_offset=node.col_offset, lineno=node.lineno) ast.copy_location(same_node, node) parent.body.insert(parent.body.index(updated_node), same_node) # Apply indentation to new node. pasta.base.formatting.set( same_node, "prefix", pasta.base.formatting.get(updated_node, "prefix")) additional_import_log = " and %r" % pasta.dump(same_node) self.add_log( INFO, node.lineno, node.col_offset, "Changed import from %r to %r%s." % (pasta.dump(node), pasta.dump(updated_node), additional_import_log)) self.generic_visit(node) class AnalysisResult: """This class represents an analysis result and how it should be logged. This class must provide the following fields: * `log_level`: The log level to which this detection should be logged * `log_message`: The message that should be logged for this detection For an example, see `VersionedTFImport`. """ class APIAnalysisSpec: """This class defines how `AnalysisResult`s should be generated. It specifies how to map imports and symbols to `AnalysisResult`s. This class must provide the following fields: * `symbols_to_detect`: maps function names to `AnalysisResult`s * `imports_to_detect`: maps imports represented as (full module name, alias) tuples to `AnalysisResult`s notifications) For an example, see `TFAPIImportAnalysisSpec`. """ class PastaAnalyzeVisitor(_PastaEditVisitor): """AST Visitor that looks for specific API usage without editing anything. This is used before any rewriting is done to detect if any symbols are used that require changing imports or disabling rewriting altogether. """ def __init__(self, api_analysis_spec): super(PastaAnalyzeVisitor, self).__init__(NoUpdateSpec()) self._api_analysis_spec = api_analysis_spec self._results = [] # Holds AnalysisResult objects @property def results(self): return self._results def add_result(self, analysis_result): self._results.append(analysis_result) def visit_Attribute(self, node): # pylint: disable=invalid-name """Handle bare Attributes i.e. [tf.foo, tf.bar].""" full_name = self._get_full_name(node) if full_name: detection = self._api_analysis_spec.symbols_to_detect.get(full_name, None) if detection: self.add_result(detection) self.add_log( detection.log_level, node.lineno, node.col_offset, detection.log_message) self.generic_visit(node) def visit_Import(self, node): # pylint: disable=invalid-name """Handle visiting an import node in the AST. Args: node: Current Node """ for import_alias in node.names: # Detect based on full import name and alias) full_import = (import_alias.name, import_alias.asname) detection = (self._api_analysis_spec .imports_to_detect.get(full_import, None)) if detection: self.add_result(detection) self.add_log( detection.log_level, node.lineno, node.col_offset, detection.log_message) self.generic_visit(node) def visit_ImportFrom(self, node): # pylint: disable=invalid-name """Handle visiting an import-from node in the AST. Args: node: Current Node """ if not node.module: self.generic_visit(node) return from_import = node.module for import_alias in node.names: # Detect based on full import name(to & as) full_module_name = "%s.%s" % (from_import, import_alias.name) full_import = (full_module_name, import_alias.asname) detection = (self._api_analysis_spec .imports_to_detect.get(full_import, None)) if detection: self.add_result(detection) self.add_log( detection.log_level, node.lineno, node.col_offset, detection.log_message) self.generic_visit(node) class ASTCodeUpgrader: """Handles upgrading a set of Python files using a given API change spec.""" def __init__(self, api_change_spec): if not isinstance(api_change_spec, APIChangeSpec): raise TypeError("Must pass APIChangeSpec to ASTCodeUpgrader, got %s" % type(api_change_spec)) self._api_change_spec = api_change_spec def process_file(self, in_filename, out_filename, no_change_to_outfile_on_error=False): """Process the given python file for incompatible changes. Args: in_filename: filename to parse out_filename: output file to write to no_change_to_outfile_on_error: not modify the output file on errors Returns: A tuple representing number of files processed, log of actions, errors """ # Write to a temporary file, just in case we are doing an implace modify. # pylint: disable=g-backslash-continuation with open(in_filename, "r") as in_file, \ tempfile.NamedTemporaryFile("w", delete=False) as temp_file: ret = self.process_opened_file(in_filename, in_file, out_filename, temp_file) # pylint: enable=g-backslash-continuation if no_change_to_outfile_on_error and ret[0] == 0: os.remove(temp_file.name) else: shutil.move(temp_file.name, out_filename) return ret def format_log(self, log, in_filename): log_string = "%d:%d: %s: %s" % (log[1], log[2], log[0], log[3]) if in_filename: return in_filename + ":" + log_string else: return log_string def update_string_pasta(self, text, in_filename): """Updates a file using pasta.""" try: t = pasta.parse(text) except (SyntaxError, ValueError, TypeError): log = ["ERROR: Failed to parse.\n" + traceback.format_exc()] return 0, "", log, [] t, preprocess_logs, preprocess_errors = self._api_change_spec.preprocess(t) visitor = _PastaEditVisitor(self._api_change_spec) visitor.visit(t) self._api_change_spec.clear_preprocessing() logs = [self.format_log(log, None) for log in (preprocess_logs + visitor.log)] errors = [self.format_log(error, in_filename) for error in (preprocess_errors + visitor.warnings_and_errors)] return 1, pasta.dump(t), logs, errors def _format_log(self, log, in_filename, out_filename): text = "-" * 80 + "\n" text += "Processing file %r\n outputting to %r\n" % (in_filename, out_filename) text += "-" * 80 + "\n\n" text += "\n".join(log) + "\n" text += "-" * 80 + "\n\n" return text def process_opened_file(self, in_filename, in_file, out_filename, out_file): """Process the given python file for incompatible changes. This function is split out to facilitate StringIO testing from tf_upgrade_test.py. Args: in_filename: filename to parse in_file: opened file (or StringIO) out_filename: output file to write to out_file: opened file (or StringIO) Returns: A tuple representing number of files processed, log of actions, errors """ lines = in_file.readlines() processed_file, new_file_content, log, process_errors = ( self.update_string_pasta("".join(lines), in_filename)) if out_file and processed_file: out_file.write(new_file_content) return (processed_file, self._format_log(log, in_filename, out_filename), process_errors) def process_tree(self, root_directory, output_root_directory, copy_other_files): """Processes upgrades on an entire tree of python files in place. Note that only Python files. If you have custom code in other languages, you will need to manually upgrade those. Args: root_directory: Directory to walk and process. output_root_directory: Directory to use as base. copy_other_files: Copy files that are not touched by this converter. Returns: A tuple of files processed, the report string for all files, and a dict mapping filenames to errors encountered in that file. """ if output_root_directory == root_directory: return self.process_tree_inplace(root_directory) # make sure output directory doesn't exist if output_root_directory and os.path.exists(output_root_directory): print("Output directory %r must not already exist." % (output_root_directory)) sys.exit(1) # make sure output directory does not overlap with root_directory norm_root = os.path.split(os.path.normpath(root_directory)) norm_output = os.path.split(os.path.normpath(output_root_directory)) if norm_root == norm_output: print("Output directory %r same as input directory %r" % (root_directory, output_root_directory)) sys.exit(1) # Collect list of files to process (we do this to correctly handle if the # user puts the output directory in some sub directory of the input dir) files_to_process = [] files_to_copy = [] for dir_name, _, file_list in os.walk(root_directory): py_files = [f for f in file_list if f.endswith(".py")] copy_files = [f for f in file_list if not f.endswith(".py")] for filename in py_files: fullpath = os.path.join(dir_name, filename) fullpath_output = os.path.join(output_root_directory, os.path.relpath(fullpath, root_directory)) files_to_process.append((fullpath, fullpath_output)) if copy_other_files: for filename in copy_files: fullpath = os.path.join(dir_name, filename) fullpath_output = os.path.join(output_root_directory, os.path.relpath( fullpath, root_directory)) files_to_copy.append((fullpath, fullpath_output)) file_count = 0 tree_errors = {} report = "" report += ("=" * 80) + "\n" report += "Input tree: %r\n" % root_directory report += ("=" * 80) + "\n" for input_path, output_path in files_to_process: output_directory = os.path.dirname(output_path) if not os.path.isdir(output_directory): os.makedirs(output_directory) if os.path.islink(input_path): link_target = os.readlink(input_path) link_target_output = os.path.join( output_root_directory, os.path.relpath(link_target, root_directory)) if (link_target, link_target_output) in files_to_process: # Create a link to the new location of the target file os.symlink(link_target_output, output_path) else: report += "Copying symlink %s without modifying its target %s" % ( input_path, link_target) os.symlink(link_target, output_path) continue file_count += 1 _, l_report, l_errors = self.process_file(input_path, output_path) tree_errors[input_path] = l_errors report += l_report for input_path, output_path in files_to_copy: output_directory = os.path.dirname(output_path) if not os.path.isdir(output_directory): os.makedirs(output_directory) shutil.copy(input_path, output_path) return file_count, report, tree_errors def process_tree_inplace(self, root_directory): """Process a directory of python files in place.""" files_to_process = [] for dir_name, _, file_list in os.walk(root_directory): py_files = [ os.path.join(dir_name, f) for f in file_list if f.endswith(".py") ] files_to_process += py_files file_count = 0 tree_errors = {} report = "" report += ("=" * 80) + "\n" report += "Input tree: %r\n" % root_directory report += ("=" * 80) + "\n" for path in files_to_process: if os.path.islink(path): report += "Skipping symlink %s.\n" % path continue file_count += 1 _, l_report, l_errors = self.process_file(path, path) tree_errors[path] = l_errors report += l_report return file_count, report, tree_errors
apache-2.0
yashodhank/frappe
frappe/tests/test_goal.py
3
1378
# Copyright (c) 2022, Frappe Technologies Pvt. Ltd. and Contributors # License: MIT. See LICENSE import frappe from frappe.test_runner import make_test_objects from frappe.tests.utils import FrappeTestCase from frappe.utils import format_date, today from frappe.utils.goal import get_monthly_goal_graph_data, get_monthly_results class TestGoal(FrappeTestCase): def setUp(self): make_test_objects("Event", reset=True) def tearDown(self): frappe.db.delete("Event") def test_get_monthly_results(self): """Test monthly aggregation values of a field""" result_dict = get_monthly_results( "Event", "subject", "creation", filters={"event_type": "Private"}, aggregation="count", ) self.assertEqual(result_dict.get(format_date(today(), "MM-yyyy")), 2) def test_get_monthly_goal_graph_data(self): """Test for accurate values in graph data (based on test_get_monthly_results)""" docname = frappe.get_list("Event", filters={"subject": ["=", "_Test Event 1"]})[0]["name"] frappe.db.set_value("Event", docname, "description", 1) data = get_monthly_goal_graph_data( "Test", "Event", docname, "description", "description", "description", "Event", "", "description", "creation", filters={"starts_on": "2014-01-01"}, aggregation="count", ) self.assertEqual(float(data["data"]["datasets"][0]["values"][-1]), 1)
mit
heli522/scikit-learn
examples/svm/plot_separating_hyperplane_unbalanced.py
326
1850
""" ================================================= SVM: Separating hyperplane for unbalanced classes ================================================= Find the optimal separating hyperplane using an SVC for classes that are unbalanced. We first find the separating plane with a plain SVC and then plot (dashed) the separating hyperplane with automatically correction for unbalanced classes. .. currentmodule:: sklearn.linear_model .. note:: This example will also work by replacing ``SVC(kernel="linear")`` with ``SGDClassifier(loss="hinge")``. Setting the ``loss`` parameter of the :class:`SGDClassifier` equal to ``hinge`` will yield behaviour such as that of a SVC with a linear kernel. For example try instead of the ``SVC``:: clf = SGDClassifier(n_iter=100, alpha=0.01) """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn import svm #from sklearn.linear_model import SGDClassifier # we create 40 separable points rng = np.random.RandomState(0) n_samples_1 = 1000 n_samples_2 = 100 X = np.r_[1.5 * rng.randn(n_samples_1, 2), 0.5 * rng.randn(n_samples_2, 2) + [2, 2]] y = [0] * (n_samples_1) + [1] * (n_samples_2) # fit the model and get the separating hyperplane clf = svm.SVC(kernel='linear', C=1.0) clf.fit(X, y) w = clf.coef_[0] a = -w[0] / w[1] xx = np.linspace(-5, 5) yy = a * xx - clf.intercept_[0] / w[1] # get the separating hyperplane using weighted classes wclf = svm.SVC(kernel='linear', class_weight={1: 10}) wclf.fit(X, y) ww = wclf.coef_[0] wa = -ww[0] / ww[1] wyy = wa * xx - wclf.intercept_[0] / ww[1] # plot separating hyperplanes and samples h0 = plt.plot(xx, yy, 'k-', label='no weights') h1 = plt.plot(xx, wyy, 'k--', label='with weights') plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Paired) plt.legend() plt.axis('tight') plt.show()
bsd-3-clause
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Final/best_kNN_PCA/4-categories/6/test11_cross_validate_categories_6_no_motion_1200ms.py
1
4739
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/6') from data_6 import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov def my_mvpa(Y,num2): #Using PYMVPA PCA_data = np.array(Y) PCA_label_1 = ['Rigid-Fixed']*35 + ['Rigid-Movable']*35 + ['Soft-Fixed']*35 + ['Soft-Movable']*35 PCA_chunk_1 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Cushion-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=num2) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_1,chunks=PCA_chunk_1) cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) return (1-error)*100 def result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC): # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:num_PC] m_W, n_W = np.shape(W) # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) return Y.T if __name__ == '__main__': Fmat = Fmat_original[0:82,:] # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) num_PC=1 while num_PC <=20: Proj = np.zeros((140,num_PC)) Proj = result(eigvec_total,eigval_total,mean_data_total,B,C,num_PC) # PYMVPA: num=0 cv_acc = np.zeros(21) while num <=20: cv_acc[num] = my_mvpa(Proj,num) num = num+1 plot(np.arange(21),cv_acc,'-s') grid('True') hold('True') num_PC = num_PC+1 legend(('1-PC', '2-PCs', '3-PCs', '4-PCs', '5-PCs', '6-PCs', '7-PCs', '8-PCs', '9-PCs', '10-PCs', '11-PC', '12-PCs', '13-PCs', '14-PCs', '15-PCs', '16-PCs', '17-PCs', '18-PCs', '19-PCs', '20-PCs')) ylabel('Cross-Validation Accuracy') xlabel('k in k-NN Classifier') show()
mit
KellyChan/Python
python/tensorflow/demos/tensorflow/concepts/learn.py
3
1427
import pickle import numpy as np from matplotlib import pyplot as plt from sklearn import svm from sklearn import metrics from sklearn.datasets import load_digits from sklearn.cross_validation import train_test_split from tensorflow.contrib import skflow def load_cifar(file): with open(file, 'rb') as inf: cifar = pickle.load(inf, encoding='latin1') data = cifar['data'].reshape((10000, 3, 32, 32)) data = np.rollaxis(data, 3, 1) data = np.rollaxis(data, 3, 1) y = np.array(cifar['labels']) mask = (y == 2) | (y == 9) data = data[mask] y = y[mask] return data, y def classifier_svm(digits): classifier = svm.SVC(gamma=0.001) classifier.fit(digits.data, digits.target) predicted = classifier.predict(digits.data) print(np.mean(digits.target == predicted)) def classifier_tf(digits): X_train, X_test, y_train, y_test = train_test_split(digits.data, digits.target) n_classes = len(set(y_train)) classifier = skflow.TensorFlowLinearClassifier(n_classes=n_classes) classifier.fit(X_train, y_train) y_pred = classifier.predict(X_test) print(metrics.classification_report(y_true=y_test, y_pred=y_pred)) if __name__ == '__main__': digits = load_digits() fig = plt.figure(figsize=(3,3)) plt.imshow(digits['images'][66], cmap="gray", interpolation='none') plt.show() classifier_svm(digits) classifier_tf(digits)
mit
geoadmin/mapproxy
mapproxy/service/wms.py
5
31048
# This file is part of the MapProxy project. # Copyright (C) 2010-2014 Omniscale <http://omniscale.de> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ WMS service handler """ from mapproxy.compat import iteritems from mapproxy.compat.itertools import chain from functools import partial from mapproxy.cache.tile import CacheInfo from mapproxy.request.wms import (wms_request, WMS111LegendGraphicRequest, mimetype_from_infotype, infotype_from_mimetype, switch_bbox_epsg_axis_order) from mapproxy.srs import SRS, TransformationError from mapproxy.service.base import Server from mapproxy.response import Response from mapproxy.source import SourceError from mapproxy.exception import RequestError from mapproxy.image import bbox_position_in_image, SubImageSource, BlankImageSource from mapproxy.image.merge import concat_legends, LayerMerger from mapproxy.image.opts import ImageOptions from mapproxy.image.message import attribution_image, message_image from mapproxy.layer import BlankImage, MapQuery, InfoQuery, LegendQuery, MapError, LimitedLayer from mapproxy.layer import MapBBOXError, merge_layer_extents, merge_layer_res_ranges from mapproxy.util import async from mapproxy.util.py import cached_property from mapproxy.util.coverage import load_limited_to from mapproxy.util.ext.odict import odict from mapproxy.template import template_loader, bunch, recursive_bunch from mapproxy.service import template_helper from mapproxy.layer import DefaultMapExtent, MapExtent get_template = template_loader(__name__, 'templates', namespace=template_helper.__dict__) class PERMIT_ALL_LAYERS(object): pass class WMSServer(Server): service = 'wms' fi_transformers = None def __init__(self, root_layer, md, srs, image_formats, request_parser=None, tile_layers=None, attribution=None, info_types=None, strict=False, on_error='raise', concurrent_layer_renderer=1, max_output_pixels=None, srs_extents=None, max_tile_age=None, versions=None, inspire_md=None, ): Server.__init__(self) self.request_parser = request_parser or partial(wms_request, strict=strict, versions=versions) self.root_layer = root_layer self.layers = root_layer.child_layers() self.tile_layers = tile_layers or {} self.strict = strict self.attribution = attribution self.md = md self.on_error = on_error self.concurrent_layer_renderer = concurrent_layer_renderer self.image_formats = image_formats self.info_types = info_types self.srs = srs self.srs_extents = srs_extents self.max_output_pixels = max_output_pixels self.max_tile_age = max_tile_age self.inspire_md = inspire_md def map(self, map_request): self.check_map_request(map_request) params = map_request.params query = MapQuery(params.bbox, params.size, SRS(params.srs), params.format) if map_request.params.get('tiled', 'false').lower() == 'true': query.tiled_only = True orig_query = query if self.srs_extents and params.srs in self.srs_extents: # limit query to srs_extent if query is larger query_extent = MapExtent(params.bbox, SRS(params.srs)) if not self.srs_extents[params.srs].contains(query_extent): limited_extent = self.srs_extents[params.srs].intersection(query_extent) if not limited_extent: img_opts = self.image_formats[params.format_mime_type].copy() img_opts.bgcolor = params.bgcolor img_opts.transparent = params.transparent img = BlankImageSource(size=params.size, image_opts=img_opts, cacheable=True) return Response(img.as_buffer(), content_type=img_opts.format.mime_type) sub_size, offset, sub_bbox = bbox_position_in_image(params.bbox, params.size, limited_extent.bbox) query = MapQuery(sub_bbox, sub_size, SRS(params.srs), params.format) actual_layers = odict() for layer_name in map_request.params.layers: layer = self.layers[layer_name] # only add if layer renders the query if layer.renders_query(query): # if layer is not transparent and will be rendered, # remove already added (then hidden) layers if not layer.transparent: actual_layers = odict() for layer_name, map_layers in layer.map_layers_for_query(query): actual_layers[layer_name] = map_layers authorized_layers, coverage = self.authorized_layers('map', actual_layers.keys(), map_request.http.environ, query_extent=(query.srs.srs_code, query.bbox)) self.filter_actual_layers(actual_layers, map_request.params.layers, authorized_layers) render_layers = [] for layers in actual_layers.values(): render_layers.extend(layers) self.update_query_with_fwd_params(query, params=params, layers=render_layers) raise_source_errors = True if self.on_error == 'raise' else False renderer = LayerRenderer(render_layers, query, map_request, raise_source_errors=raise_source_errors, concurrent_rendering=self.concurrent_layer_renderer) merger = LayerMerger() renderer.render(merger) if self.attribution and self.attribution.get('text') and not query.tiled_only: merger.add(attribution_image(self.attribution['text'], query.size)) img_opts = self.image_formats[params.format_mime_type].copy() img_opts.bgcolor = params.bgcolor img_opts.transparent = params.transparent result = merger.merge(size=query.size, image_opts=img_opts, bbox=query.bbox, bbox_srs=params.srs, coverage=coverage) if query != orig_query: result = SubImageSource(result, size=orig_query.size, offset=offset, image_opts=img_opts) # Provide the wrapping WSGI app or filter the opportunity to process the # image before it's wrapped up in a response result = self.decorate_img(result, 'wms.map', actual_layers.keys(), map_request.http.environ, (query.srs.srs_code, query.bbox)) try: result_buf = result.as_buffer(img_opts) except IOError as ex: raise RequestError('error while processing image file: %s' % ex, request=map_request) resp = Response(result_buf, content_type=img_opts.format.mime_type) if query.tiled_only and isinstance(result.cacheable, CacheInfo): cache_info = result.cacheable resp.cache_headers(cache_info.timestamp, etag_data=(cache_info.timestamp, cache_info.size), max_age=self.max_tile_age) resp.make_conditional(map_request.http) if not result.cacheable: resp.cache_headers(no_cache=True) return resp def capabilities(self, map_request): # TODO: debug layer # if '__debug__' in map_request.params: # layers = self.layers.values() # else: # layers = [layer for name, layer in iteritems(self.layers) # if name != '__debug__'] if map_request.params.get('tiled', 'false').lower() == 'true': tile_layers = self.tile_layers.values() else: tile_layers = [] service = self._service_md(map_request) root_layer = self.authorized_capability_layers(map_request.http.environ) info_types = ['text', 'html', 'xml'] # defaults if self.info_types: info_types = self.info_types elif self.fi_transformers: info_types = self.fi_transformers.keys() info_formats = [mimetype_from_infotype(map_request.version, info_type) for info_type in info_types] result = Capabilities(service, root_layer, tile_layers, self.image_formats, info_formats, srs=self.srs, srs_extents=self.srs_extents, inspire_md=self.inspire_md, ).render(map_request) return Response(result, mimetype=map_request.mime_type) def featureinfo(self, request): infos = [] self.check_featureinfo_request(request) p = request.params query = InfoQuery(p.bbox, p.size, SRS(p.srs), p.pos, p['info_format'], format=request.params.format or None, feature_count=p.get('feature_count')) actual_layers = odict() for layer_name in request.params.query_layers: layer = self.layers[layer_name] if not layer.queryable: raise RequestError('layer %s is not queryable' % layer_name, request=request) for layer_name, info_layers in layer.info_layers_for_query(query): actual_layers[layer_name] = info_layers authorized_layers, coverage = self.authorized_layers('featureinfo', actual_layers.keys(), request.http.environ, query_extent=(query.srs.srs_code, query.bbox)) self.filter_actual_layers(actual_layers, request.params.layers, authorized_layers) # outside of auth-coverage if coverage and not coverage.contains(query.coord, query.srs): infos = [] else: info_layers = [] for layers in actual_layers.values(): info_layers.extend(layers) for layer in info_layers: info = layer.get_info(query) if info is None: continue infos.append(info) mimetype = None if 'info_format' in request.params: mimetype = request.params.info_format if not infos: return Response('', mimetype=mimetype) if self.fi_transformers: doc = infos[0].combine(infos) if doc.info_type == 'text': resp = doc.as_string() mimetype = 'text/plain' else: if not mimetype: if 'xml' in self.fi_transformers: info_type = 'xml' elif 'html' in self.fi_transformers: info_type = 'html' else: info_type = 'text' mimetype = mimetype_from_infotype(request.version, info_type) else: info_type = infotype_from_mimetype(request.version, mimetype) resp = self.fi_transformers[info_type](doc).as_string() else: mimetype = mimetype_from_infotype(request.version, infos[0].info_type) if len(infos) > 1: resp = infos[0].combine(infos).as_string() else: resp = infos[0].as_string() return Response(resp, mimetype=mimetype) def check_map_request(self, request): if self.max_output_pixels and \ (request.params.size[0] * request.params.size[1]) > self.max_output_pixels: request.prevent_image_exception = True raise RequestError("image size too large", request=request) self.validate_layers(request) request.validate_format(self.image_formats) request.validate_srs(self.srs) def update_query_with_fwd_params(self, query, params, layers): # forward relevant request params into MapQuery.dimensions for layer in layers: if not hasattr(layer, 'fwd_req_params'): continue for p in layer.fwd_req_params: if p in params: query.dimensions[p] = params[p] def check_featureinfo_request(self, request): self.validate_layers(request) request.validate_srs(self.srs) def validate_layers(self, request): query_layers = request.params.query_layers if hasattr(request, 'query_layers') else [] for layer in chain(request.params.layers, query_layers): if layer not in self.layers: raise RequestError('unknown layer: ' + str(layer), code='LayerNotDefined', request=request) def check_legend_request(self, request): if request.params.layer not in self.layers: raise RequestError('unknown layer: ' + request.params.layer, code='LayerNotDefined', request=request) #TODO: If layer not in self.layers raise RequestError def legendgraphic(self, request): legends = [] self.check_legend_request(request) layer = request.params.layer if not self.layers[layer].has_legend: raise RequestError('layer %s has no legend graphic' % layer, request=request) legend = self.layers[layer].legend(request) [legends.append(i) for i in legend if i is not None] result = concat_legends(legends) if 'format' in request.params: mimetype = request.params.format_mime_type else: mimetype = 'image/png' img_opts = self.image_formats[request.params.format_mime_type] return Response(result.as_buffer(img_opts), mimetype=mimetype) def _service_md(self, map_request): md = dict(self.md) md['url'] = map_request.url md['has_legend'] = self.root_layer.has_legend return md def authorized_layers(self, feature, layers, env, query_extent): if 'mapproxy.authorize' in env: result = env['mapproxy.authorize']('wms.' + feature, layers[:], environ=env, query_extent=query_extent) if result['authorized'] == 'unauthenticated': raise RequestError('unauthorized', status=401) if result['authorized'] == 'full': return PERMIT_ALL_LAYERS, None layers = {} if result['authorized'] == 'partial': for layer_name, permissions in iteritems(result['layers']): if permissions.get(feature, False) == True: layers[layer_name] = permissions.get('limited_to') limited_to = result.get('limited_to') if limited_to: coverage = load_limited_to(limited_to) else: coverage = None return layers, coverage else: return PERMIT_ALL_LAYERS, None def filter_actual_layers(self, actual_layers, requested_layers, authorized_layers): if authorized_layers is not PERMIT_ALL_LAYERS: requested_layer_names = set(requested_layers) for layer_name in actual_layers.keys(): if layer_name not in authorized_layers: # check whether layer was requested explicit... if layer_name in requested_layer_names: raise RequestError('forbidden', status=403) # or implicit (part of group layer) else: del actual_layers[layer_name] elif authorized_layers[layer_name] is not None: limited_to = load_limited_to(authorized_layers[layer_name]) actual_layers[layer_name] = [LimitedLayer(lyr, limited_to) for lyr in actual_layers[layer_name]] def authorized_capability_layers(self, env): if 'mapproxy.authorize' in env: result = env['mapproxy.authorize']('wms.capabilities', self.layers.keys(), environ=env) if result['authorized'] == 'unauthenticated': raise RequestError('unauthorized', status=401) if result['authorized'] == 'full': return self.root_layer if result['authorized'] == 'partial': limited_to = result.get('limited_to') if limited_to: coverage = load_limited_to(limited_to) else: coverage = None return FilteredRootLayer(self.root_layer, result['layers'], coverage=coverage) raise RequestError('forbidden', status=403) else: return self.root_layer class FilteredRootLayer(object): def __init__(self, root_layer, permissions, coverage=None): self.root_layer = root_layer self.permissions = permissions self.coverage = coverage def __getattr__(self, name): return getattr(self.root_layer, name) @cached_property def extent(self): layer_name = self.root_layer.name limited_to = self.permissions.get(layer_name, {}).get('limited_to') extent = self.root_layer.extent if limited_to: coverage = load_limited_to(limited_to) limited_coverage = coverage.intersection(extent.bbox, extent.srs) extent = limited_coverage.extent if self.coverage: limited_coverage = self.coverage.intersection(extent.bbox, extent.srs) extent = limited_coverage.extent return extent @property def queryable(self): if not self.root_layer.queryable: return False layer_name = self.root_layer.name if not layer_name or self.permissions.get(layer_name, {}).get('featureinfo', False): return True return False def layer_permitted(self, layer): if not self.permissions.get(layer.name, {}).get('map', False): return False extent = layer.extent limited_to = self.permissions.get(layer.name, {}).get('limited_to') if limited_to: coverage = load_limited_to(limited_to) if not coverage.intersects(extent.bbox, extent.srs): return False if self.coverage: if not self.coverage.intersects(extent.bbox, extent.srs): return False return True @cached_property def layers(self): layers = [] for layer in self.root_layer.layers: if not layer.name or self.layer_permitted(layer): filtered_layer = FilteredRootLayer(layer, self.permissions, self.coverage) if filtered_layer.is_active or filtered_layer.layers: # add filtered_layer only if it is active (no grouping layer) # or if it contains other active layers layers.append(filtered_layer) return layers DEFAULT_EXTENTS = { 'EPSG:3857': DefaultMapExtent(), 'EPSG:4326': DefaultMapExtent(), 'EPSG:900913': DefaultMapExtent(), } def limit_srs_extents(srs_extents, supported_srs): """ Limit srs_extents to supported_srs. """ if srs_extents: srs_extents = srs_extents.copy() else: srs_extents = DEFAULT_EXTENTS.copy() for srs in list(srs_extents.keys()): if srs not in supported_srs: srs_extents.pop(srs) return srs_extents class Capabilities(object): """ Renders WMS capabilities documents. """ def __init__(self, server_md, layers, tile_layers, image_formats, info_formats, srs, srs_extents=None, epsg_axis_order=False, inspire_md=None, ): self.service = server_md self.layers = layers self.tile_layers = tile_layers self.image_formats = image_formats self.info_formats = info_formats self.srs = srs self.srs_extents = limit_srs_extents(srs_extents, srs) self.inspire_md = inspire_md def layer_srs_bbox(self, layer, epsg_axis_order=False): layer_srs_code = layer.extent.srs.srs_code for srs, extent in iteritems(self.srs_extents): if extent.is_default: bbox = layer.extent.bbox_for(SRS(srs)) else: bbox = extent.bbox_for(SRS(srs)) if epsg_axis_order: bbox = switch_bbox_epsg_axis_order(bbox, srs) yield srs, bbox # add native srs if layer_srs_code not in self.srs_extents: bbox = layer.extent.bbox if epsg_axis_order: bbox = switch_bbox_epsg_axis_order(bbox, layer_srs_code) yield layer_srs_code, bbox def render(self, _map_request): return self._render_template(_map_request.capabilities_template) def _render_template(self, template): template = get_template(template) inspire_md = None if self.inspire_md: inspire_md = recursive_bunch(default='', **self.inspire_md) doc = template.substitute(service=bunch(default='', **self.service), layers=self.layers, formats=self.image_formats, info_formats=self.info_formats, srs=self.srs, tile_layers=self.tile_layers, layer_srs_bbox=self.layer_srs_bbox, inspire_md=inspire_md, ) # strip blank lines doc = '\n'.join(l for l in doc.split('\n') if l.rstrip()) return doc class LayerRenderer(object): def __init__(self, layers, query, request, raise_source_errors=True, concurrent_rendering=1): self.layers = layers self.query = query self.request = request self.raise_source_errors = raise_source_errors self.concurrent_rendering = concurrent_rendering def render(self, layer_merger): render_layers = combined_layers(self.layers, self.query) if not render_layers: return async_pool = async.Pool(size=min(len(render_layers), self.concurrent_rendering)) if self.raise_source_errors: return self._render_raise_exceptions(async_pool, render_layers, layer_merger) else: return self._render_capture_source_errors(async_pool, render_layers, layer_merger) def _render_raise_exceptions(self, async_pool, render_layers, layer_merger): # call _render_layer, raise all exceptions try: for layer_task in async_pool.imap(self._render_layer, render_layers, use_result_objects=True): if layer_task.exception is None: layer, layer_img = layer_task.result if layer_img is not None: layer_merger.add(layer_img, layer=layer) else: ex = layer_task.exception async_pool.shutdown(True) raise ex[1] except SourceError as ex: raise RequestError(ex.args[0], request=self.request) def _render_capture_source_errors(self, async_pool, render_layers, layer_merger): # call _render_layer, capture SourceError exceptions errors = [] rendered = 0 for layer_task in async_pool.imap(self._render_layer, render_layers, use_result_objects=True): if layer_task.exception is None: layer, layer_img = layer_task.result if layer_img is not None: layer_merger.add(layer_img, layer=layer) rendered += 1 else: layer_merger.cacheable = False ex = layer_task.exception if isinstance(ex[1], SourceError): errors.append(ex[1].args[0]) else: async_pool.shutdown(True) raise ex[1] if render_layers and not rendered: errors = '\n'.join(errors) raise RequestError('Could not get any sources:\n'+errors, request=self.request) if errors: layer_merger.add(message_image('\n'.join(errors), self.query.size, image_opts=ImageOptions(transparent=True))) def _render_layer(self, layer): try: layer_img = layer.get_map(self.query) if layer_img is not None: layer_img.opacity = layer.opacity return layer, layer_img except SourceError: raise except MapBBOXError: raise RequestError('Request too large or invalid BBOX.', request=self.request) except MapError as e: raise RequestError('Invalid request: %s' % e.args[0], request=self.request) except TransformationError: raise RequestError('Could not transform BBOX: Invalid result.', request=self.request) except BlankImage: return layer, None class WMSLayerBase(object): """ Base class for WMS layer (layer groups and leaf layers). """ "True if layer is an actual layer (not a group only)" is_active = True "list of sublayers" layers = [] "metadata dictionary with tile, name, etc." md = {} "True if .info() is supported" queryable = False transparent = False "True is .legend() is supported" has_legend = False legend_url = None legend_size = None "resolution range (i.e. ScaleHint) of the layer" res_range = None "MapExtend of the layer" extent = None def is_opaque(self): return not self.transparent def map_layers_for_query(self, query): raise NotImplementedError() def legend(self, query): raise NotImplementedError() def info(self, query): raise NotImplementedError() class WMSLayer(WMSLayerBase): """ Class for WMS layers. Combines map, info and legend sources with metadata. """ is_active = True layers = [] def __init__(self, name, title, map_layers, info_layers=[], legend_layers=[], res_range=None, md=None): self.name = name self.title = title self.md = md or {} self.map_layers = map_layers self.info_layers = info_layers self.legend_layers = legend_layers self.extent = merge_layer_extents(map_layers) if res_range is None: res_range = merge_layer_res_ranges(map_layers) self.res_range = res_range self.queryable = True if info_layers else False self.transparent = all(not map_lyr.is_opaque() for map_lyr in self.map_layers) self.has_legend = True if legend_layers else False def renders_query(self, query): if self.res_range and not self.res_range.contains(query.bbox, query.size, query.srs): return False return True def map_layers_for_query(self, query): if not self.map_layers: return [] return [(self.name, self.map_layers)] def info_layers_for_query(self, query): if not self.info_layers: return [] return [(self.name, self.info_layers)] def legend(self, request): p = request.params query = LegendQuery(p.format, p.scale) for lyr in self.legend_layers: yield lyr.get_legend(query) @property def legend_size(self): width = 0 height = 0 for layer in self.legend_layers: width = max(layer.size[0], width) height += layer.size[1] return (width, height) @property def legend_url(self): if self.has_legend: req = WMS111LegendGraphicRequest(url='?', param=dict(format='image/png', layer=self.name, sld_version='1.1.0')) return req.complete_url else: return None def child_layers(self): return {self.name: self} class WMSGroupLayer(WMSLayerBase): """ Class for WMS group layers. Groups multiple wms layers, but can also contain a single layer (``this``) that represents this layer. """ def __init__(self, name, title, this, layers, md=None): self.name = name self.title = title self.this = this self.md = md or {} self.is_active = True if this is not None else False self.layers = layers self.transparent = True if this and not this.is_opaque() or all(not l.is_opaque() for l in layers) else False self.has_legend = True if this and this.has_legend or any(l.has_legend for l in layers) else False self.queryable = True if this and this.queryable or any(l.queryable for l in layers) else False all_layers = layers + ([self.this] if self.this else []) self.extent = merge_layer_extents(all_layers) self.res_range = merge_layer_res_ranges(all_layers) @property def legend_size(self): return self.this.legend_size @property def legend_url(self): return self.this.legend_url def renders_query(self, query): if self.res_range and not self.res_range.contains(query.bbox, query.size, query.srs): return False return True def map_layers_for_query(self, query): if self.this: return self.this.map_layers_for_query(query) else: layers = [] for layer in self.layers: layers.extend(layer.map_layers_for_query(query)) return layers def info_layers_for_query(self, query): if self.this: return self.this.info_layers_for_query(query) else: layers = [] for layer in self.layers: layers.extend(layer.info_layers_for_query(query)) return layers def child_layers(self): layers = odict() if self.name: layers[self.name] = self for lyr in self.layers: if hasattr(lyr, 'child_layers'): layers.update(lyr.child_layers()) elif lyr.name: layers[lyr.name] = lyr return layers def combined_layers(layers, query): """ Returns a new list of the layers where all adjacent layers are combined if possible. """ if len(layers) <= 1: return layers layers = layers[:] combined_layers = [layers.pop(0)] while layers: current_layer = layers.pop(0) combined = combined_layers[-1].combined_layer(current_layer, query) if combined: # change last layer with combined combined_layers[-1] = combined else: combined_layers.append(current_layer) return combined_layers
apache-2.0
YihaoLu/statsmodels
statsmodels/iolib/summary.py
22
33071
from statsmodels.compat.python import range, lrange, lmap, lzip, zip_longest import numpy as np from statsmodels.iolib.table import SimpleTable from statsmodels.iolib.tableformatting import (gen_fmt, fmt_2, fmt_params, fmt_base, fmt_2cols) #from statsmodels.iolib.summary2d import summary_params_2dflat #from summary2d import summary_params_2dflat def forg(x, prec=3): if prec == 3: #for 3 decimals if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%9.3g' % x else: return '%9.3f' % x elif prec == 4: if (abs(x) >= 1e4) or (abs(x) < 1e-4): return '%10.4g' % x else: return '%10.4f' % x else: raise NotImplementedError def summary(self, yname=None, xname=None, title=0, alpha=.05, returns='text', model_info=None): """ Parameters ----------- yname : string optional, Default is `Y` xname : list of strings optional, Default is `X.#` for # in p the number of regressors Confidance interval : (0,1) not implimented title : string optional, Defualt is 'Generalized linear model' returns : string 'text', 'table', 'csv', 'latex', 'html' Returns ------- Default : returns='print' Prints the summarirized results Option : returns='text' Prints the summarirized results Option : returns='table' SimpleTable instance : summarizing the fit of a linear model. Option : returns='csv' returns a string of csv of the results, to import into a spreadsheet Option : returns='latex' Not implimented yet Option : returns='HTML' Not implimented yet Examples (needs updating) -------- >>> import statsmodels as sm >>> data = sm.datasets.longley.load() >>> data.exog = sm.add_constant(data.exog) >>> ols_results = sm.OLS(data.endog, data.exog).results >>> print ols_results.summary() ... Notes ----- conf_int calculated from normal dist. """ import time as time #TODO Make sure all self.model.__class__.__name__ are listed model_types = {'OLS' : 'Ordinary least squares', 'GLS' : 'Generalized least squares', 'GLSAR' : 'Generalized least squares with AR(p)', 'WLS' : 'Weigthed least squares', 'RLM' : 'Robust linear model', 'GLM' : 'Generalized linear model' } model_methods = {'OLS' : 'Least Squares', 'GLS' : 'Least Squares', 'GLSAR' : 'Least Squares', 'WLS' : 'Least Squares', 'RLM' : '?', 'GLM' : '?' } if title==0: title = model_types[self.model.__class__.__name__] if yname is None: try: yname = self.model.endog_names except AttributeError: yname = 'y' if xname is None: try: xname = self.model.exog_names except AttributeError: xname = ['var_%d' % i for i in range(len(self.params))] time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) modeltype = self.model.__class__.__name__ #dist_family = self.model.family.__class__.__name__ nobs = self.nobs df_model = self.df_model df_resid = self.df_resid #General part of the summary table, Applicable to all? models #------------------------------------------------------------ #TODO: define this generically, overwrite in model classes #replace definition of stubs data by single list #e.g. gen_left = [('Model type:', [modeltype]), ('Date:', [date]), ('Dependent Variable:', yname), #What happens with multiple names? ('df model', [df_model]) ] gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_title = title gen_header = None ## gen_stubs_left = ('Model type:', ## 'Date:', ## 'Dependent Variable:', ## 'df model' ## ) ## gen_data_left = [[modeltype], ## [date], ## yname, #What happens with multiple names? ## [df_model] ## ] gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = gen_fmt ) gen_stubs_right = ('Method:', 'Time:', 'Number of Obs:', 'df resid' ) gen_data_right = ([modeltype], #was dist family need to look at more time_of_day, [nobs], [df_resid] ) gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = gen_fmt ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal tstats = {'OLS' : self.t(), 'GLS' : self.t(), 'GLSAR' : self.t(), 'WLS' : self.t(), 'RLM' : self.t(), 'GLM' : self.t() } prob_stats = {'OLS' : self.pvalues, 'GLS' : self.pvalues, 'GLSAR' : self.pvalues, 'WLS' : self.pvalues, 'RLM' : self.pvalues, 'GLM' : self.pvalues } #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' param_header = { 'OLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLSAR' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'WLS' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], 'GLM' : ['coef', 'std err', 't', 'P>|t|', alp + ' Conf. Interval'], #glm uses t-distribution 'RLM' : ['coef', 'std err', 'z', 'P>|z|', alp + ' Conf. Interval'] #checke z } params_stubs = xname params = self.params conf_int = self.conf_int(alpha) std_err = self.bse exog_len = lrange(len(xname)) tstat = tstats[modeltype] prob_stat = prob_stats[modeltype] # Simpletable should be able to handle the formating params_data = lzip(["%#6.4g" % (params[i]) for i in exog_len], ["%#6.4f" % (std_err[i]) for i in exog_len], ["%#6.4f" % (tstat[i]) for i in exog_len], ["%#6.4f" % (prob_stat[i]) for i in exog_len], ["(%#5g, %#5g)" % tuple(conf_int[i]) for i in \ exog_len] ) parameter_table = SimpleTable(params_data, param_header[modeltype], params_stubs, title = None, txt_fmt = fmt_2, #gen_fmt, ) #special table #------------- #TODO: exists in linear_model, what about other models #residual diagnostics #output options #-------------- #TODO: JP the rest needs to be fixed, similar to summary in linear_model def ols_printer(): """ print summary table for ols models """ table = str(general_table)+'\n'+str(parameter_table) return table def ols_to_csv(): """ exports ols summary data to csv """ pass def glm_printer(): table = str(general_table)+'\n'+str(parameter_table) return table pass printers = {'OLS': ols_printer, 'GLM' : glm_printer } if returns=='print': try: return printers[modeltype]() except KeyError: return printers['OLS']() def _getnames(self, yname=None, xname=None): '''extract names from model or construct names ''' if yname is None: if hasattr(self.model, 'endog_names') and ( not self.model.endog_names is None): yname = self.model.endog_names else: yname = 'y' if xname is None: if hasattr(self.model, 'exog_names') and ( not self.model.exog_names is None): xname = self.model.exog_names else: xname = ['var_%d' % i for i in range(len(self.params))] return yname, xname def summary_top(results, title=None, gleft=None, gright=None, yname=None, xname=None): '''generate top table(s) TODO: this still uses predefined model_methods ? allow gleft, gright to be 1 element tuples instead of filling with None? ''' #change of names ? gen_left, gen_right = gleft, gright #time and names are always included import time time_now = time.localtime() time_of_day = [time.strftime("%H:%M:%S", time_now)] date = time.strftime("%a, %d %b %Y", time_now) yname, xname = _getnames(results, yname=yname, xname=xname) #create dictionary with default #use lambdas because some values raise exception if they are not available #alternate spellings are commented out to force unique labels default_items = dict([ ('Dependent Variable:', lambda: [yname]), ('Dep. Variable:', lambda: [yname]), ('Model:', lambda: [results.model.__class__.__name__]), #('Model type:', lambda: [results.model.__class__.__name__]), ('Date:', lambda: [date]), ('Time:', lambda: time_of_day), ('Number of Obs:', lambda: [results.nobs]), #('No. of Observations:', lambda: ["%#6d" % results.nobs]), ('No. Observations:', lambda: ["%#6d" % results.nobs]), #('Df model:', lambda: [results.df_model]), ('Df Model:', lambda: ["%#6d" % results.df_model]), #TODO: check when we have non-integer df ('Df Residuals:', lambda: ["%#6d" % results.df_resid]), #('Df resid:', lambda: [results.df_resid]), #('df resid:', lambda: [results.df_resid]), #check capitalization ('Log-Likelihood:', lambda: ["%#8.5g" % results.llf]) #doesn't exist for RLM - exception #('Method:', lambda: [???]), #no default for this ]) if title is None: title = results.model.__class__.__name__ + 'Regression Results' if gen_left is None: #default: General part of the summary table, Applicable to all? models gen_left = [('Dep. Variable:', None), ('Model type:', None), ('Date:', None), ('No. Observations:', None), ('Df model:', None), ('Df resid:', None)] try: llf = results.llf gen_left.append(('Log-Likelihood', None)) except: #AttributeError, NotImplementedError pass gen_right = [] gen_title = title gen_header = None #needed_values = [k for k,v in gleft + gright if v is None] #not used anymore #replace missing (None) values with default values gen_left_ = [] for item, value in gen_left: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_left_.append((item, value)) gen_left = gen_left_ if gen_right: gen_right_ = [] for item, value in gen_right: if value is None: value = default_items[item]() #let KeyErrors raise exception gen_right_.append((item, value)) gen_right = gen_right_ #check missing_values = [k for k,v in gen_left + gen_right if v is None] assert missing_values == [], missing_values #pad both tables to equal number of rows if gen_right: if len(gen_right) < len(gen_left): #fill up with blank lines to same length gen_right += [(' ', ' ')] * (len(gen_left) - len(gen_right)) elif len(gen_right) > len(gen_left): #fill up with blank lines to same length, just to keep it symmetric gen_left += [(' ', ' ')] * (len(gen_right) - len(gen_left)) #padding in SimpleTable doesn't work like I want #force extra spacing and exact string length in right table gen_right = [('%-21s' % (' '+k), v) for k,v in gen_right] gen_stubs_right, gen_data_right = zip_longest(*gen_right) #transpose row col gen_table_right = SimpleTable(gen_data_right, gen_header, gen_stubs_right, title = gen_title, txt_fmt = fmt_2cols #gen_fmt ) else: gen_table_right = [] #because .extend_right seems works with [] #moved below so that we can pad if needed to match length of gen_right #transpose rows and columns, `unzip` gen_stubs_left, gen_data_left = zip_longest(*gen_left) #transpose row col gen_table_left = SimpleTable(gen_data_left, gen_header, gen_stubs_left, title = gen_title, txt_fmt = fmt_2cols ) gen_table_left.extend_right(gen_table_right) general_table = gen_table_left return general_table #, gen_table_left, gen_table_right def summary_params(results, yname=None, xname=None, alpha=.05, use_t=True, skip_header=False, title=None): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', '[' + str(alpha/2), str(1-alpha/2) + ']'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', '[' + str(alpha/2), str(1-alpha/2) + ']'] if skip_header: param_header = None _, xname = _getnames(results, yname=yname, xname=xname) params_stubs = xname exog_idx = lrange(len(xname)) params_data = lzip([forg(params[i], prec=4) for i in exog_idx], [forg(std_err[i]) for i in exog_idx], [forg(tvalues[i]) for i in exog_idx], ["%#6.3f" % (pvalues[i]) for i in exog_idx], [forg(conf_int[i,0]) for i in exog_idx], [forg(conf_int[i,1]) for i in exog_idx] ) parameter_table = SimpleTable(params_data, param_header, params_stubs, title = title, txt_fmt = fmt_params #gen_fmt #fmt_2, #gen_fmt, ) return parameter_table def summary_params_frame(results, yname=None, xname=None, alpha=.05, use_t=True): '''create a summary table for the parameters Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) skip_headers : bool If false (default), then the header row is added. If true, then no header row is added. Returns ------- params_table : SimpleTable instance ''' #Parameters part of the summary table #------------------------------------ #Note: this is not necessary since we standardized names, only t versus normal if isinstance(results, tuple): #for multivariate endog #TODO: check whether I don't want to refactor this #we need to give parameter alpha to conf_int results, params, std_err, tvalues, pvalues, conf_int = results else: params = results.params std_err = results.bse tvalues = results.tvalues #is this sometimes called zvalues pvalues = results.pvalues conf_int = results.conf_int(alpha) #Dictionary to store the header names for the parameter part of the #summary table. look up by modeltype alp = str((1-alpha)*100)+'%' if use_t: param_header = ['coef', 'std err', 't', 'P>|t|', 'Conf. Int. Low', 'Conf. Int. Upp.'] else: param_header = ['coef', 'std err', 'z', 'P>|z|', 'Conf. Int. Low', 'Conf. Int. Upp.'] _, xname = _getnames(results, yname=yname, xname=xname) #------------------ from pandas import DataFrame table = np.column_stack((params, std_err, tvalues, pvalues, conf_int)) return DataFrame(table, columns=param_header, index=xname) def summary_params_2d(result, extras=None, endog_names=None, exog_names=None, title=None): '''create summary table of regression parameters with several equations This allows interleaving of parameters with bse and/or tvalues Parameters ---------- result : result instance the result instance with params and attributes in extras extras : list of strings additional attributes to add below a parameter row, e.g. bse or tvalues endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 title : None or string Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' if endog_names is None: #TODO: note the [1:] is specific to current MNLogit endog_names = ['endog_%d' % i for i in np.unique(result.model.endog)[1:]] if exog_names is None: exog_names = ['var%d' %i for i in range(len(result.params))] #TODO: check formatting options with different values #res_params = [['%10.4f'%item for item in row] for row in result.params] res_params = [[forg(item, prec=4) for item in row] for row in result.params] if extras: #not None or non-empty #maybe this should be a simple triple loop instead of list comprehension? #below_list = [[['%10s' % ('('+('%10.3f'%v).strip()+')') extras_list = [[['%10s' % ('(' + forg(v, prec=3).strip() + ')') for v in col] for col in getattr(result, what)] for what in extras ] data = lzip(res_params, *extras_list) data = [i for j in data for i in j] #flatten stubs = lzip(endog_names, *[['']*len(endog_names)]*len(extras)) stubs = [i for j in stubs for i in j] #flatten #return SimpleTable(data, headers=exog_names, stubs=stubs) else: data = res_params stubs = endog_names # return SimpleTable(data, headers=exog_names, stubs=stubs, # data_fmts=['%10.4f']) import copy txt_fmt = copy.deepcopy(fmt_params) txt_fmt.update(dict(data_fmts = ["%s"]*result.params.shape[1])) return SimpleTable(data, headers=exog_names, stubs=stubs, title=title, # data_fmts = ["%s"]), txt_fmt = txt_fmt) def summary_params_2dflat(result, endog_names=None, exog_names=None, alpha=0.05, use_t=True, keep_headers=True, endog_cols=False): #skip_headers2=True): '''summary table for parameters that are 2d, e.g. multi-equation models Parameters ---------- result : result instance the result instance with params, bse, tvalues and conf_int endog_names : None or list of strings names for rows of the parameter array (multivariate endog) exog_names : None or list of strings names for columns of the parameter array (exog) alpha : float level for confidence intervals, default 0.95 use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) keep_headers : bool If true (default), then sub-tables keep their headers. If false, then only the first headers are kept, the other headerse are blanked out endog_cols : bool If false (default) then params and other result statistics have equations by rows. If true, then equations are assumed to be in columns. Not implemented yet. Returns ------- tables : list of SimpleTable this contains a list of all seperate Subtables table_all : SimpleTable the merged table with results concatenated for each row of the parameter array ''' res = result params = res.params if params.ndim == 2: # we've got multiple equations n_equ = params.shape[1] if not len(endog_names) == params.shape[1]: raise ValueError('endog_names has wrong length') else: if not len(endog_names) == len(params): raise ValueError('endog_names has wrong length') n_equ = 1 #VAR doesn't have conf_int #params = res.params.T # this is a convention for multi-eq models if not isinstance(endog_names, list): #this might be specific to multinomial logit type, move? if endog_names is None: endog_basename = 'endog' else: endog_basename = endog_names #TODO: note, the [1:] is specific to current MNLogit endog_names = res.model.endog_names[1:] #check if we have the right length of names tables = [] for eq in range(n_equ): restup = (res, res.params[:,eq], res.bse[:,eq], res.tvalues[:,eq], res.pvalues[:,eq], res.conf_int(alpha)[eq]) #not used anymore in current version # if skip_headers2: # skiph = (row != 0) # else: # skiph = False skiph = False tble = summary_params(restup, yname=endog_names[eq], xname=exog_names, alpha=alpha, use_t=use_t, skip_header=skiph) tables.append(tble) #add titles, they will be moved to header lines in table_extend for i in range(len(endog_names)): tables[i].title = endog_names[i] table_all = table_extend(tables, keep_headers=keep_headers) return tables, table_all def table_extend(tables, keep_headers=True): '''extend a list of SimpleTables, adding titles to header of subtables This function returns the merged table as a deepcopy, in contrast to the SimpleTable extend method. Parameters ---------- tables : list of SimpleTable instances keep_headers : bool If true, then all headers are kept. If falls, then the headers of subtables are blanked out. Returns ------- table_all : SimpleTable merged tables as a single SimpleTable instance ''' from copy import deepcopy for ii, t in enumerate(tables[:]): #[1:]: t = deepcopy(t) #move title to first cell of header #TODO: check if we have multiline headers if t[0].datatype == 'header': t[0][0].data = t.title t[0][0]._datatype = None t[0][0].row = t[0][1].row if not keep_headers and (ii > 0): for c in t[0][1:]: c.data = '' #add separating line and extend tables if ii == 0: table_all = t else: r1 = table_all[-1] r1.add_format('txt', row_dec_below='-') table_all.extend(t) table_all.title = None return table_all def summary_return(tables, return_fmt='text'): ######## Return Summary Tables ######## # join table parts then print if return_fmt == 'text': strdrop = lambda x: str(x).rsplit('\n',1)[0] #convert to string drop last line return '\n'.join(lmap(strdrop, tables[:-1]) + [str(tables[-1])]) elif return_fmt == 'tables': return tables elif return_fmt == 'csv': return '\n'.join(map(lambda x: x.as_csv(), tables)) elif return_fmt == 'latex': #TODO: insert \hline after updating SimpleTable import copy table = copy.deepcopy(tables[0]) del table[-1] for part in tables[1:]: table.extend(part) return table.as_latex_tabular() elif return_fmt == 'html': return "\n".join(table.as_html() for table in tables) else: raise ValueError('available output formats are text, csv, latex, html') class Summary(object): '''class to hold tables for result summary presentation Construction does not take any parameters. Tables and text can be added with the `add_` methods. Attributes ---------- tables : list of tables Contains the list of SimpleTable instances, horizontally concatenated tables are not saved separately. extra_txt : string extra lines that are added to the text output, used for warnings and explanations. ''' def __init__(self): self.tables = [] self.extra_txt = None def __str__(self): return self.as_text() def __repr__(self): #return '<' + str(type(self)) + '>\n"""\n' + self.__str__() + '\n"""' return str(type(self)) + '\n"""\n' + self.__str__() + '\n"""' def _repr_html_(self): '''Display as HTML in IPython notebook.''' return self.as_html() def add_table_2cols(self, res, title=None, gleft=None, gright=None, yname=None, xname=None): '''add a double table, 2 tables with one column merged horizontally Parameters ---------- res : results instance some required information is directly taken from the result instance title : string or None if None, then a default title is used. gleft : list of tuples elements for the left table, tuples are (name, value) pairs If gleft is None, then a default table is created gright : list of tuples or None elements for the right table, tuples are (name, value) pairs yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" Returns ------- None : tables are attached ''' table = summary_top(res, title=title, gleft=gleft, gright=gright, yname=yname, xname=xname) self.tables.append(table) def add_table_params(self, res, yname=None, xname=None, alpha=.05, use_t=True): '''create and add a table for the parameter estimates Parameters ---------- res : results instance some required information is directly taken from the result instance yname : string or None optional name for the endogenous variable, default is "y" xname : list of strings or None optional names for the exogenous variables, default is "var_xx" alpha : float significance level for the confidence intervals use_t : bool indicator whether the p-values are based on the Student-t distribution (if True) or on the normal distribution (if False) Returns ------- None : table is attached ''' if res.params.ndim == 1: table = summary_params(res, yname=yname, xname=xname, alpha=alpha, use_t=use_t) elif res.params.ndim == 2: # _, table = summary_params_2dflat(res, yname=yname, xname=xname, # alpha=alpha, use_t=use_t) _, table = summary_params_2dflat(res, endog_names=yname, exog_names=xname, alpha=alpha, use_t=use_t) else: raise ValueError('params has to be 1d or 2d') self.tables.append(table) def add_extra_txt(self, etext): '''add additional text that will be added at the end in text format Parameters ---------- etext : string string with lines that are added to the text output. ''' self.extra_txt = '\n'.join(etext) def as_text(self): '''return tables as string Returns ------- txt : string summary tables and extra text as one string ''' txt = summary_return(self.tables, return_fmt='text') if not self.extra_txt is None: txt = txt + '\n\n' + self.extra_txt return txt def as_latex(self): '''return tables as string Returns ------- latex : string summary tables and extra text as string of Latex Notes ----- This currently merges tables with different number of columns. It is recommended to use `as_latex_tabular` directly on the individual tables. ''' return summary_return(self.tables, return_fmt='latex') def as_csv(self): '''return tables as string Returns ------- csv : string concatenated summary tables in comma delimited format ''' return summary_return(self.tables, return_fmt='csv') def as_html(self): '''return tables as string Returns ------- html : string concatenated summary tables in HTML format ''' return summary_return(self.tables, return_fmt='html') if __name__ == "__main__": import statsmodels.api as sm data = sm.datasets.longley.load() data.exog = sm.add_constant(data.exog) res = sm.OLS(data.endog, data.exog).fit() #summary(
bsd-3-clause
ChadFulton/statsmodels
statsmodels/datasets/cpunish/data.py
2
2584
"""US Capital Punishment dataset.""" from statsmodels.datasets import utils as du __docformat__ = 'restructuredtext' COPYRIGHT = """Used with express permission from the original author, who retains all rights.""" TITLE = __doc__ SOURCE = """ Jeff Gill's `Generalized Linear Models: A Unified Approach` http://jgill.wustl.edu/research/books.html """ DESCRSHORT = """Number of state executions in 1997""" DESCRLONG = """This data describes the number of times capital punishment is implemented at the state level for the year 1997. The outcome variable is the number of executions. There were executions in 17 states. Included in the data are explanatory variables for median per capita income in dollars, the percent of the population classified as living in poverty, the percent of Black citizens in the population, the rate of violent crimes per 100,000 residents for 1996, a dummy variable indicating whether the state is in the South, and (an estimate of) the proportion of the population with a college degree of some kind. """ NOTE = """:: Number of Observations - 17 Number of Variables - 7 Variable name definitions:: EXECUTIONS - Executions in 1996 INCOME - Median per capita income in 1996 dollars PERPOVERTY - Percent of the population classified as living in poverty PERBLACK - Percent of black citizens in the population VC100k96 - Rate of violent crimes per 100,00 residents for 1996 SOUTH - SOUTH == 1 indicates a state in the South DEGREE - An esimate of the proportion of the state population with a college degree of some kind State names are included in the data file, though not returned by load. """ def load_pandas(): """ Load the cpunish data and return a Dataset class. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ data = _get_data() return du.process_pandas(data, endog_idx=0) def load(as_pandas=None): """ Load the cpunish data and return a Dataset class. Parameters ---------- as_pandas : bool Flag indicating whether to return pandas DataFrames and Series or numpy recarrays and arrays. If True, returns pandas. Returns ------- Dataset instance: See DATASET_PROPOSAL.txt for more information. """ return du.as_numpy_dataset(load_pandas(), as_pandas=as_pandas) def _get_data(): data = du.load_csv(__file__, 'cpunish.csv') data = data.iloc[:, 1:8].astype(float) return data
bsd-3-clause
codeforfrankfurt/PolBotCheck
polbotcheck/word_cluster.py
1
3812
import json from sklearn.feature_extraction.text import TfidfVectorizer import nltk from nltk.corpus import stopwords from wordcloud import WordCloud import matplotlib.pyplot as plt import db import os DATASET_PATH = os.environ['HOME'] + '/nltk_data/corpora/twitter_samples/tweets.20150430-223406.json' def calc_frequencies(words, words_n=50, lang='german'): words = [word for word in words if len(word) > 1] words = [word for word in words if not word.isnumeric()] words = [word.lower() for word in words] # words = [word for word in words if word not in all_stopwords] # Stemming words seems to make matters worse, disabled # stemmer = nltk.stem.snowball.SnowballStemmer(lang) # words = [stemmer.stem(word) for word in words] fdist = nltk.FreqDist(words) return fdist.most_common(words_n) def get_word_clouds(tweets, users, words_n=50, lang='english'): default_stopwords = set(nltk.corpus.stopwords.words(lang)) stopwords_file = '../data/stopwords.txt' custom_stopwords = set(open(stopwords_file, 'r').read().splitlines()) all_stopwords = default_stopwords | custom_stopwords vectorizer = TfidfVectorizer(max_df=0.5, min_df=2, stop_words=list(all_stopwords)) X = vectorizer.fit_transform(tweets) terms = vectorizer.get_feature_names() word_cloud_per_person = {} for doc in range(len(tweets)): feature_index = X[doc, :].nonzero()[1] tfidf_scores = zip(feature_index, [X[doc, x] for x in feature_index]) doc_terms = [] for word, score in [(terms[i], score) for (i, score) in tfidf_scores]: doc_terms.append((word, score)) important_terms = [(word, score) for word, score in sorted(doc_terms, key=lambda x: x[1], reverse=True)][:words_n] word_cloud_per_person[users[doc]] = important_terms return word_cloud_per_person def save_wordcloud_image(frequencies, filename): wordcloud = WordCloud(width=1024, height=786, min_font_size=1).fit_words(frequencies) fig = plt.figure() fig.set_figwidth(12) fig.set_figheight(16) plt.imshow(wordcloud) plt.axis("off") plt.savefig(filename, facecolor='k', bbox_inches='tight') print('imaged created') def load_example_data(): tweets = [] with open(DATASET_PATH) as f: for line in f: tweets.append(json.loads(line)['text']) return tweets def get_corpus_of_most_active_users(n_users=5): tweets = [] texts = [] with open(DATASET_PATH) as f: for line in f: tweets.append(json.loads(line)['user']['screen_name']) texts.append((json.loads(line)['user']['screen_name'], json.loads(line)['text'])) users = nltk.FreqDist(tweets).most_common(n_users) dict = {} for user, tweet in texts: if user in dict: dict[user] = " ".join([dict[user],tweet]) else: dict[user] = tweet corpus = [dict[name] for name, _ in users] user_names = [name for name, _ in users] return corpus, user_names if __name__ == "__main__": corpus, users = get_corpus_of_most_active_users() word_cloud_per_person = get_word_clouds(corpus, users, words_n=100, lang='english') for user in users: topic_frequencies = word_cloud_per_person[user] print user print topic_frequencies db.save_word_frequencies('test_user_seb', dict(topic_frequencies)) exit() # save_wordcloud_image(dict(topic_frequencies), 'plots/word_clouds/' + user + '.png') # This is an example how to save a word_cloud in the database # user_in_db = 'malechanissen' # db.save_word_frequencies(user_in_db, {'w3':10, 'w4':20}) # db.save_word_frequencies(user_in_db, dict(topic_frequencies)) # db.save_word_frequencies('test_user_seb', {'w3':10, 'w4':20})
mit
rdevon/cortex
tests/built_ins/models/test_routine.py
1
3029
'''Module for testing model routines. ''' import torch.optim as optim from cortex.plugins import ModelPlugin def test_routine(model_class, arguments, data_class): ModelPlugin._reset_class() kwargs = {arguments['arg1']: 11, arguments['arg2']: 13} data = data_class(11) model = model_class(contract=dict(inputs=dict(A='test'))) model._data = data model.kwargs.update(**kwargs) model.build() model.eval_step() print('Training nets: ', model._training_nets) assert 'net' in list(model._training_nets.values())[0] params = list(model.nets.net.parameters()) op = optim.SGD(params, lr=0.0001) model._optimizers = dict(net=op) A = model.inputs('A') model.routine(A) model._reset_epoch() model.train_step() model.train_step() model.train_step() print('Results:', model._all_epoch_results) print('Losses:', model._all_epoch_losses) print('Times:', model._all_epoch_times) assert len(list(model._all_epoch_results.values())[0]) == 3 assert len(list(model._all_epoch_losses.values())[0]) == 3 assert len(list(model._all_epoch_times.values())[0]) == 3 def test_routine_with_submodels(model_with_submodel): model = model_with_submodel model.build() params = list(model.nets.net.parameters()) op = optim.SGD(params, lr=0.0001) params2 = list(model.nets.net2.parameters()) op2 = optim.SGD(params2, lr=0.001) model._optimizers = dict(net=op, net2=op2) model.submodel._optimizers = dict(net=op, net2=op2) assert model._get_training_nets() == [] model.train_step() assert model._get_training_nets() == ['net', 'net2'] model.train_step() model.train_step() def test_routine_with_submodels_2(model_class_with_submodel_2, data_class): ModelPlugin._reset_class() kwargs = {'d': 11, 'c': 13} data = data_class(11) contract = dict(inputs=dict(B='test')) sub_contract = dict( kwargs=dict(a='d'), nets=dict(net='net2'), inputs=dict(A='test') ) sub_contract2 = dict( kwargs=dict(a='d'), nets=dict(net='net3'), inputs=dict(A='test') ) model = model_class_with_submodel_2(sub_contract1=sub_contract, sub_contract2=sub_contract2, contract=contract) model._data = data model.submodel1._data = data model.submodel2._data = data model.kwargs.update(**kwargs) model.build() params = list(model.nets.net.parameters()) op = optim.SGD(params, lr=0.0001) params2 = list(model.nets.net2.parameters()) op2 = optim.SGD(params2, lr=0.001) params3 = list(model.nets.net3.parameters()) op3 = optim.SGD(params3, lr=0.001) model._optimizers = dict(net=op, net2=op2, net3=op3) model.submodel1._optimizers = dict(net=op, net2=op2, net3=op3) model.submodel2._optimizers = dict(net=op, net2=op2, net3=op3) model.train_step() model.train_step() model.train_step()
bsd-3-clause
kaniblu/pytorch-skipthoughts
src/torchst/train.py
1
24927
import os import pickle import shutil import logging import datetime import multiprocessing.pool as mp import torch import torch.optim as O import tqdm from torch.autograd import Variable from torch.nn.parallel import data_parallel from torch.nn.utils import clip_grad_norm from torchtextutils import Vocabulary from torchtextutils import BatchPreprocessor from torchtextutils import DirectoryReader from torchtextutils import OmissionNoisifier from torchtextutils import SwapNoisifier from torchtextutils import create_generator_st from yaap import ArgParser from yaap import path from configargparse import YAMLConfigFileParser from .model import MultiContextSkipThoughts from .model import compute_loss from .wordembed import load_embeddings_mp from .wordembed import load_embeddings from .wordembed import load_fasttext_embeddings from .wordembed import preinitialize_embeddings def parse_args(): parser = ArgParser(allow_config=True, config_file_parser_class=YAMLConfigFileParser) parser.add("--name", type=str, default="main") parser.add("--data-path", type=path, action="append", required=True, help="Path to a sentence file or directory that contains " "a set of sentence files where each line is a sentence, " "in which tokens are separated by spaces.") parser.add("--vocab-path", type=path, required=True) parser.add("--save-dir", type=path, required=True) parser.add("--gpus", type=int, action="append") parser.add("--previews", type=int, default=10) parser.add("--batch-first", action="store_true", default=True, help="currently due to the limitation of DataParallel API," "it is impossible to operate without batch-first data") parser.add("--visualizer", type=str, default=None, choices=["visdom", "tensorboard"]) parser.add("--ckpt-name", type=str, default="model-e{epoch}-s{iter}-{loss}") parser.add("-v", "--verbose", action="store_true", default=False) group = parser.add_group("Word Embedding Options") group.add("--wordembed-type", type=str, default="none", choices=["glove", "fasttext", "none"]) group.add("--wordembed-path", type=path, default=None) group.add("--fasttext-path", type=path, default=None, help="Path to FastText binary.") group.add("--wordembed-freeze", action="store_true", default=False) group.add("--wordembed-processes", type=int, default=4) group = parser.add_group("Training Options") group.add("--epochs", type=int, default=3) group.add("--batch-size", type=int, default=32) group.add("--omit-prob", type=float, default=0.05) group.add("--swap-prob", type=float, default=0.05) group.add("--val-period", type=int, default=100) group.add("--save-period", type=int, default=1000) group.add("--max-len", type=int, default=30) group = parser.add_group("Visdom Options") group.add("--visdom-host", type=str, default="localhost") group.add("--visdom-port", type=int, default=8097) group.add("--visdom-buffer-size", type=int, default=10) group = parser.add_group("Model Parameters") group.add("--reverse-encoder", action="store_true", default=False) group.add("--encoder-cell", type=str, default="lstm", choices=["lstm", "gru", "sru"]) group.add("--decoder-cell", type=str, default="gru", choices=["lstm", "gru", "sru"]) group.add("--conditional-decoding", action="store_true", default=False) group.add("--before", type=int, default=1) group.add("--after", type=int, default=1) group.add("--predict-self", action="store_true", default=False) group.add("--word-dim", type=int, default=100) group.add("--hidden-dim", type=int, default=100) group.add("--layers", type=int, default=2) group.add("--encoder-direction", default="bi", choices=["uni", "bi", "combine"]) group.add("--dropout-prob", type=float, default=0.05) args = parser.parse_args() return args class DataGenerator(object): def __init__(self, data_paths, vocab, omit_prob, swap_prob, batch_size, max_len, n_before, n_after, predict_self=False, shuffle_files=True, batch_first=True, pin_memory=True, allow_residual=True): self.data_paths = data_paths self.vocab = vocab self.omit_prob = omit_prob self.swap_prob = swap_prob self.batch_size = batch_size self.max_len = max_len self.n_before = n_before self.n_after = n_after self.predict_self = predict_self self.shuffle_files = shuffle_files self.batch_first = batch_first self.pin_memory = pin_memory self.allow_residual = allow_residual def __iter__(self): return self.generate() def generate(self): preprocessor = BatchPreprocessor(self.vocab) line_reader = file_list_reader(self.data_paths, shuffle_files=self.shuffle_files) data_generator = create_generator_st(line_reader, batch_first=self.batch_first, batch_size=self.batch_size, preprocessor=preprocessor, pin_memory=self.pin_memory, allow_residual=self.allow_residual, max_length=self.max_len, n_before=self.n_before, n_after=self.n_after, predict_self=self.predict_self) noisifiers = [] if self.omit_prob > 0: unk_idx = self.vocab[self.vocab.unk] omitter = OmissionNoisifier(self.omit_prob, unk_idx) noisifiers.append(omitter) if self.swap_prob > 0: swapper = SwapNoisifier(self.swap_prob) noisifiers.append(swapper) for in_data, in_lens, out_data, out_lens in data_generator: for nosifier in noisifiers: # in-place noisification nosifier((in_data, in_lens)) yield in_data, in_lens, out_data, out_lens class Trainer(object): def __init__(self, model, gpu_devices, data_generator, n_epochs, logger, save_dir, save_period, val_period, previews, ckpt_format, batch_first=True): self.model = model self.gpu_devices = gpu_devices self.data_generator = data_generator self.n_epochs = n_epochs self.logger = logger self.save_dir = save_dir self.save_period = save_period self.val_period = val_period self.previews = previews self.ckpt_format = ckpt_format self.batch_first = batch_first self.legend = ["average"] + ["decoder_{}".format(i) for i in range(self.model.n_decoders)] if gpu_devices: self.model = model.cuda() @property def is_cuda(self): return len(self.gpu_devices) > 0 def prepare_batches(self, batch_data, chunks, **kwargs): x, x_lens, ys, ys_lens = batch_data batch_dim = 0 if self.batch_first else 1 x_list = x.chunk(chunks, 0) x_lens_list = x_lens.chunk(chunks, 0) ys_list = ys.chunk(chunks, batch_dim) ys_lens_list = ys_lens.chunk(chunks, batch_dim) inp_list = [x_list, x_lens_list, ys_list, ys_lens_list] data_list = [] for inp in zip(*inp_list): data = self.prepare_batch(inp, **kwargs) data_list.append(data) data_list = list(zip(*data_list)) ret_list = [] for data in data_list: data = [d.unsqueeze(0) for d in data] data = torch.cat(data) ret_list.append(data) return ret_list def merge_batches(self, batch_data): x, x_lens, ys_i, ys_t, ys_lens, xys_idx = batch_data n_devices = len(self.gpu_devices) sbatch_size = x.data.shape[1] xys_idx = xys_idx.chunk(n_devices) xys_idx = [xy_idx + i * sbatch_size for i, xy_idx in enumerate(xys_idx)] xys_idx = torch.cat(xys_idx) if not self.batch_first: ys_i = ys_i.transpose(0, 2, 1) ys_t = ys_t.transpose(0, 2, 1) ys_lens = ys_lens.transpose(0, 2, 1) xys_idx = xys_idx.transpose(0, 2, 1) data = [x, x_lens, ys_i, ys_t, ys_lens, xys_idx] x, x_lens, ys_i, ys_t, ys_lens, xys_idx = [torch.cat(d) for d in data] if not self.batch_first: ys_i = ys_i.transpose(1, 0) ys_t = ys_t.transpose(1, 0) ys_lens = ys_lens.transpose(1, 0) xys_idx = xys_idx.transpose(1, 0) data = [x, x_lens, ys_i, ys_t, ys_lens, xys_idx] data = [d.contiguous() for d in data] return data def prepare_batch(self, batch_data, volatile=False): x, x_lens, ys, ys_lens = batch_data batch_dim = 0 if self.batch_first else 1 context_dim = 1 if self.batch_first else 0 x_lens, x_idx = torch.sort(x_lens, 0, True) _, x_ridx = torch.sort(x_idx) ys_lens, ys_idx = torch.sort(ys_lens, batch_dim, True) x_ridx_exp = x_ridx.unsqueeze(context_dim).expand_as(ys_idx) xys_idx = torch.gather(x_ridx_exp, batch_dim, ys_idx) x = x[x_idx] ys = torch.gather(ys, batch_dim, ys_idx.unsqueeze(-1).expand_as(ys)) x = Variable(x, volatile=volatile) x_lens = Variable(x_lens, volatile=volatile) ys_i = Variable(ys[..., :-1], volatile=volatile).contiguous() ys_t = Variable(ys[..., 1:], volatile=volatile).contiguous() ys_lens = Variable(ys_lens - 1, volatile=volatile) xys_idx = Variable(xys_idx, volatile=volatile) if self.is_cuda: x = x.cuda(async=True) x_lens = x_lens.cuda(async=True) ys_i = ys_i.cuda(async=True) ys_t = ys_t.cuda(async=True) ys_lens = ys_lens.cuda(async=True) xys_idx = xys_idx.cuda(async=True) return x, x_lens, ys_i, ys_t, ys_lens, xys_idx def calculate_loss(self, data, dec_logits): x, x_lens, ys_i, ys_t, ys_lens, xys_idx = data if self.batch_first: cdata = [ys_t, ys_lens, dec_logits] cdata = [d.transpose(1, 0).contiguous() for d in cdata] ys_t, ys_lens, dec_logits = cdata losses_b = [] losses_s = [] for logits, y, lens in zip(dec_logits, ys_t, ys_lens): loss_batch, loss_step = compute_loss(logits, y, lens) losses_b.append(loss_batch) losses_s.append(loss_step) return losses_b, losses_s def val_text(self, x_sents, yi_sents, yt_sents, o_sents): text = "" for x_sent, yi_sent, yt_sent, o_sent in \ zip(x_sents, yi_sents, yt_sents, o_sents): text += "Encoder Input: {}\n".format(x_sent) for i, (si, st, so) in enumerate(zip(yi_sent, yt_sent, o_sent)): text += "Decoder_{} Input: {}\n".format(i, si) text += "Decoder_{} Target: {}\n".format(i, st) text += "Decoder_{} Output: {}\n".format(i, so) return text def val_sents(self, data, dec_logits): vocab, previews = self.model.vocab, self.previews x, x_lens, ys_i, ys_t, ys_lens, xys_idx = data if self.batch_first: cdata = [ys_i, ys_t, ys_lens, xys_idx, dec_logits] cdata = [d.transpose(1, 0).contiguous() for d in cdata] ys_i, ys_t, ys_lens, xys_idx, dec_logits = cdata _, xys_ridx = torch.sort(xys_idx, 1) xys_ridx_exp = xys_ridx.unsqueeze(-1).expand_as(ys_i) ys_i = torch.gather(ys_i, 1, xys_ridx_exp) ys_t = torch.gather(ys_t, 1, xys_ridx_exp) dec_logits = [torch.index_select(logits, 0, xy_ridx) for logits, xy_ridx in zip(dec_logits, xys_ridx)] ys_lens = torch.gather(ys_lens, 1, xys_ridx) x, x_lens = x[:previews], x_lens[:previews] ys_i, ys_t = ys_i[:, :previews], ys_t[:, :previews] dec_logits = torch.cat( [logits[:previews].max(2)[1].squeeze(-1).unsqueeze(0) for logits in dec_logits], 0) ys_lens = ys_lens[:, :previews] ys_i, ys_t = ys_i.transpose(1, 0), ys_t.transpose(1, 0) dec_logits, ys_lens = dec_logits.transpose(1, 0), ys_lens.transpose(1, 0) x, x_lens = x.data.tolist(), x_lens.data.tolist() ys_i, ys_t = ys_i.data.tolist(), ys_t.data.tolist() dec_logits, ys_lens = dec_logits.data.tolist(), ys_lens.data.tolist() def to_sent(data, length, vocab): return " ".join(vocab.i2f[data[i]] for i in range(length)) def to_sents(data, lens, vocab): return [to_sent(d, l, vocab) for d, l in zip(data, lens)] x_sents = to_sents(x, x_lens, vocab) yi_sents = [to_sents(yi, y_lens, vocab) for yi, y_lens in zip(ys_i, ys_lens)] yt_sents = [to_sents(yt, y_lens, vocab) for yt, y_lens in zip(ys_t, ys_lens)] o_sents = [to_sents(dec_logit, y_lens, vocab) for dec_logit, y_lens in zip(dec_logits, ys_lens)] return x_sents, yi_sents, yt_sents, o_sents def forward(self, inputs): return data_parallel(self.model, inputs, device_ids=self.gpu_devices, output_device=None, dim=0, module_kwargs=None) def step(self, step, batch_data, volatile=True, title=None): processed_data = self.prepare_batches(batch_data, chunks=len(self.gpu_devices), volatile=volatile) x, x_lens, ys_i, ys_t, ys_lens, xys_idx = processed_data inputs = (x, x_lens, ys_i, ys_lens, xys_idx) dec_logits, h = self.forward(inputs) merged_data = self.merge_batches(processed_data) losses_batch, losses_step = self.calculate_loss(merged_data, dec_logits) losses_step_val = [l.data[0] for l in losses_step] loss_step = (sum(losses_step) / len(losses_step)) loss_batch = sum(losses_batch) / len(losses_batch) plot_X = [step] * (self.model.n_decoders + 1) plot_Y = [loss_step.data[0]] + losses_step_val self.logger.add_loss(title, **{ t: p for t, p in zip(self.legend, plot_Y) }) return merged_data, dec_logits, loss_batch, loss_step def step_val(self, step, batch_data): data, dec_logits, loss_b, loss_s = self.step(step, batch_data, volatile=True, title="Validation Loss") sents = self.val_sents(data, dec_logits) text = self.val_text(*sents) self.logger.add_text("Validation Examples", text) return loss_b, loss_s def step_train(self, step, batch_data): data, dec_logits, loss_b, loss_s = self.step(step, batch_data, volatile=False, title="Training Loss") return loss_b, loss_s def save(self, filename): path = os.path.join(self.save_dir, filename) torch.save(self.model.state_dict(), path) self.logger.save(self.save_dir) def train(self): optimizer = O.Adam([p for p in self.model.parameters() if p.requires_grad]) step = 0 t = tqdm.tqdm() for epoch in range(self.n_epochs): for data in self.data_generator: step += 1 optimizer.zero_grad() if step % self.val_period == 0: loss_b, loss_s = self.step_val(step, data) else: loss_b, loss_s = self.step_train(step, data) loss_b.backward() clip_grad_norm(self.model.parameters(), 10) optimizer.step() loss_val = loss_s.data[0] if step % self.save_period == 0: filename = self.ckpt_format.format( epoch="{:02d}".format(epoch), step="{:07d}".format(step), loss="{:.4f}".format(loss_val) ) self.save(filename) t.set_description("[{}|{}]: loss={:.4f}".format( epoch, step, loss_val )) t.update() def init_viz(args, kwargs): global viz viz = Visdom(*args, **kwargs) def viz_run(f_name, args, kwargs): global viz getattr(viz, f_name).__call__(*args, **kwargs) def file_list_reader(dir_or_paths, shuffle_files=False): if shuffle_files: import random random.shuffle(dir_or_paths) for x in dir_or_paths: if os.path.isfile(x): with open(x, "r") as f: for line in f: yield line.strip() else: reader = DirectoryReader(x, shuffle_files=shuffle_files) for line in reader: yield line def prod(*args): x = 1 for a in args: x *= a return x def count_parameters(model): counts = 0 for param in model.parameters(): if param.requires_grad: counts += prod(*param.size()) return counts class DataParallelSkipThoughts(MultiContextSkipThoughts): def __init__(self, *args, **kwargs): super(DataParallelSkipThoughts, self).__init__(*args, **kwargs) def forward(self, *inputs, **kwargs): inputs = [d.squeeze(0) for d in inputs] return super(DataParallelSkipThoughts, self).forward(*inputs, **kwargs) class TrainLogger(object): def __init__(self): self.step = 0 def next(self): s = self.step self.step += 1 return s def add_loss(self, prefix, **losses): raise NotImplementedError() def add_text(self, name, text): raise NotImplementedError() def save(self, save_dir): raise NotImplementedError() class TensorboardTrainLogger(TrainLogger): def __init__(self, log_dir): super(TensorboardTrainLogger, self).__init__() self.log_dir = log_dir self.writers = {} def add_loss(self, prefix, **losses): for name, value in losses.items(): if name not in self.writers: dir = os.path.join(self.log_dir, name) self.writers[name] = SummaryWriter(dir) self.writers[name].add_scalar(prefix, value, self.next()) def add_text(self, name, text): pass def save(self, save_dir): pass class VisdomTrainLogger(TrainLogger): def __init__(self, viz_pool): super(VisdomTrainLogger, self).__init__() self.viz_pool = viz_pool def add_loss(self, name, **losses): self.viz_pool.apply_async(viz_run, ("plot", tuple(), dict( X=[self.next()] * len(losses), Y=[list(losses.values())], opts=dict( legend=list(losses.keys()), title=name ) ))) def add_text(self, name, text): self.viz_pool.apply_async(viz_run, ("code", tuple(), dict( text=text, opts=dict( title=name ) ))) def save(self, save_dir): viz.save([save_dir]) class DummyTrainLogger(TrainLogger): def add_loss(self, prefix, **losses): pass def add_text(self, name, text): pass def save(self, save_dir): pass def main(): args = parse_args() if args.verbose: loglvl = logging.INFO else: loglvl = logging.CRITICAL logging.basicConfig(level=loglvl) n_decoders = args.before + args.after + (1 if args.predict_self else 0) assert os.path.exists(args.vocab_path) logging.info("loading vocabulary...") with open(args.vocab_path, "rb") as f: vocab = pickle.load(f) timestamp = datetime.datetime.now().strftime("%Y%m%d-%H%M%S") save_basename = timestamp + "-{}".format(args.name) save_dir = os.path.join(args.save_dir, save_basename) if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) logging.info("initializing model...") model_cls = DataParallelSkipThoughts model = model_cls(vocab, args.word_dim, args.hidden_dim, reverse_encoder=args.reverse_encoder, encoder_cell=args.encoder_cell, decoder_cell=args.decoder_cell, n_decoders=n_decoders, n_layers=args.layers, dropout_prob=args.dropout_prob, batch_first=args.batch_first, conditional_decoding=args.conditional_decoding, encoder_direction=args.encoder_direction) model.reset_parameters() n_params = count_parameters(model) logging.info("number of params: {}".format(n_params)) logging.info("loading word embeddings...") assert args.wordembed_processes >= 1, \ "number of processes must be larger than or equal to 1." if args.wordembed_processes > 1: def embedding_loader(path, word_dim): return load_embeddings_mp(path, word_dim, processes=args.wordembed_processes) else: embedding_loader = load_embeddings if args.wordembed_type == "glove": embeddings = embedding_loader(args.wordembed_path, model.word_dim) preinitialize_embeddings(model, vocab, embeddings) elif args.wordembed_type == "fasttext": fasttext_path = args.fasttext_path assert fasttext_path is not None, \ "fasttext_path must specified when embed_type is fasttext." embeddings = load_fasttext_embeddings(vocab.words, fasttext_path, args.wordembed_path) preinitialize_embeddings(model, vocab, embeddings) elif args.wordembed_type == "none": pass else: raise ValueError("Unrecognized word embedding type: {}".format( args.wordembed_type )) if args.wordembed_freeze: model.embeddings.weight.requires_grad = False if args.visualizer is None: logger = DummyTrainLogger() elif args.visualizer == "tensorboard": from tensorboard import SummaryWriter logger = TensorboardTrainLogger(save_dir) elif args.visualizer == "visdom": from visdom_pooled import Visdom viz_pool = mp.ThreadPool(1, initializer=init_viz, initargs=(tuple(), dict( buffer_size=args.visdom_buffer_size, server="http://{}".format(args.visdom_host), port=args.visdom_port, env=args.name, name=timestamp ))) logger = VisdomTrainLogger(viz_pool) else: raise ValueError("Unrecognized visualizer type: {}".format(args.visualizer)) logger.add_text("Arguments", str(args)[10:-1].replace(", ", "\n")) config_path = os.path.join(save_dir, os.path.basename(args.config)) shutil.copy(args.config, config_path) logging.info("preparing training environment...") # Refer to torchtextutils.ContextDataGenerator batch_size = args.batch_size + args.before + args.after data_generator = DataGenerator( data_paths=args.data_path, vocab=vocab, omit_prob=args.omit_prob, swap_prob=args.swap_prob, batch_size=batch_size, max_len=args.max_len, n_before=args.before, n_after=args.after, predict_self=args.predict_self, shuffle_files=True, batch_first=args.batch_first, pin_memory=True, allow_residual=False ) trainer = Trainer( model=model, gpu_devices=args.gpus, data_generator=data_generator, n_epochs=args.epochs, ckpt_format=args.ckpt_name, logger=logger, save_dir=save_dir, save_period=args.save_period, val_period=args.val_period, previews=args.previews, batch_first=args.batch_first ) logging.info("training...") trainer.train() logging.info("done!") if __name__ == '__main__': main()
mit
deepgram/kur
kur/optimizer/sgd.py
1
2603
""" Copyright 2017 Deepgram Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging from . import Optimizer, keras_clip, keras_wrap logger = logging.getLogger(__name__) ############################################################################### class SGD(Optimizer): """ Stochastic gradient descent optimizer """ ########################################################################### def __init__(self, learning_rate=None, momentum=None, decay=None, nesterov=None, *args, **kwargs): """ Create a new Adam optimizer. # Arguments learning_rate: float. The learning rate to use. momentum: float. Momentum for parameter updates decay: float learning rate decay over each update nesterov: bool. Whether or not to apply Nesterov momentum. """ super().__init__(*args, **kwargs) self.learning_rate = learning_rate or 0.01 self.momentum = momentum or 0.0 self.decay = decay or 0.0 self.nesterov = nesterov or False self.optimizer = None ########################################################################### def get_optimizer(self, backend): """ Returns a backend-specific instantiation of the optimizer. """ if backend.get_name() == 'keras': import keras.optimizers as O # pylint: disable=import-error self.optimizer = self.optimizer or O.SGD( lr=self.learning_rate, momentum=self.momentum, decay=self.decay, nesterov=self.nesterov, **keras_clip(self) ) return keras_wrap(self.optimizer) elif backend.get_name() == 'pytorch': import torch.optim as optim # pylint: disable=import-error if self.nesterov: logger.warning('The PyTorch backend does not use Nesterov ' 'momentum. Ignoring it...') if self.optimizer is None: self.optimizer = lambda params: optim.SGD( params, lr=self.learning_rate, momentum=self.momentum, weight_decay=self.decay ) return self.optimizer else: raise ValueError('Unsupported backend "{}" for optimizer "{}"' .format(backend.get_name(), self.get_name())) ### EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF.EOF
apache-2.0
kjchalup/dtit
fcit/fcit.py
1
7474
""" A fast conditional independence test. This implementation uses the joblib library to parallelize test statistic computation over all available cores. By default, num_perm=8 (instead of num_perm=10 in the non-parallel version) as 8 cores is a common number on current architectures. Reference: Chalupka, Krzysztof and Perona, Pietro and Eberhardt, Frederick, 2017. """ import os import time import joblib import numpy as np from scipy.stats import ttest_1samp from sklearn.tree import DecisionTreeRegressor from sklearn.model_selection import GridSearchCV from sklearn.model_selection import RandomizedSearchCV from sklearn.model_selection import ShuffleSplit from sklearn.random_projection import GaussianRandomProjection from sklearn.preprocessing import StandardScaler from sklearn.metrics import mean_squared_error as mse def interleave(x, z, seed=None): """ Interleave x and z dimension-wise. Args: x (n_samples, x_dim) array. z (n_samples, z_dim) array. Returns An array of shape (n_samples, x_dim + z_dim) in which the columns of x and z are interleaved at random. """ state = np.random.get_state() np.random.seed(seed or int(time.time())) total_ids = np.random.permutation(x.shape[1]+z.shape[1]) np.random.set_state(state) out = np.zeros([x.shape[0], x.shape[1] + z.shape[1]]) out[:, total_ids[:x.shape[1]]] = x out[:, total_ids[x.shape[1]:]] = z return out def cv_besttree(x, y, z, cv_grid, logdim, verbose, prop_test): """ Choose the best decision tree hyperparameters by cross-validation. The hyperparameter to optimize is min_samples_split (see sklearn's DecisionTreeRegressor). Args: x (n_samples, x_dim): Input data array. y (n_samples, y_dim): Output data array. z (n_samples, z_dim): Optional auxiliary input data. cv_grid (list of floats): List of hyperparameter values to try. logdim (bool): If True, set max_features to 'log2'. verbose (bool): If True, print out extra info. prop_test (float): Proportion of validation data to use. Returns: DecisionTreeRegressor with the best hyperparameter setting. """ xz_dim = x.shape[1] + z.shape[1] max_features='log2' if (logdim and xz_dim > 10) else None if cv_grid is None: min_samples_split = 2 elif len(cv_grid) == 1: min_samples_split = cv_grid[0] else: clf = DecisionTreeRegressor(max_features=max_features) splitter = ShuffleSplit(n_splits=3, test_size=prop_test) cv = GridSearchCV(estimator=clf, cv=splitter, param_grid={'min_samples_split': cv_grid}, n_jobs=-1) cv.fit(interleave(x, z), y) min_samples_split = cv.best_params_['min_samples_split'] if verbose: print('min_samples_split: {}.'.format(min_samples_split)) clf = DecisionTreeRegressor(max_features=max_features, min_samples_split=min_samples_split) return clf def obtain_error(data_and_i): """ A function used for multithreaded computation of the fcit test statistic. data['x']: First variable. data['y']: Second variable. data['z']: Conditioning variable. data['data_permutation']: Permuted indices of the data. data['perm_ids']: Permutation for the bootstrap. data['n_test']: Number of test points. data['clf']: Decision tree regressor. """ data, i = data_and_i x = data['x'] y = data['y'] z = data['z'] if data['reshuffle']: perm_ids = np.random.permutation(x.shape[0]) else: perm_ids = np.arange(x.shape[0]) data_permutation = data['data_permutation'][i] n_test = data['n_test'] clf = data['clf'] x_z = interleave(x[perm_ids], z, seed=i) clf.fit(x_z[data_permutation][n_test:], y[data_permutation][n_test:]) return mse(y[data_permutation][:n_test], clf.predict(x_z[data_permutation][:n_test])) def test(x, y, z=None, num_perm=8, prop_test=.1, discrete=(False, False), plot_return=False, verbose=False, logdim=False, cv_grid=[2, 8, 64, 512, 1e-2, .2, .4], **kwargs): """ Fast conditional independence test, based on decision-tree regression. See Chalupka, Perona, Eberhardt 2017 [arXiv link coming]. Args: x (n_samples, x_dim): First variable. y (n_samples, y_dim): Second variable. z (n_samples, z_dim): Conditioning variable. If z==None (default), then performs an unconditional independence test. num_perm: Number of data permutations to estimate the p-value from marginal stats. prop_test (int): Proportion of data to evaluate test stat on. discrete (bool, bool): Whether x or y are discrete. plot_return (bool): If True, return statistics useful for plotting. verbose (bool): Print out progress messages (or not). logdim (bool): If True, set max_features='log2' in the decision tree. cv_grid (list): min_impurity_splits to cross-validate when training the decision tree regressor. Returns: p (float): The p-value for the null hypothesis that x is independent of y. """ # Compute test set size. n_samples = x.shape[0] n_test = int(n_samples * prop_test) if z is None: z = np.empty([n_samples, 0]) if discrete[0] and not discrete[1]: # If x xor y is discrete, use the continuous variable as input. x, y = y, x elif x.shape[1] < y.shape[1]: # Otherwise, predict the variable with fewer dimensions. x, y = y, x # Normalize y to make the decision tree stopping criterion meaningful. y = StandardScaler().fit_transform(y) # Set up storage for true data and permuted data MSEs. d0_stats = np.zeros(num_perm) d1_stats = np.zeros(num_perm) data_permutations = [ np.random.permutation(n_samples) for i in range(num_perm)] # Compute mses for y = f(x, z), varying train-test splits. clf = cv_besttree(x, y, z, cv_grid, logdim, verbose, prop_test=prop_test) datadict = { 'x': x, 'y': y, 'z': z, 'data_permutation': data_permutations, 'n_test': n_test, 'reshuffle': False, 'clf': clf, } d1_stats = np.array(joblib.Parallel(n_jobs=-1, max_nbytes=100e6)( joblib.delayed(obtain_error)((datadict, i)) for i in range(num_perm))) # Compute mses for y = f(x, reshuffle(z)), varying train-test splits. if z.shape[1] == 0: x_indep_y = x[np.random.permutation(n_samples)] else: x_indep_y = np.empty([x.shape[0], 0]) clf = cv_besttree(x_indep_y, y, z, cv_grid, logdim, verbose, prop_test=prop_test) datadict['reshuffle'] = True datadict['x'] = x_indep_y d0_stats = np.array(joblib.Parallel(n_jobs=-1, max_nbytes=100e6)( joblib.delayed(obtain_error)((datadict, i)) for i in range(num_perm))) if verbose: np.set_printoptions(precision=3) print('D0 statistics: {}'.format(d0_stats)) print('D1 statistics: {}\n'.format(d1_stats)) # Compute the p-value (one-tailed t-test # that mean of mse ratios equals 1). t, p_value = ttest_1samp(d0_stats / d1_stats, 1) if t < 0: p_value = 1 - p_value / 2 else: p_value = p_value / 2 if plot_return: return (p_value, d0_stats, d1_stats) else: return p_value
mit
lmcinnes/umap
umap/tests/test_umap_on_iris.py
1
9572
from umap import UMAP from umap.umap_ import nearest_neighbors from scipy import sparse import numpy as np from sklearn.cluster import KMeans from sklearn.metrics import adjusted_rand_score from sklearn.neighbors import KDTree from scipy.spatial.distance import cdist, pdist, squareform import pytest import warnings try: # works for sklearn>=0.22 from sklearn.manifold import trustworthiness except ImportError: # this is to comply with requirements (scikit-learn>=0.20) # More recent versions of sklearn have exposed trustworthiness # in top level module API # see: https://github.com/scikit-learn/scikit-learn/pull/15337 from sklearn.manifold.t_sne import trustworthiness # =================================================== # UMAP Test cases on IRIS Dataset # =================================================== # UMAP Trustworthiness on iris # ---------------------------- def test_umap_trustworthiness_on_iris(iris, iris_model): embedding = iris_model.embedding_ trust = trustworthiness(iris.data, embedding, n_neighbors=10) assert ( trust >= 0.97 ), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust) def test_initialized_umap_trustworthiness_on_iris(iris): data = iris.data embedding = UMAP( n_neighbors=10, min_dist=0.01, init=data[:, 2:], n_epochs=200, random_state=42, ).fit_transform(data) trust = trustworthiness(iris.data, embedding, n_neighbors=10) assert ( trust >= 0.97 ), "Insufficiently trustworthy embedding for" "iris dataset: {}".format(trust) def test_umap_trustworthiness_on_sphere_iris( iris, ): data = iris.data embedding = UMAP( n_neighbors=10, min_dist=0.01, n_epochs=200, random_state=42, output_metric="haversine", ).fit_transform(data) # Since trustworthiness doesn't support haversine, project onto # a 3D embedding of the sphere and use cosine distance r = 3 projected_embedding = np.vstack( [ r * np.sin(embedding[:, 0]) * np.cos(embedding[:, 1]), r * np.sin(embedding[:, 0]) * np.sin(embedding[:, 1]), r * np.cos(embedding[:, 0]), ] ).T trust = trustworthiness( iris.data, projected_embedding, n_neighbors=10, metric="cosine" ) assert ( trust >= 0.70 ), "Insufficiently trustworthy spherical embedding for iris dataset: {}".format( trust ) # UMAP Transform on iris # ---------------------- def test_umap_transform_on_iris(iris, iris_subset_model, iris_selection): fitter = iris_subset_model new_data = iris.data[~iris_selection] embedding = fitter.transform(new_data) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.85 ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust) def test_umap_transform_on_iris_w_pynndescent(iris, iris_selection): data = iris.data[iris_selection] fitter = UMAP( n_neighbors=10, min_dist=0.01, n_epochs=100, random_state=42, force_approximation_algorithm=True, ).fit(data) new_data = iris.data[~iris_selection] embedding = fitter.transform(new_data) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.85 ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust) def test_umap_transform_on_iris_modified_dtype(iris, iris_subset_model, iris_selection): fitter = iris_subset_model fitter.embedding_ = fitter.embedding_.astype(np.float64) new_data = iris.data[~iris_selection] embedding = fitter.transform(new_data) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.8 ), "Insufficiently trustworthy transform for iris dataset: {}".format(trust) def test_umap_sparse_transform_on_iris(iris, iris_selection): data = sparse.csr_matrix(iris.data[iris_selection]) assert sparse.issparse(data) fitter = UMAP( n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100, # force_approximation_algorithm=True, ).fit(data) new_data = sparse.csr_matrix(iris.data[~iris_selection]) assert sparse.issparse(new_data) embedding = fitter.transform(new_data) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.80 ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust) # UMAP precomputed metric transform on iris # ---------------------- def test_precomputed_transform_on_iris(iris, iris_selection): data = iris.data[iris_selection] distance_matrix = squareform(pdist(data)) fitter = UMAP( n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100, metric="precomputed", ).fit(distance_matrix) new_data = iris.data[~iris_selection] new_distance_matrix = cdist(new_data, data) embedding = fitter.transform(new_distance_matrix) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.85 ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust) # UMAP precomputed metric transform on iris with sparse distances # ---------------------- def test_precomputed_sparse_transform_on_iris(iris, iris_selection): data = iris.data[iris_selection] distance_matrix = sparse.csr_matrix(squareform(pdist(data))) fitter = UMAP( n_neighbors=10, min_dist=0.01, random_state=42, n_epochs=100, metric="precomputed", ).fit(distance_matrix) new_data = iris.data[~iris_selection] new_distance_matrix = sparse.csr_matrix(cdist(new_data, data)) embedding = fitter.transform(new_distance_matrix) trust = trustworthiness(new_data, embedding, n_neighbors=10) assert ( trust >= 0.85 ), "Insufficiently trustworthy transform for" "iris dataset: {}".format(trust) # UMAP Clusterability on Iris # --------------------------- def test_umap_clusterability_on_supervised_iris(supervised_iris_model, iris): embedding = supervised_iris_model.embedding_ clusters = KMeans(3).fit_predict(embedding) assert adjusted_rand_score(clusters, iris.target) >= 0.95 # UMAP Inverse transform on Iris # ------------------------------ def test_umap_inverse_transform_on_iris(iris, iris_model): highd_tree = KDTree(iris.data) fitter = iris_model lowd_tree = KDTree(fitter.embedding_) for i in range(1, 150, 20): query_point = fitter.embedding_[i] near_points = lowd_tree.query([query_point], k=5, return_distance=False) centroid = np.mean(np.squeeze(fitter.embedding_[near_points]), axis=0) highd_centroid = fitter.inverse_transform([centroid]) highd_near_points = highd_tree.query( highd_centroid, k=10, return_distance=False ) assert np.intersect1d(near_points, highd_near_points[0]).shape[0] >= 3 def test_precomputed_knn_on_iris(iris, iris_selection, iris_subset_model): # this to compare two similarity graphs which should be nearly the same def rms(a, b): return np.sqrt(np.mean(np.square(a - b))) data = iris.data[iris_selection] new_data = iris.data[~iris_selection] knn = nearest_neighbors( data, n_neighbors=10, metric="euclidean", metric_kwds=None, angular=False, random_state=42, ) # repeated UMAP arguments we don't want to mis-specify umap_args = dict( n_neighbors=iris_subset_model.n_neighbors, random_state=iris_subset_model.random_state, min_dist=iris_subset_model.min_dist, ) # force_approximation_algorithm parameter is ignored when a precomputed knn is used fitter_with_precomputed_knn = UMAP( **umap_args, precomputed_knn=knn, force_approximation_algorithm=False, ).fit(data) # embeddings and similarity graph are NOT the same due to choices of nearest # neighbor in non-exact case: similarity graph is most stable for comparing output # threshold for similarity in graph empirically chosen by comparing the iris subset # model with force_approximation_algorithm=True and different random seeds assert rms(fitter_with_precomputed_knn.graph_, iris_subset_model.graph_) < 0.005 with pytest.warns(Warning, match="transforming new data") as record: fitter_ignoring_force_approx = UMAP( **umap_args, precomputed_knn=(knn[0], knn[1]), ).fit(data) assert len(record) == 1 np.testing.assert_array_equal( fitter_ignoring_force_approx.embedding_, fitter_with_precomputed_knn.embedding_ ) # #848 (continued): if you don't have a search index, attempting to transform # will raise an error with pytest.raises(NotImplementedError, match="search index"): _ = fitter_ignoring_force_approx.transform(new_data) # force_approximation_algorithm parameter is ignored with pytest.warns(Warning, match="transforming new data") as record: fitter_ignoring_force_approx_True = UMAP( **umap_args, precomputed_knn=(knn[0], knn[1]), force_approximation_algorithm=True, ).fit(data) assert len(record) == 1 np.testing.assert_array_equal( fitter_ignoring_force_approx_True.embedding_, fitter_ignoring_force_approx.embedding_ )
bsd-3-clause
openai/triton
python/triton/ops/blocksparse/matmul.py
1
15613
import torch import triton import triton.language as tl # ******************************************************** # -------------------------------------------------------- # Sparse = Dense x Dense (SDD) # This operation uses super-blocking to make sure that # it's done efficiently when small blocks can be grouped # together # -------------------------------------------------------- # ******************************************************** @triton.heuristics({ 'EVEN_K': lambda nargs: nargs['K'] % nargs['TILE_K'] == 0, }) @triton.jit def _sdd_kernel( A, B, C, stride_za, stride_ha, stride_ma, stride_ak, stride_zb, stride_hb, stride_bk, stride_nb, stride_zc, stride_hc, stride_mc, stride_nc, K, grid_offset, lut, TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr, BLOCK: tl.constexpr, EVEN_K: tl.constexpr ): # ------------ # # - Prologue - # # ------------ # block_id = tl.program_id(1) + grid_offset lut += block_id * 3 # offsets off_z = tl.program_id(2) # batch off_h = tl.load(lut + 0) # head # initialize pointers to A start_am = tl.load(lut + 1) offs_am = start_am * BLOCK + (tl.arange(0, TILE_M) % BLOCK) offs_ak = tl.arange(0, TILE_K) a_ptrs = A \ + off_z * stride_za \ + off_h * stride_ha \ + offs_am[:, None] * stride_ma \ + offs_ak[None, :] * stride_ak # initialize pointers to B start_bn = tl.load(lut + 2) offs_bn = start_bn * BLOCK + (tl.arange(0, TILE_N) % BLOCK) offs_bk = tl.arange(0, TILE_K) b_ptrs = B \ + off_z * stride_zb \ + off_h * stride_hb \ + offs_bn[None, :] * stride_nb \ + offs_bk[:, None] * stride_bk # ---------------- # # Inner Loop # # ---------------- # acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32) for k in range(K, 0, -TILE_K): if EVEN_K: a = tl.load(a_ptrs) b = tl.load(b_ptrs) else: a = tl.load(a_ptrs, mask=offs_ak[None, :] < k, other=0.) b = tl.load(b_ptrs, mask=offs_bk[:, None] < k, other=0.) acc += tl.dot(a, b) a_ptrs += TILE_K * stride_ak b_ptrs += TILE_K * stride_bk c = acc.to(C.dtype.element_ty) # ---------------- # # Epilogue # # ---------------- # offs_cm = tl.arange(0, TILE_M) % BLOCK offs_cn = tl.arange(0, TILE_N) % BLOCK pc = C \ + off_z * stride_zc \ + block_id * stride_hc \ + offs_cm[:, None] * stride_mc \ + offs_cn[None, :] * stride_nc tl.store(pc, c, mask=True) def sdd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, widths, out=None): if a.stride(2) != 1 and a.stride(3) != 1: a = a.contiguous() if b.stride(2) != 1 and b.stride(3) != 1: b = b.contiguous() # (A * B)^T = B^T * A^T if trans_c: a, b = b, a trans_a, trans_b = not trans_b, not trans_a # shape constraints a_dim = -2 if trans_a else -1 b_dim = -1 if trans_b else -2 Ka, Kb = a.shape[a_dim], b.shape[b_dim] if Ka != Kb: raise ValueError(f"Inner dimension mismatch (A: {Ka} vs B: {Kb})") # allocate output if out is None: c = torch.empty((a.shape[0], lut.shape[0], block, block), dtype=a.dtype, device=a.device) else: assert out.shape == (a.shape[0], lut.shape[0], block, block) c = out grid = [1, c.shape[1], c.shape[0]] _sdd_kernel[grid]( a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(2), c.stride(3), Ka, 0, lut, TILE_M=block, TILE_N=block, TILE_K=32, BLOCK=block, num_stages=4, num_warps=4, ) return c def sdd_lut(layout, block, device): lut = layout.nonzero(as_tuple=False).to(device).int() lut = lut.contiguous() return lut, None # ----------------------------- # Dense = Sparse x Dense (DSD) # This operation uses a look-up table that contains pre-computed pointer increments # in order to minimize computations in the inner loop of the matmul kernel. # ----------------------------- @triton.jit def _dsd_kernel( A, B, C, stride_az, stride_ha, stride_am, stride_ak, stride_zb, stride_hb, stride_bk, stride_bn, stride_zc, stride_hc, stride_cm, stride_cn, DS0, DS1, lut, TILE_M: tl.constexpr, TILE_N: tl.constexpr, TILE_K: tl.constexpr, GROUP_SIZE_M: tl.constexpr, BLOCK: tl.constexpr ): # ------------ # # - Prologue - # # ------------ # pid_m = tl.program_id(0) pid_n = tl.program_id(1) num_pid_m = tl.num_programs(0) num_pid_n = tl.num_programs(1) pid_n, pid_m = tl.swizzle2d(pid_n, pid_m, num_pid_n, num_pid_m, GROUP_SIZE_M) pidz = tl.program_id(2) header = lut + pid_n * 4 offset = tl.load(header + 0) K = tl.load(header + 1) column = tl.load(header + 2) off_h = tl.load(header + 3) pinc = lut + offset # initialize pointers to A (sparse) block_id = tl.load(pinc + 1) block_id = tl.multiple_of(block_id, 8) # compiler hint offs_am = tl.arange(0, TILE_M) offs_ak = tl.arange(0, TILE_K) pa = A + pidz * stride_az \ + block_id * stride_ha \ + offs_am[:, None] * stride_am \ + offs_ak[None, :] * stride_ak # initialize pointers to B (dense) offs_bn = pid_m * TILE_N + tl.arange(0, TILE_N) offs_bn = tl.max_contiguous(tl.multiple_of(offs_bn % DS0, TILE_N), TILE_N) start_bk = tl.load(pinc) start_bk = tl.multiple_of(start_bk, 8) # compiler hint offs_bk = start_bk + tl.arange(0, TILE_K) pb = B + pidz * stride_zb \ + off_h * stride_hb \ + offs_bn[None, :] * stride_bn \ + offs_bk[:, None] * stride_bk # ---------------- # # Inner Loop # # ---------------- # acc = tl.zeros((TILE_M, TILE_N), dtype=tl.float32) pinc += 2 inc_a = tl.load(pinc + 1) inc_a = tl.multiple_of(inc_a, 8) inc_b = tl.load(pinc) inc_b = tl.multiple_of(inc_b, 8) for k in range(K, 0, -TILE_K): a = tl.load(pa, mask=True) b = tl.load(pb, mask=offs_bn[None, :] < DS0) acc += tl.dot(a, b) pa += inc_a pb += inc_b * stride_bk pinc += 2 inc_a = tl.load(pinc + 1) inc_a = tl.multiple_of(inc_a, 8) inc_b = tl.load(pinc) inc_b = tl.multiple_of(inc_b, 8) c = acc.to(C.dtype.element_ty) # initialize pointers to C offs_cm = column * TILE_M + tl.arange(0, TILE_M) offs_cn = pid_m * TILE_N + tl.arange(0, TILE_N) pc = C \ + off_h * stride_hc \ + pidz * stride_zc \ + offs_cm[:, None] * stride_cm \ + offs_cn[None, :] * stride_cn tl.store(pc, c, mask=offs_cn[None, :] < DS0) def dsd_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=None): if a.stride(2) != 1 and a.stride(3) != 1: a = a.contiguous() if b.stride(2) != 1 and b.stride(3) != 1: b = b.contiguous() # shapes / dtypes AS1 = block * spdims[2 if trans_a else 1] BS0 = b.size(0) BS1 = b.size(1) BS3 = b.size(2 if trans_b else 3) dtype = a.dtype # allocate output CS0 = BS0 CS1 = BS1 CS2 = BS3 if trans_c else AS1 CS3 = AS1 if trans_c else BS3 if out is None: c = torch.empty((CS0, CS1, CS2, CS3), dtype=dtype, device=a.device) else: assert out.shape == (CS0, CS1, CS2, CS3) c = out # meta-parameter heuristics TILE_N = 128 # compute output grid = lambda meta: [triton.cdiv(BS3, meta['TILE_N']), width, BS0] _dsd_kernel[grid]( a, b, c, a.stride(0), a.stride(1), a.stride(3 if trans_a else 2), a.stride(2 if trans_a else 3), b.stride(0), b.stride(1), b.stride(3 if trans_b else 2), b.stride(2 if trans_b else 3), c.stride(0), c.stride(1), c.stride(3 if trans_c else 2), c.stride(2 if trans_c else 3), BS3, AS1, lut, TILE_M=block, TILE_N=TILE_N, TILE_K=min(block, 32), BLOCK=block, num_stages=4, num_warps=4, GROUP_SIZE_M=4, ) # exit() return c def dsd_lut(layout, block, step, trans, device): """ Generates the look-up table for incrementing pointers in the DSD/DDS matmul. Example (BLOCK=32, STEP=16) [[1, 0, 0, 1, 0], [0, 1, 1, 0, 1], [1, 0, 1, 0, 0]] Then the offsets for A are [0 , 16, 32, 48] <- row 0 \\----/ \\----/ col=0 col=3 [64, 80, 96, 112, 128, 144] <- row 1 \\----/ \\----/ \\------/ col=1 col=2 col=3 [160, 176, 192, 208] which leads to increments table [0, 16, 16, 16, || 64, 16, 16, 16, 16, 16, || 160, 16, 16, 16] Because B is dense, the offsets are [0, 16, 96, 112] <- row 0 [32, 48, 64, 80] <- row 1 [0, 16, 64, 80] <- row 2 """ sizes = torch.sum(layout, 2 if trans else 1) head_id, col_id = torch.ones_like(sizes).nonzero(as_tuple=True) sizes = sizes.flatten() segments = sizes * step # pointer increments if trans: nnz = layout.nonzero(as_tuple=False) else: nnz = layout.transpose(1, 2).nonzero(as_tuple=False) num_blocks = nnz.size(0) offsets = torch.zeros_like(sizes) offsets[1:] = torch.cumsum(sizes[:-1], dim=0) offsets = torch.min(offsets, (num_blocks - 1) * torch.ones_like(offsets)) # ------------------------------- # dense input pointer increments # ------------------------------- # Note that the inner loop matmul kernel may have a fixed step size (e.g., TILE_K) # that is smaller than the block size, so we need to do a bit of extra work # to handle this case B_idx = nnz[:, 2] * block B_incs = B_idx.clone() B_incs[1:] -= B_idx[:-1] div = block // step B_incs = B_incs.view(-1, 1).repeat(1, div) B_incs[:, 1:] = step B_incs[:, 0] -= (div - 1) * step # first increment for each reduction is actually the offset B_incs[offsets[segments > 0], 0] = B_idx[offsets[segments > 0]] B_incs = B_incs.view(-1) # ------------------------------- # sparse input pointer increments # ------------------------------- # same as above, except that the increments are in the sparse memory layout if trans: A_idx = torch.arange(num_blocks, device=layout.device) else: A_idx = torch.tensor([], dtype=torch.int64, device=layout.device) current_offset = 0 for z in range(layout.size(0)): layoutw = layout[z, :, :].clone().long() msum = layoutw.sum() layoutw[layoutw > 0] = 1 + torch.arange(msum, device=layout.device) A_idx = torch.cat((A_idx, current_offset + layoutw.T[layoutw.T > 0] - 1)) current_offset += msum A_incs = A_idx * block * block A_incs[1:] -= A_idx[:-1] * block * block A_incs = A_incs.view(-1, 1).repeat(1, div) if trans: A_incs[:, 1:] = step A_incs[:, 0] -= (div - 1) * step else: A_incs[:, 1:] = step * block A_incs[:, 0] -= (div - 1) * step * block A_incs[offsets[segments > 0], 0] = A_idx[offsets[segments > 0]] A_incs = A_incs.view(-1) # create header width = col_id.size(0) offsets = offsets * 2 * div + 4 * width segments = segments * div header = torch.stack((offsets, segments, col_id, head_id), dim=1).view(-1).contiguous() # create increments incs = torch.stack((B_incs, A_incs), dim=1).view(-1).contiguous() # pad by a factor 2*MAX_NUM_STAGES # to accommodate pre-fetching inside the kernel pad = torch.zeros(20, device=incs.device, dtype=incs.dtype) incs = torch.cat((incs, pad)) # create lut lut = torch.cat((header, incs)) lut = lut.type(torch.int32).to(device) # create locks return lut, width # ----------------------------- # Dense = Dense x Sparse (DDS) # ----------------------------- # AB = (B^T A^T)^T def dds_matmul(a, b, trans_a, trans_b, trans_c, spdims, block, lut, width, out=None): return dsd_matmul(b, a, not trans_b, not trans_a, not trans_c, spdims, block, lut, width, out=out) ############## # MAIN API # ############## class _matmul(torch.autograd.Function): fn = {'sdd': sdd_matmul, 'dsd': dsd_matmul, 'dds': dds_matmul} @staticmethod def forward( ctx, a, b, trans_a, trans_b, trans_c, mode, spdims, block, c_lut, c_width, da_lut, da_width, db_lut, db_width, out ): c = _matmul.fn[mode](a, b, trans_a, trans_b, trans_c, spdims, block, c_lut, c_width, out=out) # save for backward ctx.save_for_backward(a, b) ctx.da_lut = da_lut ctx.da_width = da_width ctx.db_lut = db_lut ctx.db_width = db_width ctx.mode = mode ctx.spdims = spdims ctx.block = block ctx.trans_a = trans_a ctx.trans_b = trans_b ctx.trans_c = trans_c ctx.has_out = out is not None return c @staticmethod def backward(ctx, dc): # saved for backward a, b = ctx.saved_tensors da, db = None, None mode = ctx.mode # gradients w.r.t. a if ctx.needs_input_grad[0]: mode_da = mode[1] + mode[0] + mode[2] da = _matmul.fn[mode_da]( dc, b, ctx.trans_c, not ctx.trans_b, ctx.trans_a, ctx.spdims, ctx.block, ctx.da_lut, ctx.da_width, ) # gradients w.r.t. b if ctx.needs_input_grad[1]: mode_db = mode[2] + mode[1] + mode[0] db = _matmul.fn[mode_db]( a, dc, not ctx.trans_a, ctx.trans_c, ctx.trans_b, ctx.spdims, ctx.block, ctx.db_lut, ctx.db_width, ) dout = dc if ctx.has_out else None return da, db, None, None, None,\ None, None, None, None,\ None, None, None, None, None, dout class matmul: def __init__(self, layout, block, mode, device, trans_a=False, trans_b=False, trans_c=False): if mode not in ['sdd', 'dsd', 'dds']: raise NotImplementedError('Supported modes are: sdd, dsd, dds') self.block = block self.mode = mode self.trans_a = trans_a self.trans_b = trans_b self.trans_c = trans_c self.layout = layout self.spdims = layout.shape step = min(block, 32) if self.mode == 'sdd': self.c_lut, self.c_width = sdd_lut(layout, block, device) self.da_lut, self.da_width = dsd_lut(layout, block, step, True, device) self.db_lut, self.db_width = dsd_lut(layout, block, step, False, device) if self.mode == 'dsd': self.c_lut, self.c_width = dsd_lut(layout, block, step, not self.trans_a, device) self.da_lut, self.da_width = sdd_lut(layout, block, device) self.db_lut, self.db_width = dsd_lut(layout, block, step, self.trans_a, device) if self.mode == 'dds': self.c_lut, self.c_width = dsd_lut(layout, block, step, self.trans_b, device) self.da_lut, self.da_width = dsd_lut(layout, block, step, not self.trans_b, device) self.db_lut, self.db_width = sdd_lut(layout, block, device) def __call__(self, a, b, out=None): c = _matmul.apply( a, b, self.trans_a, self.trans_b, self.trans_c, self.mode, self.spdims, self.block, self.c_lut, self.c_width, self.da_lut, self.da_width, self.db_lut, self.db_width, out ) return c
mit
raticate/AS-RANK
2_store_as_relationships.py
1
5499
import os, sys, MySQLdb from datetime import datetime, timedelta import time import datetime as dt db = MySQLdb.connect(host="localhost", user="root", passwd="", db="ASRank") cur = db.cursor() ## download all the relationship if needed link = """data.caida.org/datasets/as-relationships/""" command = """wget --no-parent -r """ +link print '\n download list of files :', command os.system(command) ## Load the list of treated files : list_treated_files = [] try: with open('list_of_treated_files_rel.txt', 'r') as fg: for line in fg: line= str(line).strip() if line not in list_treated_files: list_treated_files.append(str(line).strip()) except: with open('list_of_treated_files_rel.txt', 'a') as fk: print ## Current date A = str(datetime.now() + timedelta(days=-1)) table = A.split(' ') date_info = table[0].split('-') date_info_end = [int(date_info[0]), int(date_info[1]) ] #print date_info_end date_info_start = [1998, 01] k_year = date_info_start[0] k_month = date_info_start[1] while (k_year <= date_info_end[0]) : if k_month >9: elmt = str(k_year) + str(k_month) + '01' else: elmt = str(k_year) + '0' + str(k_month) + '01' if k_month == 12: k_month = 1 k_year +=1 elif k_month<12: k_month +=1 #output = ['.as-rel.txt.gz', '.ppdc-ases.txt.gz'] output = ['.as-rel.txt.gz', '.as-rel.txt.bz2'] for ext in output: current = elmt + ext if str(current).strip() not in list_treated_files: print current_timestamp = int(elmt) print current_timestamp #Select data from the as-relationship sql_command = """select AS1, AS2, relation from ASRelationships where enddate is NULL and IPversion = 4;""" cur.execute(sql_command) stored_AS_relationships = cur.fetchall() stored_AS_relationships_list = [] for link in stored_AS_relationships: stored_AS_relationships_list.append(str(link[0]).strip() + '|' + str(link[1]).strip() + '|' + str(link[2]).strip()) #print stored_AS_relationships print 'len_before_sup = ', len(stored_AS_relationships_list) #, stored_AS_relationships_list #time.sleep(10) print 'I am parsing ', current file = 'data.caida.org/datasets/as-relationships/serial-1/' + current print 'current_date =', current_timestamp ## dezip file try: if '.as-rel.txt.gz' in file and os.path.isfile(file): command = 'gzip -d ' + file check = file[:-3] os.system(command) elif '.as-rel.txt.bz2' in file and os.path.isfile(file) : command = 'bunzip2 ' + file check = file[:-4] os.system(command) except: print 'no need to dezip' if os.path.isfile(check): with open (check, 'r') as fh: for line1 in fh: #print line1 tab = line1.split('|') if len(tab) == 3: test_vc = str(tab[0]).strip() + '|' + str(tab[1]).strip() + '|' + str(tab[2]).strip() if test_vc not in stored_AS_relationships_list: sql_command = """ INSERT IGNORE INTO ASRelationships (IPversion, AS1, AS2, relation, startdate) VALUES (%s, %s, %s, %s, %s); """ cur.execute(sql_command, (4, int(tab[0]), int(tab[1]), int(tab[2]), current_timestamp )) db.commit() elif test_vc in stored_AS_relationships_list: print 'I found it so I suppressed ', test_vc stored_AS_relationships_list.remove(test_vc) print 'len_after_sup = ', len(stored_AS_relationships_list) #, stored_AS_relationships_list for couple in stored_AS_relationships_list: sql_command = """ UPDATE ASRelationships set enddate = %s where IPversion = %s and AS1 = %s and AS2 = %s and relation = %s and enddate is NULL; """ print couple tab1 = couple.split('|') print 'update for ', couple, tab1[0], tab1[1], tab1[2] cur.execute(sql_command, (current_timestamp, 4, int(tab1[0]), int(tab1[1]), int(tab1[2]))) db.commit() ## after treatment put it into the list of treated file with open('list_of_treated_files_rel.txt', 'a') as fh: fh.write('%s \n' %(elmt+ext)) else: print 'file ', check, ' not found in the folder; we pass ' else: print 'do not treat ', elmt + ext
mit
irhete/predictive-monitoring-benchmark
experiments/optimize_params.py
1
10764
import EncoderFactory from DatasetManager import DatasetManager import BucketFactory import pandas as pd import numpy as np from sklearn.metrics import roc_auc_score from sklearn.pipeline import FeatureUnion, Pipeline from sklearn.preprocessing import StandardScaler import time import os import sys from sys import argv import pickle from collections import defaultdict from sklearn.ensemble import RandomForestClassifier import xgboost as xgb from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from hyperopt import Trials, STATUS_OK, tpe, fmin, hp import hyperopt from hyperopt.pyll.base import scope from hyperopt.pyll.stochastic import sample def create_and_evaluate_model(args): global trial_nr trial_nr += 1 start = time.time() score = 0 for cv_iter in range(n_splits): dt_test_prefixes = dt_prefixes[cv_iter] dt_train_prefixes = pd.DataFrame() for cv_train_iter in range(n_splits): if cv_train_iter != cv_iter: dt_train_prefixes = pd.concat([dt_train_prefixes, dt_prefixes[cv_train_iter]], axis=0) # Bucketing prefixes based on control flow bucketer_args = {'encoding_method':bucket_encoding, 'case_id_col':dataset_manager.case_id_col, 'cat_cols':[dataset_manager.activity_col], 'num_cols':[], 'random_state':random_state} if bucket_method == "cluster": bucketer_args["n_clusters"] = args["n_clusters"] bucketer = BucketFactory.get_bucketer(bucket_method, **bucketer_args) bucket_assignments_train = bucketer.fit_predict(dt_train_prefixes) bucket_assignments_test = bucketer.predict(dt_test_prefixes) preds_all = [] test_y_all = [] if "prefix" in method_name: scores = defaultdict(int) for bucket in set(bucket_assignments_test): relevant_train_cases_bucket = dataset_manager.get_indexes(dt_train_prefixes)[bucket_assignments_train == bucket] relevant_test_cases_bucket = dataset_manager.get_indexes(dt_test_prefixes)[bucket_assignments_test == bucket] dt_test_bucket = dataset_manager.get_relevant_data_by_indexes(dt_test_prefixes, relevant_test_cases_bucket) test_y = dataset_manager.get_label_numeric(dt_test_bucket) if len(relevant_train_cases_bucket) == 0: preds = [class_ratios[cv_iter]] * len(relevant_test_cases_bucket) else: dt_train_bucket = dataset_manager.get_relevant_data_by_indexes(dt_train_prefixes, relevant_train_cases_bucket) # one row per event train_y = dataset_manager.get_label_numeric(dt_train_bucket) if len(set(train_y)) < 2: preds = [train_y[0]] * len(relevant_test_cases_bucket) else: feature_combiner = FeatureUnion([(method, EncoderFactory.get_encoder(method, **cls_encoder_args)) for method in methods]) if cls_method == "rf": cls = RandomForestClassifier(n_estimators=500, max_features=args['max_features'], random_state=random_state) elif cls_method == "xgboost": cls = xgb.XGBClassifier(objective='binary:logistic', n_estimators=500, learning_rate= args['learning_rate'], subsample=args['subsample'], max_depth=int(args['max_depth']), colsample_bytree=args['colsample_bytree'], min_child_weight=int(args['min_child_weight']), seed=random_state) elif cls_method == "logit": cls = LogisticRegression(C=2**args['C'], random_state=random_state) elif cls_method == "svm": cls = SVC(C=2**args['C'], gamma=2**args['gamma'], random_state=random_state) if cls_method == "svm" or cls_method == "logit": pipeline = Pipeline([('encoder', feature_combiner), ('scaler', StandardScaler()), ('cls', cls)]) else: pipeline = Pipeline([('encoder', feature_combiner), ('cls', cls)]) pipeline.fit(dt_train_bucket, train_y) if cls_method == "svm": preds = pipeline.decision_function(dt_test_bucket) else: preds_pos_label_idx = np.where(cls.classes_ == 1)[0][0] preds = pipeline.predict_proba(dt_test_bucket)[:,preds_pos_label_idx] if "prefix" in method_name: auc = 0.5 if len(set(test_y)) == 2: auc = roc_auc_score(test_y, preds) scores[bucket] += auc preds_all.extend(preds) test_y_all.extend(test_y) score += roc_auc_score(test_y_all, preds_all) if "prefix" in method_name: for k, v in args.items(): for bucket, bucket_score in scores.items(): fout_all.write("%s;%s;%s;%s;%s;%s;%s;%s\n" % (trial_nr, dataset_name, cls_method, method_name, bucket, k, v, bucket_score / n_splits)) fout_all.write("%s;%s;%s;%s;%s;%s;%s;%s\n" % (trial_nr, dataset_name, cls_method, method_name, 0, "processing_time", time.time() - start, 0)) else: for k, v in args.items(): fout_all.write("%s;%s;%s;%s;%s;%s;%s\n" % (trial_nr, dataset_name, cls_method, method_name, k, v, score / n_splits)) fout_all.write("%s;%s;%s;%s;%s;%s;%s\n" % (trial_nr, dataset_name, cls_method, method_name, "processing_time", time.time() - start, 0)) fout_all.flush() return {'loss': -score / n_splits, 'status': STATUS_OK, 'model': cls} dataset_ref = argv[1] params_dir = argv[2] n_iter = int(argv[3]) bucket_method = argv[4] cls_encoding = argv[5] cls_method = argv[6] if bucket_method == "state": bucket_encoding = "last" else: bucket_encoding = "agg" method_name = "%s_%s"%(bucket_method, cls_encoding) dataset_ref_to_datasets = { "bpic2011": ["bpic2011_f%s"%formula for formula in range(1,5)], "bpic2015": ["bpic2015_%s_f2"%(municipality) for municipality in range(1,6)], "insurance": ["insurance_activity", "insurance_followup"], "sepsis_cases": ["sepsis_cases_1", "sepsis_cases_2", "sepsis_cases_4"] } encoding_dict = { "laststate": ["static", "last"], "agg": ["static", "agg"], "index": ["static", "index"], "combined": ["static", "last", "agg"] } datasets = [dataset_ref] if dataset_ref not in dataset_ref_to_datasets else dataset_ref_to_datasets[dataset_ref] methods = encoding_dict[cls_encoding] train_ratio = 0.8 n_splits = 3 random_state = 22 # create results directory if not os.path.exists(os.path.join(params_dir)): os.makedirs(os.path.join(params_dir)) for dataset_name in datasets: # read the data dataset_manager = DatasetManager(dataset_name) data = dataset_manager.read_dataset() cls_encoder_args = {'case_id_col': dataset_manager.case_id_col, 'static_cat_cols': dataset_manager.static_cat_cols, 'static_num_cols': dataset_manager.static_num_cols, 'dynamic_cat_cols': dataset_manager.dynamic_cat_cols, 'dynamic_num_cols': dataset_manager.dynamic_num_cols, 'fillna': True} # determine min and max (truncated) prefix lengths min_prefix_length = 1 if "traffic_fines" in dataset_name: max_prefix_length = 10 elif "bpic2017" in dataset_name: max_prefix_length = min(20, dataset_manager.get_pos_case_length_quantile(data, 0.90)) else: max_prefix_length = min(40, dataset_manager.get_pos_case_length_quantile(data, 0.90)) # split into training and test train, _ = dataset_manager.split_data_strict(data, train_ratio, split="temporal") # prepare chunks for CV dt_prefixes = [] class_ratios = [] for train_chunk, test_chunk in dataset_manager.get_stratified_split_generator(train, n_splits=n_splits): class_ratios.append(dataset_manager.get_class_ratio(train_chunk)) # generate data where each prefix is a separate instance dt_prefixes.append(dataset_manager.generate_prefix_data(test_chunk, min_prefix_length, max_prefix_length)) del train # set up search space if cls_method == "rf": space = {'max_features': hp.uniform('max_features', 0, 1)} elif cls_method == "xgboost": space = {'learning_rate': hp.uniform("learning_rate", 0, 1), 'subsample': hp.uniform("subsample", 0.5, 1), 'max_depth': scope.int(hp.quniform('max_depth', 4, 30, 1)), 'colsample_bytree': hp.uniform("colsample_bytree", 0.5, 1), 'min_child_weight': scope.int(hp.quniform('min_child_weight', 1, 6, 1))} elif cls_method == "logit": space = {'C': hp.uniform('C', -15, 15)} elif cls_method == "svm": space = {'C': hp.uniform('C', -15, 15), 'gamma': hp.uniform('gamma', -15, 15)} if bucket_method == "cluster": space['n_clusters'] = scope.int(hp.quniform('n_clusters', 2, 50, 1)) # optimize parameters trial_nr = 1 trials = Trials() fout_all = open(os.path.join(params_dir, "param_optim_all_trials_%s_%s_%s.csv" % (cls_method, dataset_name, method_name)), "w") if "prefix" in method_name: fout_all.write("%s;%s;%s;%s;%s;%s;%s;%s\n" % ("iter", "dataset", "cls", "method", "nr_events", "param", "value", "score")) else: fout_all.write("%s;%s;%s;%s;%s;%s;%s\n" % ("iter", "dataset", "cls", "method", "param", "value", "score")) best = fmin(create_and_evaluate_model, space, algo=tpe.suggest, max_evals=n_iter, trials=trials) fout_all.close() # write the best parameters best_params = hyperopt.space_eval(space, best) outfile = os.path.join(params_dir, "optimal_params_%s_%s_%s.pickle" % (cls_method, dataset_name, method_name)) # write to file with open(outfile, "wb") as fout: pickle.dump(best_params, fout)
apache-2.0
arabenjamin/scikit-learn
examples/neural_networks/plot_rbm_logistic_classification.py
257
4609
""" ============================================================== Restricted Boltzmann Machine features for digit classification ============================================================== For greyscale image data where pixel values can be interpreted as degrees of blackness on a white background, like handwritten digit recognition, the Bernoulli Restricted Boltzmann machine model (:class:`BernoulliRBM <sklearn.neural_network.BernoulliRBM>`) can perform effective non-linear feature extraction. In order to learn good latent representations from a small dataset, we artificially generate more labeled data by perturbing the training data with linear shifts of 1 pixel in each direction. This example shows how to build a classification pipeline with a BernoulliRBM feature extractor and a :class:`LogisticRegression <sklearn.linear_model.LogisticRegression>` classifier. The hyperparameters of the entire model (learning rate, hidden layer size, regularization) were optimized by grid search, but the search is not reproduced here because of runtime constraints. Logistic regression on raw pixel values is presented for comparison. The example shows that the features extracted by the BernoulliRBM help improve the classification accuracy. """ from __future__ import print_function print(__doc__) # Authors: Yann N. Dauphin, Vlad Niculae, Gabriel Synnaeve # License: BSD import numpy as np import matplotlib.pyplot as plt from scipy.ndimage import convolve from sklearn import linear_model, datasets, metrics from sklearn.cross_validation import train_test_split from sklearn.neural_network import BernoulliRBM from sklearn.pipeline import Pipeline ############################################################################### # Setting up def nudge_dataset(X, Y): """ This produces a dataset 5 times bigger than the original one, by moving the 8x8 images in X around by 1px to left, right, down, up """ direction_vectors = [ [[0, 1, 0], [0, 0, 0], [0, 0, 0]], [[0, 0, 0], [1, 0, 0], [0, 0, 0]], [[0, 0, 0], [0, 0, 1], [0, 0, 0]], [[0, 0, 0], [0, 0, 0], [0, 1, 0]]] shift = lambda x, w: convolve(x.reshape((8, 8)), mode='constant', weights=w).ravel() X = np.concatenate([X] + [np.apply_along_axis(shift, 1, X, vector) for vector in direction_vectors]) Y = np.concatenate([Y for _ in range(5)], axis=0) return X, Y # Load Data digits = datasets.load_digits() X = np.asarray(digits.data, 'float32') X, Y = nudge_dataset(X, digits.target) X = (X - np.min(X, 0)) / (np.max(X, 0) + 0.0001) # 0-1 scaling X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2, random_state=0) # Models we will use logistic = linear_model.LogisticRegression() rbm = BernoulliRBM(random_state=0, verbose=True) classifier = Pipeline(steps=[('rbm', rbm), ('logistic', logistic)]) ############################################################################### # Training # Hyper-parameters. These were set by cross-validation, # using a GridSearchCV. Here we are not performing cross-validation to # save time. rbm.learning_rate = 0.06 rbm.n_iter = 20 # More components tend to give better prediction performance, but larger # fitting time rbm.n_components = 100 logistic.C = 6000.0 # Training RBM-Logistic Pipeline classifier.fit(X_train, Y_train) # Training Logistic regression logistic_classifier = linear_model.LogisticRegression(C=100.0) logistic_classifier.fit(X_train, Y_train) ############################################################################### # Evaluation print() print("Logistic regression using RBM features:\n%s\n" % ( metrics.classification_report( Y_test, classifier.predict(X_test)))) print("Logistic regression using raw pixel features:\n%s\n" % ( metrics.classification_report( Y_test, logistic_classifier.predict(X_test)))) ############################################################################### # Plotting plt.figure(figsize=(4.2, 4)) for i, comp in enumerate(rbm.components_): plt.subplot(10, 10, i + 1) plt.imshow(comp.reshape((8, 8)), cmap=plt.cm.gray_r, interpolation='nearest') plt.xticks(()) plt.yticks(()) plt.suptitle('100 components extracted by RBM', fontsize=16) plt.subplots_adjust(0.08, 0.02, 0.92, 0.85, 0.08, 0.23) plt.show()
bsd-3-clause
text-machine-lab/CliNER
code/DatasetCliner_experimental.py
1
20008
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 27 12:55:40 2017 @author: elena """ import sklearn.preprocessing import collections import codecs #import utils_nlp import re import time #import token import os import pickle import random import numpy as np import helper_dataset as hd def lists_to_dataset_structure(sentences_tokens,sentence_tags,total_token_counter,token_count,label_count,character_count): labels=[] tokens=[] new_label_sequence=[] new_token_sequence=[] features="" feature_file_name="" feature_vector_size=0 for idx,sentence in enumerate(sentences_tokens): for token_idx,token_i in enumerate(sentence): new_token_sequence.append(token_i) new_label_sequence.append(sentence_tags[idx][token_idx]) token_count[token_i] += 1 label_count[sentence_tags[idx][token_idx]] += 1 if token_idx == len(sentence) - 1: labels.append(new_label_sequence) tokens.append(new_token_sequence) new_token_sequence = [] new_label_sequence = [] # FEATURES ARE NOT SUPPORTED: Can be done if we are getting a third list that looks like [[f1,f2,f3],[f1,f2,f3]... for each token] token_features=[] features_as_array=np.array(token_features,dtype=np.dtype('int32')) features_as_array=features_as_array.reshape((features_as_array.shape[0],1)) features_as_array=np.transpose(features_as_array) features="" feature_file_name="" feature_vector_size=0 total_token_counter+=1 for character in token_i: character_count[character] += 1 return labels, tokens, token_count, label_count, character_count,features,feature_file_name,feature_vector_size class Dataset(object): """A class for handling data sets.""" def __init__(self, name='', verbose=False, debug=False): self.name = name self.verbose = verbose self.debug = debug def _parse_dataset(self, dataset_filepath, dataset_type, sentences_list=[],tags_list=[], Not_here=False): token_count = collections.defaultdict(lambda: 0) #initialized by a function label_count = collections.defaultdict(lambda: 0) character_count = collections.defaultdict(lambda: 0) longest_sentence=0 # Currently Not supported, features #feature_file_name=os.getcwd()+os.sep+"test_cliner"+dataset_type+".hdf5" # size_of_features=0 # Currentlt Not supported - features # f = h5py.File(feature_file_name, "w") # dset = f.create_dataset("word-features", (0, size_of_features), maxshape=(None, size_of_features),dtype=np.dtype('int32'), chunks=True) #44 #dt = h5py.special_dtype(vlen=np.dtype('int32')) #sentence_words=f.create_dataset("sentences-words",(0,),dtype=dt,chunks=True,maxshape=(None,)) line_count =-1 sent_count=-1 total_token_counter=0 token_counter_offset_sent=0 sentence_counter=0 tokens=[] labels=[] features=[] characters=[] # NOT USED (?) #extract token features for agumentation token_features=[] token_lengths=[] new_token_sequence=[] new_label_sequence = [] #new_token_features_sequence=[] #labels, tokens, token_count, label_count, character_count,features,feature_file_name,feature_vector_size if Not_here==False: labels, tokens, token_count, label_count, character_count,features,feature_file_name,feature_vector_size=lists_to_dataset_structure(sentences_list,tags_list,total_token_counter,token_count,label_count,character_count) return labels, tokens, token_count, label_count, character_count,features,feature_file_name,feature_vector_size def _convert_to_indices(self, dataset_types): # Frank and Jennies Function tokens = self.tokens labels = self.labels token_to_index = self.token_to_index character_to_index = self.character_to_index label_to_index = self.label_to_index index_to_label = self.index_to_label # Map tokens and labels to their indices token_indices = {} label_indices = {} characters = {} token_lengths = {} character_indices = {} character_indices_padded = {} for dataset_type in dataset_types: print (dataset_type) token_indices[dataset_type] = [] characters[dataset_type] = [] character_indices[dataset_type] = [] token_lengths[dataset_type] = [] character_indices_padded[dataset_type] = [] for token_sequence in tokens[dataset_type]: token_indices[dataset_type].append([token_to_index.get(token, self.UNK_TOKEN_INDEX) for token in token_sequence]) characters[dataset_type].append([list(token) for token in token_sequence]) character_indices[dataset_type].append([[character_to_index.get(character, random.randint(1, max(self.index_to_character.keys()))) for character in token] for token in token_sequence]) token_lengths[dataset_type].append([len(token) for token in token_sequence]) longest_token_length_in_sequence = max(token_lengths[dataset_type][-1]) character_indices_padded[dataset_type].append([hd.pad_list(temp_token_indices, longest_token_length_in_sequence, self.PADDING_CHARACTER_INDEX) for temp_token_indices in character_indices[dataset_type][-1]]) label_indices[dataset_type] = [] for label_sequence in labels[dataset_type]: label_indices[dataset_type].append([label_to_index[label] for label in label_sequence]) label_binarizer = sklearn.preprocessing.LabelBinarizer() label_binarizer.fit(range(max(index_to_label.keys()) + 1)) label_vector_indices = {} for dataset_type in dataset_types: label_vector_indices[dataset_type] = [] for label_indices_sequence in label_indices[dataset_type]: label_vector_indices[dataset_type].append(label_binarizer.transform(label_indices_sequence)) return token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices def update_dataset(self, dataset_filepaths, dataset_types, Datasets_tokens, Datasets_labels): ''' dataset_filepaths : dictionary with keys 'train', 'valid', 'test', 'deploy' Overwrites the data of type specified in dataset_types using the existing token_to_index, character_to_index, and label_to_index mappings. ''' # def _parse_dataset(self, dataset_filepath, dataset_type, sentences_list=[],tags_list=[], Not_here=False): for dataset_type in dataset_types: print (dataset_type) self.labels[dataset_type], self.tokens[dataset_type], _, _, _,_,_,_= self._parse_dataset("",dataset_type, Datasets_tokens[dataset_type],Datasets_labels[dataset_type]) token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices = self._convert_to_indices(dataset_types) self.token_indices.update(token_indices) self.label_indices.update(label_indices) self.character_indices_padded.update(character_indices_padded) self.character_indices.update(character_indices) self.token_lengths.update(token_lengths) self.characters.update(characters) self.label_vector_indices.update(label_vector_indices) def load_dataset(self,avaliable_datasets_sent,avaliable_datasets_labels, dataset_filepaths, parameters, token_to_vector=None,pretrained_dataset=None): ''' dataset_filepaths : dictionary with keys 'train', 'valid', 'test', 'deploy' ''' start_time = time.time() print('Load dataset... \n') if parameters['token_pretrained_embedding_filepath'] != '': if token_to_vector==None: token_to_vector = hd.load_pretrained_token_embeddings(parameters) else: token_to_vector = {} all_tokens_in_pretraining_dataset = [] all_characters_in_pretraining_dataset = [] if parameters['use_pretrained_model']: #temp_pretrained_dataset_adress="./models/NN_models/1235-4/dataset.pickle" #"./models/NN_models/1234-5/dataset.pickle" if pretrained_dataset==None: temp_pretrained_dataset_adress=parameters['model_folder']+os.sep+"dataset.pickle" pretraining_dataset = pickle.load(open(temp_pretrained_dataset_adress, "rb")) print ("Pre-loading Pre-trained dataset objects") else: pretraining_dataset=pretrained_dataset print ("Pretrained dataset was pre-loaded") all_tokens_in_pretraining_dataset = pretraining_dataset.index_to_token.values() all_characters_in_pretraining_dataset = pretraining_dataset.index_to_character.values() remap_to_unk_count_threshold = 1 self.UNK_TOKEN_INDEX = 0 self.PADDING_CHARACTER_INDEX = 0 self.tokens_mapped_to_unk = [] self.UNK = 'UNK' self.unique_labels = [] labels = {} tokens = {} label_count = {} token_count = {} character_count = {} features={} features_file_names={} feature_vector_size={} #deploy for dataset_type in ['train', 'valid', 'test','deploy']: Not_here=False if dataset_type not in avaliable_datasets_sent: Not_here=True #_parse_dataset(self, dataset_filepath,dataset_type,sentences_list="",tags_list="") if Not_here==False: labels[dataset_type], tokens[dataset_type], token_count[dataset_type], label_count[dataset_type], character_count[dataset_type], features[dataset_type], \ features_file_names[dataset_type],feature_vector_size[dataset_type] \ = self._parse_dataset("", dataset_type, sentences_list=avaliable_datasets_sent[dataset_type], tags_list=avaliable_datasets_labels[dataset_type]) if Not_here==True: labels[dataset_type], tokens[dataset_type], token_count[dataset_type], label_count[dataset_type], character_count[dataset_type], features[dataset_type], \ features_file_names[dataset_type],feature_vector_size[dataset_type] \ = self._parse_dataset("", dataset_type, sentences_list=[], tags_list=[]) # token_count['all'] = {} for token in list(token_count['train'].keys()) + list(token_count['valid'].keys()) + list(token_count['test'].keys()) + list(token_count['deploy'].keys()): token_count['all'][token] = token_count['train'][token] + token_count['valid'][token] + token_count['test'][token] + token_count['deploy'][token] if parameters['load_all_pretrained_token_embeddings']: for token in token_to_vector: if token not in token_count['all']: token_count['all'][token] = -1 token_count['train'][token] = -1 for token in all_tokens_in_pretraining_dataset: if token not in token_count['all']: token_count['all'][token] = -1 token_count['train'][token] = -1 character_count['all'] = {} for character in list(character_count['train'].keys()) + list(character_count['valid'].keys()) + list(character_count['test'].keys()) + list(character_count['deploy'].keys()): character_count['all'][character] = character_count['train'][character] + character_count['valid'][character] + character_count['test'][character] + character_count['deploy'][character] for character in all_characters_in_pretraining_dataset: if character not in character_count['all']: character_count['all'][character] = -1 character_count['train'][character] = -1 label_count['all'] = {} for character in list(label_count['train'].keys()) + list(label_count['valid'].keys()) + list(label_count['test'].keys()) + list(label_count['deploy'].keys()): label_count['all'][character] = label_count['train'][character] + label_count['valid'][character] + label_count['test'][character] + label_count['deploy'][character] token_count['all'] = hd.order_dictionary(token_count['all'], 'value_key', reverse = True) label_count['all'] = hd.order_dictionary(label_count['all'], 'key', reverse = False) character_count['all'] = hd.order_dictionary(character_count['all'], 'value', reverse = True) if self.verbose: print('character_count[\'all\']: {0}'.format(character_count['all'])) token_to_index = {} token_to_index[self.UNK] = self.UNK_TOKEN_INDEX iteration_number = 0 number_of_unknown_tokens = 0 if self.verbose: print("parameters['remap_unknown_tokens_to_unk']: {0}".format(parameters['remap_unknown_tokens_to_unk'])) if self.verbose: print("len(token_count['train'].keys()): {0}".format(len(token_count['train'].keys()))) for token, count in token_count['all'].items(): if iteration_number == self.UNK_TOKEN_INDEX: iteration_number += 1 if parameters['remap_unknown_tokens_to_unk'] == 1 and \ (token_count['train'][token] == 0 or \ parameters['load_only_pretrained_token_embeddings']) and \ not hd.is_token_in_pretrained_embeddings(token, token_to_vector, parameters) and \ token not in all_tokens_in_pretraining_dataset: token_to_index[token] = self.UNK_TOKEN_INDEX number_of_unknown_tokens += 1 self.tokens_mapped_to_unk.append(token) else: token_to_index[token] = iteration_number iteration_number += 1 infrequent_token_indices = [] for token, count in token_count['train'].items(): if 0 < count <= remap_to_unk_count_threshold: infrequent_token_indices.append(token_to_index[token]) #if self.verbose: print("len(token_count['train']): {0}".format(len(token_count['train']))) # if self.verbose: print("len(infrequent_token_indices): {0}".format(len(infrequent_token_indices))) # Ensure that both B- and I- versions exist for each label labels_without_bio = set() for label in label_count['all'].keys(): new_label = hd.remove_bio_from_label_name(label) labels_without_bio.add(new_label) for label in labels_without_bio: if label == 'O': continue if parameters['tagging_format'] == 'bioes': prefixes = ['B-', 'I-', 'E-', 'S-'] else: prefixes = ['B-', 'I-'] for prefix in prefixes: l = prefix + label if l not in label_count['all']: label_count['all'][l] = 0 label_count['all'] = hd.order_dictionary(label_count['all'], 'key', reverse = False) if parameters['use_pretrained_model']: print ("USE_PRETRAINED_MODEL ACTIVE") self.unique_labels = sorted(list(pretraining_dataset.label_to_index.keys())) # Make sure labels are compatible with the pretraining dataset. for label in label_count['all']: if label not in pretraining_dataset.label_to_index: raise AssertionError("The label {0} does not exist in the pretraining dataset. ".format(label) + "Please ensure that only the following labels exist in the dataset: {0}".format(', '.join(self.unique_labels))) label_to_index = pretraining_dataset.label_to_index.copy() else: label_to_index = {} iteration_number = 0 for label, count in label_count['all'].items(): label_to_index[label] = iteration_number iteration_number += 1 self.unique_labels.append(label) character_to_index = {} iteration_number = 0 for character, count in character_count['all'].items(): if iteration_number == self.PADDING_CHARACTER_INDEX: iteration_number += 1 character_to_index[character] = iteration_number iteration_number += 1 token_to_index = hd.order_dictionary(token_to_index, 'value', reverse = False) if self.verbose: print('token_to_index: {0}'.format(token_to_index)) index_to_token = hd.reverse_dictionary(token_to_index) if parameters['remap_unknown_tokens_to_unk'] == 1: index_to_token[self.UNK_TOKEN_INDEX] = self.UNK if self.verbose: print('index_to_token: {0}'.format(index_to_token)) label_to_index = hd.order_dictionary(label_to_index, 'value', reverse = False) index_to_label = hd.reverse_dictionary(label_to_index) character_to_index = hd.order_dictionary(character_to_index, 'value', reverse = False) index_to_character = hd.reverse_dictionary(character_to_index) self.token_to_index = token_to_index self.index_to_token = index_to_token self.index_to_character = index_to_character self.character_to_index = character_to_index self.index_to_label = index_to_label self.label_to_index = label_to_index self.tokens = tokens self.labels = labels dataset_types=['train','test','valid','deploy'] token_indices, label_indices, character_indices_padded, character_indices, token_lengths, characters, label_vector_indices = self._convert_to_indices(dataset_types) self.token_indices = token_indices self.label_indices = label_indices self.character_indices_padded = character_indices_padded self.character_indices = character_indices self.token_lengths = token_lengths self.characters = characters self.label_vector_indices = label_vector_indices self.number_of_classes = max(self.index_to_label.keys()) + 1 self.vocabulary_size = max(self.index_to_token.keys()) + 1 self.alphabet_size = max(self.index_to_character.keys()) + 1 # unique_labels_of_interest is used to compute F1-scores. self.unique_labels_of_interest = list(self.unique_labels) self.unique_labels_of_interest.remove('O') self.unique_label_indices_of_interest = [] for lab in self.unique_labels_of_interest: self.unique_label_indices_of_interest.append(label_to_index[lab]) self.infrequent_token_indices = infrequent_token_indices elapsed_time = time.time() - start_time print('done ({0:.2f} seconds)'.format(elapsed_time)) self.feature_vector_size=0 return token_to_vector
apache-2.0
text-machine-lab/CliNER
code/model.py
1
27656
###################################################################### # CliNER - model.py # # # # Willie Boag # # # # Purpose: Define the model for clinical concept extraction. # ###################################################################### import sys from sklearn.feature_extraction import DictVectorizer import os import random import math import io import numpy as np from time import localtime, strftime from collections import defaultdict from notes.documents import labels as tag2id, id2tag from tools import flatten, save_list_structure, reconstruct_list from tools import print_str, print_vec, print_files, write cliner_dir = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) tmp_dir = os.path.join(cliner_dir, 'data', 'tmp') class ClinerModel: def log(self, out, model_file=None): ''' ClinerModel::log() Log training information of model. @param out. Either a filename or file channel to output the log string. @param model_file. A path to optionally identify where the model was saved. @return None ''' if not self._log: log = self.__log_str(model_file) else: log = self._log # depending on whether it is already opened as a channel if isinstance(out,type(sys.stdout)): write(out, '%s\n' % log) else: with open(out, 'a') as f: write(f, '%s\n' % log) def __log_str_NEURAL(self,model_file=None): "" def __log_str(self, model_file=None): ''' ClinerModel::__log_str() Build a string of information about training for the model's log file. @param model_file. A path to optionally identify where the model was saved. @return A string of the model's training information ''' assert self._is_trained, 'ClinerModel not trained' with io.StringIO() as f: write(f, u'\n') write(f, '-'*40) write(f, u'\n\n') if model_file: write(f, 'model : %s\n' % os.path.abspath(model_file)) write(f, u'\n') if self._use_lstm: write(f, u'modeltype: LSTM\n') else: write(f, u'modeltype: CRF\n') if 'hyperparams' in self._score: for name,value in self._score['hyperparams'].items(): write(f, u'\t%-10s: %s\n' % (name,value)) write(f, u'\n') print_str(f, 'features', self._features) write(f, u'\n') write(f, u'\n') write(f, 'training began: %s\n' % self._time_train_begin) write(f, 'training ended: %s\n' % self._time_train_end) write(f, u'\n') write(f, u'scores\n') print_vec(f, 'train precision', self._score['train']['precision']) print_vec(f, 'train recall ', self._score['train']['recall' ]) print_vec(f, 'train f1 ', self._score['train']['f1' ]) write(f, self._score['train']['conf']) if 'dev' in self._score: print_vec(f, u'dev precision ', self._score['dev']['precision']) print_vec(f, u'dev recall ', self._score['dev']['recall' ]) print_vec(f, u'dev f1 ', self._score['dev']['f1' ]) write(f, self._score['dev']['conf']) if 'test' in self._score: print_vec(f, u'test precision ', self._score['test']['precision']) print_vec(f, u'test recall ', self._score['test']['recall' ]) print_vec(f, u'test f1 ', self._score['test']['f1' ]) write(f, self._score['test']['conf']) if 'history' in self._score: for label,vec in self._score['history'].items(): print_vec(f, '%-16s'%label, vec) write(f, u'\n') if self._training_files: write(f, u'\n') write(f, u'Training Files\n') if len(self._training_files) < 200: print_files(f, self._training_files) else: write(f, '\t%d files\n'%len(self._training_files)) write(f, u'\n') write(f, u'-'*40) write(f, u'\n\n') # get output as full string contents = f.getvalue() return contents def __init__(self, use_lstm): """ ClinerModel::__init__() Instantiate a ClinerModel object. @param use_lstm. Bool indicating whether to train a CRF or LSTM. """ self._use_lstm = use_lstm self._is_trained = False self._clf = "latin1" self._vocab = None self._training_files = None self._log = None self._text_feats = None # Import the tools for either CRF or LSTM if use_lstm: # NEW import DatasetCliner_experimental as Exp import tensorflow as tf import entity_lstm as entity_model import training_predict_LSTM import pickle import copy import helper_dataset as hd import shutil self._pretrained_dataset=None self._pretrained_wordvectors=None self._current_model=None self._parameters=None def train(self, train_notes, val=[], test=[]): """ ClinerModel::train() Purpose: Train a Machine Learning model on annotated data @param notes. A list of Note objects (containing text and annotations) @return None """ # Extract formatted data train_sents = flatten([n.getTokenizedSentences() for n in train_notes]) train_labels = flatten([n.getTokenLabels() for n in train_notes]) if test: test_sents = flatten([n.getTokenizedSentences() for n in test]) test_labels = flatten([n.getTokenLabels() for n in test]) else: test_sents = [] test_labels = [] if val: print ("VAL") val_sents = flatten([n.getTokenizedSentences() for n in val]) val_labels = flatten([n.getTokenLabels() for n in val]) self.train_fit(train_sents,train_labels,val_sents=val_sents,val_labels=val_labels,test_sents=test_sents,test_labels=test_labels) else: print ("NO DEV") self.train_fit(train_sents, train_labels, dev_split=0.1, test_sents=test_sents, test_labels=test_labels) self._train_files = [ n.getName() for n in train_notes+val ] def train_fit(self, train_sents, train_labels, val_sents=None, val_labels=None, test_sents=None, test_labels=None, dev_split=None): """ ClinerModel::train_fit() Purpose: Train clinical concept extraction model using annotated data. @param train_sents. A list of sentences, where each sentence is tokenized into words. @param train_labels. Parallel to 'train_sents', 7-way labels for concept spans. @param val_sents. Validation data. Same format as tokenized_sents @param val_labels. Validation data. Same format as iob_nested_labels @param dev_split A real number from 0 to 1 """ # metadata self._time_train_begin = strftime("%Y-%m-%d %H:%M:%S", localtime()) # train classifier if self._use_lstm==False: voc, clf, dev_score, enabled_features = generic_train('all', train_sents , train_labels , self._use_lstm , val_sents=val_sents , val_labels=val_labels , test_sents=test_sents , test_labels=test_labels , dev_split=dev_split ) self._is_trained = True self._vocab = voc self._clf = clf self._score = dev_score self._features = enabled_features # metadata self._time_train_end = strftime("%Y-%m-%d %H:%M:%S", localtime()) else: print ("IN ERROR CHECK") print (dev_split) parameters,dataset,best = generic_train('all', train_sents , train_labels , self._use_lstm , val_sents=val_sents , val_labels=val_labels , test_sents=test_sents , test_labels=test_labels , dev_split=dev_split ) self._is_trained = True self.pretrained_dataset=dataset self.parameters=parameters self._score=best self._time_train_end = strftime("%Y-%m-%d %H:%M:%S", localtime()) print ("BEST EPOCH") print (best) #self._vocab = voc #self._clf = clf #self._score = dev_score #self._features = enabled_features # metadata #self._time_train_end = strftime("%Y-%m-%d %H:%M:%S", localtime()) def predict_classes_from_document(self, document): """ ClinerModel::predict_classes_from_documents() Predict concept annotations for a given document @param note. A Document object (containing text and annotations) @return List of predictions """ # Extract formatted data tokenized_sents = document.getTokenizedSentences() return self.predict_classes(tokenized_sents) def predict_classes(self, tokenized_sents): """ ClinerModel::predict_classes() Predict concept annotations for unlabeled, tokenized sentences @param tokenized_sents. A list of sentences, where each sentence is tokenized into words @return List of predictions """ hyperparams = {} # Predict labels for prose if self._use_lstm: if self.parameters==None: hyperprams['parameters'] = hd.load_parameters_from_file("LSTM_parameters.txt") if self._pretrained_dataset==None: temp_pretrained_dataset = os.path.join(hyperparams['parameters']['model_folder'], "dataset.pickle") hyperparams['pretrained_dataset'] = pickle.load(open(temp_pretrained_dataset_adress, 'rb')) vectorized_pred = generic_predict('all' , tokenized_sents , vocab = self._vocab , clf = self._clf , use_lstm = self._use_lstm, hyperparams = hyperparams) #pretrained_dataset=self._pretrained_dataset, #tokens_to_vec=self._pretrained_wordvector, #current_model=self._current_model, #parameters=self.parameters) #self._current_model=model if self._use_lstm: iob_pred = vectorized_pred else: iob_pred = [ [id2tag[p] for p in seq] for seq in vectorized_pred ] return iob_pred ############################################################################ ### Lowest-level (interfaces to ML modules) ### ############################################################################ def generic_train(p_or_n, train_sents, train_labels, use_lstm, val_sents=None, val_labels=None, test_sents=None, test_labels=None, dev_split=None): ''' generic_train() Train a model that works for both prose and nonprose @param p_or_n. A string that indicates "prose", "nonprose", or "all" @param train_sents. A list of sentences; each sentence is tokenized into words @param train_labels. Parallel to `train_sents`, 7-way labels for concept spans @param use_lstm Bool indicating whether to train CRF or LSTM. @param val_sents. Validation data. Same format as train_sents @param val_labels. Validation data. Same format as train_labels @param dev_split. A real number from 0 to 1 ''' # Must have data to train on: if len(train_sents) == 0: raise Exception('Training must have %s training examples' % p_or_n) # if you should split the data into train/dev yourself if (not val_sents) and (dev_split > 0.0) and (len(train_sents)>10): p = int(dev_split*100) sys.stdout.write('\tCreating %d/%d train/dev split\n' % (100-p,p)) perm = list(range(len(train_sents))) random.shuffle(perm) train_sents = [ train_sents[i] for i in perm ] train_labels = [ train_labels[i] for i in perm ] ind = int(dev_split*len(train_sents)) val_sents = train_sents[:ind ] train_sents = train_sents[ ind:] val_labels = train_labels[:ind ] train_labels = train_labels[ ind:] else: sys.stdout.write('\tUsing existing validation data\n') sys.stdout.write('\tvectorizing words %s\n' % p_or_n) if use_lstm: print ("TESTING NEW DATSET OBJECT") dataset = Exp.Dataset() parameters=hd.load_parameters_from_file("LSTM_parameters.txt") parameters['use_pretrained_model']=False Datasets_tokens={} Datasets_labels={} Datasets_tokens['train']=train_sents Datasets_labels['train']=train_labels if val_sents!=None: Datasets_tokens['valid']=val_sents Datasets_labels['valid']=val_labels if test_sents!=None: Datasets_tokens['test']=test_sents Datasets_labels['test']=test_labels dataset.load_dataset(Datasets_tokens,Datasets_labels,"",parameters) pickle.dump(dataset, open(os.path.join(parameters['model_folder'], 'dataset.pickle'), 'wb')) print (Datasets_tokens['valid'][0]) print (Datasets_tokens['test'][0]) parameters['Feature_vector_length']=dataset.feature_vector_size parameters['use_features_before_final_lstm']=False parameters['learning_rate']=0.005 sess = tf.Session() number_of_sent=list(range(len(dataset.token_indices['train']))) with sess.as_default(): model=entity_model.EntityLSTM(dataset,parameters) sess.run(tf.global_variables_initializer()) model.load_pretrained_token_embeddings(sess, dataset,parameters) epoch_number = -1 transition_params_trained = np.random.rand(5+2,5+2) values={} values["best"]=0 f1_dictionary={} f1_dictionary['best']=0 model_saver = tf.train.Saver(max_to_keep=100) print ("START TRAINING") eval_dir = os.path.join(tmo_dir, 'cliner_eval_%d' % random.randint(0,256)+os.sep) parameters['conll_like_result_folder']=eval_dir test_temp = os.path.join(parameters['conll_like_result_folder'], 'test/') train_temp = os.path.join(parameters['conll_like_result_folder'], 'train/') valid_temp = os.path.join(parameters['conll_like_result_folder'], 'valid/') os.mkdir(parameters['conll_like_result_folder']) os.mkdir(test_temp) os.mkdir(train_temp) os.mkdir(valid_temp) while epoch_number<90: average_loss_per_phrase=0 accuracy_per_phase=0 step = 0 epoch_number += 1 if epoch_number != 0: sequence_numbers=list(range(len(dataset.token_indices['train']))) random.shuffle(sequence_numbers) for sequence_number in sequence_numbers: loss,accuracy,transition_params_trained=training_predict_LSTM.train_step(sess, dataset, sequence_number, model) average_loss_per_phrase+=loss accuracy_per_phase+=accuracy step += 1 if step % 10 == 0: print('Training {0:.2f}% done\n'.format(step/len(sequence_numbers)*100)) model_saver.save(sess, os.path.join(parameters['model_folder'], 'model_{0:05d}.ckpt'.format(epoch_number))) total_loss=average_loss_per_phrase total_accuracy=accuracy_per_phase average_loss_per_phrase=average_loss_per_phrase/len(number_of_sent) accuracy_per_phase=accuracy_per_phase/len(number_of_sent) if epoch_number>0: "" f1,predictions=training_predict_LSTM.prediction_step(sess,dataset,"test",model,epoch_number,parameters['conll_like_result_folder'],transition_params_trained) f1_train,_=training_predict_LSTM.prediction_step(sess,dataset,"train", model,epoch_number,parameters['conll_like_result_folder'],transition_params_trained) f1_valid,_=training_predict_LSTM.prediction_step(sess,dataset,"valid", model,epoch_number,parameters['conll_like_result_folder'],transition_params_trained) correctly_predicted_tokens=training_predict_LSTM.compute_train_accuracy(parameters['conll_like_result_folder']+"valid"+os.sep+"epoche_"+str(epoch_number)+".txt") if f1_dictionary['best']<float(f1_valid): f1_dictionary['epoche']=epoch_number f1_dictionary['best']=float(f1_valid) if values["best"]<correctly_predicted_tokens: values["epoche"]=epoch_number values["best"]=correctly_predicted_tokens #print ("Number of correctly predicted tokens -test "+str(correctly_predicted_tokens)) print ("NEW EPOCHE"+" "+str(epoch_number)) print ("Current F1 on train"+" "+str(f1_train)) print ("Current F1 on valid"+" "+str(f1_valid)) print ("Current F1 on test"+" "+str(f1)) print ("Current F1 best (validation): ") print (f1_dictionary) shutil.rmtree(parameters['conll_like_result_folder']) return parameters, dataset,f1_dictionary['best'] else: ######## # CRF ######## from feature_extraction.features import extract_features # vectorize tokenized sentences text_features = extract_features(train_sents) # type(text_features): <type 'list'> # Collect list of feature types enabled_features = set() for sf in text_features: for wf in sf: for (feature_type,instance),value in wf.items(): if feature_type.startswith('prev'): feature_type = 'PREV*' if feature_type.startswith('next'): feature_type = 'NEXT*' enabled_features.add(feature_type) enabled_features = sorted(enabled_features) # Vectorize features vocab = DictVectorizer() flat_X_feats = vocab.fit_transform( flatten(text_features) ) X_feats = reconstruct_list(flat_X_feats, save_list_structure(text_features)) # vectorize IOB labels Y_labels = [ [tag2id[y] for y in y_seq] for y_seq in train_labels ] assert len(X_feats) == len(Y_labels) for i in range(len(X_feats)): assert X_feats[i].shape[0] == len(Y_labels[i]) # if there is specified validation data, then vectorize it if val_sents: # vectorize validation X val_text_features = extract_features(val_sents) flat_val_X_feats = vocab.transform( flatten(val_text_features) ) val_X = reconstruct_list(flat_val_X_feats, save_list_structure(val_text_features)) # vectorize validation Y val_Y = [ [tag2id[y] for y in y_seq] for y_seq in val_labels ] # if there is specified test data, then vectorize it if test_sents: # vectorize test X test_text_features = extract_features(test_sents) flat_test_X_feats = vocab.transform( flatten(test_text_features) ) test_X = reconstruct_list(flat_test_X_feats, save_list_structure(test_text_features)) # vectorize test Y test_Y = [ [tag2id[y] for y in y_seq] for y_seq in test_labels ] else: test_X = None test_Y = None sys.stdout.write('\ttraining classifiers %s\n' % p_or_n) if use_lstm: # train using lstm clf, dev_score = keras_ml.train(X_seq_ids, Y_labels, tag2id, len(vocab), val_X_ids=val_X, val_Y_ids=val_Y, test_X_ids=test_X, test_Y_ids=test_Y) else: # train using crf from machine_learning import crf clf, dev_score = crf.train(X_feats, Y_labels, val_X=val_X, val_Y=val_Y, test_X=test_X, test_Y=test_Y) return vocab, clf, dev_score, enabled_features #def generic_predict(p_or_n, tokenized_sents, vocab, clf, use_lstm, pretrained_dataset=None,tokens_to_vec=None, current_model=None, parameters=None): def generic_predict(p_or_n, tokenized_sents, vocab, clf, use_lstm, hyperparams): ''' generic_predict() Train a model that works for both prose and nonprose @param p_or_n. A string that indicates "prose", "nonprose", or "all" @param tokenized_sents. A list of sentences, where each sentence is tokenized into words @param vocab. A dictionary mapping word tokens to numeric indices. @param clf. An encoding of the trained keras model. @param use_lstm. Bool indicating whether clf is a CRF or LSTM. ''' # use_lstm=self._use_lstm if use_lstm: #parameters=hd.load_parameters_from_file("LSTM_parameters.txt") parameters['use_pretrained_model']=True #model_folder="./models/NN_models" predictions=[] sys.stdout.write('\n use_lstm \n') dataset = Exp.Dataset() fictional_labels= copy.deepcopy(tokenized_sents) for idx,x in enumerate(fictional_labels): for val_id,value in enumerate(x): fictional_labels[idx][val_id]='O' Datasets_tokens={} Datasets_labels={} Datasets_tokens['deploy']=tokenized_sents Datasets_labels['deploy']=fictional_labels token_to_vector=dataset.load_dataset(Datasets_tokens, Datasets_labels, "", parameters,token_to_vector=tokens_to_vec, pretrained_dataset=pretrained_dataset) print (dataset.token_indices.keys()) parameters['Feature_vector_length']=dataset.feature_vector_size parameters['use_features_before_final_lstm']=False dataset.update_dataset("", ['deploy'],Datasets_tokens,Datasets_labels) del Datasets_tokens del Datasets_labels #model=current_model model=entity_model.EntityLSTM(dataset,parameters) os.mkdir(parameters['conll_like_result_folder']) test_temp = os.path.join(parameters['conll_like_result_folder'], 'test/') train_temp = os.path.join(parameters['conll_like_result_folder'], 'train/') valid_temp = os.path.join(parameters['conll_like_result_folder'], 'valid/') os.mkdir(test_temp) os.mkdir(train_temp) os.mkdir(valid_temp) sess = tf.Session() with sess.as_default(): #model=entity_model.EntityLSTM(dataset,parameters) transition_params_trained=model.restore_from_pretrained_model(parameters, dataset, sess, token_to_vector=token_to_vector,pretrained_dataset=pretrained_dataset) del token_to_vector predictions=training_predict_LSTM.prediction_step(sess,dataset,"deploy",model,0,parameters['conll_like_result_folder'],transition_params_trained) sess.close() tf.reset_default_graph() shutil.rmtree(parameters['conll_like_result_folder']) return predictions, model # If nothing to predict, skip actual prediction if len(tokenized_sents) == 0: sys.stdout.write('\tnothing to predict %s\n' % p_or_n) return [] sys.stdout.write('\tvectorizing words %s\n' % p_or_n) if use_lstm: print('todo: incorporate lstm') # vectorize tokenized sentences #X = [] #for sent in tokenized_sents: # id_seq = [] # for w in sent: # if w in vocab: # id_seq.append(vocab[w]) # else: # id_seq.append(vocab['oov']) # X.append(id_seq) else: from feature_extraction.features import extract_features # vectorize validation X text_features = extract_features(tokenized_sents) flat_X_feats = vocab.transform( flatten(text_features) ) X = reconstruct_list(flat_X_feats, save_list_structure(text_features)) sys.stdout.write('\tpredicting labels %s\n' % p_or_n) # Predict labels if use_lstm: print ("TEST_PREDICT") exit() else: from machine_learning import crf predictions = crf.predict(clf, X) # Format labels from output return predictions
apache-2.0
mlassnig/pilot2
pilot/scripts/stageout.py
1
14721
#do not use: #!/usr/bin/env python3 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # # Authors: # - Paul Nilsson, [email protected], 2020 import argparse import os import re from pilot.api.data import StageOutClient from pilot.common.errorcodes import ErrorCodes from pilot.common.exception import PilotException from pilot.info import InfoService, FileSpec, infosys from pilot.util.config import config from pilot.util.filehandling import establish_logging, write_json from pilot.util.tracereport import TraceReport import logging errors = ErrorCodes() # error codes GENERAL_ERROR = 1 NO_QUEUENAME = 2 NO_SCOPES = 3 NO_LFNS = 4 NO_EVENTTYPE = 5 NO_LOCALSITE = 6 NO_REMOTESITE = 7 NO_PRODUSERID = 8 NO_JOBID = 9 NO_TASKID = 10 NO_JOBDEFINITIONID = 11 NO_DDMENDPOINTS = 12 NO_DATASETS = 13 NO_GUIDS = 14 TRANSFER_ERROR = 15 def get_args(): """ Return the args from the arg parser. :return: args (arg parser object). """ arg_parser = argparse.ArgumentParser() arg_parser.add_argument('-d', dest='debug', action='store_true', default=False, help='Enable debug mode for logging messages') arg_parser.add_argument('-q', dest='queuename', required=True, help='Queue name (e.g., AGLT2_TEST-condor') arg_parser.add_argument('-w', dest='workdir', required=False, default=os.getcwd(), help='Working directory') arg_parser.add_argument('--scopes', dest='scopes', required=True, help='List of Rucio scopes (e.g., mc16_13TeV,mc16_13TeV') arg_parser.add_argument('--lfns', dest='lfns', required=True, help='LFN list (e.g., filename1,filename2') arg_parser.add_argument('--eventtype', dest='eventtype', required=True, help='Event type') arg_parser.add_argument('--ddmendpoints', dest='ddmendpoints', required=True, help='DDM endpoint') arg_parser.add_argument('--datasets', dest='datasets', required=True, help='Dataset') arg_parser.add_argument('--guids', dest='guids', required=True, help='GUIDs') arg_parser.add_argument('--localsite', dest='localsite', required=True, help='Local site') arg_parser.add_argument('--remotesite', dest='remotesite', required=True, help='Remote site') arg_parser.add_argument('--produserid', dest='produserid', required=True, help='produserid') arg_parser.add_argument('--jobid', dest='jobid', required=True, help='PanDA job id') arg_parser.add_argument('--taskid', dest='taskid', required=True, help='PanDA task id') arg_parser.add_argument('--jobdefinitionid', dest='jobdefinitionid', required=True, help='Job definition id') arg_parser.add_argument('--eventservicemerge', dest='eventservicemerge', type=str2bool, default=False, help='Event service merge boolean') arg_parser.add_argument('--usepcache', dest='usepcache', type=str2bool, default=False, help='pcache boolean from queuedata') arg_parser.add_argument('--no-pilot-log', dest='nopilotlog', action='store_true', default=False, help='Do not write the pilot log to file') arg_parser.add_argument('--outputdir', dest='outputdir', required=False, default='', help='Output files directory') arg_parser.add_argument('--catchall', dest='catchall', required=False, default='', help='PQ catchall field') return arg_parser.parse_args() def str2bool(v): """ Helper function to convert string to bool """ if isinstance(v, bool): return v if v.lower() in ('yes', 'true', 't', 'y', '1'): return True elif v.lower() in ('no', 'false', 'f', 'n', '0'): return False else: raise argparse.ArgumentTypeError('Boolean value expected.') def verify_args(): """ Make sure required arguments are set, and if they are not then set them. (deprecated) :return: """ if not args.workdir: args.workdir = os.getcwd() if not args.queuename: message('queue name not set, cannot initialize InfoService') return NO_QUEUENAME if not args.scopes: message('scopes not set') return NO_SCOPES if not args.lfns: message('LFNs not set') return NO_LFNS if not args.eventtype: message('No event type provided') return NO_EVENTTYPE if not args.localsite: message('No local site provided') return NO_LOCALSITE if not args.remotesite: message('No remote site provided') return NO_REMOTESITE if not args.produserid: message('No produserid provided') return NO_PRODUSERID if not args.jobid: message('No jobid provided') return NO_JOBID if not args.ddmendpoints: message('No ddmendpoint provided') return NO_DDMENDPOINTS if not args.datasets: message('No dataset provided') return NO_DATASETS if not args.guids: message('No GUIDs provided') return NO_GUIDS if not args.taskid: message('No taskid provided') return NO_TASKID if not args.jobdefinitionid: message('No jobdefinitionid provided') return NO_JOBDEFINITIONID return 0 def message(msg): print(msg) if not logger else logger.info(msg) def get_file_lists(lfns, scopes, ddmendpoints, datasets, guids): return lfns.split(','), scopes.split(','), ddmendpoints.split(','), datasets.split(','), guids.split(',') class Job: """ A minimal implementation of the Pilot Job class with data members necessary for the trace report only. """ produserid = "" jobid = "" taskid = "" jobdefinitionid = "" def __init__(self, produserid="", jobid="", taskid="", jobdefinitionid=""): self.produserid = produserid.replace('%20', ' ') self.jobid = jobid self.taskid = taskid self.jobdefinitionid = jobdefinitionid def add_to_dictionary(dictionary, key, value1, value2, value3, value4, value5, value6): """ Add key: [value1, value2, value3, value4, value5, value6] to dictionary. In practice; lfn: [status, status_code, surl, turl, checksum, fsize]. :param dictionary: dictionary to be updated. :param key: lfn key to be added (string). :param value1: status to be added to list belonging to key (string). :param value2: status_code to be added to list belonging to key (string). :param value3: surl to be added to list belonging to key (string). :param value4: turl to be added to list belonging to key (string). :param value5: checksum to be added to list belonging to key (string). :param value6: fsize to be added to list belonging to key (string). :return: updated dictionary. """ dictionary[key] = [value1, value2, value3, value4, value5, value6] return dictionary def extract_error_info(err): error_code = 0 error_message = "" _code = re.search(r'error code: (\d+)', err) if _code: error_code = _code.group(1) _msg = re.search('details: (.+)', err) if _msg: error_message = _msg.group(1) error_message = error_message.replace('[PilotException(', '').strip() return error_code, error_message if __name__ == '__main__': """ Main function of the stage-in script. """ # get the args from the arg parser args = get_args() args.debug = True args.nopilotlog = False establish_logging(debug=args.debug, nopilotlog=args.nopilotlog, filename=config.Pilot.stageoutlog) logger = logging.getLogger(__name__) #ret = verify_args() #if ret: # exit(ret) # get the file info lfns, scopes, ddmendpoints, datasets, guids = get_file_lists(args.lfns, args.scopes, args.ddmendpoints, args.datasets, args.guids) if len(lfns) != len(scopes) or len(lfns) != len(ddmendpoints) or len(lfns) != len(datasets) or len(lfns) != len(guids): message('file lists not same length: len(lfns)=%d, len(scopes)=%d, len(ddmendpoints)=%d, len(datasets)=%d, len(guids)=%d' % (len(lfns), len(scopes), len(ddmendpoints), len(datasets), len(guids))) # generate the trace report trace_report = TraceReport(pq=os.environ.get('PILOT_SITENAME', ''), localSite=args.localsite, remoteSite=args.remotesite, dataset="", eventType=args.eventtype) job = Job(produserid=args.produserid, jobid=args.jobid, taskid=args.taskid, jobdefinitionid=args.jobdefinitionid) trace_report.init(job) try: infoservice = InfoService() infoservice.init(args.queuename, infosys.confinfo, infosys.extinfo) infosys.init(args.queuename) # is this correct? otherwise infosys.queuedata doesn't get set except Exception as e: message(e) # perform stage-out (single transfers) err = "" errcode = 0 xfiles = None activity = 'pw' client = StageOutClient(infoservice, logger=logger, trace_report=trace_report) kwargs = dict(workdir=args.workdir, cwd=args.workdir, usecontainer=False, job=job, output_dir=args.outputdir, catchall=args.catchall) # , mode='stage-out') xfiles = [] for lfn, scope, dataset, ddmendpoint, guid in list(zip(lfns, scopes, datasets, ddmendpoints, guids)): files = [{'scope': scope, 'lfn': lfn, 'workdir': args.workdir, 'dataset': dataset, 'ddmendpoint': ddmendpoint, 'ddmendpoint_alt': None}] # do not abbreviate the following two lines as otherwise the content of xfiles will be a list of generator objects _xfiles = [FileSpec(type='output', **f) for f in files] xfiles += _xfiles # prod analy unification: use destination preferences from PanDA server for unified queues if infoservice.queuedata.type != 'unified': client.prepare_destinations(xfiles, activity) ## FIX ME LATER: split activities: for astorages and for copytools (to unify with ES workflow) try: r = client.transfer(xfiles, activity=activity, **kwargs) except PilotException as error: import traceback error_msg = traceback.format_exc() logger.error(error_msg) err = errors.format_diagnostics(error.get_error_code(), error_msg) except Exception as error: err = str(error) errcode = -1 message(err) # for lfn, scope, dataset, ddmendpoint, guid in list(zip(lfns, scopes, datasets, ddmendpoints, guids)): # try: # files = [{'scope': scope, 'lfn': lfn, 'workdir': args.workdir, 'dataset': dataset, 'ddmendpoint': ddmendpoint, 'ddmendpoint_alt': None}] # xfiles = [FileSpec(type='output', **f) for f in files] # # # prod analy unification: use destination preferences from PanDA server for unified queues # if infoservice.queuedata.type != 'unified': # client.prepare_destinations(xfiles, # activity) ## FIX ME LATER: split activities: for astorages and for copytools (to unify with ES workflow) # # r = client.transfer(xfiles, activity=activity, **kwargs) # except PilotException as error: # import traceback # error_msg = traceback.format_exc() # logger.error(error_msg) # err = errors.format_diagnostics(error.get_error_code(), error_msg) # except Exception as error: # err = str(error) # errcode = -1 # message(err) # put file statuses in a dictionary to be written to file file_dictionary = {} # { 'error': [error_diag, -1], 'lfn1': [status, status_code], 'lfn2':.., .. } if xfiles: message('stageout script summary of transferred files:') for fspec in xfiles: add_to_dictionary(file_dictionary, fspec.lfn, fspec.status, fspec.status_code, fspec.surl, fspec.turl, fspec.checksum.get('adler32'), fspec.filesize) status = fspec.status if fspec.status else "(not transferred)" message(" -- lfn=%s, status_code=%s, status=%s, surl=%s, turl=%s, checksum=%s, filesize=%s" % (fspec.lfn, fspec.status_code, status, fspec.surl, fspec.turl, fspec.checksum.get('adler32'), fspec.filesize)) # add error info, if any if err: errcode, err = extract_error_info(err) add_to_dictionary(file_dictionary, 'error', err, errcode, None, None, None, None) path = os.path.join(args.workdir, config.Container.stageout_status_dictionary) if os.path.exists(path): path += '.log' _status = write_json(path, file_dictionary) if err: message("containerised file transfers failed: %s" % err) exit(TRANSFER_ERROR) message("wrote %s" % path) message("containerised file transfers finished") exit(0)
apache-2.0
DonBeo/scikit-learn
sklearn/cross_decomposition/tests/test_pls.py
1
10168
import numpy as np from sklearn.utils.testing import assert_array_almost_equal from sklearn.datasets import load_linnerud from sklearn.cross_decomposition import pls_ from nose.tools import assert_equal def test_pls(): d = load_linnerud() X = d.data Y = d.target # 1) Canonical (symmetric) PLS (PLS 2 blocks canonical mode A) # =========================================================== # Compare 2 algo.: nipals vs. svd # ------------------------------ pls_bynipals = pls_.PLSCanonical(n_components=X.shape[1]) pls_bynipals.fit(X, Y) pls_bysvd = pls_.PLSCanonical(algorithm="svd", n_components=X.shape[1]) pls_bysvd.fit(X, Y) # check equalities of loading (up to the sign of the second column) assert_array_almost_equal( pls_bynipals.x_loadings_, np.multiply(pls_bysvd.x_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different x loadings") assert_array_almost_equal( pls_bynipals.y_loadings_, np.multiply(pls_bysvd.y_loadings_, np.array([1, -1, 1])), decimal=5, err_msg="nipals and svd implementation lead to different y loadings") # Check PLS properties (with n_components=X.shape[1]) # --------------------------------------------------- plsca = pls_.PLSCanonical(n_components=X.shape[1]) plsca.fit(X, Y) T = plsca.x_scores_ P = plsca.x_loadings_ Wx = plsca.x_weights_ U = plsca.y_scores_ Q = plsca.y_loadings_ Wy = plsca.y_weights_ def check_ortho(M, err_msg): K = np.dot(M.T, M) assert_array_almost_equal(K, np.diag(np.diag(K)), err_msg=err_msg) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(Wx, "x weights are not orthogonal") check_ortho(Wy, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(T, "x scores are not orthogonal") check_ortho(U, "y scores are not orthogonal") # Check X = TP' and Y = UQ' (with (p == q) components) # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # center scale X, Y Xc, Yc, x_mean, y_mean, x_std, y_std =\ pls_._center_scale_xy(X.copy(), Y.copy(), scale=True) assert_array_almost_equal(Xc, np.dot(T, P.T), err_msg="X != TP'") assert_array_almost_equal(Yc, np.dot(U, Q.T), err_msg="Y != UQ'") # Check that rotations on training data lead to scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Xr = plsca.transform(X) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") Xr, Yr = plsca.transform(X, Y) assert_array_almost_equal(Xr, plsca.x_scores_, err_msg="rotation on X failed") assert_array_almost_equal(Yr, plsca.y_scores_, err_msg="rotation on Y failed") # "Non regression test" on canonical PLS # -------------------------------------- # The results were checked against the R-package plspm pls_ca = pls_.PLSCanonical(n_components=X.shape[1]) pls_ca.fit(X, Y) x_weights = np.array( [[-0.61330704, 0.25616119, -0.74715187], [-0.74697144, 0.11930791, 0.65406368], [-0.25668686, -0.95924297, -0.11817271]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_rotations = np.array( [[-0.61330704, 0.41591889, -0.62297525], [-0.74697144, 0.31388326, 0.77368233], [-0.25668686, -0.89237972, -0.24121788]]) assert_array_almost_equal(pls_ca.x_rotations_, x_rotations) y_weights = np.array( [[+0.58989127, 0.7890047, 0.1717553], [+0.77134053, -0.61351791, 0.16920272], [-0.23887670, -0.03267062, 0.97050016]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_rotations = np.array( [[+0.58989127, 0.7168115, 0.30665872], [+0.77134053, -0.70791757, 0.19786539], [-0.23887670, -0.00343595, 0.94162826]]) assert_array_almost_equal(pls_ca.y_rotations_, y_rotations) # 2) Regression PLS (PLS2): "Non regression test" # =============================================== # The results were checked against the R-packages plspm, misOmics and pls pls_2 = pls_.PLSRegression(n_components=X.shape[1]) pls_2.fit(X, Y) x_weights = np.array( [[-0.61330704, -0.00443647, 0.78983213], [-0.74697144, -0.32172099, -0.58183269], [-0.25668686, 0.94682413, -0.19399983]]) assert_array_almost_equal(pls_2.x_weights_, x_weights) x_loadings = np.array( [[-0.61470416, -0.24574278, 0.78983213], [-0.65625755, -0.14396183, -0.58183269], [-0.51733059, 1.00609417, -0.19399983]]) assert_array_almost_equal(pls_2.x_loadings_, x_loadings) y_weights = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_weights_, y_weights) y_loadings = np.array( [[+0.32456184, 0.29892183, 0.20316322], [+0.42439636, 0.61970543, 0.19320542], [-0.13143144, -0.26348971, -0.17092916]]) assert_array_almost_equal(pls_2.y_loadings_, y_loadings) # 3) Another non-regression test of Canonical PLS on random dataset # ================================================================= # The results were checked against the R-package plspm n = 500 p_noise = 10 q_noise = 5 # 2 latents vars: np.random.seed(11) l1 = np.random.normal(size=n) l2 = np.random.normal(size=n) latents = np.array([l1, l1, l2, l2]).T X = latents + np.random.normal(size=4 * n).reshape((n, 4)) Y = latents + np.random.normal(size=4 * n).reshape((n, 4)) X = np.concatenate( (X, np.random.normal(size=p_noise * n).reshape(n, p_noise)), axis=1) Y = np.concatenate( (Y, np.random.normal(size=q_noise * n).reshape(n, q_noise)), axis=1) np.random.seed(None) pls_ca = pls_.PLSCanonical(n_components=3) pls_ca.fit(X, Y) x_weights = np.array( [[0.65803719, 0.19197924, 0.21769083], [0.7009113, 0.13303969, -0.15376699], [0.13528197, -0.68636408, 0.13856546], [0.16854574, -0.66788088, -0.12485304], [-0.03232333, -0.04189855, 0.40690153], [0.1148816, -0.09643158, 0.1613305], [0.04792138, -0.02384992, 0.17175319], [-0.06781, -0.01666137, -0.18556747], [-0.00266945, -0.00160224, 0.11893098], [-0.00849528, -0.07706095, 0.1570547], [-0.00949471, -0.02964127, 0.34657036], [-0.03572177, 0.0945091, 0.3414855], [0.05584937, -0.02028961, -0.57682568], [0.05744254, -0.01482333, -0.17431274]]) assert_array_almost_equal(pls_ca.x_weights_, x_weights) x_loadings = np.array( [[0.65649254, 0.1847647, 0.15270699], [0.67554234, 0.15237508, -0.09182247], [0.19219925, -0.67750975, 0.08673128], [0.2133631, -0.67034809, -0.08835483], [-0.03178912, -0.06668336, 0.43395268], [0.15684588, -0.13350241, 0.20578984], [0.03337736, -0.03807306, 0.09871553], [-0.06199844, 0.01559854, -0.1881785], [0.00406146, -0.00587025, 0.16413253], [-0.00374239, -0.05848466, 0.19140336], [0.00139214, -0.01033161, 0.32239136], [-0.05292828, 0.0953533, 0.31916881], [0.04031924, -0.01961045, -0.65174036], [0.06172484, -0.06597366, -0.1244497]]) assert_array_almost_equal(pls_ca.x_loadings_, x_loadings) y_weights = np.array( [[0.66101097, 0.18672553, 0.22826092], [0.69347861, 0.18463471, -0.23995597], [0.14462724, -0.66504085, 0.17082434], [0.22247955, -0.6932605, -0.09832993], [0.07035859, 0.00714283, 0.67810124], [0.07765351, -0.0105204, -0.44108074], [-0.00917056, 0.04322147, 0.10062478], [-0.01909512, 0.06182718, 0.28830475], [0.01756709, 0.04797666, 0.32225745]]) assert_array_almost_equal(pls_ca.y_weights_, y_weights) y_loadings = np.array( [[0.68568625, 0.1674376, 0.0969508], [0.68782064, 0.20375837, -0.1164448], [0.11712173, -0.68046903, 0.12001505], [0.17860457, -0.6798319, -0.05089681], [0.06265739, -0.0277703, 0.74729584], [0.0914178, 0.00403751, -0.5135078], [-0.02196918, -0.01377169, 0.09564505], [-0.03288952, 0.09039729, 0.31858973], [0.04287624, 0.05254676, 0.27836841]]) assert_array_almost_equal(pls_ca.y_loadings_, y_loadings) # Orthogonality of weights # ~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_weights_, "x weights are not orthogonal") check_ortho(pls_ca.y_weights_, "y weights are not orthogonal") # Orthogonality of latent scores # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ check_ortho(pls_ca.x_scores_, "x scores are not orthogonal") check_ortho(pls_ca.y_scores_, "y scores are not orthogonal") def test_PLSSVD(): # Let's check the PLSSVD doesn't return all possible component but just # the specificied number d = load_linnerud() X = d.data Y = d.target n_components = 2 for clf in [pls_.PLSSVD, pls_.PLSRegression, pls_.PLSCanonical]: pls = clf(n_components=n_components) pls.fit(X, Y) assert_equal(n_components, pls.y_scores_.shape[1]) def test_univariate_pls_regression(): # Ensure 1d Y is correctly interpreted d = load_linnerud() X = d.data Y = d.target clf = pls_.PLSRegression() # Compare 1d to column vector model1 = clf.fit(X, Y[:, 0]).coef_ model2 = clf.fit(X, Y[:, :1]).coef_ assert_array_almost_equal(model1, model2) def test_scale(): d = load_linnerud() X = d.data Y = d.target # causes X[:, -1].std() to be zero X[:, -1] = 1.0 for clf in [pls_.PLSCanonical(), pls_.PLSRegression(), pls_.PLSSVD()]: clf.set_params(scale=True) clf.fit(X, Y)
bsd-3-clause
nyu-dl/dl4mt-cdec
subword_base/train_wmt15_deen_bpe2bpe_both_adam.py
1
3244
import os from collections import OrderedDict from nmt import train from subword_base_both import * layers = {'ff': ('param_init_fflayer', 'fflayer'), 'fff': ('param_init_ffflayer', 'ffflayer'), 'gru': ('param_init_gru', 'gru_layer'), 'two_layer_gru_decoder_both': ('param_init_two_layer_gru_decoder_both', 'two_layer_gru_decoder_both'), } def main(job_id, params): re_load = False save_file_name = 'bpe2bpe_two_layer_gru_decoder_both_adam' source_dataset = params['train_data_path'] + params['source_dataset'] target_dataset = params['train_data_path'] + params['target_dataset'] valid_source_dataset = params['dev_data_path'] + params['valid_source_dataset'] valid_target_dataset = params['dev_data_path'] + params['valid_target_dataset'] source_dictionary = params['train_data_path'] + params['source_dictionary'] target_dictionary = params['train_data_path'] + params['target_dictionary'] print params, params['save_path'], save_file_name validerr = train( max_epochs=int(params['max_epochs']), patience=int(params['patience']), dim_word=int(params['dim_word']), dim_word_src=int(params['dim_word_src']), save_path=params['save_path'], save_file_name=save_file_name, re_load=re_load, enc_dim=int(params['enc_dim']), dec_dim=int(params['dec_dim']), n_words=int(params['n_words']), n_words_src=int(params['n_words_src']), decay_c=float(params['decay_c']), lrate=float(params['learning_rate']), optimizer=params['optimizer'], maxlen=int(params['maxlen']), maxlen_trg=int(params['maxlen_trg']), maxlen_sample=int(params['maxlen_sample']), batch_size=int(params['batch_size']), valid_batch_size=int(params['valid_batch_size']), sort_size=int(params['sort_size']), validFreq=int(params['validFreq']), dispFreq=int(params['dispFreq']), saveFreq=int(params['saveFreq']), sampleFreq=int(params['sampleFreq']), clip_c=int(params['clip_c']), datasets=[source_dataset, target_dataset], valid_datasets=[valid_source_dataset, valid_target_dataset], dictionaries=[source_dictionary, target_dictionary], use_dropout=int(params['use_dropout']), source_word_level=int(params['source_word_level']), target_word_level=int(params['target_word_level']), layers=layers, save_every_saveFreq=1, use_bpe=1, init_params=init_params, build_model=build_model, build_sampler=build_sampler, gen_sample=gen_sample ) return validerr if __name__ == '__main__': import sys, time if len(sys.argv) > 1: config_file_name = sys.argv[-1] else: config_file_name = 'wmt15_deen_bpe2bpe_adam.txt' f = open(config_file_name, 'r') lines = f.readlines() params = OrderedDict() for line in lines: line = line.split('\n')[0] param_list = line.split(' ') param_name = param_list[0] param_value = param_list[1] params[param_name] = param_value main(0, params)
bsd-3-clause
mckinziebrandon/DeepChatModels
data/_dataset.py
1
12596
"""ABC for datasets. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import logging import numpy as np import tensorflow as tf from utils import io_utils from abc import ABCMeta, abstractmethod, abstractproperty from chatbot.globals import DEFAULT_FULL_CONFIG DEFAULT_PARAMS = DEFAULT_FULL_CONFIG['dataset_params'] class DatasetABC(metaclass=ABCMeta): @abstractmethod def convert_to_tf_records(self, *args): """If not found in data dir, will create tfrecords data files from text files. """ pass @abstractmethod def train_generator(self, batch_size): """Returns a generator function for batches of batch_size train data. """ pass @abstractmethod def valid_generator(self, batch_size): """Returns a generator function for batches of batch_size validation data. """ pass @abstractproperty def word_to_idx(self): """Return dictionary map from str -> int. """ pass @abstractproperty def idx_to_word(self): """Return dictionary map from int -> str. """ pass @abstractproperty def name(self): """Returns name of the dataset as a string.""" pass @abstractproperty def max_seq_len(self): """Return the maximum allowed sentence length.""" pass class Dataset(DatasetABC): def __init__(self, dataset_params): """Implements the general of subset of operations that all dataset subclasses can use. Args: dataset_params: dictionary of configuration parameters. See DEFAULT_FULL_CONFIG at top of file for supported keys. """ self.__dict__['__params'] = Dataset.fill_params(dataset_params) # We query io_utils to ensure all data files are organized properly, # and io_utils returns the paths to files of interest. id_paths, vocab_path, vocab_size = io_utils.prepare_data( data_dir=self.data_dir, vocab_size=self.vocab_size, optimize=dataset_params.get('optimize_params'), config_path=dataset_params.get('config_path')) if vocab_size != self.vocab_size: self.log.info("Updating vocab size from %d to %d", self.vocab_size, vocab_size) self.vocab_size = vocab_size # Also update the input dict, in case it is used later/elsewhere. dataset_params['vocab_size'] = self.vocab_size self.paths = dict() self.paths = { **id_paths, 'vocab': vocab_path, 'train_tfrecords': None, 'valid_tfrecords': None} self._word_to_idx, self._idx_to_word = io_utils.get_vocab_dicts( vocab_path) # Create tfrecords file if not located in data_dir. self.convert_to_tf_records('train') self.convert_to_tf_records('valid') def convert_to_tf_records(self, prefix='train'): """If can't find tfrecords 'prefix' files, creates them. Args: prefix: 'train' or 'valid'. Determines which tfrecords to build. """ from_path = self.paths['from_'+prefix] to_path = self.paths['to_'+prefix] tfrecords_fname = (prefix + 'voc%d_seq%d' % (self.vocab_size, self.max_seq_len) + '.tfrecords') output_path = os.path.join(self.data_dir, tfrecords_fname) if os.path.isfile(output_path): self.log.info('Using tfrecords file %s' % output_path) self.paths[prefix + '_tfrecords'] = output_path return def get_sequence_example(encoder_line, decoder_line): space_needed = max(len(encoder_line.split()), len(decoder_line.split())) if space_needed > self.max_seq_len: return None example = tf.train.SequenceExample() encoder_list = [int(x) for x in encoder_line.split()] decoder_list = [io_utils.GO_ID] \ + [int(x) for x in decoder_line.split()] \ + [io_utils.EOS_ID] # Why tensorflow . . . why . . . example.context.feature['encoder_sequence_length'].int64_list.value.append( len(encoder_list)) example.context.feature['decoder_sequence_length'].int64_list.value.append( len(decoder_list)) encoder_sequence = example.feature_lists.feature_list['encoder_sequence'] decoder_sequence = example.feature_lists.feature_list['decoder_sequence'] for e in encoder_list: encoder_sequence.feature.add().int64_list.value.append(e) for d in decoder_list: decoder_sequence.feature.add().int64_list.value.append(d) return example with tf.gfile.GFile(from_path, mode="r") as encoder_file: with tf.gfile.GFile(to_path, mode="r") as decoder_file: with tf.python_io.TFRecordWriter(output_path) as writer: encoder_line = encoder_file.readline() decoder_line = decoder_file.readline() while encoder_line and decoder_line: sequence_example = get_sequence_example( encoder_line, decoder_line) if sequence_example is not None: writer.write(sequence_example.SerializeToString()) encoder_line = encoder_file.readline() decoder_line = decoder_file.readline() self.log.info("Converted text files %s and %s into tfrecords file %s" \ % (os.path.basename(from_path), os.path.basename(to_path), os.path.basename(output_path))) self.paths[prefix + '_tfrecords'] = output_path def sentence_generator(self, prefix='from'): """Yields (as words) single sentences from training data, for testing purposes. """ self.log.info("Generating sentences from %s", self.paths[prefix+'_train']) with tf.gfile.GFile(self.paths[prefix+'_train'], mode="r") as f: sentence = self.as_words( list(map(int, f.readline().strip().lower().split()))) while sentence: yield sentence sentence = self.as_words( list(map(int, f.readline().strip().lower().split()))) def pairs_generator(self, num_generate=None): in_sentences = self.sentence_generator('from') in_sentences = [s for s in in_sentences] out_sentences = self.sentence_generator('to') out_sentences = [s for s in out_sentences] if num_generate is None: num_generate = len(in_sentences) count = 0 for in_sent, out_sent in zip(in_sentences, out_sentences): yield in_sent, out_sent count += 1 if count >= num_generate: break def train_generator(self, batch_size): """[Note: not needed by DynamicBot since InputPipeline]""" return self._generator( self.paths['from_train'], self.paths['to_train'], batch_size) def valid_generator(self, batch_size): """[Note: not needed by DynamicBot since InputPipeline]""" return self._generator( self.paths['from_valid'], self.paths['to_valid'], batch_size) def _generator(self, from_path, to_path, batch_size): """(Used by BucketModels only). Returns a generator function that reads data from file, and yields shuffled batches. Args: from_path: full path to file for encoder inputs. to_path: full path to file for decoder inputs. batch_size: number of samples to yield at once. """ def longest_sentence(enc_list, dec_list): max_enc_len = max([len(s) for s in enc_list]) max_dec_len = max([len(s) for s in dec_list]) return max(max_enc_len, max_dec_len) def padded_batch(encoder_tokens, decoder_tokens): max_sent_len = longest_sentence(encoder_tokens, decoder_tokens) encoder_batch = np.array( [s + [io_utils.PAD_ID] * (max_sent_len - len(s)) for s in encoder_tokens])[:, ::-1] decoder_batch = np.array( [s + [io_utils.PAD_ID] * (max_sent_len - len(s)) for s in decoder_tokens]) return encoder_batch, decoder_batch encoder_tokens = [] decoder_tokens = [] with tf.gfile.GFile(from_path, mode="r") as source_file: with tf.gfile.GFile(to_path, mode="r") as target_file: source, target = source_file.readline(), target_file.readline() while source and target: # Skip sentence pairs that are too long for specifications. space_needed = max(len(source.split()), len(target.split())) if space_needed > self.max_seq_len: source, target = source_file.readline(), target_file.readline() continue # Reformat token strings to token lists. # Note: GO_ID is prepended by the chat bot, since it # determines whether or not it's responsible for responding. encoder_tokens.append([int(x) for x in source.split()]) decoder_tokens.append( [int(x) for x in target.split()] + [io_utils.EOS_ID]) # Have we collected batch_size number of sentences? # If so, pad & yield. assert len(encoder_tokens) == len(decoder_tokens) if len(encoder_tokens) == batch_size: yield padded_batch(encoder_tokens, decoder_tokens) encoder_tokens = [] decoder_tokens = [] source, target = source_file.readline(), target_file.readline() # Don't forget to yield the 'leftovers'! assert len(encoder_tokens) == len(decoder_tokens) assert len(encoder_tokens) <= batch_size if len(encoder_tokens) > 0: yield padded_batch(encoder_tokens, decoder_tokens) @property def word_to_idx(self): """Return dictionary map from str -> int. """ return self._word_to_idx @property def idx_to_word(self): """Return dictionary map from int -> str. """ return self._idx_to_word def as_words(self, sentence): """Convert list of integer tokens to a single sentence string.""" words = [] for token in sentence: word = self.idx_to_word[token] try: word = tf.compat.as_str(word) except UnicodeDecodeError: logging.error("UnicodeDecodeError on (token, word): " "(%r, %r)", token, word) word = str(word) words.append(word) words = " ".join(words) #words = " ".join([tf.compat.as_str(self.idx_to_word[i]) for i in sentence]) words = words.replace(' , ', ', ').replace(' .', '.').replace(' !', '!') words = words.replace(" ' ", "'").replace(" ?", "?") if len(words) < 2: return words return words[0].upper() + words[1:] @property def name(self): """Returns name of the dataset as a string.""" return self._name @property def train_size(self): raise NotImplemented @property def valid_size(self): raise NotImplemented @property def max_seq_len(self): return self._max_seq_len @staticmethod def fill_params(dataset_params): """Assigns default values from DEFAULT_FULL_CONFIG for keys not in dataset_params.""" if 'data_dir' not in dataset_params: raise ValueError('data directory not found in dataset_params.') return {**DEFAULT_PARAMS, **dataset_params} def __getattr__(self, name): if name not in self.__dict__['__params']: raise AttributeError(name) else: return self.__dict__['__params'][name]
mit
CodingCat/mxnet
example/kaggle-ndsb1/gen_img_list.py
42
7000
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import print_function import csv import os import sys import random import numpy as np import argparse parser = argparse.ArgumentParser(description='generate train/test image list files form input directory. If training it will also split into tr and va sets.') parser.add_argument('--image-folder', type=str, default="data/train/", help='the input data directory') parser.add_argument('--out-folder', type=str, default="data/", help='the output folder') parser.add_argument('--out-file', type=str, default="train.lst", help='the output lst file') parser.add_argument('--train', action='store_true', help='if we are generating training list and hence we have to loop over subdirectories') ## These options are only used if we are doing training lst parser.add_argument('--percent-val', type=float, default=0.25, help='the percentage of training list to use as validation') parser.add_argument('--stratified', action='store_true', help='if True it will split train lst into tr and va sets using stratified sampling') args = parser.parse_args() random.seed(888) fo_name=os.path.join(args.out_folder+args.out_file) fo = csv.writer(open(fo_name, "w"), delimiter='\t', lineterminator='\n') if args.train: tr_fo_name=os.path.join(args.out_folder+"tr.lst") va_fo_name=os.path.join(args.out_folder+"va.lst") tr_fo = csv.writer(open(tr_fo_name, "w"), delimiter='\t', lineterminator='\n') va_fo = csv.writer(open(va_fo_name, "w"), delimiter='\t', lineterminator='\n') #check sampleSubmission.csv from kaggle website to view submission format head = "acantharia_protist_big_center,acantharia_protist_halo,acantharia_protist,amphipods,appendicularian_fritillaridae,appendicularian_s_shape,appendicularian_slight_curve,appendicularian_straight,artifacts_edge,artifacts,chaetognath_non_sagitta,chaetognath_other,chaetognath_sagitta,chordate_type1,copepod_calanoid_eggs,copepod_calanoid_eucalanus,copepod_calanoid_flatheads,copepod_calanoid_frillyAntennae,copepod_calanoid_large_side_antennatucked,copepod_calanoid_large,copepod_calanoid_octomoms,copepod_calanoid_small_longantennae,copepod_calanoid,copepod_cyclopoid_copilia,copepod_cyclopoid_oithona_eggs,copepod_cyclopoid_oithona,copepod_other,crustacean_other,ctenophore_cestid,ctenophore_cydippid_no_tentacles,ctenophore_cydippid_tentacles,ctenophore_lobate,decapods,detritus_blob,detritus_filamentous,detritus_other,diatom_chain_string,diatom_chain_tube,echinoderm_larva_pluteus_brittlestar,echinoderm_larva_pluteus_early,echinoderm_larva_pluteus_typeC,echinoderm_larva_pluteus_urchin,echinoderm_larva_seastar_bipinnaria,echinoderm_larva_seastar_brachiolaria,echinoderm_seacucumber_auricularia_larva,echinopluteus,ephyra,euphausiids_young,euphausiids,fecal_pellet,fish_larvae_deep_body,fish_larvae_leptocephali,fish_larvae_medium_body,fish_larvae_myctophids,fish_larvae_thin_body,fish_larvae_very_thin_body,heteropod,hydromedusae_aglaura,hydromedusae_bell_and_tentacles,hydromedusae_h15,hydromedusae_haliscera_small_sideview,hydromedusae_haliscera,hydromedusae_liriope,hydromedusae_narco_dark,hydromedusae_narco_young,hydromedusae_narcomedusae,hydromedusae_other,hydromedusae_partial_dark,hydromedusae_shapeA_sideview_small,hydromedusae_shapeA,hydromedusae_shapeB,hydromedusae_sideview_big,hydromedusae_solmaris,hydromedusae_solmundella,hydromedusae_typeD_bell_and_tentacles,hydromedusae_typeD,hydromedusae_typeE,hydromedusae_typeF,invertebrate_larvae_other_A,invertebrate_larvae_other_B,jellies_tentacles,polychaete,protist_dark_center,protist_fuzzy_olive,protist_noctiluca,protist_other,protist_star,pteropod_butterfly,pteropod_theco_dev_seq,pteropod_triangle,radiolarian_chain,radiolarian_colony,shrimp_caridean,shrimp_sergestidae,shrimp_zoea,shrimp-like_other,siphonophore_calycophoran_abylidae,siphonophore_calycophoran_rocketship_adult,siphonophore_calycophoran_rocketship_young,siphonophore_calycophoran_sphaeronectes_stem,siphonophore_calycophoran_sphaeronectes_young,siphonophore_calycophoran_sphaeronectes,siphonophore_other_parts,siphonophore_partial,siphonophore_physonect_young,siphonophore_physonect,stomatopod,tornaria_acorn_worm_larvae,trichodesmium_bowtie,trichodesmium_multiple,trichodesmium_puff,trichodesmium_tuft,trochophore_larvae,tunicate_doliolid_nurse,tunicate_doliolid,tunicate_partial,tunicate_salp_chains,tunicate_salp,unknown_blobs_and_smudges,unknown_sticks,unknown_unclassified".split(',') # make image list img_lst = [] cnt = 0 if args.train: for i in xrange(len(head)): path = args.image_folder + head[i] lst = os.listdir(args.image_folder + head[i]) for img in lst: img_lst.append((cnt, i, path + '/' + img)) cnt += 1 else: lst = os.listdir(args.image_folder) for img in lst: img_lst.append((cnt, 0, args.image_folder + img)) cnt += 1 # shuffle random.shuffle(img_lst) #write for item in img_lst: fo.writerow(item) ## If training, split into train and validation lists (tr.lst and va.lst) ## Optional stratified sampling if args.train: img_lst=np.array(img_lst) if args.stratified: from sklearn.cross_validation import StratifiedShuffleSplit ## Stratified sampling to generate train and validation sets labels_train=img_lst[:,1] # unique_train, counts_train = np.unique(labels_train, return_counts=True) # To have a look at the frecuency distribution sss = StratifiedShuffleSplit(labels_train, 1, test_size=args.percent_val, random_state=0) for tr_idx, va_idx in sss: print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") else: (nRows, nCols) = img_lst.shape splitat=int(round(nRows*(1-args.percent_val),0)) tr_idx=range(0,splitat) va_idx=range(splitat,nRows) print("Train subset has ", len(tr_idx), " cases. Validation subset has ", len(va_idx), "cases") tr_lst=img_lst[tr_idx,:].tolist() va_lst=img_lst[va_idx,:].tolist() for item in tr_lst: tr_fo.writerow(item) for item in va_lst: va_fo.writerow(item)
apache-2.0
h-mayorquin/mnist_dl_ann_project
code/utils.py
37
5101
""" This file contains different utility functions that are not connected in anyway to the networks presented in the tutorials, but rather help in processing the outputs into a more understandable way. For example ``tile_raster_images`` helps in generating a easy to grasp image from a set of samples or weights. """ import numpy def scale_to_unit_interval(ndar, eps=1e-8): """ Scales all values in the ndarray ndar to be between 0 and 1 """ ndar = ndar.copy() ndar -= ndar.min() ndar *= 1.0 / (ndar.max() + eps) return ndar def tile_raster_images(X, img_shape, tile_shape, tile_spacing=(0, 0), scale_rows_to_unit_interval=True, output_pixel_vals=True): """ Transform an array with one flattened image per row, into an array in which images are reshaped and layed out like tiles on a floor. This function is useful for visualizing datasets whose rows are images, and also columns of matrices for transforming those rows (such as the first layer of a neural net). :type X: a 2-D ndarray or a tuple of 4 channels, elements of which can be 2-D ndarrays or None; :param X: a 2-D array in which every row is a flattened image. :type img_shape: tuple; (height, width) :param img_shape: the original shape of each image :type tile_shape: tuple; (rows, cols) :param tile_shape: the number of images to tile (rows, cols) :param output_pixel_vals: if output should be pixel values (i.e. int8 values) or floats :param scale_rows_to_unit_interval: if the values need to be scaled before being plotted to [0,1] or not :returns: array suitable for viewing as an image. (See:`Image.fromarray`.) :rtype: a 2-d array with same dtype as X. """ assert len(img_shape) == 2 assert len(tile_shape) == 2 assert len(tile_spacing) == 2 # The expression below can be re-written in a more C style as # follows : # # out_shape = [0,0] # out_shape[0] = (img_shape[0]+tile_spacing[0])*tile_shape[0] - # tile_spacing[0] # out_shape[1] = (img_shape[1]+tile_spacing[1])*tile_shape[1] - # tile_spacing[1] out_shape = [ (ishp + tsp) * tshp - tsp for ishp, tshp, tsp in zip(img_shape, tile_shape, tile_spacing) ] if isinstance(X, tuple): assert len(X) == 4 # Create an output numpy ndarray to store the image if output_pixel_vals: out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype='uint8') else: out_array = numpy.zeros((out_shape[0], out_shape[1], 4), dtype=X.dtype) #colors default to 0, alpha defaults to 1 (opaque) if output_pixel_vals: channel_defaults = [0, 0, 0, 255] else: channel_defaults = [0., 0., 0., 1.] for i in xrange(4): if X[i] is None: # if channel is None, fill it with zeros of the correct # dtype dt = out_array.dtype if output_pixel_vals: dt = 'uint8' out_array[:, :, i] = numpy.zeros( out_shape, dtype=dt ) + channel_defaults[i] else: # use a recurrent call to compute the channel and store it # in the output out_array[:, :, i] = tile_raster_images( X[i], img_shape, tile_shape, tile_spacing, scale_rows_to_unit_interval, output_pixel_vals) return out_array else: # if we are dealing with only one channel H, W = img_shape Hs, Ws = tile_spacing # generate a matrix to store the output dt = X.dtype if output_pixel_vals: dt = 'uint8' out_array = numpy.zeros(out_shape, dtype=dt) for tile_row in xrange(tile_shape[0]): for tile_col in xrange(tile_shape[1]): if tile_row * tile_shape[1] + tile_col < X.shape[0]: this_x = X[tile_row * tile_shape[1] + tile_col] if scale_rows_to_unit_interval: # if we should scale values to be between 0 and 1 # do this by calling the `scale_to_unit_interval` # function this_img = scale_to_unit_interval( this_x.reshape(img_shape)) else: this_img = this_x.reshape(img_shape) # add the slice to the corresponding position in the # output array c = 1 if output_pixel_vals: c = 255 out_array[ tile_row * (H + Hs): tile_row * (H + Hs) + H, tile_col * (W + Ws): tile_col * (W + Ws) + W ] = this_img * c return out_array
bsd-2-clause
DonBeo/scikit-learn
sklearn/utils/setup.py
294
2884
import os from os.path import join from sklearn._build_utils import get_blas_info def configuration(parent_package='', top_path=None): import numpy from numpy.distutils.misc_util import Configuration config = Configuration('utils', parent_package, top_path) config.add_subpackage('sparsetools') cblas_libs, blas_info = get_blas_info() cblas_compile_args = blas_info.pop('extra_compile_args', []) cblas_includes = [join('..', 'src', 'cblas'), numpy.get_include(), blas_info.pop('include_dirs', [])] libraries = [] if os.name == 'posix': libraries.append('m') cblas_libs.append('m') config.add_extension('sparsefuncs_fast', sources=['sparsefuncs_fast.c'], libraries=libraries) config.add_extension('arrayfuncs', sources=['arrayfuncs.c'], depends=[join('src', 'cholesky_delete.h')], libraries=cblas_libs, include_dirs=cblas_includes, extra_compile_args=cblas_compile_args, **blas_info ) config.add_extension( 'murmurhash', sources=['murmurhash.c', join('src', 'MurmurHash3.cpp')], include_dirs=['src']) config.add_extension('lgamma', sources=['lgamma.c', join('src', 'gamma.c')], include_dirs=['src'], libraries=libraries) config.add_extension('graph_shortest_path', sources=['graph_shortest_path.c'], include_dirs=[numpy.get_include()]) config.add_extension('fast_dict', sources=['fast_dict.cpp'], language="c++", include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension('seq_dataset', sources=['seq_dataset.c'], include_dirs=[numpy.get_include()]) config.add_extension('weight_vector', sources=['weight_vector.c'], include_dirs=cblas_includes, libraries=cblas_libs, **blas_info) config.add_extension("_random", sources=["_random.c"], include_dirs=[numpy.get_include()], libraries=libraries) config.add_extension("_logistic_sigmoid", sources=["_logistic_sigmoid.c"], include_dirs=[numpy.get_include()], libraries=libraries) return config if __name__ == '__main__': from numpy.distutils.core import setup setup(**configuration(top_path='').todict())
bsd-3-clause
tensorflow/tensorflow-experimental_link_static_libraries_once
tensorflow/python/framework/config.py
3
45411
# Copyright 2019 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for configuring TensorFlow execution.""" from typing import Union from tensorflow.python.eager import context from tensorflow.python.framework import errors from tensorflow.python.util import _pywrap_determinism from tensorflow.python.util import _pywrap_tensor_float_32_execution from tensorflow.python.util import deprecation from tensorflow.python.util.tf_export import tf_export @tf_export('config.experimental.tensor_float_32_execution_enabled') def tensor_float_32_execution_enabled(): """Returns whether TensorFloat-32 is enabled. By default, TensorFloat-32 is enabled, but this can be changed with `tf.config.experimental.enable_tensor_float_32_execution`. Returns: True if TensorFloat-32 is enabled (the default) and False otherwise """ return _pywrap_tensor_float_32_execution.is_enabled() @tf_export('config.experimental.enable_tensor_float_32_execution') def enable_tensor_float_32_execution(enabled): """Enable or disable the use of TensorFloat-32 on supported hardware. [TensorFloat-32](https://blogs.nvidia.com/blog/2020/05/14/tensorfloat-32-precision-format), or TF32 for short, is a math mode for NVIDIA Ampere GPUs. TensorFloat-32 execution causes certain float32 ops, such as matrix multiplications and convolutions, to run much faster on Ampere GPUs but with reduced precision. This reduced precision should not impact convergence of deep learning models in practice. TensorFloat-32 is enabled by default. TensorFloat-32 is only supported on Ampere GPUs, so all other hardware will use the full float32 precision regardless of whether TensorFloat-32 is enabled or not. If you want to use the full float32 precision on Ampere, you can disable TensorFloat-32 execution with this function. For example: ```python x = tf.fill((2, 2), 1.0001) y = tf.fill((2, 2), 1.) # TensorFloat-32 is enabled, so matmul is run with reduced precision print(tf.linalg.matmul(x, y)) # [[2., 2.], [2., 2.]] tf.config.experimental.enable_tensor_float_32_execution(False) # Matmul is run with full precision print(tf.linalg.matmul(x, y)) # [[2.0002, 2.0002], [2.0002, 2.0002]] ``` To check whether TensorFloat-32 execution is currently enabled, use `tf.config.experimental.tensor_float_32_execution_enabled`. If TensorFloat-32 is enabled, float32 inputs of supported ops, such as `tf.linalg.matmul`, will be rounded from 23 bits of precision to 10 bits of precision in most cases. This allows the ops to execute much faster by utilizing the GPU's tensor cores. TensorFloat-32 has the same dynamic range as float32, meaning it is no more likely to underflow or overflow than float32. Ops still use float32 accumulation when TensorFloat-32 is enabled. Enabling or disabling TensorFloat-32 only affects Ampere GPUs and subsequent GPUs that support TensorFloat-32. Note TensorFloat-32 is not always used in supported ops, as only inputs of certain shapes are supported. Support for more input shapes and more ops may be added in the future. As a result, precision of float32 ops may decrease in minor versions of TensorFlow. TensorFloat-32 is also used for some complex64 ops. Currently, TensorFloat-32 is used in fewer cases for complex64 as it is for float32. Args: enabled: Bool indicating whether to enable TensorFloat-32 execution. """ _pywrap_tensor_float_32_execution.enable(enabled) @tf_export('config.threading.get_intra_op_parallelism_threads') def get_intra_op_parallelism_threads(): """Get number of threads used within an individual op for parallelism. Certain operations like matrix multiplication and reductions can utilize parallel threads for speed ups. A value of 0 means the system picks an appropriate number. Returns: Number of parallel threads """ return context.context().intra_op_parallelism_threads @tf_export('config.threading.set_intra_op_parallelism_threads') def set_intra_op_parallelism_threads(num_threads): """Set number of threads used within an individual op for parallelism. Certain operations like matrix multiplication and reductions can utilize parallel threads for speed ups. A value of 0 means the system picks an appropriate number. Args: num_threads: Number of parallel threads """ context.context().intra_op_parallelism_threads = num_threads @tf_export('config.threading.get_inter_op_parallelism_threads') def get_inter_op_parallelism_threads(): """Get number of threads used for parallelism between independent operations. Determines the number of threads used by independent non-blocking operations. 0 means the system picks an appropriate number. Returns: Number of parallel threads """ return context.context().inter_op_parallelism_threads @tf_export('config.threading.set_inter_op_parallelism_threads') def set_inter_op_parallelism_threads(num_threads): """Set number of threads used for parallelism between independent operations. Determines the number of threads used by independent non-blocking operations. 0 means the system picks an appropriate number. Args: num_threads: Number of parallel threads """ context.context().inter_op_parallelism_threads = num_threads @tf_export('config.optimizer.get_jit') def get_optimizer_jit() -> str: """Returns JIT compilation configuration for code inside `tf.function`. Possible return values: -`"autoclustering"` if [autoclustering](https://www.tensorflow.org/xla#auto-clustering) is enabled - `""` when no default compilation is applied. """ if context.context().optimizer_jit: return 'autoclustering' return '' @tf_export('config.optimizer.set_jit') @deprecation.deprecated_arg_values( None, '`True` setting is deprecated, use `autoclustering` instead.', warn_once=True, jit_config=True) def set_optimizer_jit(enabled: Union[bool, str]): """Configure JIT compilation. Note: compilation is only applied to code that is compiled into a graph (in TF2 that's only a code inside `tf.function`). Args: enabled: JIT compilation configuration. Possible values: - `"autoclustering"` (`True` is a deprecated alias): perform [autoclustering](https://www.tensorflow.org/xla#auto-clustering) (automatically identify and compile clusters of nodes) on all graphs using [XLA](https://www.tensorflow.org/xla). - `False`: do not automatically compile any graphs. """ autoclustering_enabled = enabled in (True, 'autoclustering') context.context().optimizer_jit = autoclustering_enabled @tf_export('config.optimizer.get_experimental_options') def get_optimizer_experimental_options(): """Get experimental optimizer options. Refer to tf.config.optimizer.set_experimental_options for a list of current options. Note that optimizations are only applied in graph mode, (within tf.function). In addition, as these are experimental options, the list is subject to change. Returns: Dictionary of configured experimental optimizer options """ return context.context().get_optimizer_experimental_options() @tf_export('config.optimizer.set_experimental_options') def set_optimizer_experimental_options(options): """Set experimental optimizer options. Note that optimizations are only applied in graph mode, (within tf.function). In addition, as these are experimental options, the list is subject to change. Args: options: Dictionary of experimental optimizer options to configure. Valid keys: - layout_optimizer: Optimize tensor layouts e.g. This will try to use NCHW layout on GPU which is faster. - constant_folding: Fold constants Statically infer the value of tensors when possible, and materialize the result using constants. - shape_optimization: Simplify computations made on shapes. - remapping: Remap subgraphs onto more efficient implementations. - arithmetic_optimization: Simplify arithmetic ops with common sub-expression elimination and arithmetic simplification. - dependency_optimization: Control dependency optimizations. Remove redundant control dependencies, which may enable other optimization. This optimizer is also essential for pruning Identity and NoOp nodes. - loop_optimization: Loop optimizations. - function_optimization: Function optimizations and inlining. - debug_stripper: Strips debug-related nodes from the graph. - disable_model_pruning: Disable removal of unnecessary ops from the graph - scoped_allocator_optimization: Try to allocate some independent Op outputs contiguously in order to merge or eliminate downstream Ops. - pin_to_host_optimization: Force small ops onto the CPU. - implementation_selector: Enable the swap of kernel implementations based on the device placement. - auto_mixed_precision: Change certain float32 ops to float16 on Volta GPUs and above. Without the use of loss scaling, this can cause numerical underflow (see `keras.mixed_precision.experimental.LossScaleOptimizer`). - disable_meta_optimizer: Disable the entire meta optimizer. - min_graph_nodes: The minimum number of nodes in a graph to optimizer. For smaller graphs, optimization is skipped. """ context.context().set_optimizer_experimental_options(options) @tf_export('config.get_soft_device_placement') def get_soft_device_placement(): """Return status of soft device placement flag. If enabled, an op will be placed on CPU if any of the following are true 1. there's no GPU implementation for the OP 2. no GPU devices are known or registered 3. need to co-locate with reftype input(s) which are from CPU If disabled, the placement is strict and CPU fallback is not allowed. An error is raised when an Op cannot be placed onto its intended device. Returns: A boolean indicating if soft placement is enabled. """ return context.context().soft_device_placement @tf_export('config.set_soft_device_placement') def set_soft_device_placement(enabled): """Enable or disable soft device placement. If enabled, an op will be placed on CPU if any of the following are true 1. there's no GPU implementation for the OP 2. no GPU devices are known or registered 3. need to co-locate with reftype input(s) which are from CPU Note: by default soft device placement is enabled when running in eager mode (for convenience) and disabled in graph mode (for performance). Args: enabled: A boolean indicating whether to enable soft placement. """ context.context().soft_device_placement = enabled @tf_export('config.experimental.get_device_policy') def get_device_policy(): """Gets the current device policy. The device policy controls how operations requiring inputs on a specific device (e.g., on GPU:0) handle inputs on a different device (e.g. GPU:1). This function only gets the device policy for the current thread. Any subsequently started thread will again use the default policy. Returns: Current thread device policy """ device_policy = context.context().device_policy if device_policy == context.DEVICE_PLACEMENT_SILENT: return 'silent' elif device_policy == context.DEVICE_PLACEMENT_SILENT_FOR_INT32: return 'silent_for_int32' elif device_policy == context.DEVICE_PLACEMENT_WARN: return 'warn' elif device_policy == context.DEVICE_PLACEMENT_EXPLICIT: return 'explicit' else: # pylint: disable-next=no-value-for-parameter raise errors.InternalError( f'Got an invalid device policy: {device_policy!r}.') @tf_export('config.experimental.set_device_policy') def set_device_policy(device_policy): """Sets the current thread device policy. The device policy controls how operations requiring inputs on a specific device (e.g., on GPU:0) handle inputs on a different device (e.g. GPU:1). When using the default, an appropriate policy will be picked automatically. The default policy may change over time. This function only sets the device policy for the current thread. Any subsequently started thread will again use the default policy. Args: device_policy: A device policy. Valid values: - None: Switch to a system default. - 'warn': Copies the tensors which are not on the right device and logs a warning. - 'explicit': Raises an error if the placement is not as required. - 'silent': Silently copies the tensors. Note that this may hide performance problems as there is no notification provided when operations are blocked on the tensor being copied between devices. - 'silent_for_int32': silently copies `int32` tensors, raising errors on the other ones. Raises: ValueError: If an invalid `device_policy` is passed. """ if device_policy == 'silent': context.context().device_policy = context.DEVICE_PLACEMENT_SILENT elif device_policy == 'silent_for_int32': context.context().device_policy = context.DEVICE_PLACEMENT_SILENT_FOR_INT32 elif device_policy == 'warn': context.context().device_policy = context.DEVICE_PLACEMENT_WARN elif device_policy == 'explicit': context.context().device_policy = context.DEVICE_PLACEMENT_EXPLICIT elif device_policy is None: context.context().device_policy = None else: raise ValueError( f'Invalid argument `device_policy`: {device_policy!r}. Please refer to ' 'https://www.tensorflow.org/api_docs/python/tf/config/experimental/set_device_policy ' 'for valid `device_policy` arguments.') @tf_export('config.experimental.get_synchronous_execution') def get_synchronous_execution(): """Gets whether operations are executed synchronously or asynchronously. TensorFlow can execute operations synchronously or asynchronously. If asynchronous execution is enabled, operations may return "non-ready" handles. Returns: Current thread execution mode """ return context.context().execution_mode == context.SYNC @tf_export('config.experimental.set_synchronous_execution') def set_synchronous_execution(enable): """Specifies whether operations are executed synchronously or asynchronously. TensorFlow can execute operations synchronously or asynchronously. If asynchronous execution is enabled, operations may return "non-ready" handles. When `enable` is set to None, an appropriate value will be picked automatically. The value picked may change between TensorFlow releases. Args: enable: Whether operations should be dispatched synchronously. Valid values: - None: sets the system default. - True: executes each operation synchronously. - False: executes each operation asynchronously. """ if enable is None: context.context().execution_mode = None elif enable: context.context().execution_mode = context.SYNC else: context.context().execution_mode = context.ASYNC @tf_export('config.list_physical_devices', 'config.experimental.list_physical_devices') @deprecation.deprecated_endpoints('config.experimental.list_physical_devices') def list_physical_devices(device_type=None): """Return a list of physical devices visible to the host runtime. Physical devices are hardware devices present on the host machine. By default all discovered CPU and GPU devices are considered visible. This API allows querying the physical hardware resources prior to runtime initialization. Thus, giving an opportunity to call any additional configuration APIs. This is in contrast to `tf.config.list_logical_devices`, which triggers runtime initialization in order to list the configured devices. The following example lists the number of visible GPUs on the host. >>> physical_devices = tf.config.list_physical_devices('GPU') >>> print("Num GPUs:", len(physical_devices)) Num GPUs: ... However, the number of GPUs available to the runtime may change during runtime initialization due to marking certain devices as not visible or configuring multiple logical devices. Args: device_type: (optional string) Only include devices matching this device type. For example "CPU" or "GPU". Returns: List of discovered `tf.config.PhysicalDevice` objects """ return context.context().list_physical_devices(device_type) @tf_export('config.list_logical_devices', 'config.experimental.list_logical_devices') @deprecation.deprecated_endpoints('config.experimental.list_logical_devices') def list_logical_devices(device_type=None): """Return a list of logical devices created by runtime. Logical devices may correspond to physical devices or remote devices in the cluster. Operations and tensors may be placed on these devices by using the `name` of the `tf.config.LogicalDevice`. Calling `tf.config.list_logical_devices` triggers the runtime to configure any `tf.config.PhysicalDevice` visible to the runtime, thereby preventing further configuration. To avoid runtime initialization, call `tf.config.list_physical_devices` instead. For example: >>> logical_devices = tf.config.list_logical_devices('GPU') >>> if len(logical_devices) > 0: ... # Allocate on GPU:0 ... with tf.device(logical_devices[0].name): ... one = tf.constant(1) ... # Allocate on GPU:1 ... with tf.device(logical_devices[1].name): ... two = tf.constant(2) Args: device_type: (optional string) Only include devices matching this device type. For example "CPU" or "GPU". Returns: List of initialized `LogicalDevice`s """ return context.context().list_logical_devices(device_type=device_type) @tf_export('config.get_visible_devices', 'config.experimental.get_visible_devices') @deprecation.deprecated_endpoints('config.experimental.get_visible_devices') def get_visible_devices(device_type=None): """Get the list of visible physical devices. Returns the list of `PhysicalDevice`s currently marked as visible to the runtime. A visible device will have at least one `LogicalDevice` associated with it once the runtime is initialized. The following example verifies all visible GPUs have been disabled: >>> physical_devices = tf.config.list_physical_devices('GPU') >>> try: ... # Disable all GPUS ... tf.config.set_visible_devices([], 'GPU') ... visible_devices = tf.config.get_visible_devices() ... for device in visible_devices: ... assert device.device_type != 'GPU' ... except: ... # Invalid device or cannot modify virtual devices once initialized. ... pass Args: device_type: (optional string) Only include devices matching this device type. For example "CPU" or "GPU". Returns: List of visible `PhysicalDevice`s """ return context.context().get_visible_devices(device_type) @tf_export('config.set_visible_devices', 'config.experimental.set_visible_devices') @deprecation.deprecated_endpoints('config.experimental.set_visible_devices') def set_visible_devices(devices, device_type=None): """Set the list of visible devices. Specifies which `PhysicalDevice` objects are visible to the runtime. TensorFlow will only allocate memory and place operations on visible physical devices, as otherwise no `LogicalDevice` will be created on them. By default all discovered devices are marked as visible. The following example demonstrates disabling the first GPU on the machine. >>> physical_devices = tf.config.list_physical_devices('GPU') >>> try: ... # Disable first GPU ... tf.config.set_visible_devices(physical_devices[1:], 'GPU') ... logical_devices = tf.config.list_logical_devices('GPU') ... # Logical device was not created for first GPU ... assert len(logical_devices) == len(physical_devices) - 1 ... except: ... # Invalid device or cannot modify virtual devices once initialized. ... pass Args: devices: List of `PhysicalDevice`s to make visible device_type: (optional) Only configure devices matching this device type. For example "CPU" or "GPU". Other devices will be left unaltered. Raises: ValueError: If argument validation fails. RuntimeError: Runtime is already initialized. """ context.context().set_visible_devices(devices, device_type) # TODO(b/188089869): Redesign memory stats related APIs before move them out of # experimental. @tf_export('config.experimental.get_memory_info') def get_memory_info(device): """Get memory info for the chosen device, as a dict. This function returns a dict containing information about the device's memory usage. For example: >>> if tf.config.list_physical_devices('GPU'): ... # Returns a dict in the form {'current': <current mem usage>, ... # 'peak': <peak mem usage>} ... tf.config.experimental.get_memory_info('GPU:0') Currently returns the following keys: - `'current'`: The current memory used by the device, in bytes. - `'peak'`: The peak memory used by the device across the run of the program, in bytes. Can be reset with `tf.config.experimental.reset_memory_stats`. More keys may be added in the future, including device-specific keys. Currently only supports GPU and TPU. If called on a CPU device, an exception will be raised. For GPUs, TensorFlow will allocate all the memory by default, unless changed with `tf.config.experimental.set_memory_growth`. The dict specifies only the current and peak memory that TensorFlow is actually using, not the memory that TensorFlow has allocated on the GPU. Args: device: Device string to get the memory information for, e.g. `"GPU:0"`, `"TPU:0"`. See https://www.tensorflow.org/api_docs/python/tf/device for specifying device strings. Returns: A dict with keys `'current'` and `'peak'`, specifying the current and peak memory usage respectively. Raises: ValueError: No device found with the device name, like '"nonexistent"'. ValueError: Invalid device name, like '"GPU"', '"CPU:GPU"', '"CPU:"'. ValueError: Multiple devices matched with the device name. ValueError: Memory statistics not tracked, like '"CPU:0"'. """ return context.context().get_memory_info(device) # TODO(b/188089869): Redesign memory stats related APIs before move them out of # experimental. # TODO(b/189498350): Unify the behavior on CPU, GPU and TPU. @tf_export('config.experimental.reset_memory_stats') def reset_memory_stats(device): """Resets the tracked memory stats for the chosen device. This function sets the tracked peak memory for a device to the device's current memory usage. This allows you to measure the peak memory usage for a specific part of your program. For example: >>> if tf.config.list_physical_devices('GPU'): ... # Sets the peak memory to the current memory. ... tf.config.experimental.reset_memory_stats('GPU:0') ... # Creates the first peak memory usage. ... x1 = tf.ones(1000 * 1000, dtype=tf.float64) ... del x1 # Frees the memory referenced by `x1`. ... peak1 = tf.config.experimental.get_memory_info('GPU:0')['peak'] ... # Sets the peak memory to the current memory again. ... tf.config.experimental.reset_memory_stats('GPU:0') ... # Creates the second peak memory usage. ... x2 = tf.ones(1000 * 1000, dtype=tf.float32) ... del x2 ... peak2 = tf.config.experimental.get_memory_info('GPU:0')['peak'] ... assert peak2 < peak1 # tf.float32 consumes less memory than tf.float64. Currently only supports GPU and TPU. If called on a CPU device, an exception will be raised. Args: device: Device string to reset the memory stats, e.g. `"GPU:0"`, `"TPU:0"`. See https://www.tensorflow.org/api_docs/python/tf/device for specifying device strings. Raises: ValueError: No device found with the device name, like '"nonexistent"'. ValueError: Invalid device name, like '"GPU"', '"CPU:GPU"', '"CPU:"'. ValueError: Multiple devices matched with the device name. ValueError: Memory statistics not tracked or clearing memory statistics not supported, like '"CPU:0"'. """ context.context().reset_memory_stats(device) @deprecation.deprecated( None, "Use tf.config.experimental.get_memory_info(device)['current'] instead.") @tf_export('config.experimental.get_memory_usage') def get_memory_usage(device): """Get the current memory usage, in bytes, for the chosen device. This function is deprecated in favor of `tf.config.experimental.get_memory_info`. Calling this function is equivalent to calling `tf.config.experimental.get_memory_info()['current']`. See https://www.tensorflow.org/api_docs/python/tf/device for specifying device strings. For example: >>> gpu_devices = tf.config.list_physical_devices('GPU') >>> if gpu_devices: ... tf.config.experimental.get_memory_usage('GPU:0') Does not work for CPU. For GPUs, TensorFlow will allocate all the memory by default, unless changed with `tf.config.experimental.set_memory_growth`. This function only returns the memory that TensorFlow is actually using, not the memory that TensorFlow has allocated on the GPU. Args: device: Device string to get the bytes in use for, e.g. `"GPU:0"` Returns: Total memory usage in bytes. Raises: ValueError: Non-existent or CPU device specified. """ return get_memory_info(device)['current'] @tf_export('config.experimental.get_memory_growth') def get_memory_growth(device): """Get if memory growth is enabled for a `PhysicalDevice`. If memory growth is enabled for a `PhysicalDevice`, the runtime initialization will not allocate all memory on the device. For example: >>> physical_devices = tf.config.list_physical_devices('GPU') >>> try: ... tf.config.experimental.set_memory_growth(physical_devices[0], True) ... assert tf.config.experimental.get_memory_growth(physical_devices[0]) ... except: ... # Invalid device or cannot modify virtual devices once initialized. ... pass Args: device: `PhysicalDevice` to query Returns: A boolean indicating the memory growth setting for the `PhysicalDevice`. Raises: ValueError: Invalid `PhysicalDevice` specified. """ return context.context().get_memory_growth(device) @tf_export('config.experimental.set_memory_growth') def set_memory_growth(device, enable): """Set if memory growth should be enabled for a `PhysicalDevice`. If memory growth is enabled for a `PhysicalDevice`, the runtime initialization will not allocate all memory on the device. Memory growth cannot be configured on a `PhysicalDevice` with virtual devices configured. For example: >>> physical_devices = tf.config.list_physical_devices('GPU') >>> try: ... tf.config.experimental.set_memory_growth(physical_devices[0], True) ... except: ... # Invalid device or cannot modify virtual devices once initialized. ... pass Args: device: `PhysicalDevice` to configure enable: (Boolean) Whether to enable or disable memory growth Raises: ValueError: Invalid `PhysicalDevice` specified. RuntimeError: Runtime is already initialized. """ context.context().set_memory_growth(device, enable) @tf_export('config.experimental.get_device_details') def get_device_details(device): """Returns details about a physical devices. This API takes in a `tf.config.PhysicalDevice` returned by `tf.config.list_physical_devices`. It returns a dict with string keys containing various details about the device. Each key is only supported by a subset of devices, so you should not assume the returned dict will have any particular key. >>> gpu_devices = tf.config.list_physical_devices('GPU') >>> if gpu_devices: ... details = tf.config.experimental.get_device_details(gpu_devices[0]) ... details.get('device_name', 'Unknown GPU') Currently, details are only returned for GPUs. This function returns an empty dict if passed a non-GPU device. The returned dict may have the following keys: * `'device_name'`: A human-readable name of the device as a string, e.g. "Titan V". Unlike `tf.config.PhysicalDevice.name`, this will be the same for multiple devices if each device is the same model. Currently only available for GPUs. * `'compute_capability'`: The [compute capability](https://developer.nvidia.com/cuda-gpus) of the device as a tuple of two ints, in the form `(major_version, minor_version)`. Only available for NVIDIA GPUs Note: This is similar to `tf.sysconfig.get_build_info` in that both functions can return information relating to GPUs. However, this function returns run-time information about a specific device (such as a GPU's compute capability), while `tf.sysconfig.get_build_info` returns compile-time information about how TensorFlow was built (such as what version of CUDA TensorFlow was built for). Args: device: A `tf.config.PhysicalDevice` returned by `tf.config.list_physical_devices` or `tf.config.get_visible_devices`. Returns: A dict with string keys. """ return context.context().get_device_details(device) @tf_export('config.get_logical_device_configuration', 'config.experimental.get_virtual_device_configuration') @deprecation.deprecated_endpoints( 'config.experimental.get_virtual_device_configuration') def get_logical_device_configuration(device): """Get the virtual device configuration for a `tf.config.PhysicalDevice`. Returns the list of `tf.config.LogicalDeviceConfiguration` objects previously configured by a call to `tf.config.set_logical_device_configuration`. For example: >>> physical_devices = tf.config.list_physical_devices('CPU') >>> assert len(physical_devices) == 1, "No CPUs found" >>> configs = tf.config.get_logical_device_configuration( ... physical_devices[0]) >>> try: ... assert configs is None ... tf.config.set_logical_device_configuration( ... physical_devices[0], ... [tf.config.LogicalDeviceConfiguration(), ... tf.config.LogicalDeviceConfiguration()]) ... configs = tf.config.get_logical_device_configuration( ... physical_devices[0]) ... assert len(configs) == 2 ... except: ... # Cannot modify virtual devices once initialized. ... pass Args: device: `PhysicalDevice` to query Returns: List of `tf.config.LogicalDeviceConfiguration` objects or `None` if no virtual device configuration has been set for this physical device. """ return context.context().get_logical_device_configuration(device) @tf_export('config.set_logical_device_configuration', 'config.experimental.set_virtual_device_configuration') @deprecation.deprecated_endpoints( 'config.experimental.set_virtual_device_configuration') def set_logical_device_configuration(device, logical_devices): """Set the logical device configuration for a `tf.config.PhysicalDevice`. A visible `tf.config.PhysicalDevice` will by default have a single `tf.config.LogicalDevice` associated with it once the runtime is initialized. Specifying a list of `tf.config.LogicalDeviceConfiguration` objects allows multiple devices to be created on the same `tf.config.PhysicalDevice`. Logical device configurations can be modified by calling this function as long as the runtime is uninitialized. After the runtime is initialized calling this function raises a RuntimeError. The following example splits the CPU into 2 logical devices: >>> physical_devices = tf.config.list_physical_devices('CPU') >>> assert len(physical_devices) == 1, "No CPUs found" >>> # Specify 2 virtual CPUs. Note currently memory limit is not supported. >>> try: ... tf.config.set_logical_device_configuration( ... physical_devices[0], ... [tf.config.LogicalDeviceConfiguration(), ... tf.config.LogicalDeviceConfiguration()]) ... logical_devices = tf.config.list_logical_devices('CPU') ... assert len(logical_devices) == 2 ... ... tf.config.set_logical_device_configuration( ... physical_devices[0], ... [tf.config.LogicalDeviceConfiguration(), ... tf.config.LogicalDeviceConfiguration(), ... tf.config.LogicalDeviceConfiguration(), ... tf.config.LogicalDeviceConfiguration()]) ... except: ... # Cannot modify logical devices once initialized. ... pass The following example splits the GPU into 2 logical devices with 100 MB each: >>> physical_devices = tf.config.list_physical_devices('GPU') >>> try: ... tf.config.set_logical_device_configuration( ... physical_devices[0], ... [tf.config.LogicalDeviceConfiguration(memory_limit=100), ... tf.config.LogicalDeviceConfiguration(memory_limit=100)]) ... ... logical_devices = tf.config.list_logical_devices('GPU') ... assert len(logical_devices) == len(physical_devices) + 1 ... ... tf.config.set_logical_device_configuration( ... physical_devices[0], ... [tf.config.LogicalDeviceConfiguration(memory_limit=10), ... tf.config.LogicalDeviceConfiguration(memory_limit=10)]) ... except: ... # Invalid device or cannot modify logical devices once initialized. ... pass Args: device: The `PhysicalDevice` to configure. logical_devices: (optional) List of `tf.config.LogicalDeviceConfiguration` objects to allocate for the specified `PhysicalDevice`. If None, the default configuration will be used. Raises: ValueError: If argument validation fails. RuntimeError: Runtime is already initialized. """ context.context().set_logical_device_configuration(device, logical_devices) @tf_export('config.experimental.enable_mlir_bridge') def enable_mlir_bridge(): """Enables experimental MLIR-Based TensorFlow Compiler Bridge. DO NOT USE, DEV AND TESTING ONLY AT THE MOMENT. NOTE: MLIR-Based TensorFlow Compiler is under active development and has missing features, please refrain from using. This API exists for development and testing only. TensorFlow Compiler Bridge (TF Bridge) is responsible for translating parts of TensorFlow graph into a form that can be accepted as an input by a backend compiler such as XLA. """ context.context().enable_mlir_bridge = True @tf_export('config.experimental.enable_mlir_graph_optimization') def enable_mlir_graph_optimization(): """Enables experimental MLIR-Based TensorFlow Compiler Optimizations. DO NOT USE, DEV AND TESTING ONLY AT THE MOMENT. NOTE: MLIR-Based TensorFlow Compiler is under active development and has missing features, please refrain from using. This API exists for development and testing only. TensorFlow Compiler Optimizations are responsible general graph level optimizations that in the current stack mostly done by Grappler graph optimizers. """ context.context().enable_mlir_graph_optimization = True @tf_export('config.experimental.disable_mlir_bridge') def disable_mlir_bridge(): """Disables experimental MLIR-Based TensorFlow Compiler Bridge.""" context.context().enable_mlir_bridge = False @tf_export('config.experimental.disable_mlir_graph_optimization') def disable_mlir_graph_optimization(): """Disables experimental MLIR-Based TensorFlow Compiler Optimizations.""" context.context().enable_mlir_graph_optimization = False @tf_export('config.experimental.enable_op_determinism', v1=[]) def enable_op_determinism(): """Configures TensorFlow ops to run deterministically. When op determinism is enabled, TensorFlow ops will be deterministic. This means that if an op is run multiple times with the same inputs on the same hardware, it will have the exact same outputs each time. This is useful for debugging models. Note that determinism in general comes at the expense of lower performance and so your model may run slower when op determinism is enabled. If you want your TensorFlow program to run deterministically, put the following code near the start of your program. ```python tf.keras.utils.set_random_seed(1) tf.config.experimental.enable_op_determinism() ``` Calling `tf.keras.utils.set_random_seed` sets the Python seed, the NumPy seed, and the TensorFlow seed. Setting these seeds is necessary to ensure any random numbers your program generates are also deterministic. By default, op determinism is not enabled, so ops might return different results when run with the same inputs. These differences are often caused by the use of asynchronous threads within the op nondeterministically changing the order in which floating-point numbers are added. Most of these cases of nondeterminism occur on GPUs, which have thousands of hardware threads that are used to run ops. Enabling determinism directs such ops to use a different algorithm, one that does not use threads in a nondeterministic way. Another potential source of nondeterminism is `tf.data` based data processing. Typically, this can introduce nondeterminsm due to the use of parallelism in methods such as `Dataset.map` producing inputs or running stateful ops in a nondeterministic order. Enabling determinism will remove such sources of nondeterminism. Enabling determinism will likely make your model or your `tf.data` data processing slower. For example, `Dataset.map` can become several orders of magnitude slower when the map function has random ops or other stateful ops. See the “Determinism and tf.data” section below for more details. In future TensorFlow releases, we plan on improving the performance of determinism, especially for common scenarios such as `Dataset.map`. Certain ops will raise an `UnimplementedError` because they do not yet have a deterministic implementation. Additionally, due to bugs, some ops might be nondeterministic and not raise an `UnimplementedError`. If you encounter such ops, please [file an issue](https://github.com/tensorflow/tensorflow/issues). An example of enabling determinism follows. The `tf.nn.softmax_cross_entropy_with_logits` op is run multiple times and the output is shown to be the same each time. This example would likely fail when run on a GPU if determinism were not enabled, because `tf.nn.softmax_cross_entropy_with_logits` uses a nondeterministic algorithm on GPUs by default. ```python labels = tf.random.normal((1, 10000)) logits = tf.random.normal((1, 10000)) output = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) for _ in range(5): output2 = tf.nn.softmax_cross_entropy_with_logits(labels=labels, logits=logits) tf.debugging.assert_equal(output, output2) ``` ## Writing deterministic models You can make your models deterministic by enabling op determinism. This means that you can train a model and finish each run with exactly the same trainable variables. This also means that the inferences of your previously-trained model will be exactly the same on each run. Typically, models can be made deterministic by simply setting the seeds and enabling op determinism, as in the example above. However, to guarantee that your model operates deterministically, you must meet all the following requirements: * Call `tf.config.experimental.enable_op_determinism()`, as mentioned above. * Reproducibly reset any pseudorandom number generators (PRNGs) you’re using, such as by setting the seeds for the default PRNGs in TensorFlow, Python, and NumPy, as mentioned above. Note that certain newer NumPy classes like ` numpy.random.default_rng` ignore the global NumPy seed, so a seed must be explicitly passed to such classes, if used. * Use the same hardware configuration in every run. * Use the same software environment in every run (OS, checkpoints, version of CUDA and TensorFlow, environmental variables, etc). Note that determinism is not guaranteed across different versions of TensorFlow. * Do not use constructs outside TensorFlow that are nondeterministic, such as reading from `/dev/random` or using multiple threads/processes in ways that influence TensorFlow’s behavior. * Ensure your input pipeline is deterministic. If you use `tf.data`, this is done automatically (at the expense of performance). See "Determinism and tf.data" below for more information. * Do not use `tf.compat.v1.Session` and `tf.distribute.experimental.ParameterServerStrategy`, which can introduce nondeterminism. Besides ops (including `tf.data` ops), these are the only known potential sources of nondeterminism within TensorFlow, (if you find more, please file an issue). Note that `tf.compat.v1.Session` is required to use the TF1 API, so determinism cannot be guaranteed when using the TF1 API. * Do not use nondeterministic custom ops. ## Additional details on determinism For stateful ops to be deterministic, the state of the system must be the same every time the op is run. For example the output of `tf.Variable.sparse_read` (obviously) depends on both the variable value and the `indices` function parameter. When determinism is enabled, the side effects of stateful ops are deterministic. TensorFlow’s random ops, such as `tf.random.normal`, will raise a `RuntimeError` if determinism is enabled and a seed has not been set. However, attempting to generate nondeterministic random numbers using Python or NumPy will not raise such errors. Make sure you remember to set the Python and NumPy seeds. Calling `tf.keras.utils.set_random_seed` is an easy way to set all three seeds. Note that latency, memory consumption, throughput, and other performance characteristics are *not* made deterministic by enabling op determinism. Only op outputs and side effects are made deterministic. Additionally, a model may nondeterministically raise a `tf.errors.ResourceExhaustedError` from a lack of memory due to the fact that memory consumption is nondeterministic. ## Determinism and tf.data Enabling deterministic ops makes `tf.data` deterministic in several ways: 1. For dataset methods with a `deterministic` argument, such as `Dataset.map` and `Dataset.batch`, the `deterministic` argument is overridden to be `True` irrespective of its setting. 2. The `tf.data.Option.experimental_deterministic` option is overridden to be `True` irrespective of its setting.. 3. In `Dataset.map` and `Dataset.interleave`, if the map or interleave function has stateful random ops or other stateful ops, the function will run serially instead of in parallel. This means the `num_parallel_calls` argument to `map` and `interleave` is effectively ignored. 4. Prefetching with `Dataset.prefetch` will be disabled if any function run as part of the input pipeline has certain stateful ops. Similarly, any dataset method with a `num_parallel_calls` argument will be made to run serially if any function in the input pipeline has such stateful ops. Legacy random ops such as `tf.random.normal` will *not* cause such datasets to be changed, but most other stateful ops will. Unfortunately, due to (3), performance can be greatly reduced when stateful ops are used in `Dataset.map` due to no longer running the map function in parallel. A common example of stateful ops used in `Dataset.map` are random ops, such as `tf.random.normal`, which are typically used for distortions. One way to work around this is to use stateless random ops instead. Alternatively you can hoist all random ops into its own separate `Dataset.map` call, making the original `Dataset.map` call stateless and thus avoid the need to serialize its execution. (4) can also cause performance to be reduced, but occurs less frequently than (3) because legacy random ops do not cause (4) to take effect. However, unlike (3), when there are non-random stateful ops in a user-defined function, every `map` and `interleave` dataset is affected, instead of just the `map` or `interleave` dataset with the function that has stateful ops. Additionally, `prefetch` datasets and any dataset with the `num_parallel_calls` argument are also affected. """ _pywrap_determinism.enable(True) def disable_op_determinism(): """Disables op determinism.""" _pywrap_determinism.enable(False) def is_op_determinism_enabled(): """Returns True if op determinism is enabled.""" return _pywrap_determinism.is_enabled()
apache-2.0
heli522/scikit-learn
examples/linear_model/plot_lasso_model_selection.py
308
5431
""" =================================================== Lasso model selection: Cross-Validation / AIC / BIC =================================================== Use the Akaike information criterion (AIC), the Bayes Information criterion (BIC) and cross-validation to select an optimal value of the regularization parameter alpha of the :ref:`lasso` estimator. Results obtained with LassoLarsIC are based on AIC/BIC criteria. Information-criterion based model selection is very fast, but it relies on a proper estimation of degrees of freedom, are derived for large samples (asymptotic results) and assume the model is correct, i.e. that the data are actually generated by this model. They also tend to break when the problem is badly conditioned (more features than samples). For cross-validation, we use 20-fold with 2 algorithms to compute the Lasso path: coordinate descent, as implemented by the LassoCV class, and Lars (least angle regression) as implemented by the LassoLarsCV class. Both algorithms give roughly the same results. They differ with regards to their execution speed and sources of numerical errors. Lars computes a path solution only for each kink in the path. As a result, it is very efficient when there are only of few kinks, which is the case if there are few features or samples. Also, it is able to compute the full path without setting any meta parameter. On the opposite, coordinate descent compute the path points on a pre-specified grid (here we use the default). Thus it is more efficient if the number of grid points is smaller than the number of kinks in the path. Such a strategy can be interesting if the number of features is really large and there are enough samples to select a large amount. In terms of numerical errors, for heavily correlated variables, Lars will accumulate more errors, while the coordinate descent algorithm will only sample the path on a grid. Note how the optimal value of alpha varies for each fold. This illustrates why nested-cross validation is necessary when trying to evaluate the performance of a method for which a parameter is chosen by cross-validation: this choice of parameter may not be optimal for unseen data. """ print(__doc__) # Author: Olivier Grisel, Gael Varoquaux, Alexandre Gramfort # License: BSD 3 clause import time import numpy as np import matplotlib.pyplot as plt from sklearn.linear_model import LassoCV, LassoLarsCV, LassoLarsIC from sklearn import datasets diabetes = datasets.load_diabetes() X = diabetes.data y = diabetes.target rng = np.random.RandomState(42) X = np.c_[X, rng.randn(X.shape[0], 14)] # add some bad features # normalize data as done by Lars to allow for comparison X /= np.sqrt(np.sum(X ** 2, axis=0)) ############################################################################## # LassoLarsIC: least angle regression with BIC/AIC criterion model_bic = LassoLarsIC(criterion='bic') t1 = time.time() model_bic.fit(X, y) t_bic = time.time() - t1 alpha_bic_ = model_bic.alpha_ model_aic = LassoLarsIC(criterion='aic') model_aic.fit(X, y) alpha_aic_ = model_aic.alpha_ def plot_ic_criterion(model, name, color): alpha_ = model.alpha_ alphas_ = model.alphas_ criterion_ = model.criterion_ plt.plot(-np.log10(alphas_), criterion_, '--', color=color, linewidth=3, label='%s criterion' % name) plt.axvline(-np.log10(alpha_), color=color, linewidth=3, label='alpha: %s estimate' % name) plt.xlabel('-log(alpha)') plt.ylabel('criterion') plt.figure() plot_ic_criterion(model_aic, 'AIC', 'b') plot_ic_criterion(model_bic, 'BIC', 'r') plt.legend() plt.title('Information-criterion for model selection (training time %.3fs)' % t_bic) ############################################################################## # LassoCV: coordinate descent # Compute paths print("Computing regularization path using the coordinate descent lasso...") t1 = time.time() model = LassoCV(cv=20).fit(X, y) t_lasso_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.alphas_) plt.figure() ymin, ymax = 2300, 3800 plt.plot(m_log_alphas, model.mse_path_, ':') plt.plot(m_log_alphas, model.mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha: CV estimate') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: coordinate descent ' '(train time: %.2fs)' % t_lasso_cv) plt.axis('tight') plt.ylim(ymin, ymax) ############################################################################## # LassoLarsCV: least angle regression # Compute paths print("Computing regularization path using the Lars lasso...") t1 = time.time() model = LassoLarsCV(cv=20).fit(X, y) t_lasso_lars_cv = time.time() - t1 # Display results m_log_alphas = -np.log10(model.cv_alphas_) plt.figure() plt.plot(m_log_alphas, model.cv_mse_path_, ':') plt.plot(m_log_alphas, model.cv_mse_path_.mean(axis=-1), 'k', label='Average across the folds', linewidth=2) plt.axvline(-np.log10(model.alpha_), linestyle='--', color='k', label='alpha CV') plt.legend() plt.xlabel('-log(alpha)') plt.ylabel('Mean square error') plt.title('Mean square error on each fold: Lars (train time: %.2fs)' % t_lasso_lars_cv) plt.axis('tight') plt.ylim(ymin, ymax) plt.show()
bsd-3-clause
DonBeo/scikit-learn
sklearn/mixture/tests/test_dpgmm.py
12
2594
import unittest import nose import numpy as np from sklearn.mixture import DPGMM, VBGMM from sklearn.mixture.dpgmm import log_normalize from sklearn.datasets import make_blobs from sklearn.utils.testing import assert_array_less from sklearn.mixture.tests.test_gmm import GMMTester np.seterr(all='warn') def test_class_weights(): # check that the class weights are updated # simple 3 cluster dataset X, y = make_blobs(random_state=1) for Model in [DPGMM, VBGMM]: dpgmm = Model(n_components=10, random_state=1, alpha=20, n_iter=50) dpgmm.fit(X) # get indices of components that are used: indices = np.unique(dpgmm.predict(X)) active = np.zeros(10, dtype=np.bool) active[indices] = True # used components are important assert_array_less(.1, dpgmm.weights_[active]) # others are not assert_array_less(dpgmm.weights_[~active], .05) def test_log_normalize(): v = np.array([0.1, 0.8, 0.01, 0.09]) a = np.log(2 * v) assert np.allclose(v, log_normalize(a), rtol=0.01) def do_model(self, **kwds): return VBGMM(verbose=False, **kwds) class DPGMMTester(GMMTester): model = DPGMM do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestDPGMMWithSphericalCovars(unittest.TestCase, DPGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestDPGMMWithDiagCovars(unittest.TestCase, DPGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestDPGMMWithTiedCovars(unittest.TestCase, DPGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestDPGMMWithFullCovars(unittest.TestCase, DPGMMTester): covariance_type = 'full' setUp = GMMTester._setUp class VBGMMTester(GMMTester): model = do_model do_test_eval = False def score(self, g, train_obs): _, z = g.score_samples(train_obs) return g.lower_bound(train_obs, z) class TestVBGMMWithSphericalCovars(unittest.TestCase, VBGMMTester): covariance_type = 'spherical' setUp = GMMTester._setUp class TestVBGMMWithDiagCovars(unittest.TestCase, VBGMMTester): covariance_type = 'diag' setUp = GMMTester._setUp class TestVBGMMWithTiedCovars(unittest.TestCase, VBGMMTester): covariance_type = 'tied' setUp = GMMTester._setUp class TestVBGMMWithFullCovars(unittest.TestCase, VBGMMTester): covariance_type = 'full' setUp = GMMTester._setUp if __name__ == '__main__': nose.runmodule()
bsd-3-clause
ChadFulton/statsmodels
examples/incomplete/wls_extended.py
1
16137
""" Weighted Least Squares example is extended to look at the meaning of rsquared in WLS, at outliers, compares with RLM and a short bootstrap """ from __future__ import print_function import numpy as np import statsmodels.api as sm import matplotlib.pyplot as plt data = sm.datasets.ccard.load() data.exog = sm.add_constant(data.exog, prepend=False) ols_fit = sm.OLS(data.endog, data.exog).fit() # perhaps the residuals from this fit depend on the square of income incomesq = data.exog[:,2] plt.scatter(incomesq, ols_fit.resid) #@savefig wls_resid_check.png plt.grid() # If we think that the variance is proportional to income**2 # we would want to weight the regression by income # the weights argument in WLS weights the regression by its square root # and since income enters the equation, if we have income/income # it becomes the constant, so we would want to perform # this type of regression without an explicit constant in the design #..data.exog = data.exog[:,:-1] wls_fit = sm.WLS(data.endog, data.exog[:,:-1], weights=1/incomesq).fit() # This however, leads to difficulties in interpreting the post-estimation # statistics. Statsmodels does not yet handle this elegantly, but # the following may be more appropriate # explained sum of squares ess = wls_fit.uncentered_tss - wls_fit.ssr # rsquared rsquared = ess/wls_fit.uncentered_tss # mean squared error of the model mse_model = ess/(wls_fit.df_model + 1) # add back the dof of the constant # f statistic fvalue = mse_model/wls_fit.mse_resid # adjusted r-squared rsquared_adj = 1 -(wls_fit.nobs)/(wls_fit.df_resid)*(1-rsquared) #Trying to figure out what's going on in this example #---------------------------------------------------- #JP: I need to look at this again. Even if I exclude the weight variable # from the regressors and keep the constant in then the reported rsquared # stays small. Below also compared using squared or sqrt of weight variable. # TODO: need to add 45 degree line to graphs wls_fit3 = sm.WLS(data.endog, data.exog[:,(0,1,3,4)], weights=1/incomesq).fit() print(wls_fit3.summary()) print('corrected rsquared') print((wls_fit3.uncentered_tss - wls_fit3.ssr)/wls_fit3.uncentered_tss) plt.figure(); plt.title('WLS dropping heteroscedasticity variable from regressors'); plt.plot(data.endog, wls_fit3.fittedvalues, 'o'); plt.xlim([0,2000]); #@savefig wls_drop_het.png plt.ylim([0,2000]); print('raw correlation of endog and fittedvalues') print(np.corrcoef(data.endog, wls_fit.fittedvalues)) print('raw correlation coefficient of endog and fittedvalues squared') print(np.corrcoef(data.endog, wls_fit.fittedvalues)[0,1]**2) # compare with robust regression, # heteroscedasticity correction downweights the outliers rlm_fit = sm.RLM(data.endog, data.exog).fit() plt.figure(); plt.title('using robust for comparison'); plt.plot(data.endog, rlm_fit.fittedvalues, 'o'); plt.xlim([0,2000]); #@savefig wls_robust_compare.png plt.ylim([0,2000]); #What is going on? A more systematic look at the data #---------------------------------------------------- # two helper functions def getrsq(fitresult): '''calculates rsquared residual, total and explained sums of squares Parameters ---------- fitresult : instance of Regression Result class, or tuple of (resid, endog) arrays regression residuals and endogenous variable Returns ------- rsquared residual sum of squares (centered) total sum of squares explained sum of squares (for centered) ''' if hasattr(fitresult, 'resid') and hasattr(fitresult, 'model'): resid = fitresult.resid endog = fitresult.model.endog nobs = fitresult.nobs else: resid = fitresult[0] endog = fitresult[1] nobs = resid.shape[0] rss = np.dot(resid, resid) tss = np.var(endog)*nobs return 1-rss/tss, rss, tss, tss-rss def index_trim_outlier(resid, k): '''returns indices to residual array with k outliers removed Parameters ---------- resid : array_like, 1d data vector, usually residuals of a regression k : int number of outliers to remove Returns ------- trimmed_index : array, 1d index array with k outliers removed outlier_index : array, 1d index array of k outliers Notes ----- Outliers are defined as the k observations with the largest absolute values. ''' sort_index = np.argsort(np.abs(resid)) # index of non-outlier trimmed_index = np.sort(sort_index[:-k]) outlier_index = np.sort(sort_index[-k:]) return trimmed_index, outlier_index #Comparing estimation results for ols, rlm and wls with and without outliers #--------------------------------------------------------------------------- #ols_test_fit = sm.OLS(data.endog, data.exog).fit() olskeep, olsoutl = index_trim_outlier(ols_fit.resid, 2) print('ols outliers', olsoutl, ols_fit.resid[olsoutl]) ols_fit_rm2 = sm.OLS(data.endog[olskeep], data.exog[olskeep,:]).fit() rlm_fit_rm2 = sm.RLM(data.endog[olskeep], data.exog[olskeep,:]).fit() #weights = 1/incomesq results = [ols_fit, ols_fit_rm2, rlm_fit, rlm_fit_rm2] #Note: I think incomesq is already square for weights in [1/incomesq, 1/incomesq**2, np.sqrt(incomesq)]: print('\nComparison OLS and WLS with and without outliers') wls_fit0 = sm.WLS(data.endog, data.exog, weights=weights).fit() wls_fit_rm2 = sm.WLS(data.endog[olskeep], data.exog[olskeep,:], weights=weights[olskeep]).fit() wlskeep, wlsoutl = index_trim_outlier(ols_fit.resid, 2) print('2 outliers candidates and residuals') print(wlsoutl, wls_fit.resid[olsoutl]) # redundant because ols and wls outliers are the same: ##wls_fit_rm2_ = sm.WLS(data.endog[wlskeep], data.exog[wlskeep,:], ## weights=1/incomesq[wlskeep]).fit() print('outliers ols, wls:', olsoutl, wlsoutl) print('rsquared') print('ols vs ols rm2', ols_fit.rsquared, ols_fit_rm2.rsquared) print('wls vs wls rm2', wls_fit0.rsquared, wls_fit_rm2.rsquared) #, wls_fit_rm2_.rsquared print('compare R2_resid versus R2_wresid') print('ols minus 2', getrsq(ols_fit_rm2)[0],) print(getrsq((ols_fit_rm2.wresid, ols_fit_rm2.model.wendog))[0]) print('wls ', getrsq(wls_fit)[0],) print(getrsq((wls_fit.wresid, wls_fit.model.wendog))[0]) print('wls minus 2', getrsq(wls_fit_rm2)[0]) # next is same as wls_fit_rm2.rsquared for cross checking print(getrsq((wls_fit_rm2.wresid, wls_fit_rm2.model.wendog))[0]) #print(getrsq(wls_fit_rm2_)[0], #print(getrsq((wls_fit_rm2_.wresid, wls_fit_rm2_.model.wendog))[0] results.extend([wls_fit0, wls_fit_rm2]) print(' ols ols_rm2 rlm rlm_rm2 wls (lin) wls_rm2 (lin) wls (squ) wls_rm2 (squ) wls (sqrt) wls_rm2 (sqrt)') print('Parameter estimates') print(np.column_stack([r.params for r in results])) print('R2 original data, next line R2 weighted data') print(np.column_stack([getattr(r, 'rsquared', None) for r in results])) print('Standard errors') print(np.column_stack([getattr(r, 'bse', None) for r in results])) print('Heteroscedasticity robust standard errors (with ols)') print('with outliers') print(np.column_stack([getattr(ols_fit, se, None) for se in ['HC0_se', 'HC1_se', 'HC2_se', 'HC3_se']])) #..''' #.. #.. ols ols_rm2 rlm rlm_rm2 wls (lin) wls_rm2 (lin) wls (squ) wls_rm2 (squ) wls (sqrt) wls_rm2 (sqrt) #..Parameter estimates #..[[ -3.08181404 -5.06103843 -4.98510966 -5.34410309 -2.69418516 -3.1305703 -1.43815462 -1.58893054 -3.57074829 -6.80053364] #.. [ 234.34702702 115.08753715 129.85391456 109.01433492 158.42697752 128.38182357 60.95113284 100.25000841 254.82166855 103.75834726] #.. [ -14.99684418 -5.77558429 -6.46204829 -4.77409191 -7.24928987 -7.41228893 6.84943071 -3.34972494 -16.40524256 -4.5924465 ] #.. [ 27.94090839 85.46566835 89.91389709 95.85086459 60.44877369 79.7759146 55.9884469 60.97199734 -3.8085159 84.69170048] #.. [-237.1465136 39.51639838 -15.50014814 31.39771833 -114.10886935 -40.04207242 -6.41976501 -38.83583228 -260.72084271 117.20540179]] #.. #..R2 original data, next line R2 weighted data #..[[ 0.24357792 0.31745994 0.19220308 0.30527648 0.22861236 0.3112333 0.06573949 0.29366904 0.24114325 0.31218669]] #..[[ 0.24357791 0.31745994 None None 0.05936888 0.0679071 0.06661848 0.12769654 0.35326686 0.54681225]] #.. #..-> R2 with weighted data is jumping all over #.. #..standard errors #..[[ 5.51471653 3.31028758 2.61580069 2.39537089 3.80730631 2.90027255 2.71141739 2.46959477 6.37593755 3.39477842] #.. [ 80.36595035 49.35949263 38.12005692 35.71722666 76.39115431 58.35231328 87.18452039 80.30086861 86.99568216 47.58202096] #.. [ 7.46933695 4.55366113 3.54293763 3.29509357 9.72433732 7.41259156 15.15205888 14.10674821 7.18302629 3.91640711] #.. [ 82.92232357 50.54681754 39.33262384 36.57639175 58.55088753 44.82218676 43.11017757 39.31097542 96.4077482 52.57314209] #.. [ 199.35166485 122.1287718 94.55866295 88.3741058 139.68749646 106.89445525 115.79258539 105.99258363 239.38105863 130.32619908]] #.. #..robust standard errors (with ols) #..with outliers #.. HC0_se HC1_se HC2_se HC3_se' #..[[ 3.30166123 3.42264107 3.4477148 3.60462409] #.. [ 88.86635165 92.12260235 92.08368378 95.48159869] #.. [ 6.94456348 7.19902694 7.19953754 7.47634779] #.. [ 92.18777672 95.56573144 95.67211143 99.31427277] #.. [ 212.9905298 220.79495237 221.08892661 229.57434782]] #.. #..removing 2 outliers #..[[ 2.57840843 2.67574088 2.68958007 2.80968452] #.. [ 36.21720995 37.58437497 37.69555106 39.51362437] #.. [ 3.1156149 3.23322638 3.27353882 3.49104794] #.. [ 50.09789409 51.98904166 51.89530067 53.79478834] #.. [ 94.27094886 97.82958699 98.25588281 102.60375381]] #.. #.. #..''' # a quick bootstrap analysis # -------------------------- # #(I didn't check whether this is fully correct statistically) #**With OLS on full sample** nobs, nvar = data.exog.shape niter = 2000 bootres = np.zeros((niter, nvar*2)) for it in range(niter): rind = np.random.randint(nobs, size=nobs) endog = data.endog[rind] exog = data.exog[rind,:] res = sm.OLS(endog, exog).fit() bootres[it, :nvar] = res.params bootres[it, nvar:] = res.bse np.set_printoptions(linewidth=200) print('Bootstrap Results of parameters and parameter standard deviation OLS') print('Parameter estimates') print('median', np.median(bootres[:,:5], 0)) print('mean ', np.mean(bootres[:,:5], 0)) print('std ', np.std(bootres[:,:5], 0)) print('Standard deviation of parameter estimates') print('median', np.median(bootres[:,5:], 0)) print('mean ', np.mean(bootres[:,5:], 0)) print('std ', np.std(bootres[:,5:], 0)) plt.figure() for i in range(4): plt.subplot(2,2,i+1) plt.hist(bootres[:,i],50) plt.title('var%d' % i) #@savefig wls_bootstrap.png plt.figtext(0.5, 0.935, 'OLS Bootstrap', ha='center', color='black', weight='bold', size='large') #**With WLS on sample with outliers removed** data_endog = data.endog[olskeep] data_exog = data.exog[olskeep,:] incomesq_rm2 = incomesq[olskeep] nobs, nvar = data_exog.shape niter = 500 # a bit slow bootreswls = np.zeros((niter, nvar*2)) for it in range(niter): rind = np.random.randint(nobs, size=nobs) endog = data_endog[rind] exog = data_exog[rind,:] res = sm.WLS(endog, exog, weights=1/incomesq[rind,:]).fit() bootreswls[it, :nvar] = res.params bootreswls[it, nvar:] = res.bse print('Bootstrap Results of parameters and parameter standard deviation',) print('WLS removed 2 outliers from sample') print('Parameter estimates') print('median', np.median(bootreswls[:,:5], 0)) print('mean ', np.mean(bootreswls[:,:5], 0)) print('std ', np.std(bootreswls[:,:5], 0)) print('Standard deviation of parameter estimates') print('median', np.median(bootreswls[:,5:], 0)) print('mean ', np.mean(bootreswls[:,5:], 0)) print('std ', np.std(bootreswls[:,5:], 0)) plt.figure() for i in range(4): plt.subplot(2,2,i+1) plt.hist(bootreswls[:,i],50) plt.title('var%d' % i) #@savefig wls_bootstrap_rm2.png plt.figtext(0.5, 0.935, 'WLS rm2 Bootstrap', ha='center', color='black', weight='bold', size='large') #..plt.show() #..plt.close('all') #:: # # The following a random variables not fixed by a seed # # Bootstrap Results of parameters and parameter standard deviation # OLS # # Parameter estimates # median [ -3.26216383 228.52546429 -14.57239967 34.27155426 -227.02816597] # mean [ -2.89855173 234.37139359 -14.98726881 27.96375666 -243.18361746] # std [ 3.78704907 97.35797802 9.16316538 94.65031973 221.79444244] # # Standard deviation of parameter estimates # median [ 5.44701033 81.96921398 7.58642431 80.64906783 200.19167735] # mean [ 5.44840542 86.02554883 8.56750041 80.41864084 201.81196849] # std [ 1.43425083 29.74806562 4.22063268 19.14973277 55.34848348] # # Bootstrap Results of parameters and parameter standard deviation # WLS removed 2 outliers from sample # # Parameter estimates # median [ -3.95876112 137.10419042 -9.29131131 88.40265447 -44.21091869] # mean [ -3.67485724 135.42681207 -8.7499235 89.74703443 -46.38622848] # std [ 2.96908679 56.36648967 7.03870751 48.51201918 106.92466097] # # Standard deviation of parameter estimates # median [ 2.89349748 59.19454402 6.70583332 45.40987953 119.05241283] # mean [ 2.97600894 60.14540249 6.92102065 45.66077486 121.35519673] # std [ 0.55378808 11.77831934 1.69289179 7.4911526 23.72821085] # # # #Conclusion: problem with outliers and possibly heteroscedasticity #----------------------------------------------------------------- # #in bootstrap results # #* bse in OLS underestimates the standard deviation of the parameters # compared to standard deviation in bootstrap #* OLS heteroscedasticity corrected standard errors for the original # data (above) are close to bootstrap std #* using WLS with 2 outliers removed has a relatively good match between # the mean or median bse and the std of the parameter estimates in the # bootstrap # #We could also include rsquared in bootstrap, and do it also for RLM. #The problems could also mean that the linearity assumption is violated, #e.g. try non-linear transformation of exog variables, but linear #in parameters. # # #for statsmodels # # * In this case rsquared for original data looks less random/arbitrary. # * Don't change definition of rsquared from centered tss to uncentered # tss when calculating rsquared in WLS if the original exog contains # a constant. The increase in rsquared because of a change in definition # will be very misleading. # * Whether there is a constant in the transformed exog, wexog, or not, # might affect also the degrees of freedom calculation, but I haven't # checked this. I would guess that the df_model should stay the same, # but needs to be verified with a textbook. # * df_model has to be adjusted if the original data does not have a # constant, e.g. when regressing an endog on a single exog variable # without constant. This case might require also a redefinition of # the rsquare and f statistic for the regression anova to use the # uncentered tss. # This can be done through keyword parameter to model.__init__ or # through autodedection with hasconst = (exog.var(0)<1e-10).any() # I'm not sure about fixed effects with a full dummy set but # without a constant. In this case autodedection wouldn't work this # way. Also, I'm not sure whether a ddof keyword parameter can also # handle the hasconst case.
bsd-3-clause
DonBeo/scikit-learn
examples/linear_model/plot_lasso_and_elasticnet.py
248
1982
""" ======================================== Lasso and Elastic Net for Sparse Signals ======================================== Estimates Lasso and Elastic-Net regression models on a manually generated sparse signal corrupted with an additive noise. Estimated coefficients are compared with the ground-truth. """ print(__doc__) import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import r2_score ############################################################################### # generate some sparse data to play with np.random.seed(42) n_samples, n_features = 50, 200 X = np.random.randn(n_samples, n_features) coef = 3 * np.random.randn(n_features) inds = np.arange(n_features) np.random.shuffle(inds) coef[inds[10:]] = 0 # sparsify coef y = np.dot(X, coef) # add noise y += 0.01 * np.random.normal((n_samples,)) # Split data in train set and test set n_samples = X.shape[0] X_train, y_train = X[:n_samples / 2], y[:n_samples / 2] X_test, y_test = X[n_samples / 2:], y[n_samples / 2:] ############################################################################### # Lasso from sklearn.linear_model import Lasso alpha = 0.1 lasso = Lasso(alpha=alpha) y_pred_lasso = lasso.fit(X_train, y_train).predict(X_test) r2_score_lasso = r2_score(y_test, y_pred_lasso) print(lasso) print("r^2 on test data : %f" % r2_score_lasso) ############################################################################### # ElasticNet from sklearn.linear_model import ElasticNet enet = ElasticNet(alpha=alpha, l1_ratio=0.7) y_pred_enet = enet.fit(X_train, y_train).predict(X_test) r2_score_enet = r2_score(y_test, y_pred_enet) print(enet) print("r^2 on test data : %f" % r2_score_enet) plt.plot(enet.coef_, label='Elastic net coefficients') plt.plot(lasso.coef_, label='Lasso coefficients') plt.plot(coef, '--', label='original coefficients') plt.legend(loc='best') plt.title("Lasso R^2: %f, Elastic Net R^2: %f" % (r2_score_lasso, r2_score_enet)) plt.show()
bsd-3-clause
mckinziebrandon/DeepChatModels
tests/test_data.py
1
4834
import logging import pdb import sys sys.path.append("..") import os import unittest import tensorflow as tf from pydoc import locate import chatbot from utils import io_utils import data from chatbot.globals import DEFAULT_FULL_CONFIG dir = os.path.dirname(os.path.realpath(__file__)) from tests.utils import * class TestData(unittest.TestCase): """Tests for the datsets.""" def setUp(self): logging.basicConfig(level=logging.INFO) tf.logging.set_verbosity('ERROR') self.supported_datasets = ['Reddit', 'Ubuntu', 'Cornell'] self.default_flags = { 'pretrained_dir': TEST_FLAGS.pretrained_dir, 'config': TEST_FLAGS.config, 'model': TEST_FLAGS.model, 'debug': TEST_FLAGS.debug} def test_basic(self): """Instantiate all supported datasets and check they satisfy basic conditions. THIS MAY TAKE A LONG TIME TO COMPLETE. Since we are testing that the supported datasets can be instantiated successfully, it necessarily means that the data must exist in proper format. Since the program will generate the proper format(s) if not found, this will take about 15 minutes if run from a completely fresh setup. Otherwise, a few seconds. :) """ if os.getenv('DATA') is None \ and not os.path.exists('/home/brandon/Datasets'): print('To run this test, please enter the path to your datasets: ') data_dir = input() else: data_dir = '/home/brandon/Datasets' for dataset_name in self.supported_datasets: logging.info('Testing %s', dataset_name) incomplete_params = { 'vocab_size': 40000, 'max_seq_len': 10} self.assertIsNotNone(incomplete_params) dataset_class = getattr(data, dataset_name) # User must specify data_dir, which we have not done yet. self.assertRaises(ValueError, dataset_class, incomplete_params) config = io_utils.parse_config(flags=TEST_FLAGS) dataset_params = config.get('dataset_params') dataset_params['data_dir'] = os.path.join( data_dir, dataset_name.lower()) dataset = dataset_class(dataset_params) # Ensure all params from DEFAULT_FULL_CONFIG['dataset_params'] # are set to a value in our dataset object. for default_key in DEFAULT_FULL_CONFIG['dataset_params']: self.assertIsNotNone(getattr(dataset, default_key)) # Check that all dataset properties exist. self.assertIsNotNone(dataset.name) self.assertIsNotNone(dataset.word_to_idx) self.assertIsNotNone(dataset.idx_to_word) self.assertIsNotNone(dataset.vocab_size) self.assertIsNotNone(dataset.max_seq_len) # Check that the properties satisfy basic expectations. self.assertEqual(len(dataset.word_to_idx), len(dataset.idx_to_word)) self.assertEqual(len(dataset.word_to_idx), dataset.vocab_size) self.assertEqual(len(dataset.idx_to_word), dataset.vocab_size) incomplete_params.clear() dataset_params.clear() def test_cornell(self): """Train a bot on cornell and display responses when given training data as input -- a sanity check that the data is clean. """ flags = Flags( model_params=dict( ckpt_dir='out/tests/test_cornell', reset_model=True, steps_per_ckpt=50, base_cell='GRUCell', num_layers=1, state_size=128, embed_size=64, max_steps=50), dataset_params=dict( vocab_size=50000, max_seq_len=8, data_dir='/home/brandon/Datasets/cornell'), dataset='Cornell', **self.default_flags) bot, dataset = create_bot(flags=flags, return_dataset=True) bot.train() del bot # Recreate bot (its session is automatically closed after training). flags.model_params['reset_model'] = False flags.model_params['decode'] = True bot, dataset = create_bot(flags, return_dataset=True) for inp_sent, resp_sent in dataset.pairs_generator(100): print('\nHuman:', inp_sent) response = bot.respond(inp_sent) if response == resp_sent: print('Robot: %s\nCorrect!' % response) else: print('Robot: %s\nExpected: %s' % ( response, resp_sent)) if __name__ == '__main__': tf.logging.set_verbosity('ERROR') unittest.main()
mit
negrinho/deep_architect
dev/examples/full_benchmarks/arch_search.py
1
9376
import argparse import deep_architect.utils as ut from deep_architect.contrib.misc.datasets.loaders import (load_cifar10, load_mnist) from deep_architect.contrib.misc.datasets.dataset import InMemoryDataset from deep_architect.searchers import common as se from deep_architect.contrib.misc import gpu_utils from deep_architect import search_logging as sl from search_space_factory import name_to_search_space_factory_fn from searcher import name_to_searcher_fn from deep_architect.contrib.misc.evaluators.tensorflow.classification import SimpleClassifierEvaluator from deep_architect.contrib.communicators.communicator import get_communicator def start_searcher(comm, searcher, resume_if_exists, folderpath, search_name, searcher_load_path, num_samples=-1, num_epochs=-1, save_every=1): assert num_samples != -1 or num_epochs != -1 print('SEARCHER') sl.create_search_folderpath(folderpath, search_name) search_data_folder = sl.get_search_data_folderpath(folderpath, search_name) save_filepath = ut.join_paths((search_data_folder, searcher_load_path)) models_sampled = 0 epochs = 0 finished = 0 killed = 0 best_accuracy = 0. # Load previous searcher if resume_if_exists: searcher.load(search_data_folder) state = ut.read_jsonfile(save_filepath) epochs = state['epochs'] killed = state['killed'] models_sampled = state['models_finished'] finished = state['models_finished'] while (finished < models_sampled or killed < comm.num_workers): # Search end conditions cont = num_samples == -1 or models_sampled < num_samples cont = cont and (num_epochs == -1 or epochs < num_epochs) if cont: # See whether workers are ready to consume architectures if comm.is_ready_to_publish_architecture(): eval_logger = sl.EvaluationLogger(folderpath, search_name, models_sampled) _, _, vs, searcher_eval_token = searcher.sample() eval_logger.log_config(vs, searcher_eval_token) comm.publish_architecture_to_worker(vs, models_sampled, searcher_eval_token) models_sampled += 1 else: if comm.is_ready_to_publish_architecture(): comm.kill_worker() killed += 1 # See which workers have finished evaluation for worker in range(comm.num_workers): msg = comm.receive_results_in_master(worker) if msg is not None: results, model_id, searcher_eval_token = msg eval_logger = sl.EvaluationLogger(folderpath, search_name, model_id) eval_logger.log_results(results) if 'epoch' in results: epochs = max(epochs, results['epoch']) searcher.update(results['validation_accuracy'], searcher_eval_token) best_accuracy = max(best_accuracy, results['validation_accuracy']) finished += 1 if finished % save_every == 0: print('Models sampled: %d Best Accuracy: %f' % (finished, best_accuracy)) best_accuracy = 0. searcher.save_state(search_data_folder) state = { 'models_finished': finished, 'epochs': epochs, 'killed': killed } ut.write_jsonfile(state, save_filepath) def start_worker(comm, evaluator, search_space_factory, folderpath, search_name, resume=True, save_every=1): # set the available gpu for process print('WORKER %d' % comm.get_rank()) step = 0 sl.create_search_folderpath(folderpath, search_name) search_data_folder = sl.get_search_data_folderpath(folderpath, search_name) save_filepath = ut.join_paths( (search_data_folder, 'worker' + str(comm.get_rank()) + '.json')) if resume: evaluator.load_state(search_data_folder) state = ut.read_jsonfile(save_filepath) step = state['step'] while (True): arch = comm.receive_architecture_in_worker() # if a kill signal is received if arch is None: break vs, evaluation_id, searcher_eval_token = arch inputs, outputs = search_space_factory.get_search_space() se.specify(outputs, vs) results = evaluator.eval(inputs, outputs) step += 1 if step % save_every == 0: evaluator.save_state(search_data_folder) state = {'step': step} ut.write_jsonfile(state, save_filepath) comm.publish_results_to_master(results, evaluation_id, searcher_eval_token) def main(): configs = ut.read_jsonfile( "./examples/tensorflow/full_benchmarks/experiment_config.json") parser = argparse.ArgumentParser("MPI Job for architecture search") parser.add_argument('--config', '-c', action='store', dest='config_name', default='normal') # Other arguments parser.add_argument('--display-output', '-o', action='store_true', dest='display_output', default=False) parser.add_argument('--resume', '-r', action='store_true', dest='resume', default=False) options = parser.parse_args() config = configs[options.config_name] num_procs = config['num_procs'] if 'num_procs' in config else 0 comm = get_communicator(config['communicator'], num_procs) if len(gpu_utils.get_gpu_information()) != 0: #https://github.com/tensorflow/tensorflow/issues/1888 gpu_utils.set_visible_gpus( [comm.get_rank() % gpu_utils.get_total_num_gpus()]) if 'eager' in config and config['eager']: import tensorflow as tf tf.logging.set_verbosity(tf.logging.ERROR) tf.enable_eager_execution() datasets = { 'cifar10': lambda: (load_cifar10('data/cifar10/', one_hot=False), 10), 'mnist': lambda: (load_mnist('data/mnist/'), 10), } (Xtrain, ytrain, Xval, yval, Xtest, ytest), num_classes = datasets[config['dataset']]() search_space_factory = name_to_search_space_factory_fn[ config['search_space']](num_classes) save_every = 1 if 'save_every' not in config else config['save_every'] if comm.get_rank() == 0: searcher = name_to_searcher_fn[config['searcher']]( search_space_factory.get_search_space) num_samples = -1 if 'samples' not in config else config['samples'] num_epochs = -1 if 'epochs' not in config else config['epochs'] start_searcher(comm, searcher, options.resume, config['search_folder'], config['search_name'], config['searcher_file_name'], num_samples=num_samples, num_epochs=num_epochs, save_every=save_every) else: train_d_advataset = InMemoryDataset(Xtrain, ytrain, True) val_dataset = InMemoryDataset(Xval, yval, False) test_dataset = InMemoryDataset(Xtest, ytest, False) search_path = sl.get_search_folderpath(config['search_folder'], config['search_name']) ut.create_folder(ut.join_paths([search_path, 'scratch_data']), create_parent_folders=True) scratch_folder = ut.join_paths( [search_path, 'scratch_data', 'eval_' + str(comm.get_rank())]) ut.create_folder(scratch_folder) evaluators = { 'simple_classification': lambda: SimpleClassifierEvaluator( train_dataset, val_dataset, num_classes, './temp' + str(comm.get_rank()), max_num_training_epochs=config['eval_epochs'], log_output_to_terminal=options.display_output, test_dataset=test_dataset), } assert not config['evaluator'].startswith('enas') or hasattr( search_space_factory, 'weight_sharer') evaluator = evaluators[config['evaluator']]() start_worker(comm, evaluator, search_space_factory, config['search_folder'], config['search_name'], resume=options.resume, save_every=save_every) if __name__ == "__main__": main()
mit
arabenjamin/scikit-learn
sklearn/utils/fixes.py
132
12882
"""Compatibility fixes for older version of python, numpy and scipy If you add content to this file, please give the version of the package at which the fixe is no longer needed. """ # Authors: Emmanuelle Gouillart <[email protected]> # Gael Varoquaux <[email protected]> # Fabian Pedregosa <[email protected]> # Lars Buitinck # # License: BSD 3 clause import inspect import warnings import sys import functools import os import errno import numpy as np import scipy.sparse as sp import scipy def _parse_version(version_string): version = [] for x in version_string.split('.'): try: version.append(int(x)) except ValueError: # x may be of the form dev-1ea1592 version.append(x) return tuple(version) np_version = _parse_version(np.__version__) sp_version = _parse_version(scipy.__version__) try: from scipy.special import expit # SciPy >= 0.10 with np.errstate(invalid='ignore', over='ignore'): if np.isnan(expit(1000)): # SciPy < 0.14 raise ImportError("no stable expit in scipy.special") except ImportError: def expit(x, out=None): """Logistic sigmoid function, ``1 / (1 + exp(-x))``. See sklearn.utils.extmath.log_logistic for the log of this function. """ if out is None: out = np.empty(np.atleast_1d(x).shape, dtype=np.float64) out[:] = x # 1 / (1 + exp(-x)) = (1 + tanh(x / 2)) / 2 # This way of computing the logistic is both fast and stable. out *= .5 np.tanh(out, out) out += 1 out *= .5 return out.reshape(np.shape(x)) # little danse to see if np.copy has an 'order' keyword argument if 'order' in inspect.getargspec(np.copy)[0]: def safe_copy(X): # Copy, but keep the order return np.copy(X, order='K') else: # Before an 'order' argument was introduced, numpy wouldn't muck with # the ordering safe_copy = np.copy try: if (not np.allclose(np.divide(.4, 1, casting="unsafe"), np.divide(.4, 1, casting="unsafe", dtype=np.float)) or not np.allclose(np.divide(.4, 1), .4)): raise TypeError('Divide not working with dtype: ' 'https://github.com/numpy/numpy/issues/3484') divide = np.divide except TypeError: # Compat for old versions of np.divide that do not provide support for # the dtype args def divide(x1, x2, out=None, dtype=None): out_orig = out if out is None: out = np.asarray(x1, dtype=dtype) if out is x1: out = x1.copy() else: if out is not x1: out[:] = x1 if dtype is not None and out.dtype != dtype: out = out.astype(dtype) out /= x2 if out_orig is None and np.isscalar(x1): out = np.asscalar(out) return out try: np.array(5).astype(float, copy=False) except TypeError: # Compat where astype accepted no copy argument def astype(array, dtype, copy=True): if not copy and array.dtype == dtype: return array return array.astype(dtype) else: astype = np.ndarray.astype try: with warnings.catch_warnings(record=True): # Don't raise the numpy deprecation warnings that appear in # 1.9, but avoid Python bug due to simplefilter('ignore') warnings.simplefilter('always') sp.csr_matrix([1.0, 2.0, 3.0]).max(axis=0) except (TypeError, AttributeError): # in scipy < 14.0, sparse matrix min/max doesn't accept an `axis` argument # the following code is taken from the scipy 0.14 codebase def _minor_reduce(X, ufunc): major_index = np.flatnonzero(np.diff(X.indptr)) if X.data.size == 0 and major_index.size == 0: # Numpy < 1.8.0 don't handle empty arrays in reduceat value = np.zeros_like(X.data) else: value = ufunc.reduceat(X.data, X.indptr[major_index]) return major_index, value def _min_or_max_axis(X, axis, min_or_max): N = X.shape[axis] if N == 0: raise ValueError("zero-size array to reduction operation") M = X.shape[1 - axis] mat = X.tocsc() if axis == 0 else X.tocsr() mat.sum_duplicates() major_index, value = _minor_reduce(mat, min_or_max) not_full = np.diff(mat.indptr)[major_index] < N value[not_full] = min_or_max(value[not_full], 0) mask = value != 0 major_index = np.compress(mask, major_index) value = np.compress(mask, value) from scipy.sparse import coo_matrix if axis == 0: res = coo_matrix((value, (np.zeros(len(value)), major_index)), dtype=X.dtype, shape=(1, M)) else: res = coo_matrix((value, (major_index, np.zeros(len(value)))), dtype=X.dtype, shape=(M, 1)) return res.A.ravel() def _sparse_min_or_max(X, axis, min_or_max): if axis is None: if 0 in X.shape: raise ValueError("zero-size array to reduction operation") zero = X.dtype.type(0) if X.nnz == 0: return zero m = min_or_max.reduce(X.data.ravel()) if X.nnz != np.product(X.shape): m = min_or_max(zero, m) return m if axis < 0: axis += 2 if (axis == 0) or (axis == 1): return _min_or_max_axis(X, axis, min_or_max) else: raise ValueError("invalid axis, use 0 for rows, or 1 for columns") def sparse_min_max(X, axis): return (_sparse_min_or_max(X, axis, np.minimum), _sparse_min_or_max(X, axis, np.maximum)) else: def sparse_min_max(X, axis): return (X.min(axis=axis).toarray().ravel(), X.max(axis=axis).toarray().ravel()) try: from numpy import argpartition except ImportError: # numpy.argpartition was introduced in v 1.8.0 def argpartition(a, kth, axis=-1, kind='introselect', order=None): return np.argsort(a, axis=axis, order=order) try: from itertools import combinations_with_replacement except ImportError: # Backport of itertools.combinations_with_replacement for Python 2.6, # from Python 3.4 documentation (http://tinyurl.com/comb-w-r), copyright # Python Software Foundation (https://docs.python.org/3/license.html) def combinations_with_replacement(iterable, r): # combinations_with_replacement('ABC', 2) --> AA AB AC BB BC CC pool = tuple(iterable) n = len(pool) if not n and r: return indices = [0] * r yield tuple(pool[i] for i in indices) while True: for i in reversed(range(r)): if indices[i] != n - 1: break else: return indices[i:] = [indices[i] + 1] * (r - i) yield tuple(pool[i] for i in indices) try: from numpy import isclose except ImportError: def isclose(a, b, rtol=1.e-5, atol=1.e-8, equal_nan=False): """ Returns a boolean array where two arrays are element-wise equal within a tolerance. This function was added to numpy v1.7.0, and the version you are running has been backported from numpy v1.8.1. See its documentation for more details. """ def within_tol(x, y, atol, rtol): with np.errstate(invalid='ignore'): result = np.less_equal(abs(x - y), atol + rtol * abs(y)) if np.isscalar(a) and np.isscalar(b): result = bool(result) return result x = np.array(a, copy=False, subok=True, ndmin=1) y = np.array(b, copy=False, subok=True, ndmin=1) xfin = np.isfinite(x) yfin = np.isfinite(y) if all(xfin) and all(yfin): return within_tol(x, y, atol, rtol) else: finite = xfin & yfin cond = np.zeros_like(finite, subok=True) # Since we're using boolean indexing, x & y must be the same shape. # Ideally, we'd just do x, y = broadcast_arrays(x, y). It's in # lib.stride_tricks, though, so we can't import it here. x = x * np.ones_like(cond) y = y * np.ones_like(cond) # Avoid subtraction with infinite/nan values... cond[finite] = within_tol(x[finite], y[finite], atol, rtol) # Check for equality of infinite values... cond[~finite] = (x[~finite] == y[~finite]) if equal_nan: # Make NaN == NaN cond[np.isnan(x) & np.isnan(y)] = True return cond if np_version < (1, 7): # Prior to 1.7.0, np.frombuffer wouldn't work for empty first arg. def frombuffer_empty(buf, dtype): if len(buf) == 0: return np.empty(0, dtype=dtype) else: return np.frombuffer(buf, dtype=dtype) else: frombuffer_empty = np.frombuffer if np_version < (1, 8): def in1d(ar1, ar2, assume_unique=False, invert=False): # Backport of numpy function in1d 1.8.1 to support numpy 1.6.2 # Ravel both arrays, behavior for the first array could be different ar1 = np.asarray(ar1).ravel() ar2 = np.asarray(ar2).ravel() # This code is significantly faster when the condition is satisfied. if len(ar2) < 10 * len(ar1) ** 0.145: if invert: mask = np.ones(len(ar1), dtype=np.bool) for a in ar2: mask &= (ar1 != a) else: mask = np.zeros(len(ar1), dtype=np.bool) for a in ar2: mask |= (ar1 == a) return mask # Otherwise use sorting if not assume_unique: ar1, rev_idx = np.unique(ar1, return_inverse=True) ar2 = np.unique(ar2) ar = np.concatenate((ar1, ar2)) # We need this to be a stable sort, so always use 'mergesort' # here. The values from the first array should always come before # the values from the second array. order = ar.argsort(kind='mergesort') sar = ar[order] if invert: bool_ar = (sar[1:] != sar[:-1]) else: bool_ar = (sar[1:] == sar[:-1]) flag = np.concatenate((bool_ar, [invert])) indx = order.argsort(kind='mergesort')[:len(ar1)] if assume_unique: return flag[indx] else: return flag[indx][rev_idx] else: from numpy import in1d if sp_version < (0, 15): # Backport fix for scikit-learn/scikit-learn#2986 / scipy/scipy#4142 from ._scipy_sparse_lsqr_backport import lsqr as sparse_lsqr else: from scipy.sparse.linalg import lsqr as sparse_lsqr if sys.version_info < (2, 7, 0): # partial cannot be pickled in Python 2.6 # http://bugs.python.org/issue1398 class partial(object): def __init__(self, func, *args, **keywords): functools.update_wrapper(self, func) self.func = func self.args = args self.keywords = keywords def __call__(self, *args, **keywords): args = self.args + args kwargs = self.keywords.copy() kwargs.update(keywords) return self.func(*args, **kwargs) else: from functools import partial if np_version < (1, 6, 2): # Allow bincount to accept empty arrays # https://github.com/numpy/numpy/commit/40f0844846a9d7665616b142407a3d74cb65a040 def bincount(x, weights=None, minlength=None): if len(x) > 0: return np.bincount(x, weights, minlength) else: if minlength is None: minlength = 0 minlength = np.asscalar(np.asarray(minlength, dtype=np.intp)) return np.zeros(minlength, dtype=np.intp) else: from numpy import bincount if 'exist_ok' in inspect.getargspec(os.makedirs).args: makedirs = os.makedirs else: def makedirs(name, mode=0o777, exist_ok=False): """makedirs(name [, mode=0o777][, exist_ok=False]) Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any intermediate path segment (not just the rightmost) will be created if it does not exist. If the target directory already exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive. """ try: os.makedirs(name, mode=mode) except OSError as e: if (not exist_ok or e.errno != errno.EEXIST or not os.path.isdir(name)): raise
bsd-3-clause
hasgeek/funnel
funnel/views/notification_feed.py
1
4249
"""Views for notification feed (updates page).""" from __future__ import annotations from flask import abort from baseframe import forms from coaster.auth import current_auth from coaster.views import ClassView, render_with, requestargs, route from .. import app from ..models import UserNotification, db from ..typing import ReturnRenderWith from .login_session import requires_login @route('/updates') class AllNotificationsView(ClassView): current_section = 'notifications' # needed for showing active tab @route('', endpoint='notifications', defaults={'unread_only': False}) @route('unread', endpoint='notifications_unread', defaults={'unread_only': True}) @requires_login @render_with('notification_feed.html.jinja2', json=True) @requestargs(('page', int), ('per_page', int)) def view(self, unread_only: bool, page=1, per_page=10) -> ReturnRenderWith: pagination = UserNotification.web_notifications_for( current_auth.user, unread_only ).paginate(page=page, per_page=per_page, max_per_page=100) results = { 'unread_only': unread_only, 'show_transport_alert': not current_auth.user.has_transport_sms(), 'notifications': [ { 'notification': un.current_access(datasets=('primary', 'related')), 'html': un.views.render(), 'document_type': un.notification.document_type, 'document': un.document.current_access( datasets=('primary', 'related') ) if un.document else None, 'fragment_type': un.notification.fragment_type, 'fragment': un.fragment.current_access( datasets=('primary', 'related') ) if un.fragment else None, } for un in pagination.items if un.is_not_deleted(revoke=True) ], 'has_next': pagination.has_next, 'has_prev': pagination.has_prev, 'page': pagination.page, 'per_page': pagination.per_page, 'pages': pagination.pages, 'next_num': pagination.next_num, 'prev_num': pagination.prev_num, 'count': pagination.total, } db.session.commit() return results def unread_count(self) -> int: return UserNotification.unread_count_for(current_auth.user) @route('count', endpoint='notifications_count') def unread(self) -> ReturnRenderWith: # This view must NOT have a `@requires_login` decorator as that will insert # it as the next page after login if current_auth.user: return { 'status': 'ok', 'unread': self.unread_count(), } return {'status': 'error', 'error': 'requires_login'}, 400 @route( 'mark_read/<eventid_b58>', endpoint='notification_mark_read', methods=['POST'] ) @requires_login def mark_read(self, eventid_b58: str) -> ReturnRenderWith: form = forms.Form() del form.form_nonce if form.validate_on_submit(): un = UserNotification.get_for(current_auth.user, eventid_b58) if un is None: abort(404) un.is_read = True db.session.commit() return {'status': 'ok', 'unread': self.unread_count()} return {'status': 'error', 'error': 'csrf'}, 400 @route( 'mark_unread/<eventid_b58>', endpoint='notification_mark_unread', methods=['POST'], ) @requires_login def mark_unread(self, eventid_b58: str) -> ReturnRenderWith: form = forms.Form() del form.form_nonce if form.validate_on_submit(): un = UserNotification.get_for(current_auth.user, eventid_b58) if un is None: abort(404) un.is_read = False db.session.commit() return {'status': 'ok', 'unread': self.unread_count()} return {'status': 'error', 'error': 'csrf'}, 400 AllNotificationsView.init_app(app)
agpl-3.0
tapomayukh/projects_in_python
classification/Classification_with_kNN/Single_Contact_Classification/Time_Window/test10_cross_validate_objects_400ms.py
1
4258
# Principal Component Analysis Code : from numpy import mean,cov,double,cumsum,dot,linalg,array,rank,size,flipud from pylab import * import numpy as np import matplotlib.pyplot as pp #from enthought.mayavi import mlab import scipy.ndimage as ni import roslib; roslib.load_manifest('sandbox_tapo_darpa_m3') import rospy #import hrl_lib.mayavi2_util as mu import hrl_lib.viz as hv import hrl_lib.util as ut import hrl_lib.matplotlib_util as mpu import pickle from mvpa.clfs.knn import kNN from mvpa.datasets import Dataset from mvpa.clfs.transerror import TransferError from mvpa.misc.data_generators import normalFeatureDataset from mvpa.algorithms.cvtranserror import CrossValidatedTransferError from mvpa.datasets.splitters import NFoldSplitter import sys sys.path.insert(0, '/home/tapo/svn/robot1_data/usr/tapo/data_code/Classification/Data/Single_Contact_kNN/Window') from data_400ms import Fmat_original def pca(X): #get dimensions num_data,dim = X.shape #center data mean_X = X.mean(axis=1) M = (X-mean_X) # subtract the mean (along columns) Mcov = cov(M) print 'PCA - COV-Method used' val,vec = linalg.eig(Mcov) #return the projection matrix, the variance and the mean return vec,val,mean_X, M, Mcov if __name__ == '__main__': Fmat = Fmat_original # Checking the Data-Matrix m_tot, n_tot = np.shape(Fmat) print 'Total_Matrix_Shape:',m_tot,n_tot eigvec_total, eigval_total, mean_data_total, B, C = pca(Fmat) #print eigvec_total #print eigval_total #print mean_data_total m_eigval_total, n_eigval_total = np.shape(np.matrix(eigval_total)) m_eigvec_total, n_eigvec_total = np.shape(eigvec_total) m_mean_data_total, n_mean_data_total = np.shape(np.matrix(mean_data_total)) print 'Eigenvalue Shape:',m_eigval_total, n_eigval_total print 'Eigenvector Shape:',m_eigvec_total, n_eigvec_total print 'Mean-Data Shape:',m_mean_data_total, n_mean_data_total #Recall that the cumulative sum of the eigenvalues shows the level of variance accounted by each of the corresponding eigenvectors. On the x axis there is the number of eigenvalues used. perc_total = cumsum(eigval_total)/sum(eigval_total) # Reduced Eigen-Vector Matrix according to highest Eigenvalues..(Considering First 20 based on above figure) W = eigvec_total[:,0:18] m_W, n_W = np.shape(W) print 'Reduced Dimension Eigenvector Shape:',m_W, n_W # Normalizes the data set with respect to its variance (Not an Integral part of PCA, but useful) length = len(eigval_total) s = np.matrix(np.zeros(length)).T i = 0 while i < length: s[i] = sqrt(C[i,i]) i = i+1 Z = np.divide(B,s) m_Z, n_Z = np.shape(Z) print 'Z-Score Shape:', m_Z, n_Z #Projected Data: Y = (W.T)*B # 'B' for my Laptop: otherwise 'Z' instead of 'B' m_Y, n_Y = np.shape(Y.T) print 'Transposed Projected Data Shape:', m_Y, n_Y #Using PYMVPA PCA_data = np.array(Y.T) PCA_label_2 = ['Styrofoam-Fixed']*5 + ['Books-Fixed']*5 + ['Bucket-Fixed']*5 + ['Bowl-Fixed']*5 + ['Can-Fixed']*5 + ['Box-Fixed']*5 + ['Pipe-Fixed']*5 + ['Styrofoam-Movable']*5 + ['Container-Movable']*5 + ['Books-Movable']*5 + ['Cloth-Roll-Movable']*5 + ['Black-Rubber-Movable']*5 + ['Can-Movable']*5 + ['Box-Movable']*5 + ['Rug-Fixed']*5 + ['Bubble-Wrap-1-Fixed']*5 + ['Pillow-1-Fixed']*5 + ['Bubble-Wrap-2-Fixed']*5 + ['Sponge-Fixed']*5 + ['Foliage-Fixed']*5 + ['Pillow-2-Fixed']*5 + ['Rug-Movable']*5 + ['Bubble-Wrap-1-Movable']*5 + ['Pillow-1-Movable']*5 + ['Bubble-Wrap-2-Movable']*5 + ['Pillow-2-Movable']*5 + ['Plush-Toy-Movable']*5 + ['Sponge-Movable']*5 clf = kNN(k=1) terr = TransferError(clf) ds1 = Dataset(samples=PCA_data,labels=PCA_label_2) print ds1.samples.shape cvterr = CrossValidatedTransferError(terr,NFoldSplitter(cvtype=1),enable_states=['confusion']) error = cvterr(ds1) print error print cvterr.confusion.asstring(description=False) figure(1) cvterr.confusion.plot(numbers='True',numbers_alpha=2) #show() # Variances figure(2) title('Variances of PCs') stem(range(len(perc_total)),perc_total,'--b') axis([-0.3,130.3,0,1.2]) grid('True') show()
mit
negrinho/deep_architect
dev/tutorials/weight_sharing/weight_sharing/main.py
1
2524
###${MARKDOWN} # Recently, with the success of papers such as # [Efficient Neural Architecture Search via Parameter Sharing](https://arxiv.org/abs/1802.03268), # weight sharing has emerged as a popular way to speed up evaluation of sampled # architectures in architecture search. Weight sharing simply involves sharing # the weights of common layers between different sampled architectures. # While DeepArchitect does not currently support weight sharing natively, # there is a simple way to implement weight sharing within the context of the # framework. # # This tutorial demonstrates how to implement basic weight sharing with a dynamic deep # learning framework such as Tensorflow eager or pytorch. This example specifically # will use Tensorflow eager. import tensorflow as tf from deep_architect.helpers.tensorflow_eager_support import siso_tensorflow_eager_module # The WeightSharer object is a simple wrapper around a dictionary that stores a # mapping from a layer name to the shared layer used by the DeepArchitect modules. class WeightSharer: def __init__(self): self.name_to_weight = {} def get(self, name, weight_fn): if name not in self.name_to_weight: self.name_to_weight[name] = weight_fn() return self.name_to_weight[name] weight_sharer = WeightSharer() # Now to share weights or any other object, simply use a common name for the object # you wish to share, and pass in a function to initialize the object. The first # time the function is called, the convolution layer will be created. Subsequent # calls will simply retrieve the layer from the WeightSharer object. def conv2D(filter_size, channels, name): def compile_fn(di, dh): conv_fn = lambda: tf.keras.layers.Conv2D(channels, filter_size) conv = weight_sharer.get(name, conv_fn) def fn(di, is_training=True): return {'out': conv(di['in'])} return fn return siso_tensorflow_eager_module('Conv2D', compile_fn, {}) conv_original = conv2D(3, 32, 'conv_layer') # Now, calling the function again with the same 'name' argument will return # a DeepArchitect module with the same internal convolutional layer conv_shared = conv2D(3, 32, 'conv_layer') # Implementing such a weight sharing scheme with another dynamic framework such # as Pytorch is just as straightforward as above. To implement a weight sharing # scheme with a graph based framework like Tensorflow, you must run the tensors # that you wish to store and store the actual weights.
mit
mike0sv/spark
python/pyspark/ml/feature.py
7
125758
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys if sys.version > '3': basestring = str from pyspark import since, keyword_only from pyspark.rdd import ignore_unicode_prefix from pyspark.ml.linalg import _convert_to_vector from pyspark.ml.param.shared import * from pyspark.ml.util import JavaMLReadable, JavaMLWritable from pyspark.ml.wrapper import JavaEstimator, JavaModel, JavaTransformer, _jvm from pyspark.ml.common import inherit_doc __all__ = ['Binarizer', 'BucketedRandomProjectionLSH', 'BucketedRandomProjectionLSHModel', 'Bucketizer', 'ChiSqSelector', 'ChiSqSelectorModel', 'CountVectorizer', 'CountVectorizerModel', 'DCT', 'ElementwiseProduct', 'HashingTF', 'IDF', 'IDFModel', 'Imputer', 'ImputerModel', 'IndexToString', 'MaxAbsScaler', 'MaxAbsScalerModel', 'MinHashLSH', 'MinHashLSHModel', 'MinMaxScaler', 'MinMaxScalerModel', 'NGram', 'Normalizer', 'OneHotEncoder', 'PCA', 'PCAModel', 'PolynomialExpansion', 'QuantileDiscretizer', 'RegexTokenizer', 'RFormula', 'RFormulaModel', 'SQLTransformer', 'StandardScaler', 'StandardScalerModel', 'StopWordsRemover', 'StringIndexer', 'StringIndexerModel', 'Tokenizer', 'VectorAssembler', 'VectorIndexer', 'VectorIndexerModel', 'VectorSlicer', 'Word2Vec', 'Word2VecModel'] @inherit_doc class Binarizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Binarize a column of continuous features given a threshold. >>> df = spark.createDataFrame([(0.5,)], ["values"]) >>> binarizer = Binarizer(threshold=1.0, inputCol="values", outputCol="features") >>> binarizer.transform(df).head().features 0.0 >>> binarizer.setParams(outputCol="freqs").transform(df).head().freqs 0.0 >>> params = {binarizer.threshold: -0.5, binarizer.outputCol: "vector"} >>> binarizer.transform(df, params).head().vector 1.0 >>> binarizerPath = temp_path + "/binarizer" >>> binarizer.save(binarizerPath) >>> loadedBinarizer = Binarizer.load(binarizerPath) >>> loadedBinarizer.getThreshold() == binarizer.getThreshold() True .. versionadded:: 1.4.0 """ threshold = Param(Params._dummy(), "threshold", "threshold in binary classification prediction, in range [0, 1]", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, threshold=0.0, inputCol=None, outputCol=None): """ __init__(self, threshold=0.0, inputCol=None, outputCol=None) """ super(Binarizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Binarizer", self.uid) self._setDefault(threshold=0.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, threshold=0.0, inputCol=None, outputCol=None): """ setParams(self, threshold=0.0, inputCol=None, outputCol=None) Sets params for this Binarizer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setThreshold(self, value): """ Sets the value of :py:attr:`threshold`. """ return self._set(threshold=value) @since("1.4.0") def getThreshold(self): """ Gets the value of threshold or its default value. """ return self.getOrDefault(self.threshold) class LSHParams(Params): """ Mixin for Locality Sensitive Hashing (LSH) algorithm parameters. """ numHashTables = Param(Params._dummy(), "numHashTables", "number of hash tables, where " + "increasing number of hash tables lowers the false negative rate, " + "and decreasing it improves the running performance.", typeConverter=TypeConverters.toInt) def __init__(self): super(LSHParams, self).__init__() def setNumHashTables(self, value): """ Sets the value of :py:attr:`numHashTables`. """ return self._set(numHashTables=value) def getNumHashTables(self): """ Gets the value of numHashTables or its default value. """ return self.getOrDefault(self.numHashTables) class LSHModel(JavaModel): """ Mixin for Locality Sensitive Hashing (LSH) models. """ def approxNearestNeighbors(self, dataset, key, numNearestNeighbors, distCol="distCol"): """ Given a large dataset and an item, approximately find at most k items which have the closest distance to the item. If the :py:attr:`outputCol` is missing, the method will transform the data; if the :py:attr:`outputCol` exists, it will use that. This allows caching of the transformed data when necessary. .. note:: This method is experimental and will likely change behavior in the next release. :param dataset: The dataset to search for nearest neighbors of the key. :param key: Feature vector representing the item to search for. :param numNearestNeighbors: The maximum number of nearest neighbors. :param distCol: Output column for storing the distance between each result row and the key. Use "distCol" as default value if it's not specified. :return: A dataset containing at most k items closest to the key. A column "distCol" is added to show the distance between each row and the key. """ return self._call_java("approxNearestNeighbors", dataset, key, numNearestNeighbors, distCol) def approxSimilarityJoin(self, datasetA, datasetB, threshold, distCol="distCol"): """ Join two datasets to approximately find all pairs of rows whose distance are smaller than the threshold. If the :py:attr:`outputCol` is missing, the method will transform the data; if the :py:attr:`outputCol` exists, it will use that. This allows caching of the transformed data when necessary. :param datasetA: One of the datasets to join. :param datasetB: Another dataset to join. :param threshold: The threshold for the distance of row pairs. :param distCol: Output column for storing the distance between each pair of rows. Use "distCol" as default value if it's not specified. :return: A joined dataset containing pairs of rows. The original rows are in columns "datasetA" and "datasetB", and a column "distCol" is added to show the distance between each pair. """ return self._call_java("approxSimilarityJoin", datasetA, datasetB, threshold, distCol) @inherit_doc class BucketedRandomProjectionLSH(JavaEstimator, LSHParams, HasInputCol, HasOutputCol, HasSeed, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental LSH class for Euclidean distance metrics. The input is dense or sparse vectors, each of which represents a point in the Euclidean distance space. The output will be vectors of configurable dimension. Hash values in the same dimension are calculated by the same hash function. .. seealso:: `Stable Distributions \ <https://en.wikipedia.org/wiki/Locality-sensitive_hashing#Stable_distributions>`_ .. seealso:: `Hashing for Similarity Search: A Survey <https://arxiv.org/abs/1408.2927>`_ >>> from pyspark.ml.linalg import Vectors >>> from pyspark.sql.functions import col >>> data = [(0, Vectors.dense([-1.0, -1.0 ]),), ... (1, Vectors.dense([-1.0, 1.0 ]),), ... (2, Vectors.dense([1.0, -1.0 ]),), ... (3, Vectors.dense([1.0, 1.0]),)] >>> df = spark.createDataFrame(data, ["id", "features"]) >>> brp = BucketedRandomProjectionLSH(inputCol="features", outputCol="hashes", ... seed=12345, bucketLength=1.0) >>> model = brp.fit(df) >>> model.transform(df).head() Row(id=0, features=DenseVector([-1.0, -1.0]), hashes=[DenseVector([-1.0])]) >>> data2 = [(4, Vectors.dense([2.0, 2.0 ]),), ... (5, Vectors.dense([2.0, 3.0 ]),), ... (6, Vectors.dense([3.0, 2.0 ]),), ... (7, Vectors.dense([3.0, 3.0]),)] >>> df2 = spark.createDataFrame(data2, ["id", "features"]) >>> model.approxNearestNeighbors(df2, Vectors.dense([1.0, 2.0]), 1).collect() [Row(id=4, features=DenseVector([2.0, 2.0]), hashes=[DenseVector([1.0])], distCol=1.0)] >>> model.approxSimilarityJoin(df, df2, 3.0, distCol="EuclideanDistance").select( ... col("datasetA.id").alias("idA"), ... col("datasetB.id").alias("idB"), ... col("EuclideanDistance")).show() +---+---+-----------------+ |idA|idB|EuclideanDistance| +---+---+-----------------+ | 3| 6| 2.23606797749979| +---+---+-----------------+ ... >>> brpPath = temp_path + "/brp" >>> brp.save(brpPath) >>> brp2 = BucketedRandomProjectionLSH.load(brpPath) >>> brp2.getBucketLength() == brp.getBucketLength() True >>> modelPath = temp_path + "/brp-model" >>> model.save(modelPath) >>> model2 = BucketedRandomProjectionLSHModel.load(modelPath) >>> model.transform(df).head().hashes == model2.transform(df).head().hashes True .. versionadded:: 2.2.0 """ bucketLength = Param(Params._dummy(), "bucketLength", "the length of each hash bucket, " + "a larger bucket lowers the false negative rate.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, inputCol=None, outputCol=None, seed=None, numHashTables=1, bucketLength=None): """ __init__(self, inputCol=None, outputCol=None, seed=None, numHashTables=1, \ bucketLength=None) """ super(BucketedRandomProjectionLSH, self).__init__() self._java_obj = \ self._new_java_obj("org.apache.spark.ml.feature.BucketedRandomProjectionLSH", self.uid) self._setDefault(numHashTables=1) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.2.0") def setParams(self, inputCol=None, outputCol=None, seed=None, numHashTables=1, bucketLength=None): """ setParams(self, inputCol=None, outputCol=None, seed=None, numHashTables=1, \ bucketLength=None) Sets params for this BucketedRandomProjectionLSH. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.2.0") def setBucketLength(self, value): """ Sets the value of :py:attr:`bucketLength`. """ return self._set(bucketLength=value) @since("2.2.0") def getBucketLength(self): """ Gets the value of bucketLength or its default value. """ return self.getOrDefault(self.bucketLength) def _create_model(self, java_model): return BucketedRandomProjectionLSHModel(java_model) class BucketedRandomProjectionLSHModel(LSHModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Model fitted by :py:class:`BucketedRandomProjectionLSH`, where multiple random vectors are stored. The vectors are normalized to be unit vectors and each vector is used in a hash function: :math:`h_i(x) = floor(r_i \cdot x / bucketLength)` where :math:`r_i` is the i-th random unit vector. The number of buckets will be `(max L2 norm of input vectors) / bucketLength`. .. versionadded:: 2.2.0 """ @inherit_doc class Bucketizer(JavaTransformer, HasInputCol, HasOutputCol, HasHandleInvalid, JavaMLReadable, JavaMLWritable): """ Maps a column of continuous features to a column of feature buckets. >>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)] >>> df = spark.createDataFrame(values, ["values"]) >>> bucketizer = Bucketizer(splits=[-float("inf"), 0.5, 1.4, float("inf")], ... inputCol="values", outputCol="buckets") >>> bucketed = bucketizer.setHandleInvalid("keep").transform(df).collect() >>> len(bucketed) 6 >>> bucketed[0].buckets 0.0 >>> bucketed[1].buckets 0.0 >>> bucketed[2].buckets 1.0 >>> bucketed[3].buckets 2.0 >>> bucketizer.setParams(outputCol="b").transform(df).head().b 0.0 >>> bucketizerPath = temp_path + "/bucketizer" >>> bucketizer.save(bucketizerPath) >>> loadedBucketizer = Bucketizer.load(bucketizerPath) >>> loadedBucketizer.getSplits() == bucketizer.getSplits() True >>> bucketed = bucketizer.setHandleInvalid("skip").transform(df).collect() >>> len(bucketed) 4 .. versionadded:: 1.4.0 """ splits = \ Param(Params._dummy(), "splits", "Split points for mapping continuous features into buckets. With n+1 splits, " + "there are n buckets. A bucket defined by splits x,y holds values in the " + "range [x,y) except the last bucket, which also includes y. The splits " + "should be of length >= 3 and strictly increasing. Values at -inf, inf must be " + "explicitly provided to cover all Double values; otherwise, values outside the " + "splits specified will be treated as errors.", typeConverter=TypeConverters.toListFloat) handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " + "Options are 'skip' (filter out rows with invalid values), " + "'error' (throw an error), or 'keep' (keep invalid values in a special " + "additional bucket).", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"): """ __init__(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error") """ super(Bucketizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Bucketizer", self.uid) self._setDefault(handleInvalid="error") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error"): """ setParams(self, splits=None, inputCol=None, outputCol=None, handleInvalid="error") Sets params for this Bucketizer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setSplits(self, value): """ Sets the value of :py:attr:`splits`. """ return self._set(splits=value) @since("1.4.0") def getSplits(self): """ Gets the value of threshold or its default value. """ return self.getOrDefault(self.splits) @inherit_doc class CountVectorizer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Extracts a vocabulary from document collections and generates a :py:attr:`CountVectorizerModel`. >>> df = spark.createDataFrame( ... [(0, ["a", "b", "c"]), (1, ["a", "b", "b", "c", "a"])], ... ["label", "raw"]) >>> cv = CountVectorizer(inputCol="raw", outputCol="vectors") >>> model = cv.fit(df) >>> model.transform(df).show(truncate=False) +-----+---------------+-------------------------+ |label|raw |vectors | +-----+---------------+-------------------------+ |0 |[a, b, c] |(3,[0,1,2],[1.0,1.0,1.0])| |1 |[a, b, b, c, a]|(3,[0,1,2],[2.0,2.0,1.0])| +-----+---------------+-------------------------+ ... >>> sorted(model.vocabulary) == ['a', 'b', 'c'] True >>> countVectorizerPath = temp_path + "/count-vectorizer" >>> cv.save(countVectorizerPath) >>> loadedCv = CountVectorizer.load(countVectorizerPath) >>> loadedCv.getMinDF() == cv.getMinDF() True >>> loadedCv.getMinTF() == cv.getMinTF() True >>> loadedCv.getVocabSize() == cv.getVocabSize() True >>> modelPath = temp_path + "/count-vectorizer-model" >>> model.save(modelPath) >>> loadedModel = CountVectorizerModel.load(modelPath) >>> loadedModel.vocabulary == model.vocabulary True .. versionadded:: 1.6.0 """ minTF = Param( Params._dummy(), "minTF", "Filter to ignore rare words in" + " a document. For each document, terms with frequency/count less than the given" + " threshold are ignored. If this is an integer >= 1, then this specifies a count (of" + " times the term must appear in the document); if this is a double in [0,1), then this " + "specifies a fraction (out of the document's token count). Note that the parameter is " + "only used in transform of CountVectorizerModel and does not affect fitting. Default 1.0", typeConverter=TypeConverters.toFloat) minDF = Param( Params._dummy(), "minDF", "Specifies the minimum number of" + " different documents a term must appear in to be included in the vocabulary." + " If this is an integer >= 1, this specifies the number of documents the term must" + " appear in; if this is a double in [0,1), then this specifies the fraction of documents." + " Default 1.0", typeConverter=TypeConverters.toFloat) vocabSize = Param( Params._dummy(), "vocabSize", "max size of the vocabulary. Default 1 << 18.", typeConverter=TypeConverters.toInt) binary = Param( Params._dummy(), "binary", "Binary toggle to control the output vector values." + " If True, all nonzero counts (after minTF filter applied) are set to 1. This is useful" + " for discrete probabilistic models that model binary events rather than integer counts." + " Default False", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False, inputCol=None, outputCol=None): """ __init__(self, minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False, inputCol=None,\ outputCol=None) """ super(CountVectorizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.CountVectorizer", self.uid) self._setDefault(minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False, inputCol=None, outputCol=None): """ setParams(self, minTF=1.0, minDF=1.0, vocabSize=1 << 18, binary=False, inputCol=None,\ outputCol=None) Set the params for the CountVectorizer """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setMinTF(self, value): """ Sets the value of :py:attr:`minTF`. """ return self._set(minTF=value) @since("1.6.0") def getMinTF(self): """ Gets the value of minTF or its default value. """ return self.getOrDefault(self.minTF) @since("1.6.0") def setMinDF(self, value): """ Sets the value of :py:attr:`minDF`. """ return self._set(minDF=value) @since("1.6.0") def getMinDF(self): """ Gets the value of minDF or its default value. """ return self.getOrDefault(self.minDF) @since("1.6.0") def setVocabSize(self, value): """ Sets the value of :py:attr:`vocabSize`. """ return self._set(vocabSize=value) @since("1.6.0") def getVocabSize(self): """ Gets the value of vocabSize or its default value. """ return self.getOrDefault(self.vocabSize) @since("2.0.0") def setBinary(self, value): """ Sets the value of :py:attr:`binary`. """ return self._set(binary=value) @since("2.0.0") def getBinary(self): """ Gets the value of binary or its default value. """ return self.getOrDefault(self.binary) def _create_model(self, java_model): return CountVectorizerModel(java_model) class CountVectorizerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`CountVectorizer`. .. versionadded:: 1.6.0 """ @property @since("1.6.0") def vocabulary(self): """ An array of terms in the vocabulary. """ return self._call_java("vocabulary") @inherit_doc class DCT(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A feature transformer that takes the 1D discrete cosine transform of a real vector. No zero padding is performed on the input vector. It returns a real vector of the same length representing the DCT. The return vector is scaled such that the transform matrix is unitary (aka scaled DCT-II). .. seealso:: `More information on Wikipedia \ <https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II Wikipedia>`_. >>> from pyspark.ml.linalg import Vectors >>> df1 = spark.createDataFrame([(Vectors.dense([5.0, 8.0, 6.0]),)], ["vec"]) >>> dct = DCT(inverse=False, inputCol="vec", outputCol="resultVec") >>> df2 = dct.transform(df1) >>> df2.head().resultVec DenseVector([10.969..., -0.707..., -2.041...]) >>> df3 = DCT(inverse=True, inputCol="resultVec", outputCol="origVec").transform(df2) >>> df3.head().origVec DenseVector([5.0, 8.0, 6.0]) >>> dctPath = temp_path + "/dct" >>> dct.save(dctPath) >>> loadedDtc = DCT.load(dctPath) >>> loadedDtc.getInverse() False .. versionadded:: 1.6.0 """ inverse = Param(Params._dummy(), "inverse", "Set transformer to perform inverse DCT, " + "default False.", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, inverse=False, inputCol=None, outputCol=None): """ __init__(self, inverse=False, inputCol=None, outputCol=None) """ super(DCT, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.DCT", self.uid) self._setDefault(inverse=False) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, inverse=False, inputCol=None, outputCol=None): """ setParams(self, inverse=False, inputCol=None, outputCol=None) Sets params for this DCT. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setInverse(self, value): """ Sets the value of :py:attr:`inverse`. """ return self._set(inverse=value) @since("1.6.0") def getInverse(self): """ Gets the value of inverse or its default value. """ return self.getOrDefault(self.inverse) @inherit_doc class ElementwiseProduct(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Outputs the Hadamard product (i.e., the element-wise product) of each input vector with a provided "weight" vector. In other words, it scales each column of the dataset by a scalar multiplier. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([2.0, 1.0, 3.0]),)], ["values"]) >>> ep = ElementwiseProduct(scalingVec=Vectors.dense([1.0, 2.0, 3.0]), ... inputCol="values", outputCol="eprod") >>> ep.transform(df).head().eprod DenseVector([2.0, 2.0, 9.0]) >>> ep.setParams(scalingVec=Vectors.dense([2.0, 3.0, 5.0])).transform(df).head().eprod DenseVector([4.0, 3.0, 15.0]) >>> elementwiseProductPath = temp_path + "/elementwise-product" >>> ep.save(elementwiseProductPath) >>> loadedEp = ElementwiseProduct.load(elementwiseProductPath) >>> loadedEp.getScalingVec() == ep.getScalingVec() True .. versionadded:: 1.5.0 """ scalingVec = Param(Params._dummy(), "scalingVec", "Vector for hadamard product.", typeConverter=TypeConverters.toVector) @keyword_only def __init__(self, scalingVec=None, inputCol=None, outputCol=None): """ __init__(self, scalingVec=None, inputCol=None, outputCol=None) """ super(ElementwiseProduct, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.ElementwiseProduct", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.5.0") def setParams(self, scalingVec=None, inputCol=None, outputCol=None): """ setParams(self, scalingVec=None, inputCol=None, outputCol=None) Sets params for this ElementwiseProduct. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setScalingVec(self, value): """ Sets the value of :py:attr:`scalingVec`. """ return self._set(scalingVec=value) @since("2.0.0") def getScalingVec(self): """ Gets the value of scalingVec or its default value. """ return self.getOrDefault(self.scalingVec) @inherit_doc class HashingTF(JavaTransformer, HasInputCol, HasOutputCol, HasNumFeatures, JavaMLReadable, JavaMLWritable): """ Maps a sequence of terms to their term frequencies using the hashing trick. Currently we use Austin Appleby's MurmurHash 3 algorithm (MurmurHash3_x86_32) to calculate the hash code value for the term object. Since a simple modulo is used to transform the hash function to a column index, it is advisable to use a power of two as the numFeatures parameter; otherwise the features will not be mapped evenly to the columns. >>> df = spark.createDataFrame([(["a", "b", "c"],)], ["words"]) >>> hashingTF = HashingTF(numFeatures=10, inputCol="words", outputCol="features") >>> hashingTF.transform(df).head().features SparseVector(10, {0: 1.0, 1: 1.0, 2: 1.0}) >>> hashingTF.setParams(outputCol="freqs").transform(df).head().freqs SparseVector(10, {0: 1.0, 1: 1.0, 2: 1.0}) >>> params = {hashingTF.numFeatures: 5, hashingTF.outputCol: "vector"} >>> hashingTF.transform(df, params).head().vector SparseVector(5, {0: 1.0, 1: 1.0, 2: 1.0}) >>> hashingTFPath = temp_path + "/hashing-tf" >>> hashingTF.save(hashingTFPath) >>> loadedHashingTF = HashingTF.load(hashingTFPath) >>> loadedHashingTF.getNumFeatures() == hashingTF.getNumFeatures() True .. versionadded:: 1.3.0 """ binary = Param(Params._dummy(), "binary", "If True, all non zero counts are set to 1. " + "This is useful for discrete probabilistic models that model binary events " + "rather than integer counts. Default False.", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None): """ __init__(self, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None) """ super(HashingTF, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.HashingTF", self.uid) self._setDefault(numFeatures=1 << 18, binary=False) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.3.0") def setParams(self, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None): """ setParams(self, numFeatures=1 << 18, binary=False, inputCol=None, outputCol=None) Sets params for this HashingTF. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setBinary(self, value): """ Sets the value of :py:attr:`binary`. """ return self._set(binary=value) @since("2.0.0") def getBinary(self): """ Gets the value of binary or its default value. """ return self.getOrDefault(self.binary) @inherit_doc class IDF(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Compute the Inverse Document Frequency (IDF) given a collection of documents. >>> from pyspark.ml.linalg import DenseVector >>> df = spark.createDataFrame([(DenseVector([1.0, 2.0]),), ... (DenseVector([0.0, 1.0]),), (DenseVector([3.0, 0.2]),)], ["tf"]) >>> idf = IDF(minDocFreq=3, inputCol="tf", outputCol="idf") >>> model = idf.fit(df) >>> model.idf DenseVector([0.0, 0.0]) >>> model.transform(df).head().idf DenseVector([0.0, 0.0]) >>> idf.setParams(outputCol="freqs").fit(df).transform(df).collect()[1].freqs DenseVector([0.0, 0.0]) >>> params = {idf.minDocFreq: 1, idf.outputCol: "vector"} >>> idf.fit(df, params).transform(df).head().vector DenseVector([0.2877, 0.0]) >>> idfPath = temp_path + "/idf" >>> idf.save(idfPath) >>> loadedIdf = IDF.load(idfPath) >>> loadedIdf.getMinDocFreq() == idf.getMinDocFreq() True >>> modelPath = temp_path + "/idf-model" >>> model.save(modelPath) >>> loadedModel = IDFModel.load(modelPath) >>> loadedModel.transform(df).head().idf == model.transform(df).head().idf True .. versionadded:: 1.4.0 """ minDocFreq = Param(Params._dummy(), "minDocFreq", "minimum number of documents in which a term should appear for filtering", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, minDocFreq=0, inputCol=None, outputCol=None): """ __init__(self, minDocFreq=0, inputCol=None, outputCol=None) """ super(IDF, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.IDF", self.uid) self._setDefault(minDocFreq=0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, minDocFreq=0, inputCol=None, outputCol=None): """ setParams(self, minDocFreq=0, inputCol=None, outputCol=None) Sets params for this IDF. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setMinDocFreq(self, value): """ Sets the value of :py:attr:`minDocFreq`. """ return self._set(minDocFreq=value) @since("1.4.0") def getMinDocFreq(self): """ Gets the value of minDocFreq or its default value. """ return self.getOrDefault(self.minDocFreq) def _create_model(self, java_model): return IDFModel(java_model) class IDFModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`IDF`. .. versionadded:: 1.4.0 """ @property @since("2.0.0") def idf(self): """ Returns the IDF vector. """ return self._call_java("idf") @inherit_doc class Imputer(JavaEstimator, HasInputCols, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Imputation estimator for completing missing values, either using the mean or the median of the columns in which the missing values are located. The input columns should be of DoubleType or FloatType. Currently Imputer does not support categorical features and possibly creates incorrect values for a categorical feature. Note that the mean/median value is computed after filtering out missing values. All Null values in the input columns are treated as missing, and so are also imputed. For computing median, :py:meth:`pyspark.sql.DataFrame.approxQuantile` is used with a relative error of `0.001`. >>> df = spark.createDataFrame([(1.0, float("nan")), (2.0, float("nan")), (float("nan"), 3.0), ... (4.0, 4.0), (5.0, 5.0)], ["a", "b"]) >>> imputer = Imputer(inputCols=["a", "b"], outputCols=["out_a", "out_b"]) >>> model = imputer.fit(df) >>> model.surrogateDF.show() +---+---+ | a| b| +---+---+ |3.0|4.0| +---+---+ ... >>> model.transform(df).show() +---+---+-----+-----+ | a| b|out_a|out_b| +---+---+-----+-----+ |1.0|NaN| 1.0| 4.0| |2.0|NaN| 2.0| 4.0| |NaN|3.0| 3.0| 3.0| ... >>> imputer.setStrategy("median").setMissingValue(1.0).fit(df).transform(df).show() +---+---+-----+-----+ | a| b|out_a|out_b| +---+---+-----+-----+ |1.0|NaN| 4.0| NaN| ... >>> imputerPath = temp_path + "/imputer" >>> imputer.save(imputerPath) >>> loadedImputer = Imputer.load(imputerPath) >>> loadedImputer.getStrategy() == imputer.getStrategy() True >>> loadedImputer.getMissingValue() 1.0 >>> modelPath = temp_path + "/imputer-model" >>> model.save(modelPath) >>> loadedModel = ImputerModel.load(modelPath) >>> loadedModel.transform(df).head().out_a == model.transform(df).head().out_a True .. versionadded:: 2.2.0 """ outputCols = Param(Params._dummy(), "outputCols", "output column names.", typeConverter=TypeConverters.toListString) strategy = Param(Params._dummy(), "strategy", "strategy for imputation. If mean, then replace missing values using the mean " "value of the feature. If median, then replace missing values using the " "median value of the feature.", typeConverter=TypeConverters.toString) missingValue = Param(Params._dummy(), "missingValue", "The placeholder for the missing values. All occurrences of missingValue " "will be imputed.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, strategy="mean", missingValue=float("nan"), inputCols=None, outputCols=None): """ __init__(self, strategy="mean", missingValue=float("nan"), inputCols=None, \ outputCols=None): """ super(Imputer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Imputer", self.uid) self._setDefault(strategy="mean", missingValue=float("nan")) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.2.0") def setParams(self, strategy="mean", missingValue=float("nan"), inputCols=None, outputCols=None): """ setParams(self, strategy="mean", missingValue=float("nan"), inputCols=None, \ outputCols=None) Sets params for this Imputer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.2.0") def setOutputCols(self, value): """ Sets the value of :py:attr:`outputCols`. """ return self._set(outputCols=value) @since("2.2.0") def getOutputCols(self): """ Gets the value of :py:attr:`outputCols` or its default value. """ return self.getOrDefault(self.outputCols) @since("2.2.0") def setStrategy(self, value): """ Sets the value of :py:attr:`strategy`. """ return self._set(strategy=value) @since("2.2.0") def getStrategy(self): """ Gets the value of :py:attr:`strategy` or its default value. """ return self.getOrDefault(self.strategy) @since("2.2.0") def setMissingValue(self, value): """ Sets the value of :py:attr:`missingValue`. """ return self._set(missingValue=value) @since("2.2.0") def getMissingValue(self): """ Gets the value of :py:attr:`missingValue` or its default value. """ return self.getOrDefault(self.missingValue) def _create_model(self, java_model): return ImputerModel(java_model) class ImputerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Model fitted by :py:class:`Imputer`. .. versionadded:: 2.2.0 """ @property @since("2.2.0") def surrogateDF(self): """ Returns a DataFrame containing inputCols and their corresponding surrogates, which are used to replace the missing values in the input DataFrame. """ return self._call_java("surrogateDF") @inherit_doc class MaxAbsScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Rescale each feature individually to range [-1, 1] by dividing through the largest maximum absolute value in each feature. It does not shift/center the data, and thus does not destroy any sparsity. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([1.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> maScaler = MaxAbsScaler(inputCol="a", outputCol="scaled") >>> model = maScaler.fit(df) >>> model.transform(df).show() +-----+------+ | a|scaled| +-----+------+ |[1.0]| [0.5]| |[2.0]| [1.0]| +-----+------+ ... >>> scalerPath = temp_path + "/max-abs-scaler" >>> maScaler.save(scalerPath) >>> loadedMAScaler = MaxAbsScaler.load(scalerPath) >>> loadedMAScaler.getInputCol() == maScaler.getInputCol() True >>> loadedMAScaler.getOutputCol() == maScaler.getOutputCol() True >>> modelPath = temp_path + "/max-abs-scaler-model" >>> model.save(modelPath) >>> loadedModel = MaxAbsScalerModel.load(modelPath) >>> loadedModel.maxAbs == model.maxAbs True .. versionadded:: 2.0.0 """ @keyword_only def __init__(self, inputCol=None, outputCol=None): """ __init__(self, inputCol=None, outputCol=None) """ super(MaxAbsScaler, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.MaxAbsScaler", self.uid) self._setDefault() kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.0.0") def setParams(self, inputCol=None, outputCol=None): """ setParams(self, inputCol=None, outputCol=None) Sets params for this MaxAbsScaler. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return MaxAbsScalerModel(java_model) class MaxAbsScalerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`MaxAbsScaler`. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def maxAbs(self): """ Max Abs vector. """ return self._call_java("maxAbs") @inherit_doc class MinHashLSH(JavaEstimator, LSHParams, HasInputCol, HasOutputCol, HasSeed, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental LSH class for Jaccard distance. The input can be dense or sparse vectors, but it is more efficient if it is sparse. For example, `Vectors.sparse(10, [(2, 1.0), (3, 1.0), (5, 1.0)])` means there are 10 elements in the space. This set contains elements 2, 3, and 5. Also, any input vector must have at least 1 non-zero index, and all non-zero values are treated as binary "1" values. .. seealso:: `Wikipedia on MinHash <https://en.wikipedia.org/wiki/MinHash>`_ >>> from pyspark.ml.linalg import Vectors >>> from pyspark.sql.functions import col >>> data = [(0, Vectors.sparse(6, [0, 1, 2], [1.0, 1.0, 1.0]),), ... (1, Vectors.sparse(6, [2, 3, 4], [1.0, 1.0, 1.0]),), ... (2, Vectors.sparse(6, [0, 2, 4], [1.0, 1.0, 1.0]),)] >>> df = spark.createDataFrame(data, ["id", "features"]) >>> mh = MinHashLSH(inputCol="features", outputCol="hashes", seed=12345) >>> model = mh.fit(df) >>> model.transform(df).head() Row(id=0, features=SparseVector(6, {0: 1.0, 1: 1.0, 2: 1.0}), hashes=[DenseVector([-1638925... >>> data2 = [(3, Vectors.sparse(6, [1, 3, 5], [1.0, 1.0, 1.0]),), ... (4, Vectors.sparse(6, [2, 3, 5], [1.0, 1.0, 1.0]),), ... (5, Vectors.sparse(6, [1, 2, 4], [1.0, 1.0, 1.0]),)] >>> df2 = spark.createDataFrame(data2, ["id", "features"]) >>> key = Vectors.sparse(6, [1, 2], [1.0, 1.0]) >>> model.approxNearestNeighbors(df2, key, 1).collect() [Row(id=5, features=SparseVector(6, {1: 1.0, 2: 1.0, 4: 1.0}), hashes=[DenseVector([-163892... >>> model.approxSimilarityJoin(df, df2, 0.6, distCol="JaccardDistance").select( ... col("datasetA.id").alias("idA"), ... col("datasetB.id").alias("idB"), ... col("JaccardDistance")).show() +---+---+---------------+ |idA|idB|JaccardDistance| +---+---+---------------+ | 1| 4| 0.5| | 0| 5| 0.5| +---+---+---------------+ ... >>> mhPath = temp_path + "/mh" >>> mh.save(mhPath) >>> mh2 = MinHashLSH.load(mhPath) >>> mh2.getOutputCol() == mh.getOutputCol() True >>> modelPath = temp_path + "/mh-model" >>> model.save(modelPath) >>> model2 = MinHashLSHModel.load(modelPath) >>> model.transform(df).head().hashes == model2.transform(df).head().hashes True .. versionadded:: 2.2.0 """ @keyword_only def __init__(self, inputCol=None, outputCol=None, seed=None, numHashTables=1): """ __init__(self, inputCol=None, outputCol=None, seed=None, numHashTables=1) """ super(MinHashLSH, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.MinHashLSH", self.uid) self._setDefault(numHashTables=1) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.2.0") def setParams(self, inputCol=None, outputCol=None, seed=None, numHashTables=1): """ setParams(self, inputCol=None, outputCol=None, seed=None, numHashTables=1) Sets params for this MinHashLSH. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return MinHashLSHModel(java_model) class MinHashLSHModel(LSHModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Model produced by :py:class:`MinHashLSH`, where where multiple hash functions are stored. Each hash function is picked from the following family of hash functions, where :math:`a_i` and :math:`b_i` are randomly chosen integers less than prime: :math:`h_i(x) = ((x \cdot a_i + b_i) \mod prime)` This hash family is approximately min-wise independent according to the reference. .. seealso:: Tom Bohman, Colin Cooper, and Alan Frieze. "Min-wise independent linear \ permutations." Electronic Journal of Combinatorics 7 (2000): R26. .. versionadded:: 2.2.0 """ @inherit_doc class MinMaxScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Rescale each feature individually to a common range [min, max] linearly using column summary statistics, which is also known as min-max normalization or Rescaling. The rescaled value for feature E is calculated as, Rescaled(e_i) = (e_i - E_min) / (E_max - E_min) * (max - min) + min For the case E_max == E_min, Rescaled(e_i) = 0.5 * (max + min) .. note:: Since zero values will probably be transformed to non-zero values, output of the transformer will be DenseVector even for sparse input. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> mmScaler = MinMaxScaler(inputCol="a", outputCol="scaled") >>> model = mmScaler.fit(df) >>> model.originalMin DenseVector([0.0]) >>> model.originalMax DenseVector([2.0]) >>> model.transform(df).show() +-----+------+ | a|scaled| +-----+------+ |[0.0]| [0.0]| |[2.0]| [1.0]| +-----+------+ ... >>> minMaxScalerPath = temp_path + "/min-max-scaler" >>> mmScaler.save(minMaxScalerPath) >>> loadedMMScaler = MinMaxScaler.load(minMaxScalerPath) >>> loadedMMScaler.getMin() == mmScaler.getMin() True >>> loadedMMScaler.getMax() == mmScaler.getMax() True >>> modelPath = temp_path + "/min-max-scaler-model" >>> model.save(modelPath) >>> loadedModel = MinMaxScalerModel.load(modelPath) >>> loadedModel.originalMin == model.originalMin True >>> loadedModel.originalMax == model.originalMax True .. versionadded:: 1.6.0 """ min = Param(Params._dummy(), "min", "Lower bound of the output feature range", typeConverter=TypeConverters.toFloat) max = Param(Params._dummy(), "max", "Upper bound of the output feature range", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, min=0.0, max=1.0, inputCol=None, outputCol=None): """ __init__(self, min=0.0, max=1.0, inputCol=None, outputCol=None) """ super(MinMaxScaler, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.MinMaxScaler", self.uid) self._setDefault(min=0.0, max=1.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, min=0.0, max=1.0, inputCol=None, outputCol=None): """ setParams(self, min=0.0, max=1.0, inputCol=None, outputCol=None) Sets params for this MinMaxScaler. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setMin(self, value): """ Sets the value of :py:attr:`min`. """ return self._set(min=value) @since("1.6.0") def getMin(self): """ Gets the value of min or its default value. """ return self.getOrDefault(self.min) @since("1.6.0") def setMax(self, value): """ Sets the value of :py:attr:`max`. """ return self._set(max=value) @since("1.6.0") def getMax(self): """ Gets the value of max or its default value. """ return self.getOrDefault(self.max) def _create_model(self, java_model): return MinMaxScalerModel(java_model) class MinMaxScalerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`MinMaxScaler`. .. versionadded:: 1.6.0 """ @property @since("2.0.0") def originalMin(self): """ Min value for each original column during fitting. """ return self._call_java("originalMin") @property @since("2.0.0") def originalMax(self): """ Max value for each original column during fitting. """ return self._call_java("originalMax") @inherit_doc @ignore_unicode_prefix class NGram(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A feature transformer that converts the input array of strings into an array of n-grams. Null values in the input array are ignored. It returns an array of n-grams where each n-gram is represented by a space-separated string of words. When the input is empty, an empty array is returned. When the input array length is less than n (number of elements per n-gram), no n-grams are returned. >>> df = spark.createDataFrame([Row(inputTokens=["a", "b", "c", "d", "e"])]) >>> ngram = NGram(n=2, inputCol="inputTokens", outputCol="nGrams") >>> ngram.transform(df).head() Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b', u'b c', u'c d', u'd e']) >>> # Change n-gram length >>> ngram.setParams(n=4).transform(df).head() Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b c d', u'b c d e']) >>> # Temporarily modify output column. >>> ngram.transform(df, {ngram.outputCol: "output"}).head() Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], output=[u'a b c d', u'b c d e']) >>> ngram.transform(df).head() Row(inputTokens=[u'a', u'b', u'c', u'd', u'e'], nGrams=[u'a b c d', u'b c d e']) >>> # Must use keyword arguments to specify params. >>> ngram.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> ngramPath = temp_path + "/ngram" >>> ngram.save(ngramPath) >>> loadedNGram = NGram.load(ngramPath) >>> loadedNGram.getN() == ngram.getN() True .. versionadded:: 1.5.0 """ n = Param(Params._dummy(), "n", "number of elements per n-gram (>=1)", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, n=2, inputCol=None, outputCol=None): """ __init__(self, n=2, inputCol=None, outputCol=None) """ super(NGram, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.NGram", self.uid) self._setDefault(n=2) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.5.0") def setParams(self, n=2, inputCol=None, outputCol=None): """ setParams(self, n=2, inputCol=None, outputCol=None) Sets params for this NGram. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.5.0") def setN(self, value): """ Sets the value of :py:attr:`n`. """ return self._set(n=value) @since("1.5.0") def getN(self): """ Gets the value of n or its default value. """ return self.getOrDefault(self.n) @inherit_doc class Normalizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Normalize a vector to have unit norm using the given p-norm. >>> from pyspark.ml.linalg import Vectors >>> svec = Vectors.sparse(4, {1: 4.0, 3: 3.0}) >>> df = spark.createDataFrame([(Vectors.dense([3.0, -4.0]), svec)], ["dense", "sparse"]) >>> normalizer = Normalizer(p=2.0, inputCol="dense", outputCol="features") >>> normalizer.transform(df).head().features DenseVector([0.6, -0.8]) >>> normalizer.setParams(inputCol="sparse", outputCol="freqs").transform(df).head().freqs SparseVector(4, {1: 0.8, 3: 0.6}) >>> params = {normalizer.p: 1.0, normalizer.inputCol: "dense", normalizer.outputCol: "vector"} >>> normalizer.transform(df, params).head().vector DenseVector([0.4286, -0.5714]) >>> normalizerPath = temp_path + "/normalizer" >>> normalizer.save(normalizerPath) >>> loadedNormalizer = Normalizer.load(normalizerPath) >>> loadedNormalizer.getP() == normalizer.getP() True .. versionadded:: 1.4.0 """ p = Param(Params._dummy(), "p", "the p norm value.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, p=2.0, inputCol=None, outputCol=None): """ __init__(self, p=2.0, inputCol=None, outputCol=None) """ super(Normalizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Normalizer", self.uid) self._setDefault(p=2.0) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, p=2.0, inputCol=None, outputCol=None): """ setParams(self, p=2.0, inputCol=None, outputCol=None) Sets params for this Normalizer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setP(self, value): """ Sets the value of :py:attr:`p`. """ return self._set(p=value) @since("1.4.0") def getP(self): """ Gets the value of p or its default value. """ return self.getOrDefault(self.p) @inherit_doc class OneHotEncoder(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A one-hot encoder that maps a column of category indices to a column of binary vectors, with at most a single one-value per row that indicates the input category index. For example with 5 categories, an input value of 2.0 would map to an output vector of `[0.0, 0.0, 1.0, 0.0]`. The last category is not included by default (configurable via :py:attr:`dropLast`) because it makes the vector entries sum up to one, and hence linearly dependent. So an input value of 4.0 maps to `[0.0, 0.0, 0.0, 0.0]`. .. note:: This is different from scikit-learn's OneHotEncoder, which keeps all categories. The output vectors are sparse. .. seealso:: :py:class:`StringIndexer` for converting categorical values into category indices >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed") >>> model = stringIndexer.fit(stringIndDf) >>> td = model.transform(stringIndDf) >>> encoder = OneHotEncoder(inputCol="indexed", outputCol="features") >>> encoder.transform(td).head().features SparseVector(2, {0: 1.0}) >>> encoder.setParams(outputCol="freqs").transform(td).head().freqs SparseVector(2, {0: 1.0}) >>> params = {encoder.dropLast: False, encoder.outputCol: "test"} >>> encoder.transform(td, params).head().test SparseVector(3, {0: 1.0}) >>> onehotEncoderPath = temp_path + "/onehot-encoder" >>> encoder.save(onehotEncoderPath) >>> loadedEncoder = OneHotEncoder.load(onehotEncoderPath) >>> loadedEncoder.getDropLast() == encoder.getDropLast() True .. versionadded:: 1.4.0 """ dropLast = Param(Params._dummy(), "dropLast", "whether to drop the last category", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, dropLast=True, inputCol=None, outputCol=None): """ __init__(self, dropLast=True, inputCol=None, outputCol=None) """ super(OneHotEncoder, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.OneHotEncoder", self.uid) self._setDefault(dropLast=True) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, dropLast=True, inputCol=None, outputCol=None): """ setParams(self, dropLast=True, inputCol=None, outputCol=None) Sets params for this OneHotEncoder. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setDropLast(self, value): """ Sets the value of :py:attr:`dropLast`. """ return self._set(dropLast=value) @since("1.4.0") def getDropLast(self): """ Gets the value of dropLast or its default value. """ return self.getOrDefault(self.dropLast) @inherit_doc class PolynomialExpansion(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Perform feature expansion in a polynomial space. As said in `wikipedia of Polynomial Expansion <http://en.wikipedia.org/wiki/Polynomial_expansion>`_, "In mathematics, an expansion of a product of sums expresses it as a sum of products by using the fact that multiplication distributes over addition". Take a 2-variable feature vector as an example: `(x, y)`, if we want to expand it with degree 2, then we get `(x, x * x, y, x * y, y * y)`. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.5, 2.0]),)], ["dense"]) >>> px = PolynomialExpansion(degree=2, inputCol="dense", outputCol="expanded") >>> px.transform(df).head().expanded DenseVector([0.5, 0.25, 2.0, 1.0, 4.0]) >>> px.setParams(outputCol="test").transform(df).head().test DenseVector([0.5, 0.25, 2.0, 1.0, 4.0]) >>> polyExpansionPath = temp_path + "/poly-expansion" >>> px.save(polyExpansionPath) >>> loadedPx = PolynomialExpansion.load(polyExpansionPath) >>> loadedPx.getDegree() == px.getDegree() True .. versionadded:: 1.4.0 """ degree = Param(Params._dummy(), "degree", "the polynomial degree to expand (>= 1)", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, degree=2, inputCol=None, outputCol=None): """ __init__(self, degree=2, inputCol=None, outputCol=None) """ super(PolynomialExpansion, self).__init__() self._java_obj = self._new_java_obj( "org.apache.spark.ml.feature.PolynomialExpansion", self.uid) self._setDefault(degree=2) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, degree=2, inputCol=None, outputCol=None): """ setParams(self, degree=2, inputCol=None, outputCol=None) Sets params for this PolynomialExpansion. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setDegree(self, value): """ Sets the value of :py:attr:`degree`. """ return self._set(degree=value) @since("1.4.0") def getDegree(self): """ Gets the value of degree or its default value. """ return self.getOrDefault(self.degree) @inherit_doc class QuantileDiscretizer(JavaEstimator, HasInputCol, HasOutputCol, HasHandleInvalid, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental `QuantileDiscretizer` takes a column with continuous features and outputs a column with binned categorical features. The number of bins can be set using the :py:attr:`numBuckets` parameter. It is possible that the number of buckets used will be less than this value, for example, if there are too few distinct values of the input to create enough distinct quantiles. NaN handling: Note also that QuantileDiscretizer will raise an error when it finds NaN values in the dataset, but the user can also choose to either keep or remove NaN values within the dataset by setting :py:attr:`handleInvalid` parameter. If the user chooses to keep NaN values, they will be handled specially and placed into their own bucket, for example, if 4 buckets are used, then non-NaN data will be put into buckets[0-3], but NaNs will be counted in a special bucket[4]. Algorithm: The bin ranges are chosen using an approximate algorithm (see the documentation for :py:meth:`~.DataFrameStatFunctions.approxQuantile` for a detailed description). The precision of the approximation can be controlled with the :py:attr:`relativeError` parameter. The lower and upper bin bounds will be `-Infinity` and `+Infinity`, covering all real values. >>> values = [(0.1,), (0.4,), (1.2,), (1.5,), (float("nan"),), (float("nan"),)] >>> df = spark.createDataFrame(values, ["values"]) >>> qds = QuantileDiscretizer(numBuckets=2, ... inputCol="values", outputCol="buckets", relativeError=0.01, handleInvalid="error") >>> qds.getRelativeError() 0.01 >>> bucketizer = qds.fit(df) >>> qds.setHandleInvalid("keep").fit(df).transform(df).count() 6 >>> qds.setHandleInvalid("skip").fit(df).transform(df).count() 4 >>> splits = bucketizer.getSplits() >>> splits[0] -inf >>> print("%2.1f" % round(splits[1], 1)) 0.4 >>> bucketed = bucketizer.transform(df).head() >>> bucketed.buckets 0.0 >>> quantileDiscretizerPath = temp_path + "/quantile-discretizer" >>> qds.save(quantileDiscretizerPath) >>> loadedQds = QuantileDiscretizer.load(quantileDiscretizerPath) >>> loadedQds.getNumBuckets() == qds.getNumBuckets() True .. versionadded:: 2.0.0 """ numBuckets = Param(Params._dummy(), "numBuckets", "Maximum number of buckets (quantiles, or " + "categories) into which data points are grouped. Must be >= 2.", typeConverter=TypeConverters.toInt) relativeError = Param(Params._dummy(), "relativeError", "The relative target precision for " + "the approximate quantile algorithm used to generate buckets. " + "Must be in the range [0, 1].", typeConverter=TypeConverters.toFloat) handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " + "Options are skip (filter out rows with invalid values), " + "error (throw an error), or keep (keep invalid values in a special " + "additional bucket).", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, handleInvalid="error"): """ __init__(self, numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, \ handleInvalid="error") """ super(QuantileDiscretizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.QuantileDiscretizer", self.uid) self._setDefault(numBuckets=2, relativeError=0.001, handleInvalid="error") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.0.0") def setParams(self, numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, handleInvalid="error"): """ setParams(self, numBuckets=2, inputCol=None, outputCol=None, relativeError=0.001, \ handleInvalid="error") Set the params for the QuantileDiscretizer """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.0.0") def setNumBuckets(self, value): """ Sets the value of :py:attr:`numBuckets`. """ return self._set(numBuckets=value) @since("2.0.0") def getNumBuckets(self): """ Gets the value of numBuckets or its default value. """ return self.getOrDefault(self.numBuckets) @since("2.0.0") def setRelativeError(self, value): """ Sets the value of :py:attr:`relativeError`. """ return self._set(relativeError=value) @since("2.0.0") def getRelativeError(self): """ Gets the value of relativeError or its default value. """ return self.getOrDefault(self.relativeError) def _create_model(self, java_model): """ Private method to convert the java_model to a Python model. """ return Bucketizer(splits=list(java_model.getSplits()), inputCol=self.getInputCol(), outputCol=self.getOutputCol(), handleInvalid=self.getHandleInvalid()) @inherit_doc @ignore_unicode_prefix class RegexTokenizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A regex based tokenizer that extracts tokens either by using the provided regex pattern (in Java dialect) to split the text (default) or repeatedly matching the regex (if gaps is false). Optional parameters also allow filtering tokens using a minimal length. It returns an array of strings that can be empty. >>> df = spark.createDataFrame([("A B c",)], ["text"]) >>> reTokenizer = RegexTokenizer(inputCol="text", outputCol="words") >>> reTokenizer.transform(df).head() Row(text=u'A B c', words=[u'a', u'b', u'c']) >>> # Change a parameter. >>> reTokenizer.setParams(outputCol="tokens").transform(df).head() Row(text=u'A B c', tokens=[u'a', u'b', u'c']) >>> # Temporarily modify a parameter. >>> reTokenizer.transform(df, {reTokenizer.outputCol: "words"}).head() Row(text=u'A B c', words=[u'a', u'b', u'c']) >>> reTokenizer.transform(df).head() Row(text=u'A B c', tokens=[u'a', u'b', u'c']) >>> # Must use keyword arguments to specify params. >>> reTokenizer.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> regexTokenizerPath = temp_path + "/regex-tokenizer" >>> reTokenizer.save(regexTokenizerPath) >>> loadedReTokenizer = RegexTokenizer.load(regexTokenizerPath) >>> loadedReTokenizer.getMinTokenLength() == reTokenizer.getMinTokenLength() True >>> loadedReTokenizer.getGaps() == reTokenizer.getGaps() True .. versionadded:: 1.4.0 """ minTokenLength = Param(Params._dummy(), "minTokenLength", "minimum token length (>= 0)", typeConverter=TypeConverters.toInt) gaps = Param(Params._dummy(), "gaps", "whether regex splits on gaps (True) or matches tokens " + "(False)") pattern = Param(Params._dummy(), "pattern", "regex pattern (Java dialect) used for tokenizing", typeConverter=TypeConverters.toString) toLowercase = Param(Params._dummy(), "toLowercase", "whether to convert all characters to " + "lowercase before tokenizing", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, minTokenLength=1, gaps=True, pattern="\\s+", inputCol=None, outputCol=None, toLowercase=True): """ __init__(self, minTokenLength=1, gaps=True, pattern="\\s+", inputCol=None, \ outputCol=None, toLowercase=True) """ super(RegexTokenizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.RegexTokenizer", self.uid) self._setDefault(minTokenLength=1, gaps=True, pattern="\\s+", toLowercase=True) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, minTokenLength=1, gaps=True, pattern="\\s+", inputCol=None, outputCol=None, toLowercase=True): """ setParams(self, minTokenLength=1, gaps=True, pattern="\\s+", inputCol=None, \ outputCol=None, toLowercase=True) Sets params for this RegexTokenizer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setMinTokenLength(self, value): """ Sets the value of :py:attr:`minTokenLength`. """ return self._set(minTokenLength=value) @since("1.4.0") def getMinTokenLength(self): """ Gets the value of minTokenLength or its default value. """ return self.getOrDefault(self.minTokenLength) @since("1.4.0") def setGaps(self, value): """ Sets the value of :py:attr:`gaps`. """ return self._set(gaps=value) @since("1.4.0") def getGaps(self): """ Gets the value of gaps or its default value. """ return self.getOrDefault(self.gaps) @since("1.4.0") def setPattern(self, value): """ Sets the value of :py:attr:`pattern`. """ return self._set(pattern=value) @since("1.4.0") def getPattern(self): """ Gets the value of pattern or its default value. """ return self.getOrDefault(self.pattern) @since("2.0.0") def setToLowercase(self, value): """ Sets the value of :py:attr:`toLowercase`. """ return self._set(toLowercase=value) @since("2.0.0") def getToLowercase(self): """ Gets the value of toLowercase or its default value. """ return self.getOrDefault(self.toLowercase) @inherit_doc class SQLTransformer(JavaTransformer, JavaMLReadable, JavaMLWritable): """ Implements the transforms which are defined by SQL statement. Currently we only support SQL syntax like 'SELECT ... FROM __THIS__' where '__THIS__' represents the underlying table of the input dataset. >>> df = spark.createDataFrame([(0, 1.0, 3.0), (2, 2.0, 5.0)], ["id", "v1", "v2"]) >>> sqlTrans = SQLTransformer( ... statement="SELECT *, (v1 + v2) AS v3, (v1 * v2) AS v4 FROM __THIS__") >>> sqlTrans.transform(df).head() Row(id=0, v1=1.0, v2=3.0, v3=4.0, v4=3.0) >>> sqlTransformerPath = temp_path + "/sql-transformer" >>> sqlTrans.save(sqlTransformerPath) >>> loadedSqlTrans = SQLTransformer.load(sqlTransformerPath) >>> loadedSqlTrans.getStatement() == sqlTrans.getStatement() True .. versionadded:: 1.6.0 """ statement = Param(Params._dummy(), "statement", "SQL statement", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, statement=None): """ __init__(self, statement=None) """ super(SQLTransformer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.SQLTransformer", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, statement=None): """ setParams(self, statement=None) Sets params for this SQLTransformer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setStatement(self, value): """ Sets the value of :py:attr:`statement`. """ return self._set(statement=value) @since("1.6.0") def getStatement(self): """ Gets the value of statement or its default value. """ return self.getOrDefault(self.statement) @inherit_doc class StandardScaler(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Standardizes features by removing the mean and scaling to unit variance using column summary statistics on the samples in the training set. The "unit std" is computed using the `corrected sample standard deviation \ <https://en.wikipedia.org/wiki/Standard_deviation#Corrected_sample_standard_deviation>`_, which is computed as the square root of the unbiased sample variance. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([0.0]),), (Vectors.dense([2.0]),)], ["a"]) >>> standardScaler = StandardScaler(inputCol="a", outputCol="scaled") >>> model = standardScaler.fit(df) >>> model.mean DenseVector([1.0]) >>> model.std DenseVector([1.4142]) >>> model.transform(df).collect()[1].scaled DenseVector([1.4142]) >>> standardScalerPath = temp_path + "/standard-scaler" >>> standardScaler.save(standardScalerPath) >>> loadedStandardScaler = StandardScaler.load(standardScalerPath) >>> loadedStandardScaler.getWithMean() == standardScaler.getWithMean() True >>> loadedStandardScaler.getWithStd() == standardScaler.getWithStd() True >>> modelPath = temp_path + "/standard-scaler-model" >>> model.save(modelPath) >>> loadedModel = StandardScalerModel.load(modelPath) >>> loadedModel.std == model.std True >>> loadedModel.mean == model.mean True .. versionadded:: 1.4.0 """ withMean = Param(Params._dummy(), "withMean", "Center data with mean", typeConverter=TypeConverters.toBoolean) withStd = Param(Params._dummy(), "withStd", "Scale to unit standard deviation", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, withMean=False, withStd=True, inputCol=None, outputCol=None): """ __init__(self, withMean=False, withStd=True, inputCol=None, outputCol=None) """ super(StandardScaler, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.StandardScaler", self.uid) self._setDefault(withMean=False, withStd=True) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, withMean=False, withStd=True, inputCol=None, outputCol=None): """ setParams(self, withMean=False, withStd=True, inputCol=None, outputCol=None) Sets params for this StandardScaler. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setWithMean(self, value): """ Sets the value of :py:attr:`withMean`. """ return self._set(withMean=value) @since("1.4.0") def getWithMean(self): """ Gets the value of withMean or its default value. """ return self.getOrDefault(self.withMean) @since("1.4.0") def setWithStd(self, value): """ Sets the value of :py:attr:`withStd`. """ return self._set(withStd=value) @since("1.4.0") def getWithStd(self): """ Gets the value of withStd or its default value. """ return self.getOrDefault(self.withStd) def _create_model(self, java_model): return StandardScalerModel(java_model) class StandardScalerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`StandardScaler`. .. versionadded:: 1.4.0 """ @property @since("2.0.0") def std(self): """ Standard deviation of the StandardScalerModel. """ return self._call_java("std") @property @since("2.0.0") def mean(self): """ Mean of the StandardScalerModel. """ return self._call_java("mean") @inherit_doc class StringIndexer(JavaEstimator, HasInputCol, HasOutputCol, HasHandleInvalid, JavaMLReadable, JavaMLWritable): """ A label indexer that maps a string column of labels to an ML column of label indices. If the input column is numeric, we cast it to string and index the string values. The indices are in [0, numLabels). By default, this is ordered by label frequencies so the most frequent label gets index 0. The ordering behavior is controlled by setting :py:attr:`stringOrderType`. Its default value is 'frequencyDesc'. >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed", handleInvalid="error", ... stringOrderType="frequencyDesc") >>> model = stringIndexer.fit(stringIndDf) >>> td = model.transform(stringIndDf) >>> sorted(set([(i[0], i[1]) for i in td.select(td.id, td.indexed).collect()]), ... key=lambda x: x[0]) [(0, 0.0), (1, 2.0), (2, 1.0), (3, 0.0), (4, 0.0), (5, 1.0)] >>> inverter = IndexToString(inputCol="indexed", outputCol="label2", labels=model.labels) >>> itd = inverter.transform(td) >>> sorted(set([(i[0], str(i[1])) for i in itd.select(itd.id, itd.label2).collect()]), ... key=lambda x: x[0]) [(0, 'a'), (1, 'b'), (2, 'c'), (3, 'a'), (4, 'a'), (5, 'c')] >>> stringIndexerPath = temp_path + "/string-indexer" >>> stringIndexer.save(stringIndexerPath) >>> loadedIndexer = StringIndexer.load(stringIndexerPath) >>> loadedIndexer.getHandleInvalid() == stringIndexer.getHandleInvalid() True >>> modelPath = temp_path + "/string-indexer-model" >>> model.save(modelPath) >>> loadedModel = StringIndexerModel.load(modelPath) >>> loadedModel.labels == model.labels True >>> indexToStringPath = temp_path + "/index-to-string" >>> inverter.save(indexToStringPath) >>> loadedInverter = IndexToString.load(indexToStringPath) >>> loadedInverter.getLabels() == inverter.getLabels() True >>> stringIndexer.getStringOrderType() 'frequencyDesc' >>> stringIndexer = StringIndexer(inputCol="label", outputCol="indexed", handleInvalid="error", ... stringOrderType="alphabetDesc") >>> model = stringIndexer.fit(stringIndDf) >>> td = model.transform(stringIndDf) >>> sorted(set([(i[0], i[1]) for i in td.select(td.id, td.indexed).collect()]), ... key=lambda x: x[0]) [(0, 2.0), (1, 1.0), (2, 0.0), (3, 2.0), (4, 2.0), (5, 0.0)] .. versionadded:: 1.4.0 """ stringOrderType = Param(Params._dummy(), "stringOrderType", "How to order labels of string column. The first label after " + "ordering is assigned an index of 0. Supported options: " + "frequencyDesc, frequencyAsc, alphabetDesc, alphabetAsc.", typeConverter=TypeConverters.toString) handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid data (unseen " + "or NULL values) in features and label column of string type. " + "Options are 'skip' (filter out rows with invalid data), " + "error (throw an error), or 'keep' (put invalid data " + "in a special additional bucket, at index numLabels).", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, inputCol=None, outputCol=None, handleInvalid="error", stringOrderType="frequencyDesc"): """ __init__(self, inputCol=None, outputCol=None, handleInvalid="error", \ stringOrderType="frequencyDesc") """ super(StringIndexer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.StringIndexer", self.uid) self._setDefault(handleInvalid="error", stringOrderType="frequencyDesc") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, inputCol=None, outputCol=None, handleInvalid="error", stringOrderType="frequencyDesc"): """ setParams(self, inputCol=None, outputCol=None, handleInvalid="error", \ stringOrderType="frequencyDesc") Sets params for this StringIndexer. """ kwargs = self._input_kwargs return self._set(**kwargs) def _create_model(self, java_model): return StringIndexerModel(java_model) @since("2.3.0") def setStringOrderType(self, value): """ Sets the value of :py:attr:`stringOrderType`. """ return self._set(stringOrderType=value) @since("2.3.0") def getStringOrderType(self): """ Gets the value of :py:attr:`stringOrderType` or its default value 'frequencyDesc'. """ return self.getOrDefault(self.stringOrderType) class StringIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`StringIndexer`. .. versionadded:: 1.4.0 """ @property @since("1.5.0") def labels(self): """ Ordered list of labels, corresponding to indices to be assigned. """ return self._call_java("labels") @inherit_doc class IndexToString(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A :py:class:`Transformer` that maps a column of indices back to a new column of corresponding string values. The index-string mapping is either from the ML attributes of the input column, or from user-supplied labels (which take precedence over ML attributes). See L{StringIndexer} for converting strings into indices. .. versionadded:: 1.6.0 """ labels = Param(Params._dummy(), "labels", "Optional array of labels specifying index-string mapping." + " If not provided or if empty, then metadata from inputCol is used instead.", typeConverter=TypeConverters.toListString) @keyword_only def __init__(self, inputCol=None, outputCol=None, labels=None): """ __init__(self, inputCol=None, outputCol=None, labels=None) """ super(IndexToString, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.IndexToString", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, inputCol=None, outputCol=None, labels=None): """ setParams(self, inputCol=None, outputCol=None, labels=None) Sets params for this IndexToString. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setLabels(self, value): """ Sets the value of :py:attr:`labels`. """ return self._set(labels=value) @since("1.6.0") def getLabels(self): """ Gets the value of :py:attr:`labels` or its default value. """ return self.getOrDefault(self.labels) class StopWordsRemover(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A feature transformer that filters out stop words from input. .. note:: null values from input array are preserved unless adding null to stopWords explicitly. >>> df = spark.createDataFrame([(["a", "b", "c"],)], ["text"]) >>> remover = StopWordsRemover(inputCol="text", outputCol="words", stopWords=["b"]) >>> remover.transform(df).head().words == ['a', 'c'] True >>> stopWordsRemoverPath = temp_path + "/stopwords-remover" >>> remover.save(stopWordsRemoverPath) >>> loadedRemover = StopWordsRemover.load(stopWordsRemoverPath) >>> loadedRemover.getStopWords() == remover.getStopWords() True >>> loadedRemover.getCaseSensitive() == remover.getCaseSensitive() True .. versionadded:: 1.6.0 """ stopWords = Param(Params._dummy(), "stopWords", "The words to be filtered out", typeConverter=TypeConverters.toListString) caseSensitive = Param(Params._dummy(), "caseSensitive", "whether to do a case sensitive " + "comparison over the stop words", typeConverter=TypeConverters.toBoolean) @keyword_only def __init__(self, inputCol=None, outputCol=None, stopWords=None, caseSensitive=False): """ __init__(self, inputCol=None, outputCol=None, stopWords=None, caseSensitive=false) """ super(StopWordsRemover, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.StopWordsRemover", self.uid) self._setDefault(stopWords=StopWordsRemover.loadDefaultStopWords("english"), caseSensitive=False) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, inputCol=None, outputCol=None, stopWords=None, caseSensitive=False): """ setParams(self, inputCol=None, outputCol=None, stopWords=None, caseSensitive=false) Sets params for this StopWordRemover. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setStopWords(self, value): """ Sets the value of :py:attr:`stopWords`. """ return self._set(stopWords=value) @since("1.6.0") def getStopWords(self): """ Gets the value of :py:attr:`stopWords` or its default value. """ return self.getOrDefault(self.stopWords) @since("1.6.0") def setCaseSensitive(self, value): """ Sets the value of :py:attr:`caseSensitive`. """ return self._set(caseSensitive=value) @since("1.6.0") def getCaseSensitive(self): """ Gets the value of :py:attr:`caseSensitive` or its default value. """ return self.getOrDefault(self.caseSensitive) @staticmethod @since("2.0.0") def loadDefaultStopWords(language): """ Loads the default stop words for the given language. Supported languages: danish, dutch, english, finnish, french, german, hungarian, italian, norwegian, portuguese, russian, spanish, swedish, turkish """ stopWordsObj = _jvm().org.apache.spark.ml.feature.StopWordsRemover return list(stopWordsObj.loadDefaultStopWords(language)) @inherit_doc @ignore_unicode_prefix class Tokenizer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A tokenizer that converts the input string to lowercase and then splits it by white spaces. >>> df = spark.createDataFrame([("a b c",)], ["text"]) >>> tokenizer = Tokenizer(inputCol="text", outputCol="words") >>> tokenizer.transform(df).head() Row(text=u'a b c', words=[u'a', u'b', u'c']) >>> # Change a parameter. >>> tokenizer.setParams(outputCol="tokens").transform(df).head() Row(text=u'a b c', tokens=[u'a', u'b', u'c']) >>> # Temporarily modify a parameter. >>> tokenizer.transform(df, {tokenizer.outputCol: "words"}).head() Row(text=u'a b c', words=[u'a', u'b', u'c']) >>> tokenizer.transform(df).head() Row(text=u'a b c', tokens=[u'a', u'b', u'c']) >>> # Must use keyword arguments to specify params. >>> tokenizer.setParams("text") Traceback (most recent call last): ... TypeError: Method setParams forces keyword arguments. >>> tokenizerPath = temp_path + "/tokenizer" >>> tokenizer.save(tokenizerPath) >>> loadedTokenizer = Tokenizer.load(tokenizerPath) >>> loadedTokenizer.transform(df).head().tokens == tokenizer.transform(df).head().tokens True .. versionadded:: 1.3.0 """ @keyword_only def __init__(self, inputCol=None, outputCol=None): """ __init__(self, inputCol=None, outputCol=None) """ super(Tokenizer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Tokenizer", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.3.0") def setParams(self, inputCol=None, outputCol=None): """ setParams(self, inputCol=None, outputCol=None) Sets params for this Tokenizer. """ kwargs = self._input_kwargs return self._set(**kwargs) @inherit_doc class VectorAssembler(JavaTransformer, HasInputCols, HasOutputCol, JavaMLReadable, JavaMLWritable): """ A feature transformer that merges multiple columns into a vector column. >>> df = spark.createDataFrame([(1, 0, 3)], ["a", "b", "c"]) >>> vecAssembler = VectorAssembler(inputCols=["a", "b", "c"], outputCol="features") >>> vecAssembler.transform(df).head().features DenseVector([1.0, 0.0, 3.0]) >>> vecAssembler.setParams(outputCol="freqs").transform(df).head().freqs DenseVector([1.0, 0.0, 3.0]) >>> params = {vecAssembler.inputCols: ["b", "a"], vecAssembler.outputCol: "vector"} >>> vecAssembler.transform(df, params).head().vector DenseVector([0.0, 1.0]) >>> vectorAssemblerPath = temp_path + "/vector-assembler" >>> vecAssembler.save(vectorAssemblerPath) >>> loadedAssembler = VectorAssembler.load(vectorAssemblerPath) >>> loadedAssembler.transform(df).head().freqs == vecAssembler.transform(df).head().freqs True .. versionadded:: 1.4.0 """ @keyword_only def __init__(self, inputCols=None, outputCol=None): """ __init__(self, inputCols=None, outputCol=None) """ super(VectorAssembler, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.VectorAssembler", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, inputCols=None, outputCol=None): """ setParams(self, inputCols=None, outputCol=None) Sets params for this VectorAssembler. """ kwargs = self._input_kwargs return self._set(**kwargs) @inherit_doc class VectorIndexer(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Class for indexing categorical feature columns in a dataset of `Vector`. This has 2 usage modes: - Automatically identify categorical features (default behavior) - This helps process a dataset of unknown vectors into a dataset with some continuous features and some categorical features. The choice between continuous and categorical is based upon a maxCategories parameter. - Set maxCategories to the maximum number of categorical any categorical feature should have. - E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories = 2, then feature 0 will be declared categorical and use indices {0, 1}, and feature 1 will be declared continuous. - Index all features, if all features are categorical - If maxCategories is set to be very large, then this will build an index of unique values for all features. - Warning: This can cause problems if features are continuous since this will collect ALL unique values to the driver. - E.g.: Feature 0 has unique values {-1.0, 0.0}, and feature 1 values {1.0, 3.0, 5.0}. If maxCategories >= 3, then both features will be declared categorical. This returns a model which can transform categorical features to use 0-based indices. Index stability: - This is not guaranteed to choose the same category index across multiple runs. - If a categorical feature includes value 0, then this is guaranteed to map value 0 to index 0. This maintains vector sparsity. - More stability may be added in the future. TODO: Future extensions: The following functionality is planned for the future: - Preserve metadata in transform; if a feature's metadata is already present, do not recompute. - Specify certain features to not index, either via a parameter or via existing metadata. - Add warning if a categorical feature has only 1 category. - Add option for allowing unknown categories. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([(Vectors.dense([-1.0, 0.0]),), ... (Vectors.dense([0.0, 1.0]),), (Vectors.dense([0.0, 2.0]),)], ["a"]) >>> indexer = VectorIndexer(maxCategories=2, inputCol="a", outputCol="indexed") >>> model = indexer.fit(df) >>> model.transform(df).head().indexed DenseVector([1.0, 0.0]) >>> model.numFeatures 2 >>> model.categoryMaps {0: {0.0: 0, -1.0: 1}} >>> indexer.setParams(outputCol="test").fit(df).transform(df).collect()[1].test DenseVector([0.0, 1.0]) >>> params = {indexer.maxCategories: 3, indexer.outputCol: "vector"} >>> model2 = indexer.fit(df, params) >>> model2.transform(df).head().vector DenseVector([1.0, 0.0]) >>> vectorIndexerPath = temp_path + "/vector-indexer" >>> indexer.save(vectorIndexerPath) >>> loadedIndexer = VectorIndexer.load(vectorIndexerPath) >>> loadedIndexer.getMaxCategories() == indexer.getMaxCategories() True >>> modelPath = temp_path + "/vector-indexer-model" >>> model.save(modelPath) >>> loadedModel = VectorIndexerModel.load(modelPath) >>> loadedModel.numFeatures == model.numFeatures True >>> loadedModel.categoryMaps == model.categoryMaps True .. versionadded:: 1.4.0 """ maxCategories = Param(Params._dummy(), "maxCategories", "Threshold for the number of values a categorical feature can take " + "(>= 2). If a feature is found to have > maxCategories values, then " + "it is declared continuous.", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, maxCategories=20, inputCol=None, outputCol=None): """ __init__(self, maxCategories=20, inputCol=None, outputCol=None) """ super(VectorIndexer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.VectorIndexer", self.uid) self._setDefault(maxCategories=20) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, maxCategories=20, inputCol=None, outputCol=None): """ setParams(self, maxCategories=20, inputCol=None, outputCol=None) Sets params for this VectorIndexer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setMaxCategories(self, value): """ Sets the value of :py:attr:`maxCategories`. """ return self._set(maxCategories=value) @since("1.4.0") def getMaxCategories(self): """ Gets the value of maxCategories or its default value. """ return self.getOrDefault(self.maxCategories) def _create_model(self, java_model): return VectorIndexerModel(java_model) class VectorIndexerModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`VectorIndexer`. Transform categorical features to use 0-based indices instead of their original values. - Categorical features are mapped to indices. - Continuous features (columns) are left unchanged. This also appends metadata to the output column, marking features as Numeric (continuous), Nominal (categorical), or Binary (either continuous or categorical). Non-ML metadata is not carried over from the input to the output column. This maintains vector sparsity. .. versionadded:: 1.4.0 """ @property @since("1.4.0") def numFeatures(self): """ Number of features, i.e., length of Vectors which this transforms. """ return self._call_java("numFeatures") @property @since("1.4.0") def categoryMaps(self): """ Feature value index. Keys are categorical feature indices (column indices). Values are maps from original features values to 0-based category indices. If a feature is not in this map, it is treated as continuous. """ return self._call_java("javaCategoryMaps") @inherit_doc class VectorSlicer(JavaTransformer, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ This class takes a feature vector and outputs a new feature vector with a subarray of the original features. The subset of features can be specified with either indices (`setIndices()`) or names (`setNames()`). At least one feature must be selected. Duplicate features are not allowed, so there can be no overlap between selected indices and names. The output vector will order features with the selected indices first (in the order given), followed by the selected names (in the order given). >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame([ ... (Vectors.dense([-2.0, 2.3, 0.0, 0.0, 1.0]),), ... (Vectors.dense([0.0, 0.0, 0.0, 0.0, 0.0]),), ... (Vectors.dense([0.6, -1.1, -3.0, 4.5, 3.3]),)], ["features"]) >>> vs = VectorSlicer(inputCol="features", outputCol="sliced", indices=[1, 4]) >>> vs.transform(df).head().sliced DenseVector([2.3, 1.0]) >>> vectorSlicerPath = temp_path + "/vector-slicer" >>> vs.save(vectorSlicerPath) >>> loadedVs = VectorSlicer.load(vectorSlicerPath) >>> loadedVs.getIndices() == vs.getIndices() True >>> loadedVs.getNames() == vs.getNames() True .. versionadded:: 1.6.0 """ indices = Param(Params._dummy(), "indices", "An array of indices to select features from " + "a vector column. There can be no overlap with names.", typeConverter=TypeConverters.toListInt) names = Param(Params._dummy(), "names", "An array of feature names to select features from " + "a vector column. These names must be specified by ML " + "org.apache.spark.ml.attribute.Attribute. There can be no overlap with " + "indices.", typeConverter=TypeConverters.toListString) @keyword_only def __init__(self, inputCol=None, outputCol=None, indices=None, names=None): """ __init__(self, inputCol=None, outputCol=None, indices=None, names=None) """ super(VectorSlicer, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.VectorSlicer", self.uid) self._setDefault(indices=[], names=[]) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.6.0") def setParams(self, inputCol=None, outputCol=None, indices=None, names=None): """ setParams(self, inputCol=None, outputCol=None, indices=None, names=None): Sets params for this VectorSlicer. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.6.0") def setIndices(self, value): """ Sets the value of :py:attr:`indices`. """ return self._set(indices=value) @since("1.6.0") def getIndices(self): """ Gets the value of indices or its default value. """ return self.getOrDefault(self.indices) @since("1.6.0") def setNames(self, value): """ Sets the value of :py:attr:`names`. """ return self._set(names=value) @since("1.6.0") def getNames(self): """ Gets the value of names or its default value. """ return self.getOrDefault(self.names) @inherit_doc @ignore_unicode_prefix class Word2Vec(JavaEstimator, HasStepSize, HasMaxIter, HasSeed, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ Word2Vec trains a model of `Map(String, Vector)`, i.e. transforms a word into a code for further natural language processing or machine learning process. >>> sent = ("a b " * 100 + "a c " * 10).split(" ") >>> doc = spark.createDataFrame([(sent,), (sent,)], ["sentence"]) >>> word2Vec = Word2Vec(vectorSize=5, seed=42, inputCol="sentence", outputCol="model") >>> model = word2Vec.fit(doc) >>> model.getVectors().show() +----+--------------------+ |word| vector| +----+--------------------+ | a|[0.09461779892444...| | b|[1.15474212169647...| | c|[-0.3794820010662...| +----+--------------------+ ... >>> from pyspark.sql.functions import format_number as fmt >>> model.findSynonyms("a", 2).select("word", fmt("similarity", 5).alias("similarity")).show() +----+----------+ |word|similarity| +----+----------+ | b| 0.25053| | c| -0.69805| +----+----------+ ... >>> model.transform(doc).head().model DenseVector([0.5524, -0.4995, -0.3599, 0.0241, 0.3461]) >>> word2vecPath = temp_path + "/word2vec" >>> word2Vec.save(word2vecPath) >>> loadedWord2Vec = Word2Vec.load(word2vecPath) >>> loadedWord2Vec.getVectorSize() == word2Vec.getVectorSize() True >>> loadedWord2Vec.getNumPartitions() == word2Vec.getNumPartitions() True >>> loadedWord2Vec.getMinCount() == word2Vec.getMinCount() True >>> modelPath = temp_path + "/word2vec-model" >>> model.save(modelPath) >>> loadedModel = Word2VecModel.load(modelPath) >>> loadedModel.getVectors().first().word == model.getVectors().first().word True >>> loadedModel.getVectors().first().vector == model.getVectors().first().vector True .. versionadded:: 1.4.0 """ vectorSize = Param(Params._dummy(), "vectorSize", "the dimension of codes after transforming from words", typeConverter=TypeConverters.toInt) numPartitions = Param(Params._dummy(), "numPartitions", "number of partitions for sentences of words", typeConverter=TypeConverters.toInt) minCount = Param(Params._dummy(), "minCount", "the minimum number of times a token must appear to be included in the " + "word2vec model's vocabulary", typeConverter=TypeConverters.toInt) windowSize = Param(Params._dummy(), "windowSize", "the window size (context words from [-window, window]). Default value is 5", typeConverter=TypeConverters.toInt) maxSentenceLength = Param(Params._dummy(), "maxSentenceLength", "Maximum length (in words) of each sentence in the input data. " + "Any sentence longer than this threshold will " + "be divided into chunks up to the size.", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000): """ __init__(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, \ seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000) """ super(Word2Vec, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.Word2Vec", self.uid) self._setDefault(vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, windowSize=5, maxSentenceLength=1000) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.4.0") def setParams(self, vectorSize=100, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000): """ setParams(self, minCount=5, numPartitions=1, stepSize=0.025, maxIter=1, seed=None, \ inputCol=None, outputCol=None, windowSize=5, maxSentenceLength=1000) Sets params for this Word2Vec. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.4.0") def setVectorSize(self, value): """ Sets the value of :py:attr:`vectorSize`. """ return self._set(vectorSize=value) @since("1.4.0") def getVectorSize(self): """ Gets the value of vectorSize or its default value. """ return self.getOrDefault(self.vectorSize) @since("1.4.0") def setNumPartitions(self, value): """ Sets the value of :py:attr:`numPartitions`. """ return self._set(numPartitions=value) @since("1.4.0") def getNumPartitions(self): """ Gets the value of numPartitions or its default value. """ return self.getOrDefault(self.numPartitions) @since("1.4.0") def setMinCount(self, value): """ Sets the value of :py:attr:`minCount`. """ return self._set(minCount=value) @since("1.4.0") def getMinCount(self): """ Gets the value of minCount or its default value. """ return self.getOrDefault(self.minCount) @since("2.0.0") def setWindowSize(self, value): """ Sets the value of :py:attr:`windowSize`. """ return self._set(windowSize=value) @since("2.0.0") def getWindowSize(self): """ Gets the value of windowSize or its default value. """ return self.getOrDefault(self.windowSize) @since("2.0.0") def setMaxSentenceLength(self, value): """ Sets the value of :py:attr:`maxSentenceLength`. """ return self._set(maxSentenceLength=value) @since("2.0.0") def getMaxSentenceLength(self): """ Gets the value of maxSentenceLength or its default value. """ return self.getOrDefault(self.maxSentenceLength) def _create_model(self, java_model): return Word2VecModel(java_model) class Word2VecModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`Word2Vec`. .. versionadded:: 1.4.0 """ @since("1.5.0") def getVectors(self): """ Returns the vector representation of the words as a dataframe with two fields, word and vector. """ return self._call_java("getVectors") @since("1.5.0") def findSynonyms(self, word, num): """ Find "num" number of words closest in similarity to "word". word can be a string or vector representation. Returns a dataframe with two fields word and similarity (which gives the cosine similarity). """ if not isinstance(word, basestring): word = _convert_to_vector(word) return self._call_java("findSynonyms", word, num) @inherit_doc class PCA(JavaEstimator, HasInputCol, HasOutputCol, JavaMLReadable, JavaMLWritable): """ PCA trains a model to project vectors to a lower dimensional space of the top :py:attr:`k` principal components. >>> from pyspark.ml.linalg import Vectors >>> data = [(Vectors.sparse(5, [(1, 1.0), (3, 7.0)]),), ... (Vectors.dense([2.0, 0.0, 3.0, 4.0, 5.0]),), ... (Vectors.dense([4.0, 0.0, 0.0, 6.0, 7.0]),)] >>> df = spark.createDataFrame(data,["features"]) >>> pca = PCA(k=2, inputCol="features", outputCol="pca_features") >>> model = pca.fit(df) >>> model.transform(df).collect()[0].pca_features DenseVector([1.648..., -4.013...]) >>> model.explainedVariance DenseVector([0.794..., 0.205...]) >>> pcaPath = temp_path + "/pca" >>> pca.save(pcaPath) >>> loadedPca = PCA.load(pcaPath) >>> loadedPca.getK() == pca.getK() True >>> modelPath = temp_path + "/pca-model" >>> model.save(modelPath) >>> loadedModel = PCAModel.load(modelPath) >>> loadedModel.pc == model.pc True >>> loadedModel.explainedVariance == model.explainedVariance True .. versionadded:: 1.5.0 """ k = Param(Params._dummy(), "k", "the number of principal components", typeConverter=TypeConverters.toInt) @keyword_only def __init__(self, k=None, inputCol=None, outputCol=None): """ __init__(self, k=None, inputCol=None, outputCol=None) """ super(PCA, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.PCA", self.uid) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.5.0") def setParams(self, k=None, inputCol=None, outputCol=None): """ setParams(self, k=None, inputCol=None, outputCol=None) Set params for this PCA. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.5.0") def setK(self, value): """ Sets the value of :py:attr:`k`. """ return self._set(k=value) @since("1.5.0") def getK(self): """ Gets the value of k or its default value. """ return self.getOrDefault(self.k) def _create_model(self, java_model): return PCAModel(java_model) class PCAModel(JavaModel, JavaMLReadable, JavaMLWritable): """ Model fitted by :py:class:`PCA`. Transforms vectors to a lower dimensional space. .. versionadded:: 1.5.0 """ @property @since("2.0.0") def pc(self): """ Returns a principal components Matrix. Each column is one principal component. """ return self._call_java("pc") @property @since("2.0.0") def explainedVariance(self): """ Returns a vector of proportions of variance explained by each principal component. """ return self._call_java("explainedVariance") @inherit_doc class RFormula(JavaEstimator, HasFeaturesCol, HasLabelCol, HasHandleInvalid, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Implements the transforms required for fitting a dataset against an R model formula. Currently we support a limited subset of the R operators, including '~', '.', ':', '+', and '-'. Also see the `R formula docs <http://stat.ethz.ch/R-manual/R-patched/library/stats/html/formula.html>`_. >>> df = spark.createDataFrame([ ... (1.0, 1.0, "a"), ... (0.0, 2.0, "b"), ... (0.0, 0.0, "a") ... ], ["y", "x", "s"]) >>> rf = RFormula(formula="y ~ x + s") >>> model = rf.fit(df) >>> model.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> rf.fit(df, {rf.formula: "y ~ . - s"}).transform(df).show() +---+---+---+--------+-----+ | y| x| s|features|label| +---+---+---+--------+-----+ |1.0|1.0| a| [1.0]| 1.0| |0.0|2.0| b| [2.0]| 0.0| |0.0|0.0| a| [0.0]| 0.0| +---+---+---+--------+-----+ ... >>> rFormulaPath = temp_path + "/rFormula" >>> rf.save(rFormulaPath) >>> loadedRF = RFormula.load(rFormulaPath) >>> loadedRF.getFormula() == rf.getFormula() True >>> loadedRF.getFeaturesCol() == rf.getFeaturesCol() True >>> loadedRF.getLabelCol() == rf.getLabelCol() True >>> loadedRF.getHandleInvalid() == rf.getHandleInvalid() True >>> str(loadedRF) 'RFormula(y ~ x + s) (uid=...)' >>> modelPath = temp_path + "/rFormulaModel" >>> model.save(modelPath) >>> loadedModel = RFormulaModel.load(modelPath) >>> loadedModel.uid == model.uid True >>> loadedModel.transform(df).show() +---+---+---+---------+-----+ | y| x| s| features|label| +---+---+---+---------+-----+ |1.0|1.0| a|[1.0,1.0]| 1.0| |0.0|2.0| b|[2.0,0.0]| 0.0| |0.0|0.0| a|[0.0,1.0]| 0.0| +---+---+---+---------+-----+ ... >>> str(loadedModel) 'RFormulaModel(ResolvedRFormula(label=y, terms=[x,s], hasIntercept=true)) (uid=...)' .. versionadded:: 1.5.0 """ formula = Param(Params._dummy(), "formula", "R model formula", typeConverter=TypeConverters.toString) forceIndexLabel = Param(Params._dummy(), "forceIndexLabel", "Force to index label whether it is numeric or string", typeConverter=TypeConverters.toBoolean) stringIndexerOrderType = Param(Params._dummy(), "stringIndexerOrderType", "How to order categories of a string feature column used by " + "StringIndexer. The last category after ordering is dropped " + "when encoding strings. Supported options: frequencyDesc, " + "frequencyAsc, alphabetDesc, alphabetAsc. The default value " + "is frequencyDesc. When the ordering is set to alphabetDesc, " + "RFormula drops the same category as R when encoding strings.", typeConverter=TypeConverters.toString) handleInvalid = Param(Params._dummy(), "handleInvalid", "how to handle invalid entries. " + "Options are 'skip' (filter out rows with invalid values), " + "'error' (throw an error), or 'keep' (put invalid data in a special " + "additional bucket, at index numLabels).", typeConverter=TypeConverters.toString) @keyword_only def __init__(self, formula=None, featuresCol="features", labelCol="label", forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", handleInvalid="error"): """ __init__(self, formula=None, featuresCol="features", labelCol="label", \ forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", \ handleInvalid="error") """ super(RFormula, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.RFormula", self.uid) self._setDefault(forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", handleInvalid="error") kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("1.5.0") def setParams(self, formula=None, featuresCol="features", labelCol="label", forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", handleInvalid="error"): """ setParams(self, formula=None, featuresCol="features", labelCol="label", \ forceIndexLabel=False, stringIndexerOrderType="frequencyDesc", \ handleInvalid="error") Sets params for RFormula. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("1.5.0") def setFormula(self, value): """ Sets the value of :py:attr:`formula`. """ return self._set(formula=value) @since("1.5.0") def getFormula(self): """ Gets the value of :py:attr:`formula`. """ return self.getOrDefault(self.formula) @since("2.1.0") def setForceIndexLabel(self, value): """ Sets the value of :py:attr:`forceIndexLabel`. """ return self._set(forceIndexLabel=value) @since("2.1.0") def getForceIndexLabel(self): """ Gets the value of :py:attr:`forceIndexLabel`. """ return self.getOrDefault(self.forceIndexLabel) @since("2.3.0") def setStringIndexerOrderType(self, value): """ Sets the value of :py:attr:`stringIndexerOrderType`. """ return self._set(stringIndexerOrderType=value) @since("2.3.0") def getStringIndexerOrderType(self): """ Gets the value of :py:attr:`stringIndexerOrderType` or its default value 'frequencyDesc'. """ return self.getOrDefault(self.stringIndexerOrderType) def _create_model(self, java_model): return RFormulaModel(java_model) def __str__(self): formulaStr = self.getFormula() if self.isDefined(self.formula) else "" return "RFormula(%s) (uid=%s)" % (formulaStr, self.uid) class RFormulaModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Model fitted by :py:class:`RFormula`. Fitting is required to determine the factor levels of formula terms. .. versionadded:: 1.5.0 """ def __str__(self): resolvedFormula = self._call_java("resolvedFormula") return "RFormulaModel(%s) (uid=%s)" % (resolvedFormula, self.uid) @inherit_doc class ChiSqSelector(JavaEstimator, HasFeaturesCol, HasOutputCol, HasLabelCol, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Chi-Squared feature selection, which selects categorical features to use for predicting a categorical label. The selector supports different selection methods: `numTopFeatures`, `percentile`, `fpr`, `fdr`, `fwe`. * `numTopFeatures` chooses a fixed number of top features according to a chi-squared test. * `percentile` is similar but chooses a fraction of all features instead of a fixed number. * `fpr` chooses all features whose p-values are below a threshold, thus controlling the false positive rate of selection. * `fdr` uses the `Benjamini-Hochberg procedure <https://en.wikipedia.org/wiki/ False_discovery_rate#Benjamini.E2.80.93Hochberg_procedure>`_ to choose all features whose false discovery rate is below a threshold. * `fwe` chooses all features whose p-values are below a threshold. The threshold is scaled by 1/numFeatures, thus controlling the family-wise error rate of selection. By default, the selection method is `numTopFeatures`, with the default number of top features set to 50. >>> from pyspark.ml.linalg import Vectors >>> df = spark.createDataFrame( ... [(Vectors.dense([0.0, 0.0, 18.0, 1.0]), 1.0), ... (Vectors.dense([0.0, 1.0, 12.0, 0.0]), 0.0), ... (Vectors.dense([1.0, 0.0, 15.0, 0.1]), 0.0)], ... ["features", "label"]) >>> selector = ChiSqSelector(numTopFeatures=1, outputCol="selectedFeatures") >>> model = selector.fit(df) >>> model.transform(df).head().selectedFeatures DenseVector([18.0]) >>> model.selectedFeatures [2] >>> chiSqSelectorPath = temp_path + "/chi-sq-selector" >>> selector.save(chiSqSelectorPath) >>> loadedSelector = ChiSqSelector.load(chiSqSelectorPath) >>> loadedSelector.getNumTopFeatures() == selector.getNumTopFeatures() True >>> modelPath = temp_path + "/chi-sq-selector-model" >>> model.save(modelPath) >>> loadedModel = ChiSqSelectorModel.load(modelPath) >>> loadedModel.selectedFeatures == model.selectedFeatures True .. versionadded:: 2.0.0 """ selectorType = Param(Params._dummy(), "selectorType", "The selector type of the ChisqSelector. " + "Supported options: numTopFeatures (default), percentile and fpr.", typeConverter=TypeConverters.toString) numTopFeatures = \ Param(Params._dummy(), "numTopFeatures", "Number of features that selector will select, ordered by ascending p-value. " + "If the number of features is < numTopFeatures, then this will select " + "all features.", typeConverter=TypeConverters.toInt) percentile = Param(Params._dummy(), "percentile", "Percentile of features that selector " + "will select, ordered by ascending p-value.", typeConverter=TypeConverters.toFloat) fpr = Param(Params._dummy(), "fpr", "The highest p-value for features to be kept.", typeConverter=TypeConverters.toFloat) fdr = Param(Params._dummy(), "fdr", "The upper bound of the expected false discovery rate.", typeConverter=TypeConverters.toFloat) fwe = Param(Params._dummy(), "fwe", "The upper bound of the expected family-wise error rate.", typeConverter=TypeConverters.toFloat) @keyword_only def __init__(self, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="label", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05): """ __init__(self, numTopFeatures=50, featuresCol="features", outputCol=None, \ labelCol="label", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, \ fdr=0.05, fwe=0.05) """ super(ChiSqSelector, self).__init__() self._java_obj = self._new_java_obj("org.apache.spark.ml.feature.ChiSqSelector", self.uid) self._setDefault(numTopFeatures=50, selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05) kwargs = self._input_kwargs self.setParams(**kwargs) @keyword_only @since("2.0.0") def setParams(self, numTopFeatures=50, featuresCol="features", outputCol=None, labelCol="labels", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, fdr=0.05, fwe=0.05): """ setParams(self, numTopFeatures=50, featuresCol="features", outputCol=None, \ labelCol="labels", selectorType="numTopFeatures", percentile=0.1, fpr=0.05, \ fdr=0.05, fwe=0.05) Sets params for this ChiSqSelector. """ kwargs = self._input_kwargs return self._set(**kwargs) @since("2.1.0") def setSelectorType(self, value): """ Sets the value of :py:attr:`selectorType`. """ return self._set(selectorType=value) @since("2.1.0") def getSelectorType(self): """ Gets the value of selectorType or its default value. """ return self.getOrDefault(self.selectorType) @since("2.0.0") def setNumTopFeatures(self, value): """ Sets the value of :py:attr:`numTopFeatures`. Only applicable when selectorType = "numTopFeatures". """ return self._set(numTopFeatures=value) @since("2.0.0") def getNumTopFeatures(self): """ Gets the value of numTopFeatures or its default value. """ return self.getOrDefault(self.numTopFeatures) @since("2.1.0") def setPercentile(self, value): """ Sets the value of :py:attr:`percentile`. Only applicable when selectorType = "percentile". """ return self._set(percentile=value) @since("2.1.0") def getPercentile(self): """ Gets the value of percentile or its default value. """ return self.getOrDefault(self.percentile) @since("2.1.0") def setFpr(self, value): """ Sets the value of :py:attr:`fpr`. Only applicable when selectorType = "fpr". """ return self._set(fpr=value) @since("2.1.0") def getFpr(self): """ Gets the value of fpr or its default value. """ return self.getOrDefault(self.fpr) @since("2.2.0") def setFdr(self, value): """ Sets the value of :py:attr:`fdr`. Only applicable when selectorType = "fdr". """ return self._set(fdr=value) @since("2.2.0") def getFdr(self): """ Gets the value of fdr or its default value. """ return self.getOrDefault(self.fdr) @since("2.2.0") def setFwe(self, value): """ Sets the value of :py:attr:`fwe`. Only applicable when selectorType = "fwe". """ return self._set(fwe=value) @since("2.2.0") def getFwe(self): """ Gets the value of fwe or its default value. """ return self.getOrDefault(self.fwe) def _create_model(self, java_model): return ChiSqSelectorModel(java_model) class ChiSqSelectorModel(JavaModel, JavaMLReadable, JavaMLWritable): """ .. note:: Experimental Model fitted by :py:class:`ChiSqSelector`. .. versionadded:: 2.0.0 """ @property @since("2.0.0") def selectedFeatures(self): """ List of indices to select (filter). """ return self._call_java("selectedFeatures") if __name__ == "__main__": import doctest import tempfile import pyspark.ml.feature from pyspark.sql import Row, SparkSession globs = globals().copy() features = pyspark.ml.feature.__dict__.copy() globs.update(features) # The small batch size here ensures that we see multiple batches, # even in these small test examples: spark = SparkSession.builder\ .master("local[2]")\ .appName("ml.feature tests")\ .getOrCreate() sc = spark.sparkContext globs['sc'] = sc globs['spark'] = spark testData = sc.parallelize([Row(id=0, label="a"), Row(id=1, label="b"), Row(id=2, label="c"), Row(id=3, label="a"), Row(id=4, label="a"), Row(id=5, label="c")], 2) globs['stringIndDf'] = spark.createDataFrame(testData) temp_path = tempfile.mkdtemp() globs['temp_path'] = temp_path try: (failure_count, test_count) = doctest.testmod(globs=globs, optionflags=doctest.ELLIPSIS) spark.stop() finally: from shutil import rmtree try: rmtree(temp_path) except OSError: pass if failure_count: exit(-1)
apache-2.0
arabenjamin/scikit-learn
sklearn/decomposition/tests/test_kernel_pca.py
154
8058
import numpy as np import scipy.sparse as sp from sklearn.utils.testing import (assert_array_almost_equal, assert_less, assert_equal, assert_not_equal, assert_raises) from sklearn.decomposition import PCA, KernelPCA from sklearn.datasets import make_circles from sklearn.linear_model import Perceptron from sklearn.pipeline import Pipeline from sklearn.grid_search import GridSearchCV from sklearn.metrics.pairwise import rbf_kernel def test_kernel_pca(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) def histogram(x, y, **kwargs): # Histogram kernel implemented as a callable. assert_equal(kwargs, {}) # no kernel_params that we didn't ask for return np.minimum(x, y).sum() for eigen_solver in ("auto", "dense", "arpack"): for kernel in ("linear", "rbf", "poly", histogram): # histogram kernel produces singular matrix inside linalg.solve # XXX use a least-squares approximation? inv = not callable(kernel) # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=inv) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # non-regression test: previously, gamma would be 0 by default, # forcing all eigenvalues to 0 under the poly kernel assert_not_equal(X_fit_transformed, []) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform if inv: X_pred2 = kpca.inverse_transform(X_pred_transformed) assert_equal(X_pred2.shape, X_pred.shape) def test_invalid_parameters(): assert_raises(ValueError, KernelPCA, 10, fit_inverse_transform=True, kernel='precomputed') def test_kernel_pca_sparse(): rng = np.random.RandomState(0) X_fit = sp.csr_matrix(rng.random_sample((5, 4))) X_pred = sp.csr_matrix(rng.random_sample((2, 4))) for eigen_solver in ("auto", "arpack"): for kernel in ("linear", "rbf", "poly"): # transform fit data kpca = KernelPCA(4, kernel=kernel, eigen_solver=eigen_solver, fit_inverse_transform=False) X_fit_transformed = kpca.fit_transform(X_fit) X_fit_transformed2 = kpca.fit(X_fit).transform(X_fit) assert_array_almost_equal(np.abs(X_fit_transformed), np.abs(X_fit_transformed2)) # transform new data X_pred_transformed = kpca.transform(X_pred) assert_equal(X_pred_transformed.shape[1], X_fit_transformed.shape[1]) # inverse transform # X_pred2 = kpca.inverse_transform(X_pred_transformed) # assert_equal(X_pred2.shape, X_pred.shape) def test_kernel_pca_linear_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) # for a linear kernel, kernel PCA should find the same projection as PCA # modulo the sign (direction) # fit only the first four components: fifth is near zero eigenvalue, so # can be trimmed due to roundoff error assert_array_almost_equal( np.abs(KernelPCA(4).fit(X_fit).transform(X_pred)), np.abs(PCA(4).fit(X_fit).transform(X_pred))) def test_kernel_pca_n_components(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): for c in [1, 2, 4]: kpca = KernelPCA(n_components=c, eigen_solver=eigen_solver) shape = kpca.fit(X_fit).transform(X_pred).shape assert_equal(shape, (2, c)) def test_remove_zero_eig(): X = np.array([[1 - 1e-30, 1], [1, 1], [1, 1 - 1e-20]]) # n_components=None (default) => remove_zero_eig is True kpca = KernelPCA() Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) kpca = KernelPCA(n_components=2) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 2)) kpca = KernelPCA(n_components=2, remove_zero_eig=True) Xt = kpca.fit_transform(X) assert_equal(Xt.shape, (3, 0)) def test_kernel_pca_precomputed(): rng = np.random.RandomState(0) X_fit = rng.random_sample((5, 4)) X_pred = rng.random_sample((2, 4)) for eigen_solver in ("dense", "arpack"): X_kpca = KernelPCA(4, eigen_solver=eigen_solver).\ fit(X_fit).transform(X_pred) X_kpca2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_pred, X_fit.T)) X_kpca_train = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit_transform(np.dot(X_fit, X_fit.T)) X_kpca_train2 = KernelPCA( 4, eigen_solver=eigen_solver, kernel='precomputed').fit( np.dot(X_fit, X_fit.T)).transform(np.dot(X_fit, X_fit.T)) assert_array_almost_equal(np.abs(X_kpca), np.abs(X_kpca2)) assert_array_almost_equal(np.abs(X_kpca_train), np.abs(X_kpca_train2)) def test_kernel_pca_invalid_kernel(): rng = np.random.RandomState(0) X_fit = rng.random_sample((2, 4)) kpca = KernelPCA(kernel="tototiti") assert_raises(ValueError, kpca.fit, X_fit) def test_gridsearch_pipeline(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="rbf", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(kernel_pca__gamma=2. ** np.arange(-2, 2)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) grid_search.fit(X, y) assert_equal(grid_search.best_score_, 1) def test_gridsearch_pipeline_precomputed(): # Test if we can do a grid-search to find parameters to separate # circles with a perceptron model using a precomputed kernel. X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) kpca = KernelPCA(kernel="precomputed", n_components=2) pipeline = Pipeline([("kernel_pca", kpca), ("Perceptron", Perceptron())]) param_grid = dict(Perceptron__n_iter=np.arange(1, 5)) grid_search = GridSearchCV(pipeline, cv=3, param_grid=param_grid) X_kernel = rbf_kernel(X, gamma=2.) grid_search.fit(X_kernel, y) assert_equal(grid_search.best_score_, 1) def test_nested_circles(): # Test the linear separability of the first 2D KPCA transform X, y = make_circles(n_samples=400, factor=.3, noise=.05, random_state=0) # 2D nested circles are not linearly separable train_score = Perceptron().fit(X, y).score(X, y) assert_less(train_score, 0.8) # Project the circles data into the first 2 components of a RBF Kernel # PCA model. # Note that the gamma value is data dependent. If this test breaks # and the gamma value has to be updated, the Kernel PCA example will # have to be updated too. kpca = KernelPCA(kernel="rbf", n_components=2, fit_inverse_transform=True, gamma=2.) X_kpca = kpca.fit_transform(X) # The data is perfectly linearly separable in that space train_score = Perceptron().fit(X_kpca, y).score(X_kpca, y) assert_equal(train_score, 1.0)
bsd-3-clause
YihaoLu/statsmodels
statsmodels/formula/tests/test_formula.py
29
4647
from statsmodels.compat.python import iteritems, StringIO import warnings from statsmodels.formula.api import ols from statsmodels.formula.formulatools import make_hypotheses_matrices from statsmodels.tools import add_constant from statsmodels.datasets.longley import load, load_pandas import numpy.testing as npt from statsmodels.tools.testing import assert_equal from numpy.testing.utils import WarningManager longley_formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' class CheckFormulaOLS(object): @classmethod def setupClass(cls): cls.data = load() def test_endog_names(self): assert self.model.endog_names == 'TOTEMP' def test_exog_names(self): assert self.model.exog_names == ['Intercept', 'GNPDEFL', 'GNP', 'UNEMP', 'ARMED', 'POP', 'YEAR'] def test_design(self): npt.assert_equal(self.model.exog, add_constant(self.data.exog, prepend=True)) def test_endog(self): npt.assert_equal(self.model.endog, self.data.endog) def test_summary(self): # smoke test warn_ctx = WarningManager() warn_ctx.__enter__() try: warnings.filterwarnings("ignore", "kurtosistest only valid for n>=20") self.model.fit().summary() finally: warn_ctx.__exit__() class TestFormulaPandas(CheckFormulaOLS): @classmethod def setupClass(cls): data = load_pandas().data cls.model = ols(longley_formula, data) super(TestFormulaPandas, cls).setupClass() class TestFormulaDict(CheckFormulaOLS): @classmethod def setupClass(cls): data = dict((k, v.tolist()) for k, v in iteritems(load_pandas().data)) cls.model = ols(longley_formula, data) super(TestFormulaDict, cls).setupClass() class TestFormulaRecArray(CheckFormulaOLS): @classmethod def setupClass(cls): data = load().data cls.model = ols(longley_formula, data) super(TestFormulaRecArray, cls).setupClass() def test_tests(): formula = 'TOTEMP ~ GNPDEFL + GNP + UNEMP + ARMED + POP + YEAR' dta = load_pandas().data results = ols(formula, dta).fit() test_formula = '(GNPDEFL = GNP), (UNEMP = 2), (YEAR/1829 = 1)' LC = make_hypotheses_matrices(results, test_formula) R = LC.coefs Q = LC.constants npt.assert_almost_equal(R, [[0, 1, -1, 0, 0, 0, 0], [0, 0 , 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1./1829]], 8) npt.assert_array_equal(Q, [[0],[2],[1]]) def test_formula_labels(): # make sure labels pass through patsy as expected # data(Duncan) from car in R dta = StringIO(""""type" "income" "education" "prestige"\n"accountant" "prof" 62 86 82\n"pilot" "prof" 72 76 83\n"architect" "prof" 75 92 90\n"author" "prof" 55 90 76\n"chemist" "prof" 64 86 90\n"minister" "prof" 21 84 87\n"professor" "prof" 64 93 93\n"dentist" "prof" 80 100 90\n"reporter" "wc" 67 87 52\n"engineer" "prof" 72 86 88\n"undertaker" "prof" 42 74 57\n"lawyer" "prof" 76 98 89\n"physician" "prof" 76 97 97\n"welfare.worker" "prof" 41 84 59\n"teacher" "prof" 48 91 73\n"conductor" "wc" 76 34 38\n"contractor" "prof" 53 45 76\n"factory.owner" "prof" 60 56 81\n"store.manager" "prof" 42 44 45\n"banker" "prof" 78 82 92\n"bookkeeper" "wc" 29 72 39\n"mail.carrier" "wc" 48 55 34\n"insurance.agent" "wc" 55 71 41\n"store.clerk" "wc" 29 50 16\n"carpenter" "bc" 21 23 33\n"electrician" "bc" 47 39 53\n"RR.engineer" "bc" 81 28 67\n"machinist" "bc" 36 32 57\n"auto.repairman" "bc" 22 22 26\n"plumber" "bc" 44 25 29\n"gas.stn.attendant" "bc" 15 29 10\n"coal.miner" "bc" 7 7 15\n"streetcar.motorman" "bc" 42 26 19\n"taxi.driver" "bc" 9 19 10\n"truck.driver" "bc" 21 15 13\n"machine.operator" "bc" 21 20 24\n"barber" "bc" 16 26 20\n"bartender" "bc" 16 28 7\n"shoe.shiner" "bc" 9 17 3\n"cook" "bc" 14 22 16\n"soda.clerk" "bc" 12 30 6\n"watchman" "bc" 17 25 11\n"janitor" "bc" 7 20 8\n"policeman" "bc" 34 47 41\n"waiter" "bc" 8 32 10""") from pandas import read_table dta = read_table(dta, sep=" ") model = ols("prestige ~ income + education", dta).fit() assert_equal(model.fittedvalues.index, dta.index) def test_formula_predict(): from numpy import log formula = """TOTEMP ~ log(GNPDEFL) + log(GNP) + UNEMP + ARMED + POP + YEAR""" data = load_pandas() dta = load_pandas().data results = ols(formula, dta).fit() npt.assert_almost_equal(results.fittedvalues.values, results.predict(data.exog), 8)
bsd-3-clause
JuliaSprenger/python-neo
neo/io/neuralynxio.py
5
2251
""" Class for reading data from Neuralynx files. This IO supports NCS, NEV and NSE file formats. Depends on: numpy Supported: Read Author: Julia Sprenger, Carlos Canova """ from neo.io.basefromrawio import BaseFromRaw from neo.rawio.neuralynxrawio.neuralynxrawio import NeuralynxRawIO class NeuralynxIO(NeuralynxRawIO, BaseFromRaw): """ Class for reading data from Neuralynx files. This IO supports NCS, NEV, NSE and NTT file formats. NCS contains signals for one channel NEV contains events NSE contains spikes and waveforms for mono electrodes NTT contains spikes and waveforms for tetrodes """ _prefered_signal_group_mode = 'group-by-same-units' mode = 'dir' def __init__(self, dirname='', filename='', use_cache=False, cache_path='same_as_resource', exclude_filename=None, keep_original_times=False): """ Initialise IO instance Parameters ---------- dirname : str Directory containing data files filename : str Name of a single ncs, nse, nev, or ntt file to include in dataset. Will be ignored, if dirname is provided. use_cache : bool, optional Cache results of initial file scans for faster loading in subsequent runs. Default: False cache_path : str, optional Folder path to use for cache files. Default: 'same_as_resource' exclude_filename: str or list Filename or list of filenames to be excluded. Expects base filenames without directory path. keep_original_times : bool Preserve original time stamps as in data files. By default datasets are shifted to begin at t_start = 0*pq.second. Default: False """ NeuralynxRawIO.__init__(self, dirname=dirname, filename=filename, use_cache=use_cache, cache_path=cache_path, exclude_filename=exclude_filename, keep_original_times=keep_original_times) if self.rawmode == 'one-file': BaseFromRaw.__init__(self, filename) elif self.rawmode == 'one-dir': BaseFromRaw.__init__(self, dirname)
bsd-3-clause
rdevon/cortex
cortex/built_ins/networks/tv_models_wrapper.py
1
1172
from torch import nn from torchvision import models from .utils import finish_layer_1d, get_nonlinearity class AlexNet(models.AlexNet): def __init__(self, shape, dim_out=None, fully_connected_layers=None, nonlinearity='ReLU', n_steps=None, **layer_args): super(AlexNet, self).__init__() fully_connected_layers = fully_connected_layers or [] self.fc = nn.Sequential() dim_out_ = (256 * ((shape[0] + 4 - 10) // 32) * ((shape[1] + 4 - 10) // 32)) nonlinearity = get_nonlinearity(nonlinearity) for dim_h in fully_connected_layers: dim_in = dim_out_ dim_out_ = dim_h name = 'linear_%s_%s' % (dim_in, dim_out_) self.fc.add_module(name, nn.Linear(dim_in, dim_out_)) finish_layer_1d(self.fc, name, dim_out_, nonlinearity=nonlinearity, **layer_args) if dim_out: name = 'dim_out' self.fc.add_module(name, nn.Linear(dim_out_, dim_out)) def forward(self, x): x = self.features(x) x = x.view(x.size()[0], -1) return self.fc(x)
bsd-3-clause
DonBeo/scikit-learn
sklearn/tests/test_common.py
1
15820
""" General tests for all estimators in sklearn. """ # Authors: Andreas Mueller <[email protected]> # Gael Varoquaux [email protected] # License: BSD 3 clause from __future__ import print_function import os import warnings import sys import pkgutil from sklearn.externals.six import PY3 from sklearn.externals.six.moves import zip from sklearn.utils.testing import assert_false, clean_warning_registry from sklearn.utils.testing import all_estimators from sklearn.utils.testing import assert_greater from sklearn.utils.testing import assert_in from sklearn.utils.testing import SkipTest from sklearn.utils.testing import ignore_warnings import sklearn from sklearn.preprocessing import StandardScaler from sklearn.datasets import make_classification from sklearn.cluster.bicluster import BiclusterMixin from sklearn.cross_validation import train_test_split from sklearn.linear_model.base import LinearClassifierMixin from sklearn.utils.estimator_checks import ( check_dtype_object, check_parameters_default_constructible, check_estimator_sparse_data, check_estimators_dtypes, check_transformer, check_clustering, check_clusterer_compute_labels_predict, check_regressors_int, check_regressors_train, check_regressors_pickle, check_transformer_pickle, check_transformers_unfitted, check_estimators_empty_data_messages, check_estimators_nan_inf, check_estimators_unfitted, check_classifiers_one_label, check_classifiers_train, check_classifiers_classes, check_classifiers_input_shapes, check_classifiers_pickle, check_class_weight_classifiers, check_class_weight_auto_classifiers, check_class_weight_auto_linear_classifier, check_estimators_overwrite_params, check_estimators_partial_fit_n_features, check_sparsify_coefficients, check_classifier_data_not_an_array, check_regressor_data_not_an_array, check_transformer_data_not_an_array, check_transformer_n_iter, check_fit_score_takes_y, check_non_transformer_estimators_n_iter, check_pipeline_consistency, CROSS_DECOMPOSITION) def test_all_estimator_no_base_class(): # test that all_estimators doesn't find abstract classes. for name, Estimator in all_estimators(): msg = ("Base estimators such as {0} should not be included" " in all_estimators").format(name) assert_false(name.lower().startswith('base'), msg=msg) def test_all_estimators(): # Test that estimators are default-constructible, clonable # and have working repr. estimators = all_estimators(include_meta_estimators=True) # Meta sanity-check to make sure that the estimator introspection runs # properly assert_greater(len(estimators), 0) for name, Estimator in estimators: # some can just not be sensibly default constructed yield check_parameters_default_constructible, name, Estimator def test_non_meta_estimators(): # input validation etc for non-meta estimators estimators = all_estimators() for name, Estimator in estimators: if issubclass(Estimator, BiclusterMixin): continue if name.endswith("HMM") or name.startswith("_"): continue if name not in CROSS_DECOMPOSITION: yield check_estimators_dtypes, name, Estimator yield check_fit_score_takes_y, name, Estimator yield check_dtype_object, name, Estimator # Check that all estimator yield informative messages when # trained on empty datasets yield check_estimators_empty_data_messages, name, Estimator if name not in CROSS_DECOMPOSITION + ['SpectralEmbedding']: # SpectralEmbedding is non-deterministic, # see issue #4236 yield check_pipeline_consistency, name, Estimator if name not in CROSS_DECOMPOSITION + ['Imputer']: # Test that all estimators check their input for NaN's and infs yield check_estimators_nan_inf, name, Estimator if name not in CROSS_DECOMPOSITION + ['GaussianProcess']: # FIXME! # in particular GaussianProcess! yield check_estimators_overwrite_params, name, Estimator if hasattr(Estimator, 'sparsify'): yield check_sparsify_coefficients, name, Estimator yield check_estimator_sparse_data, name, Estimator def test_transformers(): # test if transformers do something sensible on training set # also test all shapes / shape errors transformers = all_estimators(type_filter='transformer') for name, Transformer in transformers: # All transformers should either deal with sparse data or raise an # exception with type TypeError and an intelligible error message yield check_transformer_pickle, name, Transformer if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer', 'PLSCanonical', 'PLSRegression', 'CCA', 'PLSSVD']: yield check_transformer_data_not_an_array, name, Transformer # these don't actually fit the data, so don't raise errors if name not in ['AdditiveChi2Sampler', 'Binarizer', 'Normalizer']: # basic tests yield check_transformer, name, Transformer yield check_transformers_unfitted, name, Transformer def test_clustering(): # test if clustering algorithms do something sensible # also test all shapes / shape errors clustering = all_estimators(type_filter='cluster') for name, Alg in clustering: # test whether any classifier overwrites his init parameters during fit yield check_clusterer_compute_labels_predict, name, Alg if name not in ('WardAgglomeration', "FeatureAgglomeration"): # this is clustering on the features # let's not test that here. yield check_clustering, name, Alg yield check_estimators_partial_fit_n_features, name, Alg def test_classifiers(): # test if classifiers can cope with non-consecutive classes classifiers = all_estimators(type_filter='classifier') for name, Classifier in classifiers: # test classfiers can handle non-array data yield check_classifier_data_not_an_array, name, Classifier # test classifiers trained on a single label always return this label yield check_classifiers_one_label, name, Classifier yield check_classifiers_classes, name, Classifier yield check_classifiers_pickle, name, Classifier yield check_estimators_partial_fit_n_features, name, Classifier # basic consistency testing yield check_classifiers_train, name, Classifier if (name not in ["MultinomialNB", "LabelPropagation", "LabelSpreading"] # TODO some complication with -1 label and name not in ["DecisionTreeClassifier", "ExtraTreeClassifier"]): # We don't raise a warning in these classifiers, as # the column y interface is used by the forests. # test if classifiers can cope with y.shape = (n_samples, 1) yield check_classifiers_input_shapes, name, Classifier # test if NotFittedError is raised yield check_estimators_unfitted, name, Classifier def test_regressors(): regressors = all_estimators(type_filter='regressor') # TODO: test with intercept # TODO: test with multiple responses for name, Regressor in regressors: # basic testing yield check_regressors_train, name, Regressor yield check_regressor_data_not_an_array, name, Regressor yield check_estimators_partial_fit_n_features, name, Regressor # Test that estimators can be pickled, and once pickled # give the same answer as before. yield check_regressors_pickle, name, Regressor if name != 'CCA': # check that the regressor handles int input yield check_regressors_int, name, Regressor # Test if NotFittedError is raised yield check_estimators_unfitted, name, Regressor def test_configure(): # Smoke test the 'configure' step of setup, this tests all the # 'configure' functions in the setup.pys in the scikit cwd = os.getcwd() setup_path = os.path.abspath(os.path.join(sklearn.__path__[0], '..')) setup_filename = os.path.join(setup_path, 'setup.py') if not os.path.exists(setup_filename): return try: os.chdir(setup_path) old_argv = sys.argv sys.argv = ['setup.py', 'config'] clean_warning_registry() with warnings.catch_warnings(): # The configuration spits out warnings when not finding # Blas/Atlas development headers warnings.simplefilter('ignore', UserWarning) if PY3: with open('setup.py') as f: exec(f.read(), dict(__name__='__main__')) else: execfile('setup.py', dict(__name__='__main__')) finally: sys.argv = old_argv os.chdir(cwd) def test_class_weight_classifiers(): # test that class_weight works and that the semantics are consistent classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): classifiers = [c for c in classifiers if 'class_weight' in c[1]().get_params().keys()] for name, Classifier in classifiers: if name == "NuSVC": # the sparse version has a parameter that doesn't do anything continue if name.endswith("NB"): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! continue yield check_class_weight_classifiers, name, Classifier def test_class_weight_auto_classifiers(): # Test that class_weight="auto" improves f1-score # This test is broken; its success depends on: # * a rare fortuitous RNG seed for make_classification; and # * the use of binary F1 over a seemingly arbitrary positive class for two # datasets, and weighted average F1 for the third. # Its expectations need to be clarified and reimplemented. raise SkipTest('This test requires redefinition') classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): classifiers = [c for c in classifiers if 'class_weight' in c[1]().get_params().keys()] for n_classes, weights in zip([2, 3], [[.8, .2], [.8, .1, .1]]): # create unbalanced dataset X, y = make_classification(n_classes=n_classes, n_samples=200, n_features=10, weights=weights, random_state=0, n_informative=n_classes) X = StandardScaler().fit_transform(X) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.5, random_state=0) for name, Classifier in classifiers: if (name != "NuSVC" # the sparse version has a parameter that doesn't do anything and not name.startswith("RidgeClassifier") # RidgeClassifier behaves unexpected # FIXME! and not name.endswith("NB")): # NaiveBayes classifiers have a somewhat different interface. # FIXME SOON! yield (check_class_weight_auto_classifiers, name, Classifier, X_train, y_train, X_test, y_test, weights) def test_class_weight_auto_linear_classifiers(): classifiers = all_estimators(type_filter='classifier') clean_warning_registry() with warnings.catch_warnings(record=True): linear_classifiers = [ (name, clazz) for name, clazz in classifiers if 'class_weight' in clazz().get_params().keys() and issubclass(clazz, LinearClassifierMixin)] for name, Classifier in linear_classifiers: if name == "LogisticRegressionCV": # Contrary to RidgeClassifierCV, LogisticRegressionCV use actual # CV folds and fit a model for each CV iteration before averaging # the coef. Therefore it is expected to not behave exactly as the # other linear model. continue yield check_class_weight_auto_linear_classifier, name, Classifier @ignore_warnings def test_import_all_consistency(): # Smoke test to check that any name in a __all__ list is actually defined # in the namespace of the module or package. pkgs = pkgutil.walk_packages(path=sklearn.__path__, prefix='sklearn.', onerror=lambda _: None) submods = [modname for _, modname, _ in pkgs] for modname in submods + ['sklearn']: if ".tests." in modname: continue package = __import__(modname, fromlist="dummy") for name in getattr(package, '__all__', ()): if getattr(package, name, None) is None: raise AttributeError( "Module '{0}' has no attribute '{1}'".format( modname, name)) def test_root_import_all_completeness(): EXCEPTIONS = ('utils', 'tests', 'base', 'setup') for _, modname, _ in pkgutil.walk_packages(path=sklearn.__path__, onerror=lambda _: None): if '.' in modname or modname.startswith('_') or modname in EXCEPTIONS: continue assert_in(modname, sklearn.__all__) def test_non_transformer_estimators_n_iter(): # Test that all estimators of type which are non-transformer # and which have an attribute of max_iter, return the attribute # of n_iter atleast 1. for est_type in ['regressor', 'classifier', 'cluster']: regressors = all_estimators(type_filter=est_type) for name, Estimator in regressors: # LassoLars stops early for the default alpha=1.0 for # the iris dataset. if name == 'LassoLars': estimator = Estimator(alpha=0.) else: estimator = Estimator() if hasattr(estimator, "max_iter"): # These models are dependent on external solvers like # libsvm and accessing the iter parameter is non-trivial. if name in (['Ridge', 'SVR', 'NuSVR', 'NuSVC', 'RidgeClassifier', 'SVC', 'RandomizedLasso', 'LogisticRegressionCV']): continue # Tested in test_transformer_n_iter below elif (name in CROSS_DECOMPOSITION or name in ['LinearSVC', 'LogisticRegression']): continue else: # Multitask models related to ENet cannot handle # if y is mono-output. yield (check_non_transformer_estimators_n_iter, name, estimator, 'Multi' in name) def test_transformer_n_iter(): transformers = all_estimators(type_filter='transformer') for name, Estimator in transformers: estimator = Estimator() # Dependent on external solvers and hence accessing the iter # param is non-trivial. external_solver = ['Isomap', 'KernelPCA', 'LocallyLinearEmbedding', 'RandomizedLasso', 'LogisticRegressionCV'] if hasattr(estimator, "max_iter") and name not in external_solver: yield check_transformer_n_iter, name, estimator
bsd-3-clause
anntzer/scikit-learn
sklearn/feature_extraction/tests/test_text.py
5
54271
from collections.abc import Mapping import re import pytest import warnings from scipy import sparse from sklearn.feature_extraction.text import strip_tags from sklearn.feature_extraction.text import strip_accents_unicode from sklearn.feature_extraction.text import strip_accents_ascii from sklearn.feature_extraction.text import HashingVectorizer from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfTransformer from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV from sklearn.pipeline import Pipeline from sklearn.svm import LinearSVC from sklearn.base import clone import numpy as np from numpy.testing import assert_array_almost_equal from numpy.testing import assert_array_equal from sklearn.utils import IS_PYPY from sklearn.utils._testing import ( assert_almost_equal, fails_if_pypy, assert_allclose_dense_sparse, skip_if_32bit, ) from collections import defaultdict from functools import partial import pickle from io import StringIO JUNK_FOOD_DOCS = ( "the pizza pizza beer copyright", "the pizza burger beer copyright", "the the pizza beer beer copyright", "the burger beer beer copyright", "the coke burger coke copyright", "the coke burger burger", ) NOTJUNK_FOOD_DOCS = ( "the salad celeri copyright", "the salad salad sparkling water copyright", "the the celeri celeri copyright", "the tomato tomato salad water", "the tomato salad water copyright", ) ALL_FOOD_DOCS = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS def uppercase(s): return strip_accents_unicode(s).upper() def strip_eacute(s): return s.replace("é", "e") def split_tokenize(s): return s.split() def lazy_analyze(s): return ["the_ultimate_feature"] def test_strip_accents(): # check some classical latin accentuated symbols a = "àáâãäåçèéêë" expected = "aaaaaaceeee" assert strip_accents_unicode(a) == expected a = "ìíîïñòóôõöùúûüý" expected = "iiiinooooouuuuy" assert strip_accents_unicode(a) == expected # check some arabic a = "\u0625" # alef with a hamza below: إ expected = "\u0627" # simple alef: ا assert strip_accents_unicode(a) == expected # mix letters accentuated and not a = "this is à test" expected = "this is a test" assert strip_accents_unicode(a) == expected # strings that are already decomposed a = "o\u0308" # o with diaeresis expected = "o" assert strip_accents_unicode(a) == expected # combining marks by themselves a = "\u0300\u0301\u0302\u0303" expected = "" assert strip_accents_unicode(a) == expected # Multiple combining marks on one character a = "o\u0308\u0304" expected = "o" assert strip_accents_unicode(a) == expected def test_to_ascii(): # check some classical latin accentuated symbols a = "àáâãäåçèéêë" expected = "aaaaaaceeee" assert strip_accents_ascii(a) == expected a = "ìíîïñòóôõöùúûüý" expected = "iiiinooooouuuuy" assert strip_accents_ascii(a) == expected # check some arabic a = "\u0625" # halef with a hamza below expected = "" # halef has no direct ascii match assert strip_accents_ascii(a) == expected # mix letters accentuated and not a = "this is à test" expected = "this is a test" assert strip_accents_ascii(a) == expected @pytest.mark.parametrize("Vectorizer", (CountVectorizer, HashingVectorizer)) def test_word_analyzer_unigrams(Vectorizer): wa = Vectorizer(strip_accents="ascii").build_analyzer() text = "J'ai mangé du kangourou ce midi, c'était pas très bon." expected = [ "ai", "mange", "du", "kangourou", "ce", "midi", "etait", "pas", "tres", "bon", ] assert wa(text) == expected text = "This is a test, really.\n\n I met Harry yesterday." expected = ["this", "is", "test", "really", "met", "harry", "yesterday"] assert wa(text) == expected wa = Vectorizer(input="file").build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ["this", "is", "test", "with", "file", "like", "object"] assert wa(text) == expected # with custom preprocessor wa = Vectorizer(preprocessor=uppercase).build_analyzer() text = "J'ai mangé du kangourou ce midi, c'était pas très bon." expected = [ "AI", "MANGE", "DU", "KANGOUROU", "CE", "MIDI", "ETAIT", "PAS", "TRES", "BON", ] assert wa(text) == expected # with custom tokenizer wa = Vectorizer(tokenizer=split_tokenize, strip_accents="ascii").build_analyzer() text = "J'ai mangé du kangourou ce midi, c'était pas très bon." expected = [ "j'ai", "mange", "du", "kangourou", "ce", "midi,", "c'etait", "pas", "tres", "bon.", ] assert wa(text) == expected def test_word_analyzer_unigrams_and_bigrams(): wa = CountVectorizer( analyzer="word", strip_accents="unicode", ngram_range=(1, 2) ).build_analyzer() text = "J'ai mangé du kangourou ce midi, c'était pas très bon." expected = [ "ai", "mange", "du", "kangourou", "ce", "midi", "etait", "pas", "tres", "bon", "ai mange", "mange du", "du kangourou", "kangourou ce", "ce midi", "midi etait", "etait pas", "pas tres", "tres bon", ] assert wa(text) == expected def test_unicode_decode_error(): # decode_error default to strict, so this should fail # First, encode (as bytes) a unicode string. text = "J'ai mangé du kangourou ce midi, c'était pas très bon." text_bytes = text.encode("utf-8") # Then let the Analyzer try to decode it as ascii. It should fail, # because we have given it an incorrect encoding. wa = CountVectorizer(ngram_range=(1, 2), encoding="ascii").build_analyzer() with pytest.raises(UnicodeDecodeError): wa(text_bytes) ca = CountVectorizer( analyzer="char", ngram_range=(3, 6), encoding="ascii" ).build_analyzer() with pytest.raises(UnicodeDecodeError): ca(text_bytes) def test_char_ngram_analyzer(): cnga = CountVectorizer( analyzer="char", strip_accents="unicode", ngram_range=(3, 6) ).build_analyzer() text = "J'ai mangé du kangourou ce midi, c'était pas très bon" expected = ["j'a", "'ai", "ai ", "i m", " ma"] assert cnga(text)[:5] == expected expected = ["s tres", " tres ", "tres b", "res bo", "es bon"] assert cnga(text)[-5:] == expected text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = ["thi", "his", "is ", "s i", " is"] assert cnga(text)[:5] == expected expected = [" yeste", "yester", "esterd", "sterda", "terday"] assert cnga(text)[-5:] == expected cnga = CountVectorizer( input="file", analyzer="char", ngram_range=(3, 6) ).build_analyzer() text = StringIO("This is a test with a file-like object!") expected = ["thi", "his", "is ", "s i", " is"] assert cnga(text)[:5] == expected def test_char_wb_ngram_analyzer(): cnga = CountVectorizer( analyzer="char_wb", strip_accents="unicode", ngram_range=(3, 6) ).build_analyzer() text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = [" th", "thi", "his", "is ", " thi"] assert cnga(text)[:5] == expected expected = ["yester", "esterd", "sterda", "terday", "erday "] assert cnga(text)[-5:] == expected cnga = CountVectorizer( input="file", analyzer="char_wb", ngram_range=(3, 6) ).build_analyzer() text = StringIO("A test with a file-like object!") expected = [" a ", " te", "tes", "est", "st ", " tes"] assert cnga(text)[:6] == expected def test_word_ngram_analyzer(): cnga = CountVectorizer( analyzer="word", strip_accents="unicode", ngram_range=(3, 6) ).build_analyzer() text = "This \n\tis a test, really.\n\n I met Harry yesterday" expected = ["this is test", "is test really", "test really met"] assert cnga(text)[:3] == expected expected = [ "test really met harry yesterday", "this is test really met harry", "is test really met harry yesterday", ] assert cnga(text)[-3:] == expected cnga_file = CountVectorizer( input="file", analyzer="word", ngram_range=(3, 6) ).build_analyzer() file = StringIO(text) assert cnga_file(file) == cnga(text) def test_countvectorizer_custom_vocabulary(): vocab = {"pizza": 0, "beer": 1} terms = set(vocab.keys()) # Try a few of the supported types. for typ in [dict, list, iter, partial(defaultdict, int)]: v = typ(vocab) vect = CountVectorizer(vocabulary=v) vect.fit(JUNK_FOOD_DOCS) if isinstance(v, Mapping): assert vect.vocabulary_ == vocab else: assert set(vect.vocabulary_) == terms X = vect.transform(JUNK_FOOD_DOCS) assert X.shape[1] == len(terms) v = typ(vocab) vect = CountVectorizer(vocabulary=v) inv = vect.inverse_transform(X) assert len(inv) == X.shape[0] def test_countvectorizer_custom_vocabulary_pipeline(): what_we_like = ["pizza", "beer"] pipe = Pipeline( [ ("count", CountVectorizer(vocabulary=what_we_like)), ("tfidf", TfidfTransformer()), ] ) X = pipe.fit_transform(ALL_FOOD_DOCS) assert set(pipe.named_steps["count"].vocabulary_) == set(what_we_like) assert X.shape[1] == len(what_we_like) def test_countvectorizer_custom_vocabulary_repeated_indices(): vocab = {"pizza": 0, "beer": 0} msg = "Vocabulary contains repeated indices" with pytest.raises(ValueError, match=msg): vect = CountVectorizer(vocabulary=vocab) vect.fit(["pasta_siziliana"]) def test_countvectorizer_custom_vocabulary_gap_index(): vocab = {"pizza": 1, "beer": 2} with pytest.raises(ValueError, match="doesn't contain index"): vect = CountVectorizer(vocabulary=vocab) vect.fit(["pasta_verdura"]) def test_countvectorizer_stop_words(): cv = CountVectorizer() cv.set_params(stop_words="english") assert cv.get_stop_words() == ENGLISH_STOP_WORDS cv.set_params(stop_words="_bad_str_stop_") with pytest.raises(ValueError): cv.get_stop_words() cv.set_params(stop_words="_bad_unicode_stop_") with pytest.raises(ValueError): cv.get_stop_words() stoplist = ["some", "other", "words"] cv.set_params(stop_words=stoplist) assert cv.get_stop_words() == set(stoplist) def test_countvectorizer_empty_vocabulary(): with pytest.raises(ValueError, match="empty vocabulary"): vect = CountVectorizer(vocabulary=[]) vect.fit(["foo"]) with pytest.raises(ValueError, match="empty vocabulary"): v = CountVectorizer(max_df=1.0, stop_words="english") # fit on stopwords only v.fit(["to be or not to be", "and me too", "and so do you"]) def test_fit_countvectorizer_twice(): cv = CountVectorizer() X1 = cv.fit_transform(ALL_FOOD_DOCS[:5]) X2 = cv.fit_transform(ALL_FOOD_DOCS[5:]) assert X1.shape[1] != X2.shape[1] # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_countvectorizer_custom_token_pattern(get_names): """Check `get_feature_names()` when a custom token pattern is passed. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971 """ corpus = [ "This is the 1st document in my corpus.", "This document is the 2nd sample.", "And this is the 3rd one.", "Is this the 4th document?", ] token_pattern = r"[0-9]{1,3}(?:st|nd|rd|th)\s\b(\w{2,})\b" vectorizer = CountVectorizer(token_pattern=token_pattern) vectorizer.fit_transform(corpus) expected = ["document", "one", "sample"] feature_names_out = getattr(vectorizer, get_names)() assert_array_equal(feature_names_out, expected) def test_countvectorizer_custom_token_pattern_with_several_group(): """Check that we raise an error if token pattern capture several groups. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12971 """ corpus = [ "This is the 1st document in my corpus.", "This document is the 2nd sample.", "And this is the 3rd one.", "Is this the 4th document?", ] token_pattern = r"([0-9]{1,3}(?:st|nd|rd|th))\s\b(\w{2,})\b" err_msg = "More than 1 capturing group in token pattern" vectorizer = CountVectorizer(token_pattern=token_pattern) with pytest.raises(ValueError, match=err_msg): vectorizer.fit(corpus) def test_countvectorizer_uppercase_in_vocab(): # Check that the check for uppercase in the provided vocabulary is only done at fit # time and not at transform time (#21251) vocabulary = ["Sample", "Upper", "Case", "Vocabulary"] message = ( "Upper case characters found in" " vocabulary while 'lowercase'" " is True. These entries will not" " be matched with any documents" ) vectorizer = CountVectorizer(lowercase=True, vocabulary=vocabulary) with pytest.warns(UserWarning, match=message): vectorizer.fit(vocabulary) with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) vectorizer.transform(vocabulary) def test_tf_transformer_feature_names_out(): """Check get_feature_names_out for TfidfTransformer""" X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm="l2").fit(X) feature_names_in = ["a", "c", "b"] feature_names_out = tr.get_feature_names_out(feature_names_in) assert_array_equal(feature_names_in, feature_names_out) def test_tf_idf_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm="l2") tfidf = tr.fit_transform(X).toarray() assert (tfidf >= 0).all() # check normalization assert_array_almost_equal((tfidf**2).sum(axis=1), [1.0, 1.0, 1.0]) # this is robust to features with only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=True, norm="l2") tfidf = tr.fit_transform(X).toarray() assert (tfidf >= 0).all() def test_tfidf_no_smoothing(): X = [[1, 1, 1], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm="l2") tfidf = tr.fit_transform(X).toarray() assert (tfidf >= 0).all() # check normalization assert_array_almost_equal((tfidf**2).sum(axis=1), [1.0, 1.0, 1.0]) # the lack of smoothing make IDF fragile in the presence of feature with # only zeros X = [[1, 1, 0], [1, 1, 0], [1, 0, 0]] tr = TfidfTransformer(smooth_idf=False, norm="l2") in_warning_message = "divide by zero" with pytest.warns(RuntimeWarning, match=in_warning_message): tr.fit_transform(X).toarray() def test_sublinear_tf(): X = [[1], [2], [3]] tr = TfidfTransformer(sublinear_tf=True, use_idf=False, norm=None) tfidf = tr.fit_transform(X).toarray() assert tfidf[0] == 1 assert tfidf[1] > tfidf[0] assert tfidf[2] > tfidf[1] assert tfidf[1] < 2 assert tfidf[2] < 3 def test_vectorizer(): # raw documents as an iterator train_data = iter(ALL_FOOD_DOCS[:-1]) test_data = [ALL_FOOD_DOCS[-1]] n_train = len(ALL_FOOD_DOCS) - 1 # test without vocabulary v1 = CountVectorizer(max_df=0.5) counts_train = v1.fit_transform(train_data) if hasattr(counts_train, "tocsr"): counts_train = counts_train.tocsr() assert counts_train[0, v1.vocabulary_["pizza"]] == 2 # build a vectorizer v1 with the same vocabulary as the one fitted by v1 v2 = CountVectorizer(vocabulary=v1.vocabulary_) # compare that the two vectorizer give the same output on the test sample for v in (v1, v2): counts_test = v.transform(test_data) if hasattr(counts_test, "tocsr"): counts_test = counts_test.tocsr() vocabulary = v.vocabulary_ assert counts_test[0, vocabulary["salad"]] == 1 assert counts_test[0, vocabulary["tomato"]] == 1 assert counts_test[0, vocabulary["water"]] == 1 # stop word from the fixed list assert "the" not in vocabulary # stop word found automatically by the vectorizer DF thresholding # words that are high frequent across the complete corpus are likely # to be not informative (either real stop words of extraction # artifacts) assert "copyright" not in vocabulary # not present in the sample assert counts_test[0, vocabulary["coke"]] == 0 assert counts_test[0, vocabulary["burger"]] == 0 assert counts_test[0, vocabulary["beer"]] == 0 assert counts_test[0, vocabulary["pizza"]] == 0 # test tf-idf t1 = TfidfTransformer(norm="l1") tfidf = t1.fit(counts_train).transform(counts_train).toarray() assert len(t1.idf_) == len(v1.vocabulary_) assert tfidf.shape == (n_train, len(v1.vocabulary_)) # test tf-idf with new data tfidf_test = t1.transform(counts_test).toarray() assert tfidf_test.shape == (len(test_data), len(v1.vocabulary_)) # test tf alone t2 = TfidfTransformer(norm="l1", use_idf=False) tf = t2.fit(counts_train).transform(counts_train).toarray() assert not hasattr(t2, "idf_") # test idf transform with unlearned idf vector t3 = TfidfTransformer(use_idf=True) with pytest.raises(ValueError): t3.transform(counts_train) # L1-normalized term frequencies sum to one assert_array_almost_equal(np.sum(tf, axis=1), [1.0] * n_train) # test the direct tfidf vectorizer # (equivalent to term count vectorizer + tfidf transformer) train_data = iter(ALL_FOOD_DOCS[:-1]) tv = TfidfVectorizer(norm="l1") tv.max_df = v1.max_df tfidf2 = tv.fit_transform(train_data).toarray() assert not tv.fixed_vocabulary_ assert_array_almost_equal(tfidf, tfidf2) # test the direct tfidf vectorizer with new data tfidf_test2 = tv.transform(test_data).toarray() assert_array_almost_equal(tfidf_test, tfidf_test2) # test transform on unfitted vectorizer with empty vocabulary v3 = CountVectorizer(vocabulary=None) with pytest.raises(ValueError): v3.transform(train_data) # ascii preprocessor? v3.set_params(strip_accents="ascii", lowercase=False) processor = v3.build_preprocessor() text = "J'ai mangé du kangourou ce midi, c'était pas très bon." expected = strip_accents_ascii(text) result = processor(text) assert expected == result # error on bad strip_accents param v3.set_params(strip_accents="_gabbledegook_", preprocessor=None) with pytest.raises(ValueError): v3.build_preprocessor() # error with bad analyzer type v3.set_params = "_invalid_analyzer_type_" with pytest.raises(ValueError): v3.build_analyzer() def test_tfidf_vectorizer_setters(): norm, use_idf, smooth_idf, sublinear_tf = "l2", False, False, False tv = TfidfVectorizer( norm=norm, use_idf=use_idf, smooth_idf=smooth_idf, sublinear_tf=sublinear_tf ) tv.fit(JUNK_FOOD_DOCS) assert tv._tfidf.norm == norm assert tv._tfidf.use_idf == use_idf assert tv._tfidf.smooth_idf == smooth_idf assert tv._tfidf.sublinear_tf == sublinear_tf # assigning value to `TfidfTransformer` should not have any effect until # fitting tv.norm = "l1" tv.use_idf = True tv.smooth_idf = True tv.sublinear_tf = True assert tv._tfidf.norm == norm assert tv._tfidf.use_idf == use_idf assert tv._tfidf.smooth_idf == smooth_idf assert tv._tfidf.sublinear_tf == sublinear_tf tv.fit(JUNK_FOOD_DOCS) assert tv._tfidf.norm == tv.norm assert tv._tfidf.use_idf == tv.use_idf assert tv._tfidf.smooth_idf == tv.smooth_idf assert tv._tfidf.sublinear_tf == tv.sublinear_tf @fails_if_pypy def test_hashing_vectorizer(): v = HashingVectorizer() X = v.transform(ALL_FOOD_DOCS) token_nnz = X.nnz assert X.shape == (len(ALL_FOOD_DOCS), v.n_features) assert X.dtype == v.dtype # By default the hashed values receive a random sign and l2 normalization # makes the feature values bounded assert np.min(X.data) > -1 assert np.min(X.data) < 0 assert np.max(X.data) > 0 assert np.max(X.data) < 1 # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 2), 1.0) # Check vectorization with some non-default parameters v = HashingVectorizer(ngram_range=(1, 2), norm="l1") X = v.transform(ALL_FOOD_DOCS) assert X.shape == (len(ALL_FOOD_DOCS), v.n_features) assert X.dtype == v.dtype # ngrams generate more non zeros ngrams_nnz = X.nnz assert ngrams_nnz > token_nnz assert ngrams_nnz < 2 * token_nnz # makes the feature values bounded assert np.min(X.data) > -1 assert np.max(X.data) < 1 # Check that the rows are normalized for i in range(X.shape[0]): assert_almost_equal(np.linalg.norm(X[0].data, 1), 1.0) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_feature_names(get_names): cv = CountVectorizer(max_df=0.5) # test for Value error on unfitted/empty vocabulary with pytest.raises(ValueError): getattr(cv, get_names)() assert not cv.fixed_vocabulary_ # test for vocabulary learned from data X = cv.fit_transform(ALL_FOOD_DOCS) n_samples, n_features = X.shape assert len(cv.vocabulary_) == n_features feature_names = getattr(cv, get_names)() if get_names == "get_feature_names_out": assert isinstance(feature_names, np.ndarray) assert feature_names.dtype == object else: # get_feature_names assert isinstance(feature_names, list) assert len(feature_names) == n_features assert_array_equal( [ "beer", "burger", "celeri", "coke", "pizza", "salad", "sparkling", "tomato", "water", ], feature_names, ) for idx, name in enumerate(feature_names): assert idx == cv.vocabulary_.get(name) # test for custom vocabulary vocab = [ "beer", "burger", "celeri", "coke", "pizza", "salad", "sparkling", "tomato", "water", ] cv = CountVectorizer(vocabulary=vocab) feature_names = getattr(cv, get_names)() assert_array_equal( [ "beer", "burger", "celeri", "coke", "pizza", "salad", "sparkling", "tomato", "water", ], feature_names, ) assert cv.fixed_vocabulary_ for idx, name in enumerate(feature_names): assert idx == cv.vocabulary_.get(name) @pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer)) def test_vectorizer_max_features(Vectorizer): expected_vocabulary = {"burger", "beer", "salad", "pizza"} expected_stop_words = { "celeri", "tomato", "copyright", "coke", "sparkling", "water", "the", } # test bounded number of extracted features vectorizer = Vectorizer(max_df=0.6, max_features=4) vectorizer.fit(ALL_FOOD_DOCS) assert set(vectorizer.vocabulary_) == expected_vocabulary assert vectorizer.stop_words_ == expected_stop_words # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_count_vectorizer_max_features(get_names): # Regression test: max_features didn't work correctly in 0.14. cv_1 = CountVectorizer(max_features=1) cv_3 = CountVectorizer(max_features=3) cv_None = CountVectorizer(max_features=None) counts_1 = cv_1.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_3 = cv_3.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) counts_None = cv_None.fit_transform(JUNK_FOOD_DOCS).sum(axis=0) features_1 = getattr(cv_1, get_names)() features_3 = getattr(cv_3, get_names)() features_None = getattr(cv_None, get_names)() # The most common feature is "the", with frequency 7. assert 7 == counts_1.max() assert 7 == counts_3.max() assert 7 == counts_None.max() # The most common feature should be the same assert "the" == features_1[np.argmax(counts_1)] assert "the" == features_3[np.argmax(counts_3)] assert "the" == features_None[np.argmax(counts_None)] def test_vectorizer_max_df(): test_data = ["abc", "dea", "eat"] vect = CountVectorizer(analyzer="char", max_df=1.0) vect.fit(test_data) assert "a" in vect.vocabulary_.keys() assert len(vect.vocabulary_.keys()) == 6 assert len(vect.stop_words_) == 0 vect.max_df = 0.5 # 0.5 * 3 documents -> max_doc_count == 1.5 vect.fit(test_data) assert "a" not in vect.vocabulary_.keys() # {ae} ignored assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain assert "a" in vect.stop_words_ assert len(vect.stop_words_) == 2 vect.max_df = 1 vect.fit(test_data) assert "a" not in vect.vocabulary_.keys() # {ae} ignored assert len(vect.vocabulary_.keys()) == 4 # {bcdt} remain assert "a" in vect.stop_words_ assert len(vect.stop_words_) == 2 def test_vectorizer_min_df(): test_data = ["abc", "dea", "eat"] vect = CountVectorizer(analyzer="char", min_df=1) vect.fit(test_data) assert "a" in vect.vocabulary_.keys() assert len(vect.vocabulary_.keys()) == 6 assert len(vect.stop_words_) == 0 vect.min_df = 2 vect.fit(test_data) assert "c" not in vect.vocabulary_.keys() # {bcdt} ignored assert len(vect.vocabulary_.keys()) == 2 # {ae} remain assert "c" in vect.stop_words_ assert len(vect.stop_words_) == 4 vect.min_df = 0.8 # 0.8 * 3 documents -> min_doc_count == 2.4 vect.fit(test_data) assert "c" not in vect.vocabulary_.keys() # {bcdet} ignored assert len(vect.vocabulary_.keys()) == 1 # {a} remains assert "c" in vect.stop_words_ assert len(vect.stop_words_) == 5 # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_count_binary_occurrences(get_names): # by default multiple occurrences are counted as longs test_data = ["aaabc", "abbde"] vect = CountVectorizer(analyzer="char", max_df=1.0) X = vect.fit_transform(test_data).toarray() assert_array_equal(["a", "b", "c", "d", "e"], getattr(vect, get_names)()) assert_array_equal([[3, 1, 1, 0, 0], [1, 2, 0, 1, 1]], X) # using boolean features, we can fetch the binary occurrence info # instead. vect = CountVectorizer(analyzer="char", max_df=1.0, binary=True) X = vect.fit_transform(test_data).toarray() assert_array_equal([[1, 1, 1, 0, 0], [1, 1, 0, 1, 1]], X) # check the ability to change the dtype vect = CountVectorizer(analyzer="char", max_df=1.0, binary=True, dtype=np.float32) X_sparse = vect.fit_transform(test_data) assert X_sparse.dtype == np.float32 @fails_if_pypy def test_hashed_binary_occurrences(): # by default multiple occurrences are counted as longs test_data = ["aaabc", "abbde"] vect = HashingVectorizer(alternate_sign=False, analyzer="char", norm=None) X = vect.transform(test_data) assert np.max(X[0:1].data) == 3 assert np.max(X[1:2].data) == 2 assert X.dtype == np.float64 # using boolean features, we can fetch the binary occurrence info # instead. vect = HashingVectorizer( analyzer="char", alternate_sign=False, binary=True, norm=None ) X = vect.transform(test_data) assert np.max(X.data) == 1 assert X.dtype == np.float64 # check the ability to change the dtype vect = HashingVectorizer( analyzer="char", alternate_sign=False, binary=True, norm=None, dtype=np.float64 ) X = vect.transform(test_data) assert X.dtype == np.float64 @pytest.mark.parametrize("Vectorizer", (CountVectorizer, TfidfVectorizer)) def test_vectorizer_inverse_transform(Vectorizer): # raw documents data = ALL_FOOD_DOCS vectorizer = Vectorizer() transformed_data = vectorizer.fit_transform(data) inversed_data = vectorizer.inverse_transform(transformed_data) assert isinstance(inversed_data, list) analyze = vectorizer.build_analyzer() for doc, inversed_terms in zip(data, inversed_data): terms = np.sort(np.unique(analyze(doc))) inversed_terms = np.sort(np.unique(inversed_terms)) assert_array_equal(terms, inversed_terms) assert sparse.issparse(transformed_data) assert transformed_data.format == "csr" # Test that inverse_transform also works with numpy arrays and # scipy transformed_data2 = transformed_data.toarray() inversed_data2 = vectorizer.inverse_transform(transformed_data2) for terms, terms2 in zip(inversed_data, inversed_data2): assert_array_equal(np.sort(terms), np.sort(terms2)) # Check that inverse_transform also works on non CSR sparse data: transformed_data3 = transformed_data.tocsc() inversed_data3 = vectorizer.inverse_transform(transformed_data3) for terms, terms3 in zip(inversed_data, inversed_data3): assert_array_equal(np.sort(terms), np.sort(terms3)) def test_count_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=0.2, random_state=0 ) pipeline = Pipeline([("vect", CountVectorizer()), ("svc", LinearSVC())]) parameters = { "vect__ngram_range": [(1, 1), (1, 2)], "svc__loss": ("hinge", "squared_hinge"), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1, cv=3) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert grid_search.best_score_ == 1.0 best_vectorizer = grid_search.best_estimator_.named_steps["vect"] assert best_vectorizer.ngram_range == (1, 1) def test_vectorizer_pipeline_grid_selection(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) # split the dataset for model development and final evaluation train_data, test_data, target_train, target_test = train_test_split( data, target, test_size=0.1, random_state=0 ) pipeline = Pipeline([("vect", TfidfVectorizer()), ("svc", LinearSVC())]) parameters = { "vect__ngram_range": [(1, 1), (1, 2)], "vect__norm": ("l1", "l2"), "svc__loss": ("hinge", "squared_hinge"), } # find the best parameters for both the feature extraction and the # classifier grid_search = GridSearchCV(pipeline, parameters, n_jobs=1) # Check that the best model found by grid search is 100% correct on the # held out evaluation set. pred = grid_search.fit(train_data, target_train).predict(test_data) assert_array_equal(pred, target_test) # on this toy dataset bigram representation which is used in the last of # the grid_search is considered the best estimator since they all converge # to 100% accuracy models assert grid_search.best_score_ == 1.0 best_vectorizer = grid_search.best_estimator_.named_steps["vect"] assert best_vectorizer.ngram_range == (1, 1) assert best_vectorizer.norm == "l2" assert not best_vectorizer.fixed_vocabulary_ def test_vectorizer_pipeline_cross_validation(): # raw documents data = JUNK_FOOD_DOCS + NOTJUNK_FOOD_DOCS # label junk food as -1, the others as +1 target = [-1] * len(JUNK_FOOD_DOCS) + [1] * len(NOTJUNK_FOOD_DOCS) pipeline = Pipeline([("vect", TfidfVectorizer()), ("svc", LinearSVC())]) cv_scores = cross_val_score(pipeline, data, target, cv=3) assert_array_equal(cv_scores, [1.0, 1.0, 1.0]) @fails_if_pypy def test_vectorizer_unicode(): # tests that the count vectorizer works with cyrillic. document = ( "Машинное обучение — обширный подраздел искусственного " "интеллекта, изучающий методы построения алгоритмов, " "способных обучаться." ) vect = CountVectorizer() X_counted = vect.fit_transform([document]) assert X_counted.shape == (1, 12) vect = HashingVectorizer(norm=None, alternate_sign=False) X_hashed = vect.transform([document]) assert X_hashed.shape == (1, 2**20) # No collisions on such a small dataset assert X_counted.nnz == X_hashed.nnz # When norm is None and not alternate_sign, the tokens are counted up to # collisions assert_array_equal(np.sort(X_counted.data), np.sort(X_hashed.data)) def test_tfidf_vectorizer_with_fixed_vocabulary(): # non regression smoke test for inheritance issues vocabulary = ["pizza", "celeri"] vect = TfidfVectorizer(vocabulary=vocabulary) X_1 = vect.fit_transform(ALL_FOOD_DOCS) X_2 = vect.transform(ALL_FOOD_DOCS) assert_array_almost_equal(X_1.toarray(), X_2.toarray()) assert vect.fixed_vocabulary_ def test_pickling_vectorizer(): instances = [ HashingVectorizer(), HashingVectorizer(norm="l1"), HashingVectorizer(binary=True), HashingVectorizer(ngram_range=(1, 2)), CountVectorizer(), CountVectorizer(preprocessor=strip_tags), CountVectorizer(analyzer=lazy_analyze), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS), TfidfVectorizer(), TfidfVectorizer(analyzer=lazy_analyze), TfidfVectorizer().fit(JUNK_FOOD_DOCS), ] for orig in instances: s = pickle.dumps(orig) copy = pickle.loads(s) assert type(copy) == orig.__class__ assert copy.get_params() == orig.get_params() if IS_PYPY and isinstance(orig, HashingVectorizer): continue else: assert_allclose_dense_sparse( copy.fit_transform(JUNK_FOOD_DOCS), orig.fit_transform(JUNK_FOOD_DOCS), ) @pytest.mark.parametrize( "factory", [ CountVectorizer.build_analyzer, CountVectorizer.build_preprocessor, CountVectorizer.build_tokenizer, ], ) def test_pickling_built_processors(factory): """Tokenizers cannot be pickled https://github.com/scikit-learn/scikit-learn/issues/12833 """ vec = CountVectorizer() function = factory(vec) text = "J'ai mangé du kangourou ce midi, c'était pas très bon." roundtripped_function = pickle.loads(pickle.dumps(function)) expected = function(text) result = roundtripped_function(text) assert result == expected # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_countvectorizer_vocab_sets_when_pickling(get_names): # ensure that vocabulary of type set is coerced to a list to # preserve iteration ordering after deserialization rng = np.random.RandomState(0) vocab_words = np.array( [ "beer", "burger", "celeri", "coke", "pizza", "salad", "sparkling", "tomato", "water", ] ) for x in range(0, 100): vocab_set = set(rng.choice(vocab_words, size=5, replace=False)) cv = CountVectorizer(vocabulary=vocab_set) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_array_equal(getattr(cv, get_names)(), getattr(unpickled_cv, get_names)()) # TODO: Remove in 1.2 when get_feature_names is removed. @pytest.mark.filterwarnings("ignore::FutureWarning:sklearn") @pytest.mark.parametrize("get_names", ["get_feature_names", "get_feature_names_out"]) def test_countvectorizer_vocab_dicts_when_pickling(get_names): rng = np.random.RandomState(0) vocab_words = np.array( [ "beer", "burger", "celeri", "coke", "pizza", "salad", "sparkling", "tomato", "water", ] ) for x in range(0, 100): vocab_dict = dict() words = rng.choice(vocab_words, size=5, replace=False) for y in range(0, 5): vocab_dict[words[y]] = y cv = CountVectorizer(vocabulary=vocab_dict) unpickled_cv = pickle.loads(pickle.dumps(cv)) cv.fit(ALL_FOOD_DOCS) unpickled_cv.fit(ALL_FOOD_DOCS) assert_array_equal(getattr(cv, get_names)(), getattr(unpickled_cv, get_names)()) def test_stop_words_removal(): # Ensure that deleting the stop_words_ attribute doesn't affect transform fitted_vectorizers = ( TfidfVectorizer().fit(JUNK_FOOD_DOCS), CountVectorizer(preprocessor=strip_tags).fit(JUNK_FOOD_DOCS), CountVectorizer(strip_accents=strip_eacute).fit(JUNK_FOOD_DOCS), ) for vect in fitted_vectorizers: vect_transform = vect.transform(JUNK_FOOD_DOCS).toarray() vect.stop_words_ = None stop_None_transform = vect.transform(JUNK_FOOD_DOCS).toarray() delattr(vect, "stop_words_") stop_del_transform = vect.transform(JUNK_FOOD_DOCS).toarray() assert_array_equal(stop_None_transform, vect_transform) assert_array_equal(stop_del_transform, vect_transform) def test_pickling_transformer(): X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS) orig = TfidfTransformer().fit(X) s = pickle.dumps(orig) copy = pickle.loads(s) assert type(copy) == orig.__class__ assert_array_equal(copy.fit_transform(X).toarray(), orig.fit_transform(X).toarray()) def test_transformer_idf_setter(): X = CountVectorizer().fit_transform(JUNK_FOOD_DOCS) orig = TfidfTransformer().fit(X) copy = TfidfTransformer() copy.idf_ = orig.idf_ assert_array_equal(copy.transform(X).toarray(), orig.transform(X).toarray()) def test_tfidf_vectorizer_setter(): orig = TfidfVectorizer(use_idf=True) orig.fit(JUNK_FOOD_DOCS) copy = TfidfVectorizer(vocabulary=orig.vocabulary_, use_idf=True) copy.idf_ = orig.idf_ assert_array_equal( copy.transform(JUNK_FOOD_DOCS).toarray(), orig.transform(JUNK_FOOD_DOCS).toarray(), ) # `idf_` cannot be set with `use_idf=False` copy = TfidfVectorizer(vocabulary=orig.vocabulary_, use_idf=False) err_msg = "`idf_` cannot be set when `user_idf=False`." with pytest.raises(ValueError, match=err_msg): copy.idf_ = orig.idf_ def test_tfidfvectorizer_invalid_idf_attr(): vect = TfidfVectorizer(use_idf=True) vect.fit(JUNK_FOOD_DOCS) copy = TfidfVectorizer(vocabulary=vect.vocabulary_, use_idf=True) expected_idf_len = len(vect.idf_) invalid_idf = [1.0] * (expected_idf_len + 1) with pytest.raises(ValueError): setattr(copy, "idf_", invalid_idf) def test_non_unique_vocab(): vocab = ["a", "b", "c", "a", "a"] vect = CountVectorizer(vocabulary=vocab) with pytest.raises(ValueError): vect.fit([]) @fails_if_pypy def test_hashingvectorizer_nan_in_docs(): # np.nan can appear when using pandas to load text fields from a csv file # with missing values. message = "np.nan is an invalid document, expected byte or unicode string." exception = ValueError def func(): hv = HashingVectorizer() hv.fit_transform(["hello world", np.nan, "hello hello"]) with pytest.raises(exception, match=message): func() def test_tfidfvectorizer_binary(): # Non-regression test: TfidfVectorizer used to ignore its "binary" param. v = TfidfVectorizer(binary=True, use_idf=False, norm=None) assert v.binary X = v.fit_transform(["hello world", "hello hello"]).toarray() assert_array_equal(X.ravel(), [1, 1, 1, 0]) X2 = v.transform(["hello world", "hello hello"]).toarray() assert_array_equal(X2.ravel(), [1, 1, 1, 0]) def test_tfidfvectorizer_export_idf(): vect = TfidfVectorizer(use_idf=True) vect.fit(JUNK_FOOD_DOCS) assert_array_almost_equal(vect.idf_, vect._tfidf.idf_) def test_vectorizer_vocab_clone(): vect_vocab = TfidfVectorizer(vocabulary=["the"]) vect_vocab_clone = clone(vect_vocab) vect_vocab.fit(ALL_FOOD_DOCS) vect_vocab_clone.fit(ALL_FOOD_DOCS) assert vect_vocab_clone.vocabulary_ == vect_vocab.vocabulary_ @pytest.mark.parametrize( "Vectorizer", (CountVectorizer, TfidfVectorizer, HashingVectorizer) ) def test_vectorizer_string_object_as_input(Vectorizer): message = "Iterable over raw text documents expected, string object received." vec = Vectorizer() with pytest.raises(ValueError, match=message): vec.fit_transform("hello world!") with pytest.raises(ValueError, match=message): vec.fit("hello world!") vec.fit(["some text", "some other text"]) with pytest.raises(ValueError, match=message): vec.transform("hello world!") @pytest.mark.parametrize("X_dtype", [np.float32, np.float64]) def test_tfidf_transformer_type(X_dtype): X = sparse.rand(10, 20000, dtype=X_dtype, random_state=42) X_trans = TfidfTransformer().fit_transform(X) assert X_trans.dtype == X.dtype def test_tfidf_transformer_sparse(): X = sparse.rand(10, 20000, dtype=np.float64, random_state=42) X_csc = sparse.csc_matrix(X) X_csr = sparse.csr_matrix(X) X_trans_csc = TfidfTransformer().fit_transform(X_csc) X_trans_csr = TfidfTransformer().fit_transform(X_csr) assert_allclose_dense_sparse(X_trans_csc, X_trans_csr) assert X_trans_csc.format == X_trans_csr.format @pytest.mark.parametrize( "vectorizer_dtype, output_dtype, warning_expected", [ (np.int32, np.float64, True), (np.int64, np.float64, True), (np.float32, np.float32, False), (np.float64, np.float64, False), ], ) def test_tfidf_vectorizer_type(vectorizer_dtype, output_dtype, warning_expected): X = np.array(["numpy", "scipy", "sklearn"]) vectorizer = TfidfVectorizer(dtype=vectorizer_dtype) warning_msg_match = "'dtype' should be used." if warning_expected: with pytest.warns(UserWarning, match=warning_msg_match): X_idf = vectorizer.fit_transform(X) else: with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) X_idf = vectorizer.fit_transform(X) assert X_idf.dtype == output_dtype @pytest.mark.parametrize( "vec", [ HashingVectorizer(ngram_range=(2, 1)), CountVectorizer(ngram_range=(2, 1)), TfidfVectorizer(ngram_range=(2, 1)), ], ) def test_vectorizers_invalid_ngram_range(vec): # vectorizers could be initialized with invalid ngram range # test for raising error message invalid_range = vec.ngram_range message = re.escape( f"Invalid value for ngram_range={invalid_range} " "lower boundary larger than the upper boundary." ) if isinstance(vec, HashingVectorizer) and IS_PYPY: pytest.xfail(reason="HashingVectorizer is not supported on PyPy") with pytest.raises(ValueError, match=message): vec.fit(["good news everyone"]) with pytest.raises(ValueError, match=message): vec.fit_transform(["good news everyone"]) if isinstance(vec, HashingVectorizer): with pytest.raises(ValueError, match=message): vec.transform(["good news everyone"]) def _check_stop_words_consistency(estimator): stop_words = estimator.get_stop_words() tokenize = estimator.build_tokenizer() preprocess = estimator.build_preprocessor() return estimator._check_stop_words_consistency(stop_words, preprocess, tokenize) @fails_if_pypy def test_vectorizer_stop_words_inconsistent(): lstr = r"\['and', 'll', 've'\]" message = ( "Your stop_words may be inconsistent with your " "preprocessing. Tokenizing the stop words generated " "tokens %s not in stop_words." % lstr ) for vec in [CountVectorizer(), TfidfVectorizer(), HashingVectorizer()]: vec.set_params(stop_words=["you've", "you", "you'll", "AND"]) with pytest.warns(UserWarning, match=message): vec.fit_transform(["hello world"]) # reset stop word validation del vec._stop_words_id assert _check_stop_words_consistency(vec) is False # Only one warning per stop list with warnings.catch_warnings(): warnings.simplefilter("error", UserWarning) vec.fit_transform(["hello world"]) assert _check_stop_words_consistency(vec) is None # Test caching of inconsistency assessment vec.set_params(stop_words=["you've", "you", "you'll", "blah", "AND"]) with pytest.warns(UserWarning, match=message): vec.fit_transform(["hello world"]) @skip_if_32bit def test_countvectorizer_sort_features_64bit_sparse_indices(): """ Check that CountVectorizer._sort_features preserves the dtype of its sparse feature matrix. This test is skipped on 32bit platforms, see: https://github.com/scikit-learn/scikit-learn/pull/11295 for more details. """ X = sparse.csr_matrix((5, 5), dtype=np.int64) # force indices and indptr to int64. INDICES_DTYPE = np.int64 X.indices = X.indices.astype(INDICES_DTYPE) X.indptr = X.indptr.astype(INDICES_DTYPE) vocabulary = {"scikit-learn": 0, "is": 1, "great!": 2} Xs = CountVectorizer()._sort_features(X, vocabulary) assert INDICES_DTYPE == Xs.indices.dtype @fails_if_pypy @pytest.mark.parametrize( "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer] ) def test_stop_word_validation_custom_preprocessor(Estimator): data = [{"text": "some text"}] vec = Estimator() assert _check_stop_words_consistency(vec) is True vec = Estimator(preprocessor=lambda x: x["text"], stop_words=["and"]) assert _check_stop_words_consistency(vec) == "error" # checks are cached assert _check_stop_words_consistency(vec) is None vec.fit_transform(data) class CustomEstimator(Estimator): def build_preprocessor(self): return lambda x: x["text"] vec = CustomEstimator(stop_words=["and"]) assert _check_stop_words_consistency(vec) == "error" vec = Estimator( tokenizer=lambda doc: re.compile(r"\w{1,}").findall(doc), stop_words=["and"] ) assert _check_stop_words_consistency(vec) is True @pytest.mark.parametrize( "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer] ) @pytest.mark.parametrize( "input_type, err_type, err_msg", [ ("filename", FileNotFoundError, ""), ("file", AttributeError, "'str' object has no attribute 'read'"), ], ) def test_callable_analyzer_error(Estimator, input_type, err_type, err_msg): if issubclass(Estimator, HashingVectorizer) and IS_PYPY: pytest.xfail("HashingVectorizer is not supported on PyPy") data = ["this is text, not file or filename"] with pytest.raises(err_type, match=err_msg): Estimator(analyzer=lambda x: x.split(), input=input_type).fit_transform(data) @pytest.mark.parametrize( "Estimator", [ CountVectorizer, TfidfVectorizer, pytest.param(HashingVectorizer, marks=fails_if_pypy), ], ) @pytest.mark.parametrize( "analyzer", [lambda doc: open(doc, "r"), lambda doc: doc.read()] ) @pytest.mark.parametrize("input_type", ["file", "filename"]) def test_callable_analyzer_change_behavior(Estimator, analyzer, input_type): data = ["this is text, not file or filename"] with pytest.raises((FileNotFoundError, AttributeError)): Estimator(analyzer=analyzer, input=input_type).fit_transform(data) @pytest.mark.parametrize( "Estimator", [CountVectorizer, TfidfVectorizer, HashingVectorizer] ) def test_callable_analyzer_reraise_error(tmpdir, Estimator): # check if a custom exception from the analyzer is shown to the user def analyzer(doc): raise Exception("testing") if issubclass(Estimator, HashingVectorizer) and IS_PYPY: pytest.xfail("HashingVectorizer is not supported on PyPy") f = tmpdir.join("file.txt") f.write("sample content\n") with pytest.raises(Exception, match="testing"): Estimator(analyzer=analyzer, input="file").fit_transform([f]) @pytest.mark.parametrize( "Vectorizer", [CountVectorizer, HashingVectorizer, TfidfVectorizer] ) @pytest.mark.parametrize( "stop_words, tokenizer, preprocessor, ngram_range, token_pattern," "analyzer, unused_name, ovrd_name, ovrd_msg", [ ( ["you've", "you'll"], None, None, (1, 1), None, "char", "'stop_words'", "'analyzer'", "!= 'word'", ), ( None, lambda s: s.split(), None, (1, 1), None, "char", "'tokenizer'", "'analyzer'", "!= 'word'", ), ( None, lambda s: s.split(), None, (1, 1), r"\w+", "word", "'token_pattern'", "'tokenizer'", "is not None", ), ( None, None, lambda s: s.upper(), (1, 1), r"\w+", lambda s: s.upper(), "'preprocessor'", "'analyzer'", "is callable", ), ( None, None, None, (1, 2), None, lambda s: s.upper(), "'ngram_range'", "'analyzer'", "is callable", ), ( None, None, None, (1, 1), r"\w+", "char", "'token_pattern'", "'analyzer'", "!= 'word'", ), ], ) def test_unused_parameters_warn( Vectorizer, stop_words, tokenizer, preprocessor, ngram_range, token_pattern, analyzer, unused_name, ovrd_name, ovrd_msg, ): train_data = JUNK_FOOD_DOCS # setting parameter and checking for corresponding warning messages vect = Vectorizer() vect.set_params( stop_words=stop_words, tokenizer=tokenizer, preprocessor=preprocessor, ngram_range=ngram_range, token_pattern=token_pattern, analyzer=analyzer, ) msg = "The parameter %s will not be used since %s %s" % ( unused_name, ovrd_name, ovrd_msg, ) with pytest.warns(UserWarning, match=msg): vect.fit(train_data) @pytest.mark.parametrize( "Vectorizer, X", ( (HashingVectorizer, [{"foo": 1, "bar": 2}, {"foo": 3, "baz": 1}]), (CountVectorizer, JUNK_FOOD_DOCS), ), ) def test_n_features_in(Vectorizer, X): # For vectorizers, n_features_in_ does not make sense vectorizer = Vectorizer() assert not hasattr(vectorizer, "n_features_in_") vectorizer.fit(X) assert not hasattr(vectorizer, "n_features_in_") def test_tie_breaking_sample_order_invariance(): # Checks the sample order invariance when setting max_features # non-regression test for #17939 vec = CountVectorizer(max_features=1) vocab1 = vec.fit(["hello", "world"]).vocabulary_ vocab2 = vec.fit(["world", "hello"]).vocabulary_ assert vocab1 == vocab2 # TODO: Remove in 1.2 when get_feature_names is removed def test_get_feature_names_deprecated(): cv = CountVectorizer(max_df=0.5).fit(ALL_FOOD_DOCS) msg = "get_feature_names is deprecated in 1.0" with pytest.warns(FutureWarning, match=msg): cv.get_feature_names() @fails_if_pypy def test_nonnegative_hashing_vectorizer_result_indices(): # add test for pr 19035 hashing = HashingVectorizer(n_features=1000000, ngram_range=(2, 3)) indices = hashing.transform(["22pcs efuture"]).indices assert indices[0] >= 0
bsd-3-clause
florian-f/sklearn
sklearn/gaussian_process/gaussian_process.py
4
33781
from __future__ import print_function #!/usr/bin/python # -*- coding: utf-8 -*- # Author: Vincent Dubourg <[email protected]> # (mostly translation, see implementation details) # License: BSD style import numpy as np from scipy import linalg, optimize, rand from ..base import BaseEstimator, RegressorMixin from ..metrics.pairwise import manhattan_distances from ..utils import array2d, check_random_state from . import regression_models as regression from . import correlation_models as correlation MACHINE_EPSILON = np.finfo(np.double).eps if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works def solve_triangular(x, y, lower=True): return linalg.solve(x, y) def l1_cross_distances(X): """ Computes the nonzero componentwise L1 cross-distances between the vectors in X. Parameters ---------- X: array_like An array with shape (n_samples, n_features) Returns ------- D: array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. ij: arrays with shape (n_samples * (n_samples - 1) / 2, 2) The indices i and j of the vectors in X associated to the cross- distances in D: D[k] = np.abs(X[ij[k, 0]] - Y[ij[k, 1]]). """ X = array2d(X) n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) / 2 ij = np.zeros((n_nonzero_cross_dist, 2), dtype=np.int) D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 ij[ll_0:ll_1, 0] = k ij[ll_0:ll_1, 1] = np.arange(k + 1, n_samples) D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):n_samples]) return D, ij.astype(np.int) class GaussianProcess(BaseEstimator, RegressorMixin): """The Gaussian Process model class. Parameters ---------- regr : string or callable, optional A regression function returning an array of outputs of the linear regression functional basis. The number of observations n_samples should be greater than the size p of this basis. Default assumes a simple constant regression trend. Available built-in regression models are:: 'constant', 'linear', 'quadratic' corr : string or callable, optional A stationary autocorrelation function returning the autocorrelation between two points x and x'. Default assumes a squared-exponential autocorrelation model. Built-in correlation models are:: 'absolute_exponential', 'squared_exponential', 'generalized_exponential', 'cubic', 'linear' beta0 : double array_like, optional The regression weight vector to perform Ordinary Kriging (OK). Default assumes Universal Kriging (UK) so that the vector beta of regression weights is estimated using the maximum likelihood principle. storage_mode : string, optional A string specifying whether the Cholesky decomposition of the correlation matrix should be stored in the class (storage_mode = 'full') or not (storage_mode = 'light'). Default assumes storage_mode = 'full', so that the Cholesky decomposition of the correlation matrix is stored. This might be a useful parameter when one is not interested in the MSE and only plan to estimate the BLUP, for which the correlation matrix is not required. verbose : boolean, optional A boolean specifying the verbose level. Default is verbose = False. theta0 : double array_like, optional An array with shape (n_features, ) or (1, ). The parameters in the autocorrelation model. If thetaL and thetaU are also specified, theta0 is considered as the starting point for the maximum likelihood rstimation of the best set of parameters. Default assumes isotropic autocorrelation model with theta0 = 1e-1. thetaL : double array_like, optional An array with shape matching theta0's. Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. thetaU : double array_like, optional An array with shape matching theta0's. Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None, so that it skips maximum likelihood estimation and it uses theta0. normalize : boolean, optional Input X and observations y are centered and reduced wrt means and standard deviations estimated from the n_samples observations provided. Default is normalize = True so that data is normalized to ease maximum likelihood estimation. nugget : double or ndarray, optional Introduce a nugget effect to allow smooth predictions from noisy data. If nugget is an ndarray, it must be the same length as the number of data points used for the fit. The nugget is added to the diagonal of the assumed training covariance; in this way it acts as a Tikhonov regularization in the problem. In the special case of the squared exponential correlation function, the nugget mathematically represents the variance of the input values. Default assumes a nugget close to machine precision for the sake of robustness (nugget = 10. * MACHINE_EPSILON). optimizer : string, optional A string specifying the optimization algorithm to be used. Default uses 'fmin_cobyla' algorithm from scipy.optimize. Available optimizers are:: 'fmin_cobyla', 'Welch' 'Welch' optimizer is dued to Welch et al., see reference [WBSWM1992]_. It consists in iterating over several one-dimensional optimizations instead of running one single multi-dimensional optimization. random_start : int, optional The number of times the Maximum Likelihood Estimation should be performed from a random starting point. The first MLE always uses the specified starting point (theta0), the next starting points are picked at random according to an exponential distribution (log-uniform on [thetaL, thetaU]). Default does not use random starting point (random_start = 1). random_state: integer or numpy.RandomState, optional The generator used to shuffle the sequence of coordinates of theta in the Welch optimizer. If an integer is given, it fixes the seed. Defaults to the global numpy random number generator. Attributes ---------- `theta_`: array Specified theta OR the best set of autocorrelation parameters (the \ sought maximizer of the reduced likelihood function). `reduced_likelihood_function_value_`: array The optimal reduced likelihood function value. Examples -------- >>> import numpy as np >>> from sklearn.gaussian_process import GaussianProcess >>> X = np.array([[1., 3., 5., 6., 7., 8.]]).T >>> y = (X * np.sin(X)).ravel() >>> gp = GaussianProcess(theta0=0.1, thetaL=.001, thetaU=1.) >>> gp.fit(X, y) # doctest: +ELLIPSIS GaussianProcess(beta0=None... ... Notes ----- The presentation implementation is based on a translation of the DACE Matlab toolbox, see reference [NLNS2002]_. References ---------- .. [NLNS2002] `H.B. Nielsen, S.N. Lophaven, H. B. Nielsen and J. Sondergaard. DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] `W.J. Welch, R.J. Buck, J. Sacks, H.P. Wynn, T.J. Mitchell, and M.D. Morris (1992). Screening, predicting, and computer experiments. Technometrics, 34(1) 15--25.` http://www.jstor.org/pss/1269548 """ _regression_types = { 'constant': regression.constant, 'linear': regression.linear, 'quadratic': regression.quadratic} _correlation_types = { 'absolute_exponential': correlation.absolute_exponential, 'squared_exponential': correlation.squared_exponential, 'generalized_exponential': correlation.generalized_exponential, 'cubic': correlation.cubic, 'linear': correlation.linear} _optimizer_types = [ 'fmin_cobyla', 'Welch'] def __init__(self, regr='constant', corr='squared_exponential', beta0=None, storage_mode='full', verbose=False, theta0=1e-1, thetaL=None, thetaU=None, optimizer='fmin_cobyla', random_start=1, normalize=True, nugget=10. * MACHINE_EPSILON, random_state=None): self.regr = regr self.corr = corr self.beta0 = beta0 self.storage_mode = storage_mode self.verbose = verbose self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.nugget = nugget self.optimizer = optimizer self.random_start = random_start self.random_state = random_state def fit(self, X, y): """ The Gaussian Process model fitting method. Parameters ---------- X : double array_like An array with shape (n_samples, n_features) with the input at which observations were made. y : double array_like An array with shape (n_samples, ) with the observations of the scalar output to be predicted. Returns ------- gp : self A fitted Gaussian Process model object awaiting data to perform predictions. """ # Run input checks self._check_params() self.random_state = check_random_state(self.random_state) # Force data to 2D numpy.array X = array2d(X) y = np.asarray(y).ravel()[:, np.newaxis] # Check shapes of DOE & observations n_samples_X, n_features = X.shape n_samples_y = y.shape[0] if n_samples_X != n_samples_y: raise ValueError("X and y must have the same number of rows.") else: n_samples = n_samples_X # Run input checks self._check_params(n_samples) # Normalize data or don't if self.normalize: X_mean = np.mean(X, axis=0) X_std = np.std(X, axis=0) y_mean = np.mean(y, axis=0) y_std = np.std(y, axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. # center and scale X if necessary X = (X - X_mean) / X_std y = (y - y_mean) / y_std else: X_mean = np.zeros(1) X_std = np.ones(1) y_mean = np.zeros(1) y_std = np.ones(1) # Calculate matrix of distances D between samples D, ij = l1_cross_distances(X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple input features cannot have the same" " value.") # Regression matrix and parameters F = self.regr(X) n_samples_F = F.shape[0] if F.ndim > 1: p = F.shape[1] else: p = 1 if n_samples_F != n_samples: raise Exception("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if p > n_samples_F: raise Exception(("Ordinary least squares problem is undetermined " "n_samples=%d must be greater than the " "regression model size p=%d.") % (n_samples, p)) if self.beta0 is not None: if self.beta0.shape[0] != p: raise Exception("Shapes of beta0 and F do not match.") # Set attributes self.X = X self.y = y self.D = D self.ij = ij self.F = F self.X_mean, self.X_std = X_mean, X_std self.y_mean, self.y_std = y_mean, y_std # Determine Gaussian Process model parameters if self.thetaL is not None and self.thetaU is not None: # Maximum Likelihood Estimation of the parameters if self.verbose: print("Performing Maximum Likelihood Estimation of the " "autocorrelation parameters...") self.theta_, self.reduced_likelihood_function_value_, par = \ self._arg_max_reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad parameter region. " "Try increasing upper bound") else: # Given parameters if self.verbose: print("Given autocorrelation parameters. " "Computing Gaussian Process model parameters...") self.theta_ = self.theta0 self.reduced_likelihood_function_value_, par = \ self.reduced_likelihood_function() if np.isinf(self.reduced_likelihood_function_value_): raise Exception("Bad point. Try increasing theta0.") self.beta = par['beta'] self.gamma = par['gamma'] self.sigma2 = par['sigma2'] self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] if self.storage_mode == 'light': # Delete heavy data (it will be computed again if required) # (it is required only when MSE is wanted in self.predict) if self.verbose: print("Light storage mode specified. " "Flushing autocorrelation matrix...") self.D = None self.ij = None self.F = None self.C = None self.Ft = None self.G = None return self def predict(self, X, eval_MSE=False, batch_size=None): """ This function evaluates the Gaussian Process model at x. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : boolean, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE = False and evaluates only the BLUP (mean prediction). batch_size : integer, optional An integer giving the maximum number of points that can be evaluated simulatneously (depending on the available memory). Default is None so that all given points are evaluated at the same time. Returns ------- y : array_like An array with shape (n_eval, ) with the Best Linear Unbiased Prediction at x. MSE : array_like, optional (if eval_MSE == True) An array with shape (n_eval, ) with the Mean Squared Error at x. """ # Check input shapes X = array2d(X) n_eval, n_features_X = X.shape n_samples, n_features = self.X.shape # Run input checks self._check_params(n_samples) if n_features_X != n_features: raise ValueError(("The number of features in X (X.shape[1] = %d) " "should match the sample size used for fit() " "which is %d.") % (n_features_X, n_features)) if batch_size is None: # No memory management # (evaluates all given points in a single batch run) # Normalize input X = (X - self.X_mean) / self.X_std # Initialize output y = np.zeros(n_eval) if eval_MSE: MSE = np.zeros(n_eval) # Get pairwise componentwise L1-distances to the input training set dx = manhattan_distances(X, Y=self.X, sum_over_features=False) # Get regression function and correlation f = self.regr(X) r = self.corr(self.theta_, dx).reshape(n_eval, n_samples) # Scaled predictor y_ = np.dot(f, self.beta) + np.dot(r, self.gamma) # Predictor y = (self.y_mean + self.y_std * y_).ravel() # Mean Squared Error if eval_MSE: C = self.C if C is None: # Light storage mode (need to recompute C, F, Ft and G) if self.verbose: print("This GaussianProcess used 'light' storage mode " "at instanciation. Need to recompute " "autocorrelation matrix...") reduced_likelihood_function_value, par = \ self.reduced_likelihood_function() self.C = par['C'] self.Ft = par['Ft'] self.G = par['G'] rt = solve_triangular(self.C, r.T, lower=True) if self.beta0 is None: # Universal Kriging u = solve_triangular(self.G.T, np.dot(self.Ft.T, rt) - f.T) else: # Ordinary Kriging u = np.zeros(y.shape) MSE = self.sigma2 * (1. - (rt ** 2.).sum(axis=0) + (u ** 2.).sum(axis=0)) # Mean Squared Error might be slightly negative depending on # machine precision: force to zero! MSE[MSE < 0.] = 0. return y, MSE else: return y else: # Memory management if type(batch_size) is not int or batch_size <= 0: raise Exception("batch_size must be a positive integer") if eval_MSE: y, MSE = np.zeros(n_eval), np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to], MSE[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y, MSE else: y = np.zeros(n_eval) for k in range(max(1, n_eval / batch_size)): batch_from = k * batch_size batch_to = min([(k + 1) * batch_size + 1, n_eval + 1]) y[batch_from:batch_to] = \ self.predict(X[batch_from:batch_to], eval_MSE=eval_MSE, batch_size=None) return y def reduced_likelihood_function(self, theta=None): """ This function determines the BLUP parameters and evaluates the reduced likelihood function for the given autocorrelation parameters theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta_``). Returns ------- reduced_likelihood_function_value : double The value of the reduced likelihood function associated to the given autocorrelation parameters theta. par : dict A dictionary containing the requested Gaussian Process model parameters: sigma2 Gaussian Process variance. beta Generalized least-squares regression weights for Universal Kriging or given beta0 for Ordinary Kriging. gamma Gaussian Process weights. C Cholesky decomposition of the correlation matrix [R]. Ft Solution of the linear equation system : [R] x Ft = F G QR decomposition of the matrix Ft. """ if theta is None: # Use built-in autocorrelation parameters theta = self.theta_ # Initialize output reduced_likelihood_function_value = - np.inf par = {} # Retrieve data n_samples = self.X.shape[0] D = self.D ij = self.ij F = self.F if D is None: # Light storage mode (need to recompute D, ij and F) D, ij = l1_cross_distances(self.X) if (np.min(np.sum(D, axis=1)) == 0. and self.corr != correlation.pure_nugget): raise Exception("Multiple X are not allowed") F = self.regr(self.X) # Set up R r = self.corr(theta, D) R = np.eye(n_samples) * (1. + self.nugget) R[ij[:, 0], ij[:, 1]] = r R[ij[:, 1], ij[:, 0]] = r # Cholesky decomposition of R try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: return reduced_likelihood_function_value, par # Get generalized least squares solution Ft = solve_triangular(C, F, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except: #/usr/lib/python2.6/dist-packages/scipy/linalg/decomp.py:1177: # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass sv = linalg.svd(G, compute_uv=False) rcondG = sv[-1] / sv[0] if rcondG < 1e-10: # Check F sv = linalg.svd(F, compute_uv=False) condF = sv[0] / sv[-1] if condF > 1e15: raise Exception("F is too ill conditioned. Poor combination " "of regression model and observations.") else: # Ft is too ill conditioned, get out (try different theta) return reduced_likelihood_function_value, par Yt = solve_triangular(C, self.y, lower=True) if self.beta0 is None: # Universal Kriging beta = solve_triangular(G, np.dot(Q.T, Yt)) else: # Ordinary Kriging beta = np.array(self.beta0) rho = Yt - np.dot(Ft, beta) sigma2 = (rho ** 2.).sum(axis=0) / n_samples # The determinant of R is equal to the squared product of the diagonal # elements of its Cholesky decomposition C detR = (np.diag(C) ** (2. / n_samples)).prod() # Compute/Organize output reduced_likelihood_function_value = - sigma2.sum() * detR par['sigma2'] = sigma2 * self.y_std ** 2. par['beta'] = beta par['gamma'] = solve_triangular(C.T, rho) par['C'] = C par['Ft'] = Ft par['G'] = G return reduced_likelihood_function_value, par def _arg_max_reduced_likelihood_function(self): """ This function estimates the autocorrelation parameters theta as the maximizer of the reduced likelihood function. (Minimization of the opposite reduced likelihood function is used for convenience) Parameters ---------- self : All parameters are stored in the Gaussian Process model object. Returns ------- optimal_theta : array_like The best set of autocorrelation parameters (the sought maximizer of the reduced likelihood function). optimal_reduced_likelihood_function_value : double The optimal reduced likelihood function value. optimal_par : dict The BLUP parameters associated to thetaOpt. """ # Initialize output best_optimal_theta = [] best_optimal_rlf_value = [] best_optimal_par = [] if self.verbose: print("The chosen optimizer is: " + str(self.optimizer)) if self.random_start > 1: print(str(self.random_start) + " random starts are required.") percent_completed = 0. # Force optimizer to fmin_cobyla if the model is meant to be isotropic if self.optimizer == 'Welch' and self.theta0.size == 1: self.optimizer = 'fmin_cobyla' if self.optimizer == 'fmin_cobyla': def minus_reduced_likelihood_function(log10t): return - self.reduced_likelihood_function( theta=10. ** log10t)[0] constraints = [] for i in range(self.theta0.size): constraints.append(lambda log10t: log10t[i] - np.log10(self.thetaL[0, i])) constraints.append(lambda log10t: np.log10(self.thetaU[0, i]) - log10t[i]) for k in range(self.random_start): if k == 0: # Use specified starting point as first guess theta0 = self.theta0 else: # Generate a random starting point log10-uniformly # distributed between bounds log10theta0 = np.log10(self.thetaL) \ + rand(self.theta0.size).reshape(self.theta0.shape) \ * np.log10(self.thetaU / self.thetaL) theta0 = 10. ** log10theta0 # Run Cobyla try: log10_optimal_theta = \ optimize.fmin_cobyla(minus_reduced_likelihood_function, np.log10(theta0), constraints, iprint=0) except ValueError as ve: print("Optimization failed. Try increasing the ``nugget``") raise ve optimal_theta = 10. ** log10_optimal_theta optimal_minus_rlf_value, optimal_par = \ self.reduced_likelihood_function(theta=optimal_theta) optimal_rlf_value = - optimal_minus_rlf_value # Compare the new optimizer to the best previous one if k > 0: if optimal_rlf_value > best_optimal_rlf_value: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta else: best_optimal_rlf_value = optimal_rlf_value best_optimal_par = optimal_par best_optimal_theta = optimal_theta if self.verbose and self.random_start > 1: if (20 * k) / self.random_start > percent_completed: percent_completed = (20 * k) / self.random_start print("%s completed" % (5 * percent_completed)) optimal_rlf_value = best_optimal_rlf_value optimal_par = best_optimal_par optimal_theta = best_optimal_theta elif self.optimizer == 'Welch': # Backup of the given atrributes theta0, thetaL, thetaU = self.theta0, self.thetaL, self.thetaU corr = self.corr verbose = self.verbose # This will iterate over fmin_cobyla optimizer self.optimizer = 'fmin_cobyla' self.verbose = False # Initialize under isotropy assumption if verbose: print("Initialize under isotropy assumption...") self.theta0 = array2d(self.theta0.min()) self.thetaL = array2d(self.thetaL.min()) self.thetaU = array2d(self.thetaU.max()) theta_iso, optimal_rlf_value_iso, par_iso = \ self._arg_max_reduced_likelihood_function() optimal_theta = theta_iso + np.zeros(theta0.shape) # Iterate over all dimensions of theta allowing for anisotropy if verbose: print("Now improving allowing for anisotropy...") for i in self.random_state.permutation(theta0.size): if verbose: print("Proceeding along dimension %d..." % (i + 1)) self.theta0 = array2d(theta_iso) self.thetaL = array2d(thetaL[0, i]) self.thetaU = array2d(thetaU[0, i]) def corr_cut(t, d): return corr(array2d(np.hstack([optimal_theta[0][0:i], t[0], optimal_theta[0][(i + 1)::]] )), d) self.corr = corr_cut optimal_theta[0, i], optimal_rlf_value, optimal_par = \ self._arg_max_reduced_likelihood_function() # Restore the given atrributes self.theta0, self.thetaL, self.thetaU = theta0, thetaL, thetaU self.corr = corr self.optimizer = 'Welch' self.verbose = verbose else: raise NotImplementedError("This optimizer ('%s') is not " "implemented yet. Please contribute!" % self.optimizer) return optimal_theta, optimal_rlf_value, optimal_par def _check_params(self, n_samples=None): # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError("regr should be one of %s or callable, " "%s was given." % (self._regression_types.keys(), self.regr)) # Check regression weights if given (Ordinary Kriging) if self.beta0 is not None: self.beta0 = array2d(self.beta0) if self.beta0.shape[1] != 1: # Force to column vector self.beta0 = self.beta0.T # Check correlation model if not callable(self.corr): if self.corr in self._correlation_types: self.corr = self._correlation_types[self.corr] else: raise ValueError("corr should be one of %s or callable, " "%s was given." % (self._correlation_types.keys(), self.corr)) # Check storage mode if self.storage_mode != 'full' and self.storage_mode != 'light': raise ValueError("Storage mode should either be 'full' or " "'light', %s was given." % self.storage_mode) # Check correlation parameters self.theta0 = array2d(self.theta0) lth = self.theta0.size if self.thetaL is not None and self.thetaU is not None: self.thetaL = array2d(self.thetaL) self.thetaU = array2d(self.thetaU) if self.thetaL.size != lth or self.thetaU.size != lth: raise ValueError("theta0, thetaL and thetaU must have the " "same length.") if np.any(self.thetaL <= 0) or np.any(self.thetaU < self.thetaL): raise ValueError("The bounds must satisfy O < thetaL <= " "thetaU.") elif self.thetaL is None and self.thetaU is None: if np.any(self.theta0 <= 0): raise ValueError("theta0 must be strictly positive.") elif self.thetaL is None or self.thetaU is None: raise ValueError("thetaL and thetaU should either be both or " "neither specified.") # Force verbose type to bool self.verbose = bool(self.verbose) # Force normalize type to bool self.normalize = bool(self.normalize) # Check nugget value self.nugget = np.asarray(self.nugget) if np.any(self.nugget) < 0.: raise ValueError("nugget must be positive or zero.") if (n_samples is not None and self.nugget.shape not in [(), (n_samples,)]): raise ValueError("nugget must be either a scalar " "or array of length n_samples.") # Check optimizer if not self.optimizer in self._optimizer_types: raise ValueError("optimizer should be one of %s" % self._optimizer_types) # Force random_start type to int self.random_start = int(self.random_start)
bsd-3-clause
peastman/msmbuilder
msmbuilder/example_datasets/base.py
9
8471
import numbers import shutil import sys import time from functools import wraps from io import BytesIO from os import environ from os import makedirs from os.path import exists from os.path import expanduser from os.path import join from zipfile import ZipFile import numpy as np from six.moves.urllib.error import HTTPError from six.moves.urllib.request import urlopen from sklearn.utils import check_random_state def retry(max_retries=1): """ Retry a function `max_retries` times. """ def retry_func(func): @wraps(func) def wrapper(*args, **kwargs): num_retries = 0 while num_retries <= max_retries: try: ret = func(*args, **kwargs) break except HTTPError: if num_retries == max_retries: raise num_retries += 1 time.sleep(5) return ret return wrapper return retry_func class Dataset(object): @classmethod def description(cls): """Get a description from the Notes section of the docstring.""" lines = [s.strip() for s in cls.__doc__.splitlines()] note_i = lines.index("Notes") return "\n".join(lines[note_i + 2:]) def cache(self): raise NotImplementedError def get(self): raise NotImplementedError def get_cached(self): raise NotImplementedError class _MDDataset(Dataset): target_directory = "" # set in subclass data_url = "" # set in subclass def __init__(self, data_home=None, verbose=True): self.data_home = get_data_home(data_home) self.data_dir = join(self.data_home, self.target_directory) self.cached = False self.verbose = verbose def _msmbdata_cache(self): if self.verbose: print("Copying {} from msmb_data package to {}" .format(self.target_directory, self.data_home)) msmb_data = has_msmb_data() assert msmb_data is not None shutil.copytree("{}/{}".format(msmb_data, self.target_directory), self.data_dir) @retry(3) def _figshare_cache(self): if self.verbose: print('downloading {} from {} to {}' .format(self.target_directory, self.data_url, self.data_home)) fhandle = urlopen(self.data_url) buf = BytesIO(fhandle.read()) zip_file = ZipFile(buf) makedirs(self.data_dir) for name in zip_file.namelist(): zip_file.extract(name, path=self.data_dir) @retry(3) def cache(self): if not exists(self.data_home): makedirs(self.data_home) if not exists(self.data_dir): if has_msmb_data() is not None: self._msmbdata_cache() else: self._figshare_cache() elif self.verbose: print("{} already is cached".format(self.target_directory)) self.cached = True def get_cached(self): raise NotImplementedError def get(self): if not self.cached: self.cache() return self.get_cached() class _NWell(Dataset): """Base class for brownian dynamics on a potential Parameters ---------- data_home : optional, default: None Specify another cache folder for the datasets. By default all MSMBuilder data is stored in '~/msmbuilder_data' subfolders. random_state : {int, None}, default: None Seed the psuedorandom number generator to generate trajectories. If seed is None, the global numpy PRNG is used. If random_state is an int, the simulations will be cached in ``data_home``, or loaded from ``data_home`` if simulations with that seed have been performed already. With random_state=None, new simulations will be performed and the trajectories will not be cached. """ target_name = "" # define in subclass n_trajectories = 0 # define in subclass version = 1 # override in subclass if parameters are updated def __init__(self, data_home=None, random_state=None): self.data_home = get_data_home(data_home) self.data_dir = join(self.data_home, self.target_name) self.random_state = random_state self.cache_path = self._get_cache_path(random_state) def _get_cache_path(self, random_state): path = "{}/version-{}/randomstate-{}".format(self.data_dir, self.version, self.random_state) return path def _load(self, path): return [np.load("{}/{}.npy".format(path, i)) for i in range(self.n_trajectories)] def _save(self, path, trajectories): assert len(trajectories) == self.n_trajectories if not exists(path): makedirs(path) for i, traj in enumerate(trajectories): np.save("{}/{}.npy".format(path, i), traj) def cache(self): random = check_random_state(self.random_state) if not exists(self.data_dir): makedirs(self.data_dir) if self.random_state is None: trajectories = self.simulate_func(random) return trajectories if not isinstance(self.random_state, numbers.Integral): raise TypeError('random_state must be an int') if exists(self.cache_path): return self._load(self.cache_path) trajectories = self.simulate_func(random) self._save(self.cache_path, trajectories) return trajectories def get_cached(self): if self.cache_path is None: raise ValueError("You must specify a random state to get " "cached trajectories.") trajectories = self._load(self.cache_path) return Bunch(trajectories=trajectories, DESCR=self.description()) def get(self): trajectories = self.cache() return Bunch(trajectories=trajectories, DESCR=self.description()) def simulate_func(self, random): # Implement in subclass raise NotImplementedError def potential(self, x): # Implement in subclass raise NotImplementedError class Bunch(dict): """Container object for datasets: dictionary-like object that exposes its keys as attributes.""" def __init__(self, **kwargs): dict.__init__(self, kwargs) self.__dict__ = self def has_msmb_data(): """We provide a conda package containing the saved data. This package was introduced because the figshare downloads could be 'iffy' at times. Returns ------- path : str or None The path (if it exists). otherwise None """ msmb_data_dir = join(sys.prefix, 'share', 'msmb_data') if exists(msmb_data_dir): return msmb_data_dir else: return None def _expand_and_makedir(data_home): data_home = expanduser(data_home) if not exists(data_home): makedirs(data_home) return data_home def get_data_home(data_home=None): """Return the path of the msmbuilder data dir. As of msmbuilder v3.6, this function will prefer data downloaded via the msmb_data conda package (and located within the python installation directory). If this package exists, we will use its data directory as the data home. Otherwise, we use the old logic: This folder is used by some large dataset loaders to avoid downloading the data several times. By default the data dir is set to a folder named 'msmbuilder_data' in the user's home folder. Alternatively, it can be set by the 'MSMBUILDER_DATA' environment variable or programmatically by giving an explicit folder path. The '~' symbol is expanded to the user home folder. If the folder does not already exist, it is automatically created. """ if data_home is not None: return _expand_and_makedir(data_home) msmb_data = has_msmb_data() if msmb_data is not None: return _expand_and_makedir(msmb_data) data_home = environ.get('MSMBUILDER_DATA', join('~', 'msmbuilder_data')) return _expand_and_makedir(data_home) def clear_data_home(data_home=None): """Delete all the content of the data home cache.""" data_home = get_data_home(data_home) shutil.rmtree(data_home)
lgpl-2.1
pytorch/fairseq
fairseq_cli/interactive.py
1
11465
#!/usr/bin/env python3 -u # Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. """ Translate raw text with a trained model. Batches data on-the-fly. """ import ast import fileinput import logging import math import os import sys import time from argparse import Namespace from collections import namedtuple import numpy as np import torch from fairseq import checkpoint_utils, distributed_utils, options, tasks, utils from fairseq.dataclass.configs import FairseqConfig from fairseq.dataclass.utils import convert_namespace_to_omegaconf from fairseq.token_generation_constraints import pack_constraints, unpack_constraints from fairseq_cli.generate import get_symbols_to_strip_from_output logging.basicConfig( format="%(asctime)s | %(levelname)s | %(name)s | %(message)s", datefmt="%Y-%m-%d %H:%M:%S", level=os.environ.get("LOGLEVEL", "INFO").upper(), stream=sys.stdout, ) logger = logging.getLogger("fairseq_cli.interactive") Batch = namedtuple("Batch", "ids src_tokens src_lengths constraints") Translation = namedtuple("Translation", "src_str hypos pos_scores alignments") def buffered_read(input, buffer_size): buffer = [] with fileinput.input(files=[input], openhook=fileinput.hook_encoded("utf-8")) as h: for src_str in h: buffer.append(src_str.strip()) if len(buffer) >= buffer_size: yield buffer buffer = [] if len(buffer) > 0: yield buffer def make_batches(lines, cfg, task, max_positions, encode_fn): def encode_fn_target(x): return encode_fn(x) if cfg.generation.constraints: # Strip (tab-delimited) contraints, if present, from input lines, # store them in batch_constraints batch_constraints = [list() for _ in lines] for i, line in enumerate(lines): if "\t" in line: lines[i], *batch_constraints[i] = line.split("\t") # Convert each List[str] to List[Tensor] for i, constraint_list in enumerate(batch_constraints): batch_constraints[i] = [ task.target_dictionary.encode_line( encode_fn_target(constraint), append_eos=False, add_if_not_exist=False, ) for constraint in constraint_list ] if cfg.generation.constraints: constraints_tensor = pack_constraints(batch_constraints) else: constraints_tensor = None tokens, lengths = task.get_interactive_tokens_and_lengths(lines, encode_fn) itr = task.get_batch_iterator( dataset=task.build_dataset_for_inference( tokens, lengths, constraints=constraints_tensor ), max_tokens=cfg.dataset.max_tokens, max_sentences=cfg.dataset.batch_size, max_positions=max_positions, ignore_invalid_inputs=cfg.dataset.skip_invalid_size_inputs_valid_test, ).next_epoch_itr(shuffle=False) for batch in itr: ids = batch["id"] src_tokens = batch["net_input"]["src_tokens"] src_lengths = batch["net_input"]["src_lengths"] constraints = batch.get("constraints", None) yield Batch( ids=ids, src_tokens=src_tokens, src_lengths=src_lengths, constraints=constraints, ) def main(cfg: FairseqConfig): if isinstance(cfg, Namespace): cfg = convert_namespace_to_omegaconf(cfg) start_time = time.time() total_translate_time = 0 utils.import_user_module(cfg.common) if cfg.interactive.buffer_size < 1: cfg.interactive.buffer_size = 1 if cfg.dataset.max_tokens is None and cfg.dataset.batch_size is None: cfg.dataset.batch_size = 1 assert ( not cfg.generation.sampling or cfg.generation.nbest == cfg.generation.beam ), "--sampling requires --nbest to be equal to --beam" assert ( not cfg.dataset.batch_size or cfg.dataset.batch_size <= cfg.interactive.buffer_size ), "--batch-size cannot be larger than --buffer-size" logger.info(cfg) # Fix seed for stochastic decoding if cfg.common.seed is not None and not cfg.generation.no_seed_provided: np.random.seed(cfg.common.seed) utils.set_torch_seed(cfg.common.seed) use_cuda = torch.cuda.is_available() and not cfg.common.cpu # Setup task, e.g., translation task = tasks.setup_task(cfg.task) # Load ensemble overrides = ast.literal_eval(cfg.common_eval.model_overrides) logger.info("loading model(s) from {}".format(cfg.common_eval.path)) models, _model_args = checkpoint_utils.load_model_ensemble( utils.split_paths(cfg.common_eval.path), arg_overrides=overrides, task=task, suffix=cfg.checkpoint.checkpoint_suffix, strict=(cfg.checkpoint.checkpoint_shard_count == 1), num_shards=cfg.checkpoint.checkpoint_shard_count, ) # Set dictionaries src_dict = task.source_dictionary tgt_dict = task.target_dictionary # Optimize ensemble for generation for model in models: if model is None: continue if cfg.common.fp16: model.half() if use_cuda and not cfg.distributed_training.pipeline_model_parallel: model.cuda() model.prepare_for_inference_(cfg) # Initialize generator generator = task.build_generator(models, cfg.generation) # Handle tokenization and BPE tokenizer = task.build_tokenizer(cfg.tokenizer) bpe = task.build_bpe(cfg.bpe) def encode_fn(x): if tokenizer is not None: x = tokenizer.encode(x) if bpe is not None: x = bpe.encode(x) return x def decode_fn(x): if bpe is not None: x = bpe.decode(x) if tokenizer is not None: x = tokenizer.decode(x) return x # Load alignment dictionary for unknown word replacement # (None if no unknown word replacement, empty if no path to align dictionary) align_dict = utils.load_align_dict(cfg.generation.replace_unk) max_positions = utils.resolve_max_positions( task.max_positions(), *[model.max_positions() for model in models] ) if cfg.generation.constraints: logger.warning( "NOTE: Constrained decoding currently assumes a shared subword vocabulary." ) if cfg.interactive.buffer_size > 1: logger.info("Sentence buffer size: %s", cfg.interactive.buffer_size) logger.info("NOTE: hypothesis and token scores are output in base 2") logger.info("Type the input sentence and press return:") start_id = 0 for inputs in buffered_read(cfg.interactive.input, cfg.interactive.buffer_size): results = [] for batch in make_batches(inputs, cfg, task, max_positions, encode_fn): bsz = batch.src_tokens.size(0) src_tokens = batch.src_tokens src_lengths = batch.src_lengths constraints = batch.constraints if use_cuda: src_tokens = src_tokens.cuda() src_lengths = src_lengths.cuda() if constraints is not None: constraints = constraints.cuda() sample = { "net_input": { "src_tokens": src_tokens, "src_lengths": src_lengths, }, } translate_start_time = time.time() translations = task.inference_step( generator, models, sample, constraints=constraints ) translate_time = time.time() - translate_start_time total_translate_time += translate_time list_constraints = [[] for _ in range(bsz)] if cfg.generation.constraints: list_constraints = [unpack_constraints(c) for c in constraints] for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)): src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad()) constraints = list_constraints[i] results.append( ( start_id + id, src_tokens_i, hypos, { "constraints": constraints, "time": translate_time / len(translations), }, ) ) # sort output to match input order for id_, src_tokens, hypos, info in sorted(results, key=lambda x: x[0]): src_str = "" if src_dict is not None: src_str = src_dict.string(src_tokens, cfg.common_eval.post_process) print("S-{}\t{}".format(id_, src_str)) print("W-{}\t{:.3f}\tseconds".format(id_, info["time"])) for constraint in info["constraints"]: print( "C-{}\t{}".format( id_, tgt_dict.string(constraint, cfg.common_eval.post_process), ) ) # Process top predictions for hypo in hypos[: min(len(hypos), cfg.generation.nbest)]: hypo_tokens, hypo_str, alignment = utils.post_process_prediction( hypo_tokens=hypo["tokens"].int().cpu(), src_str=src_str, alignment=hypo["alignment"], align_dict=align_dict, tgt_dict=tgt_dict, remove_bpe=cfg.common_eval.post_process, extra_symbols_to_ignore=get_symbols_to_strip_from_output(generator), ) detok_hypo_str = decode_fn(hypo_str) score = hypo["score"] / math.log(2) # convert to base 2 # original hypothesis (after tokenization and BPE) print("H-{}\t{}\t{}".format(id_, score, hypo_str)) # detokenized hypothesis print("D-{}\t{}\t{}".format(id_, score, detok_hypo_str)) print( "P-{}\t{}".format( id_, " ".join( map( lambda x: "{:.4f}".format(x), # convert from base e to base 2 hypo["positional_scores"].div_(math.log(2)).tolist(), ) ), ) ) if cfg.generation.print_alignment: alignment_str = " ".join( ["{}-{}".format(src, tgt) for src, tgt in alignment] ) print("A-{}\t{}".format(id_, alignment_str)) # update running id_ counter start_id += len(inputs) logger.info( "Total time: {:.3f} seconds; translation time: {:.3f}".format( time.time() - start_time, total_translate_time ) ) def cli_main(): parser = options.get_interactive_generation_parser() args = options.parse_args_and_arch(parser) distributed_utils.call_main(convert_namespace_to_omegaconf(args), main) if __name__ == "__main__": cli_main()
mit
anntzer/scikit-learn
sklearn/datasets/_kddcup99.py
11
12731
"""KDDCUP 99 dataset. A classic dataset for anomaly detection. The dataset page is available from UCI Machine Learning Repository https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz """ import errno from gzip import GzipFile import logging import os from os.path import exists, join import numpy as np import joblib from ._base import _fetch_remote from ._base import _convert_data_dataframe from . import get_data_home from ._base import RemoteFileMetadata from ._base import load_descr from ..utils import Bunch from ..utils import check_random_state from ..utils import shuffle as shuffle_method # The original data can be found at: # https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data.gz ARCHIVE = RemoteFileMetadata( filename="kddcup99_data", url="https://ndownloader.figshare.com/files/5976045", checksum="3b6c942aa0356c0ca35b7b595a26c89d343652c9db428893e7494f837b274292", ) # The original data can be found at: # https://archive.ics.uci.edu/ml/machine-learning-databases/kddcup99-mld/kddcup.data_10_percent.gz ARCHIVE_10_PERCENT = RemoteFileMetadata( filename="kddcup99_10_data", url="https://ndownloader.figshare.com/files/5976042", checksum="8045aca0d84e70e622d1148d7df782496f6333bf6eb979a1b0837c42a9fd9561", ) logger = logging.getLogger(__name__) def fetch_kddcup99( *, subset=None, data_home=None, shuffle=False, random_state=None, percent10=True, download_if_missing=True, return_X_y=False, as_frame=False, ): """Load the kddcup99 dataset (classification). Download it if necessary. ================= ==================================== Classes 23 Samples total 4898431 Dimensionality 41 Features discrete (int) or continuous (float) ================= ==================================== Read more in the :ref:`User Guide <kddcup99_dataset>`. .. versionadded:: 0.18 Parameters ---------- subset : {'SA', 'SF', 'http', 'smtp'}, default=None To return the corresponding classical subsets of kddcup 99. If None, return the entire kddcup 99 dataset. data_home : str, default=None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. .. versionadded:: 0.19 shuffle : bool, default=False Whether to shuffle dataset. random_state : int, RandomState instance or None, default=None Determines random number generation for dataset shuffling and for selection of abnormal samples if `subset='SA'`. Pass an int for reproducible output across multiple function calls. See :term:`Glossary <random_state>`. percent10 : bool, default=True Whether to load only 10 percent of the data. download_if_missing : bool, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. return_X_y : bool, default=False If True, returns ``(data, target)`` instead of a Bunch object. See below for more information about the `data` and `target` object. .. versionadded:: 0.20 as_frame : bool, default=False If `True`, returns a pandas Dataframe for the ``data`` and ``target`` objects in the `Bunch` returned object; `Bunch` return object will also have a ``frame`` member. .. versionadded:: 0.24 Returns ------- data : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : {ndarray, dataframe} of shape (494021, 41) The data matrix to learn. If `as_frame=True`, `data` will be a pandas DataFrame. target : {ndarray, series} of shape (494021,) The regression target for each sample. If `as_frame=True`, `target` will be a pandas Series. frame : dataframe of shape (494021, 42) Only present when `as_frame=True`. Contains `data` and `target`. DESCR : str The full description of the dataset. feature_names : list The names of the dataset columns target_names: list The names of the target columns (data, target) : tuple if ``return_X_y`` is True A tuple of two ndarray. The first containing a 2D array of shape (n_samples, n_features) with each row representing one sample and each column representing the features. The second ndarray of shape (n_samples,) containing the target samples. .. versionadded:: 0.20 """ data_home = get_data_home(data_home=data_home) kddcup99 = _fetch_brute_kddcup99( data_home=data_home, percent10=percent10, download_if_missing=download_if_missing, ) data = kddcup99.data target = kddcup99.target feature_names = kddcup99.feature_names target_names = kddcup99.target_names if subset == "SA": s = target == b"normal." t = np.logical_not(s) normal_samples = data[s, :] normal_targets = target[s] abnormal_samples = data[t, :] abnormal_targets = target[t] n_samples_abnormal = abnormal_samples.shape[0] # selected abnormal samples: random_state = check_random_state(random_state) r = random_state.randint(0, n_samples_abnormal, 3377) abnormal_samples = abnormal_samples[r] abnormal_targets = abnormal_targets[r] data = np.r_[normal_samples, abnormal_samples] target = np.r_[normal_targets, abnormal_targets] if subset == "SF" or subset == "http" or subset == "smtp": # select all samples with positive logged_in attribute: s = data[:, 11] == 1 data = np.c_[data[s, :11], data[s, 12:]] feature_names = feature_names[:11] + feature_names[12:] target = target[s] data[:, 0] = np.log((data[:, 0] + 0.1).astype(float, copy=False)) data[:, 4] = np.log((data[:, 4] + 0.1).astype(float, copy=False)) data[:, 5] = np.log((data[:, 5] + 0.1).astype(float, copy=False)) if subset == "http": s = data[:, 2] == b"http" data = data[s] target = target[s] data = np.c_[data[:, 0], data[:, 4], data[:, 5]] feature_names = [feature_names[0], feature_names[4], feature_names[5]] if subset == "smtp": s = data[:, 2] == b"smtp" data = data[s] target = target[s] data = np.c_[data[:, 0], data[:, 4], data[:, 5]] feature_names = [feature_names[0], feature_names[4], feature_names[5]] if subset == "SF": data = np.c_[data[:, 0], data[:, 2], data[:, 4], data[:, 5]] feature_names = [ feature_names[0], feature_names[2], feature_names[4], feature_names[5], ] if shuffle: data, target = shuffle_method(data, target, random_state=random_state) fdescr = load_descr("kddcup99.rst") frame = None if as_frame: frame, data, target = _convert_data_dataframe( "fetch_kddcup99", data, target, feature_names, target_names ) if return_X_y: return data, target return Bunch( data=data, target=target, frame=frame, target_names=target_names, feature_names=feature_names, DESCR=fdescr, ) def _fetch_brute_kddcup99(data_home=None, download_if_missing=True, percent10=True): """Load the kddcup99 dataset, downloading it if necessary. Parameters ---------- data_home : str, default=None Specify another download and cache folder for the datasets. By default all scikit-learn data is stored in '~/scikit_learn_data' subfolders. download_if_missing : bool, default=True If False, raise a IOError if the data is not locally available instead of trying to download the data from the source site. percent10 : bool, default=True Whether to load only 10 percent of the data. Returns ------- dataset : :class:`~sklearn.utils.Bunch` Dictionary-like object, with the following attributes. data : ndarray of shape (494021, 41) Each row corresponds to the 41 features in the dataset. target : ndarray of shape (494021,) Each value corresponds to one of the 21 attack types or to the label 'normal.'. feature_names : list The names of the dataset columns target_names: list The names of the target columns DESCR : str Description of the kddcup99 dataset. """ data_home = get_data_home(data_home=data_home) dir_suffix = "-py3" if percent10: kddcup_dir = join(data_home, "kddcup99_10" + dir_suffix) archive = ARCHIVE_10_PERCENT else: kddcup_dir = join(data_home, "kddcup99" + dir_suffix) archive = ARCHIVE samples_path = join(kddcup_dir, "samples") targets_path = join(kddcup_dir, "targets") available = exists(samples_path) dt = [ ("duration", int), ("protocol_type", "S4"), ("service", "S11"), ("flag", "S6"), ("src_bytes", int), ("dst_bytes", int), ("land", int), ("wrong_fragment", int), ("urgent", int), ("hot", int), ("num_failed_logins", int), ("logged_in", int), ("num_compromised", int), ("root_shell", int), ("su_attempted", int), ("num_root", int), ("num_file_creations", int), ("num_shells", int), ("num_access_files", int), ("num_outbound_cmds", int), ("is_host_login", int), ("is_guest_login", int), ("count", int), ("srv_count", int), ("serror_rate", float), ("srv_serror_rate", float), ("rerror_rate", float), ("srv_rerror_rate", float), ("same_srv_rate", float), ("diff_srv_rate", float), ("srv_diff_host_rate", float), ("dst_host_count", int), ("dst_host_srv_count", int), ("dst_host_same_srv_rate", float), ("dst_host_diff_srv_rate", float), ("dst_host_same_src_port_rate", float), ("dst_host_srv_diff_host_rate", float), ("dst_host_serror_rate", float), ("dst_host_srv_serror_rate", float), ("dst_host_rerror_rate", float), ("dst_host_srv_rerror_rate", float), ("labels", "S16"), ] column_names = [c[0] for c in dt] target_names = column_names[-1] feature_names = column_names[:-1] if available: try: X = joblib.load(samples_path) y = joblib.load(targets_path) except Exception as e: raise IOError( "The cache for fetch_kddcup99 is invalid, please delete " f"{str(kddcup_dir)} and run the fetch_kddcup99 again" ) from e elif download_if_missing: _mkdirp(kddcup_dir) logger.info("Downloading %s" % archive.url) _fetch_remote(archive, dirname=kddcup_dir) DT = np.dtype(dt) logger.debug("extracting archive") archive_path = join(kddcup_dir, archive.filename) file_ = GzipFile(filename=archive_path, mode="r") Xy = [] for line in file_.readlines(): line = line.decode() Xy.append(line.replace("\n", "").split(",")) file_.close() logger.debug("extraction done") os.remove(archive_path) Xy = np.asarray(Xy, dtype=object) for j in range(42): Xy[:, j] = Xy[:, j].astype(DT[j]) X = Xy[:, :-1] y = Xy[:, -1] # XXX bug when compress!=0: # (error: 'Incorrect data length while decompressing[...] the file # could be corrupted.') joblib.dump(X, samples_path, compress=0) joblib.dump(y, targets_path, compress=0) else: raise IOError("Data not found and `download_if_missing` is False") return Bunch( data=X, target=y, feature_names=feature_names, target_names=[target_names], ) def _mkdirp(d): """Ensure directory d exists (like mkdir -p on Unix) No guarantee that the directory is writable. """ try: os.makedirs(d) except OSError as e: if e.errno != errno.EEXIST: raise
bsd-3-clause
anntzer/scikit-learn
sklearn/cluster/_mean_shift.py
9
18376
"""Mean shift clustering algorithm. Mean shift clustering aims to discover *blobs* in a smooth density of samples. It is a centroid based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. """ # Authors: Conrad Lee <[email protected]> # Alexandre Gramfort <[email protected]> # Gael Varoquaux <[email protected]> # Martino Sorbaro <[email protected]> import numpy as np import warnings from joblib import Parallel from numbers import Integral, Real from collections import defaultdict from ..utils._param_validation import Interval from ..utils.validation import check_is_fitted from ..utils.fixes import delayed from ..utils import check_random_state, gen_batches, check_array from ..base import BaseEstimator, ClusterMixin from ..neighbors import NearestNeighbors from ..metrics.pairwise import pairwise_distances_argmin from .._config import config_context def estimate_bandwidth(X, *, quantile=0.3, n_samples=None, random_state=0, n_jobs=None): """Estimate the bandwidth to use with the mean-shift algorithm. That this function takes time at least quadratic in n_samples. For large datasets, it's wise to set that parameter to a small value. Parameters ---------- X : array-like of shape (n_samples, n_features) Input points. quantile : float, default=0.3 Should be between [0, 1] 0.5 means that the median of all pairwise distances is used. n_samples : int, default=None The number of samples to use. If not given, all samples are used. random_state : int, RandomState instance, default=None The generator used to randomly select the samples from input points for bandwidth estimation. Use an int to make the randomness deterministic. See :term:`Glossary <random_state>`. n_jobs : int, default=None The number of parallel jobs to run for neighbors search. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. Returns ------- bandwidth : float The bandwidth parameter. """ X = check_array(X) random_state = check_random_state(random_state) if n_samples is not None: idx = random_state.permutation(X.shape[0])[:n_samples] X = X[idx] n_neighbors = int(X.shape[0] * quantile) if n_neighbors < 1: # cannot fit NearestNeighbors with n_neighbors = 0 n_neighbors = 1 nbrs = NearestNeighbors(n_neighbors=n_neighbors, n_jobs=n_jobs) nbrs.fit(X) bandwidth = 0.0 for batch in gen_batches(len(X), 500): d, _ = nbrs.kneighbors(X[batch, :], return_distance=True) bandwidth += np.max(d, axis=1).sum() return bandwidth / X.shape[0] # separate function for each seed's iterative loop def _mean_shift_single_seed(my_mean, X, nbrs, max_iter): # For each seed, climb gradient until convergence or max_iter bandwidth = nbrs.get_params()["radius"] stop_thresh = 1e-3 * bandwidth # when mean has converged completed_iterations = 0 while True: # Find mean of points within bandwidth i_nbrs = nbrs.radius_neighbors([my_mean], bandwidth, return_distance=False)[0] points_within = X[i_nbrs] if len(points_within) == 0: break # Depending on seeding strategy this condition may occur my_old_mean = my_mean # save the old mean my_mean = np.mean(points_within, axis=0) # If converged or at max_iter, adds the cluster if ( np.linalg.norm(my_mean - my_old_mean) < stop_thresh or completed_iterations == max_iter ): break completed_iterations += 1 return tuple(my_mean), len(points_within), completed_iterations def mean_shift( X, *, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, max_iter=300, n_jobs=None, ): """Perform mean shift clustering of data using a flat kernel. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- X : array-like of shape (n_samples, n_features) Input data. bandwidth : float, default=None Kernel bandwidth. If bandwidth is not given, it is determined using a heuristic based on the median of all pairwise distances. This will take quadratic time in the number of samples. The sklearn.cluster.estimate_bandwidth function can be used to do this more efficiently. seeds : array-like of shape (n_seeds, n_features) or None Point used as initial kernel locations. If None and bin_seeding=False, each data point is used as a seed. If None and bin_seeding=True, see bin_seeding. bin_seeding : bool, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : bool, default=True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. max_iter : int, default=300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. n_jobs : int, default=None The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. versionadded:: 0.17 Parallel Execution using *n_jobs*. Returns ------- cluster_centers : ndarray of shape (n_clusters, n_features) Coordinates of cluster centers. labels : ndarray of shape (n_samples,) Cluster labels for each point. Notes ----- For an example, see :ref:`examples/cluster/plot_mean_shift.py <sphx_glr_auto_examples_cluster_plot_mean_shift.py>`. """ model = MeanShift( bandwidth=bandwidth, seeds=seeds, min_bin_freq=min_bin_freq, bin_seeding=bin_seeding, cluster_all=cluster_all, n_jobs=n_jobs, max_iter=max_iter, ).fit(X) return model.cluster_centers_, model.labels_ def get_bin_seeds(X, bin_size, min_bin_freq=1): """Find seeds for mean_shift. Finds seeds by first binning data onto a grid whose lines are spaced bin_size apart, and then choosing those bins with at least min_bin_freq points. Parameters ---------- X : array-like of shape (n_samples, n_features) Input points, the same points that will be used in mean_shift. bin_size : float Controls the coarseness of the binning. Smaller values lead to more seeding (which is computationally more expensive). If you're not sure how to set this, set it to the value of the bandwidth used in clustering.mean_shift. min_bin_freq : int, default=1 Only bins with at least min_bin_freq will be selected as seeds. Raising this value decreases the number of seeds found, which makes mean_shift computationally cheaper. Returns ------- bin_seeds : array-like of shape (n_samples, n_features) Points used as initial kernel positions in clustering.mean_shift. """ if bin_size == 0: return X # Bin points bin_sizes = defaultdict(int) for point in X: binned_point = np.round(point / bin_size) bin_sizes[tuple(binned_point)] += 1 # Select only those bins as seeds which have enough members bin_seeds = np.array( [point for point, freq in bin_sizes.items() if freq >= min_bin_freq], dtype=np.float32, ) if len(bin_seeds) == len(X): warnings.warn( "Binning data failed with provided bin_size=%f, using data points as seeds." % bin_size ) return X bin_seeds = bin_seeds * bin_size return bin_seeds class MeanShift(ClusterMixin, BaseEstimator): """Mean shift clustering using a flat kernel. Mean shift clustering aims to discover "blobs" in a smooth density of samples. It is a centroid-based algorithm, which works by updating candidates for centroids to be the mean of the points within a given region. These candidates are then filtered in a post-processing stage to eliminate near-duplicates to form the final set of centroids. Seeding is performed using a binning technique for scalability. Read more in the :ref:`User Guide <mean_shift>`. Parameters ---------- bandwidth : float, default=None Bandwidth used in the RBF kernel. If not given, the bandwidth is estimated using sklearn.cluster.estimate_bandwidth; see the documentation for that function for hints on scalability (see also the Notes, below). seeds : array-like of shape (n_samples, n_features), default=None Seeds used to initialize kernels. If not set, the seeds are calculated by clustering.get_bin_seeds with bandwidth as the grid size and default values for other parameters. bin_seeding : bool, default=False If true, initial kernel locations are not locations of all points, but rather the location of the discretized version of points, where points are binned onto a grid whose coarseness corresponds to the bandwidth. Setting this option to True will speed up the algorithm because fewer seeds will be initialized. The default value is False. Ignored if seeds argument is not None. min_bin_freq : int, default=1 To speed up the algorithm, accept only those bins with at least min_bin_freq points as seeds. cluster_all : bool, default=True If true, then all points are clustered, even those orphans that are not within any kernel. Orphans are assigned to the nearest kernel. If false, then orphans are given cluster label -1. n_jobs : int, default=None The number of jobs to use for the computation. This works by computing each of the n_init runs in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. max_iter : int, default=300 Maximum number of iterations, per seed point before the clustering operation terminates (for that seed point), if has not converged yet. .. versionadded:: 0.22 Attributes ---------- cluster_centers_ : ndarray of shape (n_clusters, n_features) Coordinates of cluster centers. labels_ : ndarray of shape (n_samples,) Labels of each point. n_iter_ : int Maximum number of iterations performed on each seed. .. versionadded:: 0.22 n_features_in_ : int Number of features seen during :term:`fit`. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Defined only when `X` has feature names that are all strings. .. versionadded:: 1.0 See Also -------- KMeans : K-Means clustering. Notes ----- Scalability: Because this implementation uses a flat kernel and a Ball Tree to look up members of each kernel, the complexity will tend towards O(T*n*log(n)) in lower dimensions, with n the number of samples and T the number of points. In higher dimensions the complexity will tend towards O(T*n^2). Scalability can be boosted by using fewer seeds, for example by using a higher value of min_bin_freq in the get_bin_seeds function. Note that the estimate_bandwidth function is much less scalable than the mean shift algorithm and will be the bottleneck if it is used. References ---------- Dorin Comaniciu and Peter Meer, "Mean Shift: A robust approach toward feature space analysis". IEEE Transactions on Pattern Analysis and Machine Intelligence. 2002. pp. 603-619. Examples -------- >>> from sklearn.cluster import MeanShift >>> import numpy as np >>> X = np.array([[1, 1], [2, 1], [1, 0], ... [4, 7], [3, 5], [3, 6]]) >>> clustering = MeanShift(bandwidth=2).fit(X) >>> clustering.labels_ array([1, 1, 1, 0, 0, 0]) >>> clustering.predict([[0, 0], [5, 5]]) array([1, 0]) >>> clustering MeanShift(bandwidth=2) """ _parameter_constraints: dict = { "bandwidth": [Interval(Real, 0, None, closed="neither"), None], "seeds": ["array-like", None], "bin_seeding": ["boolean"], "min_bin_freq": [Interval(Integral, 1, None, closed="left")], "cluster_all": ["boolean"], "n_jobs": [Integral, None], "max_iter": [Interval(Integral, 0, None, closed="left")], } def __init__( self, *, bandwidth=None, seeds=None, bin_seeding=False, min_bin_freq=1, cluster_all=True, n_jobs=None, max_iter=300, ): self.bandwidth = bandwidth self.seeds = seeds self.bin_seeding = bin_seeding self.cluster_all = cluster_all self.min_bin_freq = min_bin_freq self.n_jobs = n_jobs self.max_iter = max_iter def fit(self, X, y=None): """Perform clustering. Parameters ---------- X : array-like of shape (n_samples, n_features) Samples to cluster. y : Ignored Not used, present for API consistency by convention. Returns ------- self : object Fitted instance. """ self._validate_params() X = self._validate_data(X) bandwidth = self.bandwidth if bandwidth is None: bandwidth = estimate_bandwidth(X, n_jobs=self.n_jobs) seeds = self.seeds if seeds is None: if self.bin_seeding: seeds = get_bin_seeds(X, bandwidth, self.min_bin_freq) else: seeds = X n_samples, n_features = X.shape center_intensity_dict = {} # We use n_jobs=1 because this will be used in nested calls under # parallel calls to _mean_shift_single_seed so there is no need for # for further parallelism. nbrs = NearestNeighbors(radius=bandwidth, n_jobs=1).fit(X) # execute iterations on all seeds in parallel all_res = Parallel(n_jobs=self.n_jobs)( delayed(_mean_shift_single_seed)(seed, X, nbrs, self.max_iter) for seed in seeds ) # copy results in a dictionary for i in range(len(seeds)): if all_res[i][1]: # i.e. len(points_within) > 0 center_intensity_dict[all_res[i][0]] = all_res[i][1] self.n_iter_ = max([x[2] for x in all_res]) if not center_intensity_dict: # nothing near seeds raise ValueError( "No point was within bandwidth=%f of any seed. Try a different seeding" " strategy or increase the bandwidth." % bandwidth ) # POST PROCESSING: remove near duplicate points # If the distance between two kernels is less than the bandwidth, # then we have to remove one because it is a duplicate. Remove the # one with fewer points. sorted_by_intensity = sorted( center_intensity_dict.items(), key=lambda tup: (tup[1], tup[0]), reverse=True, ) sorted_centers = np.array([tup[0] for tup in sorted_by_intensity]) unique = np.ones(len(sorted_centers), dtype=bool) nbrs = NearestNeighbors(radius=bandwidth, n_jobs=self.n_jobs).fit( sorted_centers ) for i, center in enumerate(sorted_centers): if unique[i]: neighbor_idxs = nbrs.radius_neighbors([center], return_distance=False)[ 0 ] unique[neighbor_idxs] = 0 unique[i] = 1 # leave the current point as unique cluster_centers = sorted_centers[unique] # ASSIGN LABELS: a point belongs to the cluster that it is closest to nbrs = NearestNeighbors(n_neighbors=1, n_jobs=self.n_jobs).fit(cluster_centers) labels = np.zeros(n_samples, dtype=int) distances, idxs = nbrs.kneighbors(X) if self.cluster_all: labels = idxs.flatten() else: labels.fill(-1) bool_selector = distances.flatten() <= bandwidth labels[bool_selector] = idxs.flatten()[bool_selector] self.cluster_centers_, self.labels_ = cluster_centers, labels return self def predict(self, X): """Predict the closest cluster each sample in X belongs to. Parameters ---------- X : array-like of shape (n_samples, n_features) New data to predict. Returns ------- labels : ndarray of shape (n_samples,) Index of the cluster each sample belongs to. """ check_is_fitted(self) X = self._validate_data(X, reset=False) with config_context(assume_finite=True): return pairwise_distances_argmin(X, self.cluster_centers_)
bsd-3-clause
anntzer/scikit-learn
sklearn/ensemble/tests/test_gradient_boosting_loss_functions.py
8
12631
""" Testing for the gradient boosting loss functions and initial estimators. """ from itertools import product import numpy as np from numpy.testing import assert_allclose import pytest from pytest import approx from sklearn.utils import check_random_state from sklearn.metrics import mean_pinball_loss from sklearn.ensemble._gb_losses import RegressionLossFunction from sklearn.ensemble._gb_losses import LeastSquaresError from sklearn.ensemble._gb_losses import LeastAbsoluteError from sklearn.ensemble._gb_losses import HuberLossFunction from sklearn.ensemble._gb_losses import QuantileLossFunction from sklearn.ensemble._gb_losses import BinomialDeviance from sklearn.ensemble._gb_losses import MultinomialDeviance from sklearn.ensemble._gb_losses import ExponentialLoss from sklearn.ensemble._gb_losses import LOSS_FUNCTIONS def test_binomial_deviance(): # Check binomial deviance loss. # Check against alternative definitions in ESLII. bd = BinomialDeviance(2) # pred has the same BD for y in {0, 1} assert bd(np.array([0.0]), np.array([0.0])) == bd(np.array([1.0]), np.array([0.0])) assert bd(np.array([1.0, 1, 1]), np.array([100.0, 100, 100])) == approx(0) assert bd(np.array([1.0, 0, 0]), np.array([100.0, -100, -100])) == approx(0) # check if same results as alternative definition of deviance, from ESLII # Eq. (10.18): -loglike = log(1 + exp(-2*z*f)) # Note: # - We use y = {0, 1}, ESL (10.18) uses z in {-1, 1}, hence y=2*y-1 # - ESL 2*f = pred_raw, hence the factor 2 of ESL disappears. # - Deviance = -2*loglike + .., hence a factor of 2 in front. def alt_dev(y, raw_pred): z = 2 * y - 1 return 2 * np.mean(np.log(1 + np.exp(-z * raw_pred))) test_data = product( (np.array([0.0, 0, 0]), np.array([1.0, 1, 1])), (np.array([-5.0, -5, -5]), np.array([3.0, 3, 3])), ) for datum in test_data: assert bd(*datum) == approx(alt_dev(*datum)) # check the negative gradient against alternative formula from ESLII # Note: negative_gradient is half the negative gradient. def alt_ng(y, raw_pred): z = 2 * y - 1 return z / (1 + np.exp(z * raw_pred)) for datum in test_data: assert bd.negative_gradient(*datum) == approx(alt_ng(*datum)) def test_sample_weight_smoke(): rng = check_random_state(13) y = rng.rand(100) pred = rng.rand(100) # least squares loss = LeastSquaresError() loss_wo_sw = loss(y, pred) loss_w_sw = loss(y, pred, np.ones(pred.shape[0], dtype=np.float32)) assert loss_wo_sw == approx(loss_w_sw) def test_sample_weight_init_estimators(): # Smoke test for init estimators with sample weights. rng = check_random_state(13) X = rng.rand(100, 2) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): y = reg_y loss = Loss() else: k = 2 y = clf_y if Loss.is_multi_class: # skip multiclass continue loss = Loss(k) init_est = loss.init_estimator() init_est.fit(X, y) out = loss.get_init_raw_predictions(X, init_est) assert out.shape == (y.shape[0], 1) sw_init_est = loss.init_estimator() sw_init_est.fit(X, y, sample_weight=sample_weight) sw_out = loss.get_init_raw_predictions(X, sw_init_est) assert sw_out.shape == (y.shape[0], 1) # check if predictions match assert_allclose(out, sw_out, rtol=1e-2) def test_quantile_loss_function(): # Non regression test for the QuantileLossFunction object # There was a sign problem when evaluating the function # for negative values of 'ytrue - ypred' x = np.asarray([-1.0, 0.0, 1.0]) y_found = QuantileLossFunction(0.9)(x, np.zeros_like(x)) y_expected = np.asarray([0.1, 0.0, 0.9]).mean() np.testing.assert_allclose(y_found, y_expected) y_found_p = mean_pinball_loss(x, np.zeros_like(x), alpha=0.9) np.testing.assert_allclose(y_found, y_found_p) def test_sample_weight_deviance(): # Test if deviance supports sample weights. rng = check_random_state(13) sample_weight = np.ones(100) reg_y = rng.rand(100) clf_y = rng.randint(0, 2, size=100) mclf_y = rng.randint(0, 3, size=100) for Loss in LOSS_FUNCTIONS.values(): if Loss is None: continue if issubclass(Loss, RegressionLossFunction): y = reg_y p = reg_y loss = Loss() else: k = 2 y = clf_y p = clf_y if Loss.is_multi_class: k = 3 y = mclf_y # one-hot encoding p = np.zeros((y.shape[0], k), dtype=np.float64) for i in range(k): p[:, i] = y == i loss = Loss(k) deviance_w_w = loss(y, p, sample_weight) deviance_wo_w = loss(y, p) assert_allclose(deviance_wo_w, deviance_w_w) @pytest.mark.parametrize("n_classes, n_samples", [(3, 100), (5, 57), (7, 13)]) def test_multinomial_deviance(n_classes, n_samples, global_random_seed): # Check multinomial deviance with and without sample weights. rng = np.random.RandomState(global_random_seed) sample_weight = np.ones(n_samples) y_true = rng.randint(0, n_classes, size=n_samples) y_pred = np.zeros((n_samples, n_classes), dtype=np.float64) for klass in range(y_pred.shape[1]): y_pred[:, klass] = y_true == klass loss = MultinomialDeviance(n_classes) loss_wo_sw = loss(y_true, y_pred) assert loss_wo_sw > 0 loss_w_sw = loss(y_true, y_pred, sample_weight=sample_weight) assert loss_wo_sw == approx(loss_w_sw) # Multinomial deviance uses weighted average loss rather than # weighted sum loss, so we make sure that the value remains the same # when we device the weight by 2. loss_w_sw = loss(y_true, y_pred, sample_weight=0.5 * sample_weight) assert loss_wo_sw == approx(loss_w_sw) def test_mdl_computation_weighted(): raw_predictions = np.array([[1.0, -1.0, -0.1], [-2.0, 1.0, 2.0]]) y_true = np.array([0, 1]) weights = np.array([1, 3]) expected_loss = 1.0909323 # MultinomialDeviance loss computation with weights. loss = MultinomialDeviance(3) assert loss(y_true, raw_predictions, weights) == approx(expected_loss) @pytest.mark.parametrize("n", [0, 1, 2]) def test_mdl_exception(n): # Check that MultinomialDeviance throws an exception when n_classes <= 2 err_msg = "MultinomialDeviance requires more than 2 classes." with pytest.raises(ValueError, match=err_msg): MultinomialDeviance(n) def test_init_raw_predictions_shapes(): # Make sure get_init_raw_predictions returns float64 arrays with shape # (n_samples, K) where K is 1 for binary classification and regression, and # K = n_classes for multiclass classification rng = np.random.RandomState(0) n_samples = 100 X = rng.normal(size=(n_samples, 5)) y = rng.normal(size=n_samples) for loss in ( LeastSquaresError(), LeastAbsoluteError(), QuantileLossFunction(), HuberLossFunction(), ): init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) assert raw_predictions.shape == (n_samples, 1) assert raw_predictions.dtype == np.float64 y = rng.randint(0, 2, size=n_samples) for loss in (BinomialDeviance(n_classes=2), ExponentialLoss(n_classes=2)): init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) assert raw_predictions.shape == (n_samples, 1) assert raw_predictions.dtype == np.float64 for n_classes in range(3, 5): y = rng.randint(0, n_classes, size=n_samples) loss = MultinomialDeviance(n_classes=n_classes) init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) assert raw_predictions.shape == (n_samples, n_classes) assert raw_predictions.dtype == np.float64 def test_init_raw_predictions_values(global_random_seed): # Make sure the get_init_raw_predictions() returns the expected values for # each loss. rng = np.random.RandomState(global_random_seed) n_samples = 100 X = rng.normal(size=(n_samples, 5)) y = rng.normal(size=n_samples) # Least squares loss loss = LeastSquaresError() init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) # Make sure baseline prediction is the mean of all targets assert_allclose(raw_predictions, y.mean()) # Least absolute and huber loss for Loss in (LeastAbsoluteError, HuberLossFunction): loss = Loss() init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) # Make sure baseline prediction is the median of all targets assert_allclose(raw_predictions, np.median(y)) # Quantile loss for alpha in (0.1, 0.5, 0.9): loss = QuantileLossFunction(alpha=alpha) init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) # Make sure baseline prediction is the alpha-quantile of all targets assert_allclose(raw_predictions, np.percentile(y, alpha * 100)) y = rng.randint(0, 2, size=n_samples) # Binomial deviance loss = BinomialDeviance(n_classes=2) init_estimator = loss.init_estimator().fit(X, y) # Make sure baseline prediction is equal to link_function(p), where p # is the proba of the positive class. We want predict_proba() to return p, # and by definition # p = inverse_link_function(raw_prediction) = sigmoid(raw_prediction) # So we want raw_prediction = link_function(p) = log(p / (1 - p)) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) p = y.mean() assert_allclose(raw_predictions, np.log(p / (1 - p))) # Exponential loss loss = ExponentialLoss(n_classes=2) init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) p = y.mean() assert_allclose(raw_predictions, 0.5 * np.log(p / (1 - p))) # Multinomial deviance loss for n_classes in range(3, 5): y = rng.randint(0, n_classes, size=n_samples) loss = MultinomialDeviance(n_classes=n_classes) init_estimator = loss.init_estimator().fit(X, y) raw_predictions = loss.get_init_raw_predictions(y, init_estimator) for k in range(n_classes): p = (y == k).mean() assert_allclose(raw_predictions[:, k], np.log(p)) @pytest.mark.parametrize("alpha", [0.4, 0.5, 0.6]) def test_lad_equals_quantiles(global_random_seed, alpha): # Make sure quantile loss with alpha = .5 is equivalent to LAD lad = LeastAbsoluteError() ql = QuantileLossFunction(alpha=alpha) n_samples = 50 rng = np.random.RandomState(global_random_seed) raw_predictions = rng.normal(size=(n_samples)) y_true = rng.normal(size=(n_samples)) lad_loss = lad(y_true, raw_predictions) ql_loss = ql(y_true, raw_predictions) if alpha == 0.5: assert lad_loss == approx(2 * ql_loss) weights = np.linspace(0, 1, n_samples) ** 2 lad_weighted_loss = lad(y_true, raw_predictions, sample_weight=weights) ql_weighted_loss = ql(y_true, raw_predictions, sample_weight=weights) if alpha == 0.5: assert lad_weighted_loss == approx(2 * ql_weighted_loss) pbl_weighted_loss = mean_pinball_loss( y_true, raw_predictions, sample_weight=weights, alpha=alpha ) assert pbl_weighted_loss == approx(ql_weighted_loss) def test_exponential_loss(): """Check that we compute the negative gradient of the exponential loss. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/9666 """ loss = ExponentialLoss(n_classes=2) y_true = np.array([0]) y_pred = np.array([0]) # we expect to have loss = exp(0) = 1 assert loss(y_true, y_pred) == pytest.approx(1) # we expect to have negative gradient = -1 * (1 * exp(0)) = -1 assert_allclose(loss.negative_gradient(y_true, y_pred), -1)
bsd-3-clause
ssat335/GuiPlotting
ClassifySlowWavesScikit.py
1
1030
""" Author: Shameer Sathar """ import numpy as np from sklearn import svm #from SVM import SVM class ClassifySlowWavesScikit: def __init__(self): self.data = [] self.len = 0 self.features = [] def classify_data(self, training_set, events, test_data): """ The data is classified based on the training data. :param plot: Input values to be processed for generating features :return: predictions for the entire data set """ train_array = np.asarray(training_set) event_array = np.asarray(events) test_array = np.asarray(test_data) clf = svm.SVC() clf.fit(np.transpose(train_array), np.transpose(event_array)) prediction = clf.predict(np.transpose(test_array)) return prediction ''' model = SVM(max_iter=10000, kernel_type='linear', C=1.0, epsilon=0.001) model.fit(np.transpose(train_array), np.transpose(event_array)) return model.predict(np.transpose(test_array)) '''
mit
neilhan/tensorflow
tensorflow/contrib/learn/python/learn/estimators/classifier_test.py
6
6312
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Classifier.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import functools import tempfile import numpy as np import tensorflow as tf from tensorflow.contrib import learn from tensorflow.contrib.learn.python.learn.estimators import _sklearn from tensorflow.contrib.session_bundle import manifest_pb2 def iris_input_fn(num_epochs=None): iris = tf.contrib.learn.datasets.load_iris() features = tf.reshape(tf.constant(iris.data), [-1, 4]) if num_epochs: features = tf.train.limit_epochs(features, num_epochs=num_epochs) target = tf.reshape(tf.constant(iris.target), [-1]) return features, target def logistic_model_fn(features, target, unused_mode): target = tf.one_hot(target, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=0.1) return prediction, loss, train_op def logistic_model_params_fn(features, target, unused_mode, params): target = tf.one_hot(target, 3, 1, 0) prediction, loss = tf.contrib.learn.models.logistic_regression_zero_init( features, target) train_op = tf.contrib.layers.optimize_loss( loss, tf.contrib.framework.get_global_step(), optimizer='Adagrad', learning_rate=params['learning_rate']) return prediction, loss, train_op class ClassifierTest(tf.test.TestCase): def testIrisAll(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) self._runIrisAll(est) def testIrisAllWithParams(self): est = tf.contrib.learn.Classifier(model_fn=logistic_model_params_fn, n_classes=3, params={'learning_rate': 0.01}) self._runIrisAll(est) def testIrisPredictAsIterable(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(iris.data, iris.target, steps=100) scores = est.evaluate(x=iris.data, y=iris.target, name='eval') predictions = list(est.predict(x=iris.data, as_iterable=True)) predictions_proba = list(est.predict_proba(x=iris.data, as_iterable=True)) self.assertEqual(len(predictions), iris.target.shape[0]) self.assertAllEqual(predictions, np.argmax(predictions_proba, axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions) self.assertAllClose(other_score, scores['accuracy']) def testIrisInputFn(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(input_fn=iris_input_fn, steps=100) est.evaluate(input_fn=iris_input_fn, steps=1, name='eval') predictions = est.predict(input_fn=iris_input_fn) self.assertEqual(predictions.shape[0], iris.target.shape[0]) def testIrisPredictInputFnAsIterable(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) est.fit(input_fn=iris_input_fn, steps=100) est.evaluate(input_fn=iris_input_fn, steps=1, name='eval') predict_input_fn = functools.partial(iris_input_fn, num_epochs=1) predictions = list(est.predict(input_fn=predict_input_fn, as_iterable=True)) self.assertEqual(len(predictions), iris.target.shape[0]) def _runIrisAll(self, est): iris = tf.contrib.learn.datasets.load_iris() est.fit(iris.data, iris.target, steps=100) scores = est.evaluate(x=iris.data, y=iris.target, name='eval') predictions = est.predict(x=iris.data) predictions_proba = est.predict_proba(x=iris.data) self.assertEqual(predictions.shape[0], iris.target.shape[0]) self.assertAllEqual(predictions, np.argmax(predictions_proba, axis=1)) other_score = _sklearn.accuracy_score(iris.target, predictions) self.assertAllClose(other_score, scores['accuracy']) def _get_default_signature(self, export_meta_filename): """Gets the default signature from the export.meta file.""" with tf.Session(): save = tf.train.import_meta_graph(export_meta_filename) meta_graph_def = save.export_meta_graph() collection_def = meta_graph_def.collection_def signatures_any = collection_def['serving_signatures'].any_list.value self.assertEquals(len(signatures_any), 1) signatures = manifest_pb2.Signatures() signatures_any[0].Unpack(signatures) default_signature = signatures.default_signature return default_signature # Disable this test case until b/31032996 is fixed. def _testExportMonitorRegressionSignature(self): iris = tf.contrib.learn.datasets.load_iris() est = tf.contrib.learn.Classifier(model_fn=logistic_model_fn, n_classes=3) export_dir = tempfile.mkdtemp() + 'export/' export_monitor = learn.monitors.ExportMonitor( every_n_steps=1, export_dir=export_dir, exports_to_keep=1, signature_fn=tf.contrib.learn.classifier.classification_signature_fn) est.fit(iris.data, iris.target, steps=2, monitors=[export_monitor]) self.assertTrue(tf.gfile.Exists(export_dir)) self.assertFalse(tf.gfile.Exists(export_dir + '00000000/export')) self.assertTrue(tf.gfile.Exists(export_dir + '00000002/export')) # Validate the signature signature = self._get_default_signature(export_dir + '00000002/export.meta') self.assertTrue(signature.HasField('classification_signature')) if __name__ == '__main__': tf.test.main()
apache-2.0
pytorch/fairseq
fairseq/distributed/module_proxy_wrapper.py
1
1965
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. from torch import nn class ModuleProxyWrapper(nn.Module): """ Wrap a DistributedDataParallel module and forward requests for missing attributes to the module wrapped by DDP (the twice-wrapped module). Also forward calls to :func:`state_dict` and :func:`load_state_dict`. Usage:: module.xyz = "hello world" wrapped_module = DistributedDataParallel(module, **ddp_args) wrapped_module = ModuleProxyWrapper(wrapped_module) assert wrapped_module.xyz == "hello world" assert wrapped_module.state_dict().keys() == module.state_dict().keys() Args: module (nn.Module): module to wrap """ def __init__(self, module: nn.Module): super().__init__() assert hasattr( module, "module" ), "ModuleProxyWrapper expects input to wrap another module" self.module = module def __getattr__(self, name): """Forward missing attributes to twice-wrapped module.""" try: # defer to nn.Module's logic return super().__getattr__(name) except AttributeError: try: # forward to the once-wrapped module return getattr(self.module, name) except AttributeError: # forward to the twice-wrapped module return getattr(self.module.module, name) def state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.state_dict(*args, **kwargs) def load_state_dict(self, *args, **kwargs): """Forward to the twice-wrapped module.""" return self.module.module.load_state_dict(*args, **kwargs) def forward(self, *args, **kwargs): return self.module(*args, **kwargs)
mit
GoogleCloudPlatform/python-docs-samples
automl/beta/list_datasets.py
2
2085
# Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # [START automl_video_classification_list_datasets_beta] # [START automl_video_object_tracking_list_datasets_beta] from google.cloud import automl_v1beta1 as automl def list_datasets(project_id="YOUR_PROJECT_ID"): """List datasets.""" client = automl.AutoMlClient() # A resource that represents Google Cloud Platform location. project_location = f"projects/{project_id}/locations/us-central1" # List all the datasets available in the region. request = automl.ListDatasetsRequest(parent=project_location, filter="") response = client.list_datasets(request=request) print("List of datasets:") for dataset in response: print("Dataset name: {}".format(dataset.name)) print("Dataset id: {}".format(dataset.name.split("/")[-1])) print("Dataset display name: {}".format(dataset.display_name)) print("Dataset create time: {}".format(dataset.create_time)) # [END automl_video_object_tracking_list_datasets_beta] print( "Video classification dataset metadata: {}".format( dataset.video_classification_dataset_metadata ) ) # [END automl_video_classification_list_datasets_beta] # [START automl_video_object_tracking_list_datasets_beta] print( "Video object tracking dataset metadata: {}".format( dataset.video_object_tracking_dataset_metadata ) ) # [END automl_video_object_tracking_list_datasets_beta]
apache-2.0
haramoz/RND-ss14
best_hyper_parameter_estimation.py
1
4781
import numpy as np import matplotlib.pyplot as plt from matplotlib.colors import Normalize import glob import csv import os from sklearn.svm import SVC from sklearn.svm import SVR from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import StratifiedShuffleSplit from sklearn.grid_search import GridSearchCV import math # Utility function to move the midpoint of a colormap to be around # the values of interest. class MidpointNormalize(Normalize): def __init__(self, vmin=None, vmax=None, midpoint=None, clip=False): self.midpoint = midpoint Normalize.__init__(self, vmin, vmax, clip) def __call__(self, value, clip=None): x, y = [self.vmin, self.midpoint, self.vmax], [0, 0.5, 1] return np.ma.masked_array(np.interp(value, x, y)) ############################################################################## # Load my experiment data def loadExperimentData(): path = "./tuft_real_data/25June/extractedFeatures/" list_of_data_files = glob.glob(path+'data/*.csv') list_of_data_files = sorted(list_of_data_files) flagInitial = True for file_name in list_of_data_files: featureFileName = os.path.splitext(file_name)[0].split("/")[-1] #print featureFileName data = np.loadtxt(fname=file_name,delimiter=',') if flagInitial: flagInitial = False trainData = data else: trainData = np.vstack((trainData,data)) #For reading the labels list_of_label_files = glob.glob(path+'labels/*.csv') list_of_label_files = sorted(list_of_label_files) flagInitial = True for file_name in list_of_label_files: featureFileName = os.path.splitext(file_name)[0].split("/")[-1] #print featureFileName labels = np.loadtxt(fname=file_name,delimiter=',') if flagInitial: flagInitial = False trainLabel = labels else: trainLabel = np.concatenate((trainLabel,labels),axis=0) return trainData,trainLabel ############################################################################## # Load and prepare data set # # dataset for grid search traindata,trainlabel = loadExperimentData() X = traindata y = trainlabel # Dataset for decision function visualization: we only keep the first two # features in X and sub-sample the dataset to keep only 2 class to has # to make it a binary classification problem. '''X_2d = X[:, :2] X_2d = X_2d[y > 0] y_2d = y[y > 0] y_2d -= 1''' # It is usually a good idea to scale the data for SVM training. # We are cheating a bit in this example in scaling all of the data, # instead of fitting the transformation on the training set and # just applying it on the test set. print 1 scaler = StandardScaler() X = scaler.fit_transform(X) #X_2d = scaler.fit_transform(X_2d) ############################################################################## # Train classifiers # # For an initial search, a logarithmic grid with basis # 10 is often helpful. Using a basis of 2, a finer # tuning can be achieved but at a much higher cost. C_range = np.logspace(-4, 3, 50) gamma_range = np.logspace(-4, 3, 50) print C_range,gamma_range param_grid = dict(gamma=gamma_range, C=C_range) cv = StratifiedShuffleSplit(y, n_iter=1, test_size=0.5, random_state=42) grid = GridSearchCV(SVC(), param_grid=param_grid, cv=cv) grid.fit(X, y) print("The best parameters are %s with a score of %0.2f" % (grid.best_params_, grid.best_score_)) # plot the scores of the grid # grid_scores_ contains parameter settings and scores # We extract just the scores scores = [100*(1 - x[1]) for x in grid.grid_scores_] scores = np.array(scores).reshape(len(C_range), len(gamma_range)) # Draw heatmap of the validation accuracy as a function of gamma and C # # The score are encoded as colors with the hot colormap which varies from dark # red to bright yellow. As the most interesting scores are all located in the # 0.92 to 0.97 range we use a custom normalizer to set the mid-point to 0.92 so # as to make it easier to visualize the small variations of score values in the # interesting range while not brutally collapsing all the low score values to # the same color. plt.figure(figsize=(8, 6)) plt.subplots_adjust(left=.2, right=0.95, bottom=0.15, top=0.95) #plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,norm=MidpointNormalize(vmin=0.2, midpoint=0.92)) plt.imshow(scores, interpolation='nearest', cmap=plt.cm.hot,norm=MidpointNormalize(vmin=2.0, midpoint=12.0)) counter = 0 plt.xlabel('gamma') plt.ylabel('C') plt.colorbar() plt.xticks(np.arange(len(gamma_range)), np.round(gamma_range,4), rotation=90) plt.yticks(np.arange(len(C_range)), np.round(C_range,4)) plt.title('Misclassification %') plt.show()
gpl-2.0
cxhernandez/msmbuilder
setup.py
1
7479
"""MSMBuilder: Statistical models for Biomolecular Dynamics """ from __future__ import print_function, absolute_import DOCLINES = __doc__.split("\n") import sys import traceback import numpy as np from os.path import join as pjoin from setuptools import setup, Extension, find_packages try: sys.dont_write_bytecode = True sys.path.insert(0, '.') from basesetup import write_version_py, CompilerDetection, \ check_dependencies finally: sys.dont_write_bytecode = False try: import mdtraj mdtraj_capi = mdtraj.capi() except (ImportError, AttributeError): print('=' * 80) print('MDTraj version 1.1.X or later is required') print('=' * 80) traceback.print_exc() sys.exit(1) if '--debug' in sys.argv: sys.argv.remove('--debug') DEBUG = True else: DEBUG = False if '--disable-openmp' in sys.argv: sys.argv.remove('--disable-openmp') DISABLE_OPENMP = True else: DISABLE_OPENMP = False try: import Cython from Cython.Distutils import build_ext if Cython.__version__ < '0.18': raise ImportError() except ImportError: print( 'Cython version 0.18 or later is required. Try "conda install cython"') sys.exit(1) # ######################### VERSION = '3.6.0.dev0' ISRELEASED = False __version__ = VERSION # ######################### CLASSIFIERS = """\ Intended Audience :: Science/Research Intended Audience :: Developers License :: OSI Approved :: GNU Lesser General Public License v2 or later (LGPLv2+) Programming Language :: C++ Programming Language :: Python Development Status :: 5 - Production/Stable Topic :: Software Development Topic :: Scientific/Engineering Operating System :: POSIX Operating System :: Unix Operating System :: MacOS Programming Language :: Python :: 2 Programming Language :: Python :: 2.7 Programming Language :: Python :: 3 Programming Language :: Python :: 3.4 Programming Language :: Python :: 3.5 """ if any(cmd in sys.argv for cmd in ('install', 'build', 'develop')): check_dependencies(( ('numpy',), ('scipy',), ('pandas',), ('six',), ('mdtraj',), ('sklearn', 'scikit-learn'), ('numpydoc',), ('tables', 'pytables'), )) # Where to find extensions MSMDIR = 'msmbuilder/msm/' HMMDIR = 'msmbuilder/hmm/' CLUSTERDIR = 'msmbuilder/cluster/' compiler = CompilerDetection(DISABLE_OPENMP) with open('msmbuilder/src/config.pxi', 'w') as f: f.write(''' DEF DEBUG = {debug} DEF OPENMP = {openmp} '''.format(openmp=compiler.openmp_enabled, debug=DEBUG)) extensions = [] extensions.append( Extension('msmbuilder.example_datasets._muller', sources=[pjoin('msmbuilder', 'example_datasets', '_muller.pyx')], include_dirs=[np.get_include()])) extensions.append( Extension('msmbuilder.msm._markovstatemodel', sources=[pjoin(MSMDIR, '_markovstatemodel.pyx'), pjoin(MSMDIR, 'src/transmat_mle_prinz.c')], include_dirs=[pjoin(MSMDIR, 'src'), np.get_include()])) extensions.append( Extension('msmbuilder.tests.test_cyblas', sources=['msmbuilder/tests/test_cyblas.pyx'], include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.msm._ratematrix', sources=[pjoin(MSMDIR, '_ratematrix.pyx')], language='c++', extra_compile_args=compiler.compiler_args_openmp, libraries=compiler.compiler_libraries_openmp, include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.decomposition._speigh', sources=[pjoin('msmbuilder', 'decomposition', '_speigh.pyx')], language='c++', extra_compile_args=compiler.compiler_args_openmp, libraries=compiler.compiler_libraries_openmp, include_dirs=['msmbuilder/src', np.get_include()])) extensions.append( Extension('msmbuilder.msm._metzner_mcmc_fast', sources=[pjoin(MSMDIR, '_metzner_mcmc_fast.pyx'), pjoin(MSMDIR, 'src/metzner_mcmc.c')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_openmp, include_dirs=[pjoin(MSMDIR, 'src'), np.get_include()])) extensions.append( Extension('msmbuilder.libdistance', language='c++', sources=['msmbuilder/libdistance/libdistance.pyx'], # msvc needs to be told "libtheobald", gcc wants just "theobald" libraries=['%stheobald' % ('lib' if compiler.msvc else '')], include_dirs=["msmbuilder/libdistance/src", mdtraj_capi['include_dir'], np.get_include()], library_dirs=[mdtraj_capi['lib_dir']], )) extensions.append( Extension('msmbuilder.cluster._kmedoids', language='c++', sources=[pjoin(CLUSTERDIR, '_kmedoids.pyx'), pjoin(CLUSTERDIR, 'src', 'kmedoids.cc')], include_dirs=[np.get_include()])) # To get debug symbols on Windows, use # extra_link_args=['/DEBUG'] # extra_compile_args=['/Zi'] extensions.append( Extension('msmbuilder.hmm.gaussian', language='c++', sources=[pjoin(HMMDIR, 'gaussian.pyx'), pjoin(HMMDIR, 'src/GaussianHMMFitter.cpp')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_sse3 + compiler.compiler_args_openmp, include_dirs=[np.get_include(), HMMDIR, pjoin(HMMDIR, 'src/include/'), pjoin(HMMDIR, 'src/')])) extensions.append( Extension('msmbuilder.hmm.vonmises', language='c++', sources=[pjoin(HMMDIR, 'vonmises.pyx'), pjoin(HMMDIR, 'src/VonMisesHMMFitter.cpp'), pjoin(HMMDIR, 'cephes/i0.c'), pjoin(HMMDIR, 'cephes/chbevl.c')], libraries=compiler.compiler_libraries_openmp, extra_compile_args=compiler.compiler_args_sse3 + compiler.compiler_args_openmp, include_dirs=[np.get_include(), HMMDIR, pjoin(HMMDIR, 'src/include/'), pjoin(HMMDIR, 'src/'), pjoin(HMMDIR, 'cephes/')])) write_version_py(VERSION, ISRELEASED, filename='msmbuilder/version.py') setup(name='msmbuilder', author='Robert McGibbon', author_email='[email protected]', description=DOCLINES[0], long_description="\n".join(DOCLINES[2:]), version=__version__, url='https://github.com/msmbuilder/msmbuilder', platforms=['Linux', 'Mac OS-X', 'Unix'], classifiers=CLASSIFIERS.splitlines(), packages=find_packages(), package_data={ 'msmbuilder.tests': ['workflows/*'], 'msmbuilder': ['project_templates/*.*', 'project_templates/*/*', 'io_templates/*', ], }, entry_points={'console_scripts': ['msmb = msmbuilder.scripts.msmb:main']}, zip_safe=False, ext_modules=extensions, cmdclass={'build_ext': build_ext})
lgpl-2.1
matthewzimmer/carnd-behavioral-cloning
basic.py
1
3875
import os import csv import shutil import pandas as pd import tensorflow as tf import numpy as np from keras.applications import VGG16 from keras.layers import Dense, Flatten, Dropout, ELU from keras.preprocessing.image import ImageDataGenerator from keras.utils import np_utils import math import cv2 import pickle from scipy import misc, random from sklearn.model_selection import train_test_split from training import TrainTrackA, CommaAI, SimpleConvnet, Nvidia, Udacity, Basic from zimpy.camera_preprocessor import preprocess_image, predict_images from zimpy.generators.csv_image_provider import batch_generator, load_image from zimpy.serializers.trained_data_serializer import TrainedDataSerializer flags = tf.app.flags FLAGS = flags.FLAGS # command line flags flags.DEFINE_integer('epochs', 2, "The number of epochs.") flags.DEFINE_integer('batch_size', 32, "The batch size.") flags.DEFINE_integer('samples_per_epoch', None, "The number of samples per epoch during training.") flags.DEFINE_boolean('use_weights', False, "Whether to use prior trained weights.") flags.DEFINE_float('lr', 0.0001, "Optimizer learning rate.") train_samples_seen = [] X_train, y_train, X_val, y_val = None, None, None, None img_rows, img_cols = None, None def move_training_images(classifier): drive_log_path = './driving_log.csv' img_path = './IMG' shutil.move(drive_log_path, drive_log_path + '_' + classifier.uuid) shutil.move(img_path, img_path + '_' + classifier.uuid) # os.remove(drive_log_path) def load_track_csv(): X_train, y_train = [], [] # Only look at latest driving_log.csv drive_log_path = './driving_log.csv' if os.path.isfile(drive_log_path): df = pd.read_csv(drive_log_path) headers = list(df.columns.values) print(headers) for index, row in df.iterrows(): c = row['center'].strip() l = row['left'].strip() r = row['right'].strip() a = float(row['steering']) if os.path.isfile(c): # casts absolute path to relative to remain env agnostic l, c, r = [('IMG/' + os.path.split(file_path)[1]) for file_path in (l, c, r)] # single string in memory x = '{}:{}:{}'.format(l, c, r) X_train.append(x) y_train.append(a) # Split some of the training data into a validation dataset X_train, X_val, y_train, y_val = train_test_split( X_train, y_train, test_size=0.15, random_state=0) X_train, y_train, X_val, y_val = np.array(X_train), np.array(y_train, dtype=np.float32), np.array(X_val), np.array( y_val, dtype=np.float32) return X_train, y_train, X_val, y_val def main(_): output_shape = (40, 80, 3) X_train, y_train, X_val, y_val = load_track_csv() print('population: ', len(X_train)) # train model clf = Basic() model = clf.get_model(input_shape=output_shape, output_shape=output_shape, use_weights=FLAGS.use_weights, learning_rate=FLAGS.lr) samples_per_epoch = len(X_train) if FLAGS.samples_per_epoch is not None: print('overriding samples per epoch from {} to {}'.format(samples_per_epoch, FLAGS.samples_per_epoch)) samples_per_epoch = FLAGS.samples_per_epoch history = model.fit_generator( batch_generator(X=X_train, Y=y_train, label='train set', num_epochs=FLAGS.epochs, flip_images=True, batch_size=FLAGS.batch_size, output_shape=output_shape), nb_epoch=FLAGS.epochs, samples_per_epoch=samples_per_epoch, validation_data=None, verbose=2) print(history.history) clf.save() # move_training_images(clf) # parses flags and calls the `main` function above if __name__ == '__main__': tf.app.run()
mit
kirangonella/BuildingMachineLearningSystemsWithPython
ch02/stump.py
24
1604
# This code is supporting material for the book # Building Machine Learning Systems with Python # by Willi Richert and Luis Pedro Coelho # published by PACKT Publishing # # It is made available under the MIT License from sklearn.datasets import load_iris data = load_iris() features = data.data labels = data.target_names[data.target] is_setosa = (labels == 'setosa') features = features[~is_setosa] labels = labels[~is_setosa] is_virginica = (labels == 'virginica') # Initialize to a value that is worse than any possible test best_acc = -1.0 # Loop over all the features for fi in range(features.shape[1]): # Test every possible threshold value for feature fi thresh = features[:, fi].copy() # Test them in order thresh.sort() for t in thresh: # Generate predictions using t as a threshold pred = (features[:, fi] > t) # Accuracy is the fraction of predictions that match reality acc = (pred == is_virginica).mean() # We test whether negating the test is a better threshold: acc_neg = ((~pred) == is_virginica).mean() if acc_neg > acc: acc = acc_neg negated = True else: negated = False # If this is better than previous best, then this is now the new best: if acc > best_acc: best_acc = acc best_fi = fi best_t = t best_is_negated = negated print('Best threshold is {0} on feature {1} (index {2}), which achieves accuracy of {3:.1%}.'.format( best_t, data.feature_names[best_fi], best_fi, best_acc))
mit
anntzer/scikit-learn
sklearn/datasets/tests/test_lfw.py
8
7493
"""This test for the LFW require medium-size data downloading and processing If the data has not been already downloaded by running the examples, the tests won't run (skipped). If the test are run, the first execution will be long (typically a bit more than a couple of minutes) but as the dataset loader is leveraging joblib, successive runs will be fast (less than 200ms). """ import random import os import shutil import tempfile import numpy as np import pytest from functools import partial from sklearn.datasets import fetch_lfw_pairs from sklearn.datasets import fetch_lfw_people from sklearn.utils._testing import assert_array_equal from sklearn.datasets.tests.test_common import check_return_X_y SCIKIT_LEARN_DATA = None SCIKIT_LEARN_EMPTY_DATA = None LFW_HOME = None FAKE_NAMES = [ "Abdelatif_Smith", "Abhati_Kepler", "Camara_Alvaro", "Chen_Dupont", "John_Lee", "Lin_Bauman", "Onur_Lopez", ] def setup_module(): """Test fixture run once and common to all tests of this module""" Image = pytest.importorskip("PIL.Image") global SCIKIT_LEARN_DATA, SCIKIT_LEARN_EMPTY_DATA, LFW_HOME SCIKIT_LEARN_DATA = tempfile.mkdtemp(prefix="scikit_learn_lfw_test_") LFW_HOME = os.path.join(SCIKIT_LEARN_DATA, "lfw_home") SCIKIT_LEARN_EMPTY_DATA = tempfile.mkdtemp(prefix="scikit_learn_empty_test_") if not os.path.exists(LFW_HOME): os.makedirs(LFW_HOME) random_state = random.Random(42) np_rng = np.random.RandomState(42) # generate some random jpeg files for each person counts = {} for name in FAKE_NAMES: folder_name = os.path.join(LFW_HOME, "lfw_funneled", name) if not os.path.exists(folder_name): os.makedirs(folder_name) n_faces = np_rng.randint(1, 5) counts[name] = n_faces for i in range(n_faces): file_path = os.path.join(folder_name, name + "_%04d.jpg" % i) uniface = np_rng.randint(0, 255, size=(250, 250, 3)) img = Image.fromarray(uniface.astype(np.uint8)) img.save(file_path) # add some random file pollution to test robustness with open(os.path.join(LFW_HOME, "lfw_funneled", ".test.swp"), "wb") as f: f.write(b"Text file to be ignored by the dataset loader.") # generate some pairing metadata files using the same format as LFW with open(os.path.join(LFW_HOME, "pairsDevTrain.txt"), "wb") as f: f.write(b"10\n") more_than_two = [name for name, count in counts.items() if count >= 2] for i in range(5): name = random_state.choice(more_than_two) first, second = random_state.sample(range(counts[name]), 2) f.write(("%s\t%d\t%d\n" % (name, first, second)).encode()) for i in range(5): first_name, second_name = random_state.sample(FAKE_NAMES, 2) first_index = random_state.choice(np.arange(counts[first_name])) second_index = random_state.choice(np.arange(counts[second_name])) f.write( ( "%s\t%d\t%s\t%d\n" % (first_name, first_index, second_name, second_index) ).encode() ) with open(os.path.join(LFW_HOME, "pairsDevTest.txt"), "wb") as f: f.write(b"Fake place holder that won't be tested") with open(os.path.join(LFW_HOME, "pairs.txt"), "wb") as f: f.write(b"Fake place holder that won't be tested") def teardown_module(): """Test fixture (clean up) run once after all tests of this module""" if os.path.isdir(SCIKIT_LEARN_DATA): shutil.rmtree(SCIKIT_LEARN_DATA) if os.path.isdir(SCIKIT_LEARN_EMPTY_DATA): shutil.rmtree(SCIKIT_LEARN_EMPTY_DATA) def test_load_empty_lfw_people(): with pytest.raises(IOError): fetch_lfw_people(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_fake_lfw_people(): lfw_people = fetch_lfw_people( data_home=SCIKIT_LEARN_DATA, min_faces_per_person=3, download_if_missing=False ) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert lfw_people.images.shape == (10, 62, 47) assert lfw_people.data.shape == (10, 2914) # the target is array of person integer ids assert_array_equal(lfw_people.target, [2, 0, 1, 0, 2, 0, 2, 1, 1, 2]) # names of the persons can be found using the target_names array expected_classes = ["Abdelatif Smith", "Abhati Kepler", "Onur Lopez"] assert_array_equal(lfw_people.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion and not limit on the number of picture per person lfw_people = fetch_lfw_people( data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False, ) assert lfw_people.images.shape == (17, 250, 250, 3) assert lfw_people.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:") # the ids and class names are the same as previously assert_array_equal( lfw_people.target, [0, 0, 1, 6, 5, 6, 3, 6, 0, 3, 6, 1, 2, 4, 5, 1, 2] ) assert_array_equal( lfw_people.target_names, [ "Abdelatif Smith", "Abhati Kepler", "Camara Alvaro", "Chen Dupont", "John Lee", "Lin Bauman", "Onur Lopez", ], ) # test return_X_y option fetch_func = partial( fetch_lfw_people, data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False, ) check_return_X_y(lfw_people, fetch_func) def test_load_fake_lfw_people_too_restrictive(): with pytest.raises(ValueError): fetch_lfw_people( data_home=SCIKIT_LEARN_DATA, min_faces_per_person=100, download_if_missing=False, ) def test_load_empty_lfw_pairs(): with pytest.raises(IOError): fetch_lfw_pairs(data_home=SCIKIT_LEARN_EMPTY_DATA, download_if_missing=False) def test_load_fake_lfw_pairs(): lfw_pairs_train = fetch_lfw_pairs( data_home=SCIKIT_LEARN_DATA, download_if_missing=False ) # The data is croped around the center as a rectangular bounding box # around the face. Colors are converted to gray levels: assert lfw_pairs_train.pairs.shape == (10, 2, 62, 47) # the target is whether the person is the same or not assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) # names of the persons can be found using the target_names array expected_classes = ["Different persons", "Same person"] assert_array_equal(lfw_pairs_train.target_names, expected_classes) # It is possible to ask for the original data without any croping or color # conversion lfw_pairs_train = fetch_lfw_pairs( data_home=SCIKIT_LEARN_DATA, resize=None, slice_=None, color=True, download_if_missing=False, ) assert lfw_pairs_train.pairs.shape == (10, 2, 250, 250, 3) # the ids and class names are the same as previously assert_array_equal(lfw_pairs_train.target, [1, 1, 1, 1, 1, 0, 0, 0, 0, 0]) assert_array_equal(lfw_pairs_train.target_names, expected_classes) assert lfw_pairs_train.DESCR.startswith(".. _labeled_faces_in_the_wild_dataset:")
bsd-3-clause
anntzer/scikit-learn
examples/feature_selection/plot_feature_selection_pipeline.py
8
2757
""" ================== Pipeline ANOVA SVM ================== This example shows how a feature selection can be easily integrated within a machine learning pipeline. We also show that you can easily inspect part of the pipeline. """ # %% # We will start by generating a binary classification dataset. Subsequently, we # will divide the dataset into two subsets. from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split X, y = make_classification( n_features=20, n_informative=3, n_redundant=0, n_classes=2, n_clusters_per_class=2, random_state=42, ) X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) # %% # A common mistake done with feature selection is to search a subset of # discriminative features on the full dataset, instead of only using the # training set. The usage of scikit-learn :func:`~sklearn.pipeline.Pipeline` # prevents to make such mistake. # # Here, we will demonstrate how to build a pipeline where the first step will # be the feature selection. # # When calling `fit` on the training data, a subset of feature will be selected # and the index of these selected features will be stored. The feature selector # will subsequently reduce the number of features, and pass this subset to the # classifier which will be trained. from sklearn.feature_selection import SelectKBest, f_classif from sklearn.pipeline import make_pipeline from sklearn.svm import LinearSVC anova_filter = SelectKBest(f_classif, k=3) clf = LinearSVC() anova_svm = make_pipeline(anova_filter, clf) anova_svm.fit(X_train, y_train) # %% # Once the training is complete, we can predict on new unseen samples. In this # case, the feature selector will only select the most discriminative features # based on the information stored during training. Then, the data will be # passed to the classifier which will make the prediction. # # Here, we show the final metrics via a classification report. from sklearn.metrics import classification_report y_pred = anova_svm.predict(X_test) print(classification_report(y_test, y_pred)) # %% # Be aware that you can inspect a step in the pipeline. For instance, we might # be interested about the parameters of the classifier. Since we selected # three features, we expect to have three coefficients. anova_svm[-1].coef_ # %% # However, we do not know which features were selected from the original # dataset. We could proceed by several manners. Here, we will invert the # transformation of these coefficients to get information about the original # space. anova_svm[:-1].inverse_transform(anova_svm[-1].coef_) # %% # We can see that the features with non-zero coefficients are the selected # features by the first step.
bsd-3-clause
anntzer/scikit-learn
sklearn/tests/test_naive_bayes.py
8
34518
import re import numpy as np import scipy.sparse import pytest import warnings from scipy.special import logsumexp from sklearn.datasets import load_digits, load_iris from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.utils._testing import assert_allclose from sklearn.naive_bayes import GaussianNB, BernoulliNB from sklearn.naive_bayes import MultinomialNB, ComplementNB from sklearn.naive_bayes import CategoricalNB DISCRETE_NAIVE_BAYES_CLASSES = [BernoulliNB, CategoricalNB, ComplementNB, MultinomialNB] ALL_NAIVE_BAYES_CLASSES = DISCRETE_NAIVE_BAYES_CLASSES + [GaussianNB] msg = "The default value for `force_alpha` will change" pytestmark = pytest.mark.filterwarnings(f"ignore:{msg}:FutureWarning") # Data is just 6 separable points in the plane X = np.array([[-2, -1], [-1, -1], [-1, -2], [1, 1], [1, 2], [2, 1]]) y = np.array([1, 1, 1, 2, 2, 2]) # A bit more random tests rng = np.random.RandomState(0) X1 = rng.normal(size=(10, 3)) y1 = (rng.normal(size=(10)) > 0).astype(int) # Data is 6 random integer points in a 100 dimensional space classified to # three classes. X2 = rng.randint(5, size=(6, 100)) y2 = np.array([1, 1, 2, 2, 3, 3]) def test_gnb(): # Gaussian Naive Bayes classification. # This checks that GaussianNB implements fit and predict and returns # correct values for a simple toy dataset. clf = GaussianNB() y_pred = clf.fit(X, y).predict(X) assert_array_equal(y_pred, y) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Test whether label mismatch between target y and classes raises # an Error # FIXME Remove this test once the more general partial_fit tests are merged with pytest.raises( ValueError, match="The target label.* in y do not exist in the initial classes" ): GaussianNB().partial_fit(X, y, classes=[0, 1]) def test_gnb_prior(): # Test whether class priors are properly set. clf = GaussianNB().fit(X, y) assert_array_almost_equal(np.array([3, 3]) / 6.0, clf.class_prior_, 8) clf = GaussianNB().fit(X1, y1) # Check that the class priors sum to 1 assert_array_almost_equal(clf.class_prior_.sum(), 1) def test_gnb_sample_weight(): """Test whether sample weights are properly used in GNB.""" # Sample weights all being 1 should not change results sw = np.ones(6) clf = GaussianNB().fit(X, y) clf_sw = GaussianNB().fit(X, y, sw) assert_array_almost_equal(clf.theta_, clf_sw.theta_) assert_array_almost_equal(clf.var_, clf_sw.var_) # Fitting twice with half sample-weights should result # in same result as fitting once with full weights sw = rng.rand(y.shape[0]) clf1 = GaussianNB().fit(X, y, sample_weight=sw) clf2 = GaussianNB().partial_fit(X, y, classes=[1, 2], sample_weight=sw / 2) clf2.partial_fit(X, y, sample_weight=sw / 2) assert_array_almost_equal(clf1.theta_, clf2.theta_) assert_array_almost_equal(clf1.var_, clf2.var_) # Check that duplicate entries and correspondingly increased sample # weights yield the same result ind = rng.randint(0, X.shape[0], 20) sample_weight = np.bincount(ind, minlength=X.shape[0]) clf_dupl = GaussianNB().fit(X[ind], y[ind]) clf_sw = GaussianNB().fit(X, y, sample_weight) assert_array_almost_equal(clf_dupl.theta_, clf_sw.theta_) assert_array_almost_equal(clf_dupl.var_, clf_sw.var_) def test_gnb_neg_priors(): """Test whether an error is raised in case of negative priors""" clf = GaussianNB(priors=np.array([-1.0, 2.0])) msg = "Priors must be non-negative" with pytest.raises(ValueError, match=msg): clf.fit(X, y) def test_gnb_priors(): """Test whether the class prior override is properly used""" clf = GaussianNB(priors=np.array([0.3, 0.7])).fit(X, y) assert_array_almost_equal( clf.predict_proba([[-0.1, -0.1]]), np.array([[0.825303662161683, 0.174696337838317]]), 8, ) assert_array_almost_equal(clf.class_prior_, np.array([0.3, 0.7])) def test_gnb_priors_sum_isclose(): # test whether the class prior sum is properly tested""" X = np.array( [ [-1, -1], [-2, -1], [-3, -2], [-4, -5], [-5, -4], [1, 1], [2, 1], [3, 2], [4, 4], [5, 5], ] ) priors = np.array([0.08, 0.14, 0.03, 0.16, 0.11, 0.16, 0.07, 0.14, 0.11, 0.0]) Y = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10]) clf = GaussianNB(priors=priors) # smoke test for issue #9633 clf.fit(X, Y) def test_gnb_wrong_nb_priors(): """Test whether an error is raised if the number of prior is different from the number of class""" clf = GaussianNB(priors=np.array([0.25, 0.25, 0.25, 0.25])) msg = "Number of priors must match number of classes" with pytest.raises(ValueError, match=msg): clf.fit(X, y) def test_gnb_prior_greater_one(): """Test if an error is raised if the sum of prior greater than one""" clf = GaussianNB(priors=np.array([2.0, 1.0])) msg = "The sum of the priors should be 1" with pytest.raises(ValueError, match=msg): clf.fit(X, y) def test_gnb_prior_large_bias(): """Test if good prediction when class prior favor largely one class""" clf = GaussianNB(priors=np.array([0.01, 0.99])) clf.fit(X, y) assert clf.predict([[-0.1, -0.1]]) == np.array([2]) def test_gnb_check_update_with_no_data(): """Test when the partial fit is called without any data""" # Create an empty array prev_points = 100 mean = 0.0 var = 1.0 x_empty = np.empty((0, X.shape[1])) tmean, tvar = GaussianNB._update_mean_variance(prev_points, mean, var, x_empty) assert tmean == mean assert tvar == var def test_gnb_partial_fit(): clf = GaussianNB().fit(X, y) clf_pf = GaussianNB().partial_fit(X, y, np.unique(y)) assert_array_almost_equal(clf.theta_, clf_pf.theta_) assert_array_almost_equal(clf.var_, clf_pf.var_) assert_array_almost_equal(clf.class_prior_, clf_pf.class_prior_) clf_pf2 = GaussianNB().partial_fit(X[0::2, :], y[0::2], np.unique(y)) clf_pf2.partial_fit(X[1::2], y[1::2]) assert_array_almost_equal(clf.theta_, clf_pf2.theta_) assert_array_almost_equal(clf.var_, clf_pf2.var_) assert_array_almost_equal(clf.class_prior_, clf_pf2.class_prior_) def test_gnb_naive_bayes_scale_invariance(): # Scaling the data should not change the prediction results iris = load_iris() X, y = iris.data, iris.target labels = [GaussianNB().fit(f * X, y).predict(f * X) for f in [1e-10, 1, 1e10]] assert_array_equal(labels[0], labels[1]) assert_array_equal(labels[1], labels[2]) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_prior(DiscreteNaiveBayes): # Test whether class priors are properly set. clf = DiscreteNaiveBayes().fit(X2, y2) assert_array_almost_equal( np.log(np.array([2, 2, 2]) / 6.0), clf.class_log_prior_, 8 ) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_partial_fit(DiscreteNaiveBayes): clf1 = DiscreteNaiveBayes() clf1.fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1]) clf2 = DiscreteNaiveBayes() clf2.partial_fit([[0, 1], [1, 0], [1, 1]], [0, 1, 1], classes=[0, 1]) assert_array_equal(clf1.class_count_, clf2.class_count_) if DiscreteNaiveBayes is CategoricalNB: for i in range(len(clf1.category_count_)): assert_array_equal(clf1.category_count_[i], clf2.category_count_[i]) else: assert_array_equal(clf1.feature_count_, clf2.feature_count_) clf3 = DiscreteNaiveBayes() # all categories have to appear in the first partial fit clf3.partial_fit([[0, 1]], [0], classes=[0, 1]) clf3.partial_fit([[1, 0]], [1]) clf3.partial_fit([[1, 1]], [1]) assert_array_equal(clf1.class_count_, clf3.class_count_) if DiscreteNaiveBayes is CategoricalNB: # the categories for each feature of CategoricalNB are mapped to an # index chronologically with each call of partial fit and therefore # the category_count matrices cannot be compared for equality for i in range(len(clf1.category_count_)): assert_array_equal( clf1.category_count_[i].shape, clf3.category_count_[i].shape ) assert_array_equal( np.sum(clf1.category_count_[i], axis=1), np.sum(clf3.category_count_[i], axis=1), ) # assert category 0 occurs 1x in the first class and 0x in the 2nd # class assert_array_equal(clf1.category_count_[0][0], np.array([1, 0])) # assert category 1 occurs 0x in the first class and 2x in the 2nd # class assert_array_equal(clf1.category_count_[0][1], np.array([0, 2])) # assert category 0 occurs 0x in the first class and 1x in the 2nd # class assert_array_equal(clf1.category_count_[1][0], np.array([0, 1])) # assert category 1 occurs 1x in the first class and 1x in the 2nd # class assert_array_equal(clf1.category_count_[1][1], np.array([1, 1])) else: assert_array_equal(clf1.feature_count_, clf3.feature_count_) @pytest.mark.parametrize("NaiveBayes", ALL_NAIVE_BAYES_CLASSES) def test_NB_partial_fit_no_first_classes(NaiveBayes): # classes is required for first call to partial fit with pytest.raises( ValueError, match="classes must be passed on the first call to partial_fit." ): NaiveBayes().partial_fit(X2, y2) # check consistency of consecutive classes values clf = NaiveBayes() clf.partial_fit(X2, y2, classes=np.unique(y2)) with pytest.raises( ValueError, match="is not the same as on last call to partial_fit" ): clf.partial_fit(X2, y2, classes=np.arange(42)) def test_discretenb_predict_proba(): # Test discrete NB classes' probability scores # The 100s below distinguish Bernoulli from multinomial. # FIXME: write a test to show this. X_bernoulli = [[1, 100, 0], [0, 1, 0], [0, 100, 1]] X_multinomial = [[0, 1], [1, 3], [4, 0]] # test binary case (1-d output) y = [0, 0, 2] # 2 is regression test for binary case, 02e673 for DiscreteNaiveBayes, X in zip( [BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial] ): clf = DiscreteNaiveBayes().fit(X, y) assert clf.predict(X[-1:]) == 2 assert clf.predict_proba([X[0]]).shape == (1, 2) assert_array_almost_equal( clf.predict_proba(X[:2]).sum(axis=1), np.array([1.0, 1.0]), 6 ) # test multiclass case (2-d output, must sum to one) y = [0, 1, 2] for DiscreteNaiveBayes, X in zip( [BernoulliNB, MultinomialNB], [X_bernoulli, X_multinomial] ): clf = DiscreteNaiveBayes().fit(X, y) assert clf.predict_proba(X[0:1]).shape == (1, 3) assert clf.predict_proba(X[:2]).shape == (2, 3) assert_almost_equal(np.sum(clf.predict_proba([X[1]])), 1) assert_almost_equal(np.sum(clf.predict_proba([X[-1]])), 1) assert_almost_equal(np.sum(np.exp(clf.class_log_prior_)), 1) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_uniform_prior(DiscreteNaiveBayes): # Test whether discrete NB classes fit a uniform prior # when fit_prior=False and class_prior=None clf = DiscreteNaiveBayes() clf.set_params(fit_prior=False) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_almost_equal(prior, np.array([0.5, 0.5])) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_provide_prior(DiscreteNaiveBayes): # Test whether discrete NB classes use provided prior clf = DiscreteNaiveBayes(class_prior=[0.5, 0.5]) clf.fit([[0], [0], [1]], [0, 0, 1]) prior = np.exp(clf.class_log_prior_) assert_array_almost_equal(prior, np.array([0.5, 0.5])) # Inconsistent number of classes with prior msg = "Number of priors must match number of classes" with pytest.raises(ValueError, match=msg): clf.fit([[0], [1], [2]], [0, 1, 2]) msg = "is not the same as on last call to partial_fit" with pytest.raises(ValueError, match=msg): clf.partial_fit([[0], [1]], [0, 1], classes=[0, 1, 1]) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_provide_prior_with_partial_fit(DiscreteNaiveBayes): # Test whether discrete NB classes use provided prior # when using partial_fit iris = load_iris() iris_data1, iris_data2, iris_target1, iris_target2 = train_test_split( iris.data, iris.target, test_size=0.4, random_state=415 ) for prior in [None, [0.3, 0.3, 0.4]]: clf_full = DiscreteNaiveBayes(class_prior=prior) clf_full.fit(iris.data, iris.target) clf_partial = DiscreteNaiveBayes(class_prior=prior) clf_partial.partial_fit(iris_data1, iris_target1, classes=[0, 1, 2]) clf_partial.partial_fit(iris_data2, iris_target2) assert_array_almost_equal( clf_full.class_log_prior_, clf_partial.class_log_prior_ ) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) def test_discretenb_sample_weight_multiclass(DiscreteNaiveBayes): # check shape consistency for number of samples at fit time X = [ [0, 0, 1], [0, 1, 1], [0, 1, 1], [1, 0, 0], ] y = [0, 0, 1, 2] sample_weight = np.array([1, 1, 2, 2], dtype=np.float64) sample_weight /= sample_weight.sum() clf = DiscreteNaiveBayes().fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) # Check sample weight using the partial_fit method clf = DiscreteNaiveBayes() clf.partial_fit(X[:2], y[:2], classes=[0, 1, 2], sample_weight=sample_weight[:2]) clf.partial_fit(X[2:3], y[2:3], sample_weight=sample_weight[2:3]) clf.partial_fit(X[3:], y[3:], sample_weight=sample_weight[3:]) assert_array_equal(clf.predict(X), [0, 1, 1, 2]) @pytest.mark.parametrize("DiscreteNaiveBayes", DISCRETE_NAIVE_BAYES_CLASSES) @pytest.mark.parametrize("use_partial_fit", [False, True]) @pytest.mark.parametrize("train_on_single_class_y", [False, True]) def test_discretenb_degenerate_one_class_case( DiscreteNaiveBayes, use_partial_fit, train_on_single_class_y, ): # Most array attributes of a discrete naive Bayes classifier should have a # first-axis length equal to the number of classes. Exceptions include: # ComplementNB.feature_all_, CategoricalNB.n_categories_. # Confirm that this is the case for binary problems and the degenerate # case of a single class in the training set, when fitting with `fit` or # `partial_fit`. # Non-regression test for handling degenerate one-class case: # https://github.com/scikit-learn/scikit-learn/issues/18974 X = [[1, 0, 0], [0, 1, 0], [0, 0, 1]] y = [1, 1, 2] if train_on_single_class_y: X = X[:-1] y = y[:-1] classes = sorted(list(set(y))) num_classes = len(classes) clf = DiscreteNaiveBayes() if use_partial_fit: clf.partial_fit(X, y, classes=classes) else: clf.fit(X, y) assert clf.predict(X[:1]) == y[0] # Check that attributes have expected first-axis lengths attribute_names = [ "classes_", "class_count_", "class_log_prior_", "feature_count_", "feature_log_prob_", ] for attribute_name in attribute_names: attribute = getattr(clf, attribute_name, None) if attribute is None: # CategoricalNB has no feature_count_ attribute continue if isinstance(attribute, np.ndarray): assert attribute.shape[0] == num_classes else: # CategoricalNB.feature_log_prob_ is a list of arrays for element in attribute: assert element.shape[0] == num_classes @pytest.mark.parametrize("kind", ("dense", "sparse")) def test_mnnb(kind): # Test Multinomial Naive Bayes classification. # This checks that MultinomialNB implements fit and predict and returns # correct values for a simple toy dataset. if kind == "dense": X = X2 elif kind == "sparse": X = scipy.sparse.csr_matrix(X2) # Check the ability to predict the learning set. clf = MultinomialNB() msg = "Negative values in data passed to" with pytest.raises(ValueError, match=msg): clf.fit(-X, y2) y_pred = clf.fit(X, y2).predict(X) assert_array_equal(y_pred, y2) # Verify that np.log(clf.predict_proba(X)) gives the same results as # clf.predict_log_proba(X) y_pred_proba = clf.predict_proba(X) y_pred_log_proba = clf.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba), y_pred_log_proba, 8) # Check that incremental fitting yields the same results clf2 = MultinomialNB() clf2.partial_fit(X[:2], y2[:2], classes=np.unique(y2)) clf2.partial_fit(X[2:5], y2[2:5]) clf2.partial_fit(X[5:], y2[5:]) y_pred2 = clf2.predict(X) assert_array_equal(y_pred2, y2) y_pred_proba2 = clf2.predict_proba(X) y_pred_log_proba2 = clf2.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba2), y_pred_log_proba2, 8) assert_array_almost_equal(y_pred_proba2, y_pred_proba) assert_array_almost_equal(y_pred_log_proba2, y_pred_log_proba) # Partial fit on the whole data at once should be the same as fit too clf3 = MultinomialNB() clf3.partial_fit(X, y2, classes=np.unique(y2)) y_pred3 = clf3.predict(X) assert_array_equal(y_pred3, y2) y_pred_proba3 = clf3.predict_proba(X) y_pred_log_proba3 = clf3.predict_log_proba(X) assert_array_almost_equal(np.log(y_pred_proba3), y_pred_log_proba3, 8) assert_array_almost_equal(y_pred_proba3, y_pred_proba) assert_array_almost_equal(y_pred_log_proba3, y_pred_log_proba) def test_mnb_prior_unobserved_targets(): # test smoothing of prior for yet unobserved targets # Create toy training data X = np.array([[0, 1], [1, 0]]) y = np.array([0, 1]) clf = MultinomialNB() with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) clf.partial_fit(X, y, classes=[0, 1, 2]) assert clf.predict([[0, 1]]) == 0 assert clf.predict([[1, 0]]) == 1 assert clf.predict([[1, 1]]) == 0 # add a training example with previously unobserved class with warnings.catch_warnings(): warnings.simplefilter("error", RuntimeWarning) clf.partial_fit([[1, 1]], [2]) assert clf.predict([[0, 1]]) == 0 assert clf.predict([[1, 0]]) == 1 assert clf.predict([[1, 1]]) == 2 def test_bnb(): # Tests that BernoulliNB when alpha=1.0 gives the same values as # those given for the toy example in Manning, Raghavan, and # Schuetze's "Introduction to Information Retrieval" book: # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo X = np.array( [[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]] ) # Classes are China (0), Japan (1) Y = np.array([0, 0, 0, 1]) # Fit BernoulliBN w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Check the class prior is correct class_prior = np.array([0.75, 0.25]) assert_array_almost_equal(np.exp(clf.class_log_prior_), class_prior) # Check the feature probabilities are correct feature_prob = np.array( [ [0.4, 0.8, 0.2, 0.4, 0.4, 0.2], [1 / 3.0, 2 / 3.0, 2 / 3.0, 1 / 3.0, 1 / 3.0, 2 / 3.0], ] ) assert_array_almost_equal(np.exp(clf.feature_log_prob_), feature_prob) # Testing data point is: # Chinese Chinese Chinese Tokyo Japan X_test = np.array([[0, 1, 1, 0, 0, 1]]) # Check the predictive probabilities are correct unnorm_predict_proba = np.array([[0.005183999999999999, 0.02194787379972565]]) predict_proba = unnorm_predict_proba / np.sum(unnorm_predict_proba) assert_array_almost_equal(clf.predict_proba(X_test), predict_proba) def test_bnb_feature_log_prob(): # Test for issue #4268. # Tests that the feature log prob value computed by BernoulliNB when # alpha=1.0 is equal to the expression given in Manning, Raghavan, # and Schuetze's "Introduction to Information Retrieval" book: # http://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html X = np.array([[0, 0, 0], [1, 1, 0], [0, 1, 0], [1, 0, 1], [0, 1, 0]]) Y = np.array([0, 0, 1, 2, 2]) # Fit Bernoulli NB w/ alpha = 1.0 clf = BernoulliNB(alpha=1.0) clf.fit(X, Y) # Manually form the (log) numerator and denominator that # constitute P(feature presence | class) num = np.log(clf.feature_count_ + 1.0) denom = np.tile(np.log(clf.class_count_ + 2.0), (X.shape[1], 1)).T # Check manual estimate matches assert_array_almost_equal(clf.feature_log_prob_, (num - denom)) def test_cnb(): # Tests ComplementNB when alpha=1.0 for the toy example in Manning, # Raghavan, and Schuetze's "Introduction to Information Retrieval" book: # https://nlp.stanford.edu/IR-book/html/htmledition/the-bernoulli-model-1.html # Training data points are: # Chinese Beijing Chinese (class: China) # Chinese Chinese Shanghai (class: China) # Chinese Macao (class: China) # Tokyo Japan Chinese (class: Japan) # Features are Beijing, Chinese, Japan, Macao, Shanghai, and Tokyo. X = np.array( [[1, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 1, 0, 1, 0, 0], [0, 1, 1, 0, 0, 1]] ) # Classes are China (0), Japan (1). Y = np.array([0, 0, 0, 1]) # Check that weights are correct. See steps 4-6 in Table 4 of # Rennie et al. (2003). theta = np.array( [ [ (0 + 1) / (3 + 6), (1 + 1) / (3 + 6), (1 + 1) / (3 + 6), (0 + 1) / (3 + 6), (0 + 1) / (3 + 6), (1 + 1) / (3 + 6), ], [ (1 + 1) / (6 + 6), (3 + 1) / (6 + 6), (0 + 1) / (6 + 6), (1 + 1) / (6 + 6), (1 + 1) / (6 + 6), (0 + 1) / (6 + 6), ], ] ) weights = np.zeros(theta.shape) normed_weights = np.zeros(theta.shape) for i in range(2): weights[i] = -np.log(theta[i]) normed_weights[i] = weights[i] / weights[i].sum() # Verify inputs are nonnegative. clf = ComplementNB(alpha=1.0) msg = re.escape("Negative values in data passed to ComplementNB (input X)") with pytest.raises(ValueError, match=msg): clf.fit(-X, Y) clf.fit(X, Y) # Check that counts/weights are correct. feature_count = np.array([[1, 3, 0, 1, 1, 0], [0, 1, 1, 0, 0, 1]]) assert_array_equal(clf.feature_count_, feature_count) class_count = np.array([3, 1]) assert_array_equal(clf.class_count_, class_count) feature_all = np.array([1, 4, 1, 1, 1, 1]) assert_array_equal(clf.feature_all_, feature_all) assert_array_almost_equal(clf.feature_log_prob_, weights) clf = ComplementNB(alpha=1.0, norm=True) clf.fit(X, Y) assert_array_almost_equal(clf.feature_log_prob_, normed_weights) def test_categoricalnb(): # Check the ability to predict the training set. clf = CategoricalNB() y_pred = clf.fit(X2, y2).predict(X2) assert_array_equal(y_pred, y2) X3 = np.array([[1, 4], [2, 5]]) y3 = np.array([1, 2]) clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X3, y3) assert_array_equal(clf.n_categories_, np.array([3, 6])) # Check error is raised for X with negative entries X = np.array([[0, -1]]) y = np.array([1]) error_msg = re.escape("Negative values in data passed to CategoricalNB (input X)") with pytest.raises(ValueError, match=error_msg): clf.predict(X) with pytest.raises(ValueError, match=error_msg): clf.fit(X, y) # Test alpha X3_test = np.array([[2, 5]]) # alpha=1 increases the count of all categories by one so the final # probability for each category is not 50/50 but 1/3 to 2/3 bayes_numerator = np.array([[1 / 3 * 1 / 3, 2 / 3 * 2 / 3]]) bayes_denominator = bayes_numerator.sum() assert_array_almost_equal( clf.predict_proba(X3_test), bayes_numerator / bayes_denominator ) # Assert category_count has counted all features assert len(clf.category_count_) == X3.shape[1] # Check sample_weight X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y = np.array([1, 1, 2, 2]) clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X, y) assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([1])) assert_array_equal(clf.n_categories_, np.array([2, 2])) for factor in [1.0, 0.3, 5, 0.0001]: X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y = np.array([1, 1, 2, 2]) sample_weight = np.array([1, 1, 10, 0.1]) * factor clf = CategoricalNB(alpha=1, fit_prior=False) clf.fit(X, y, sample_weight=sample_weight) assert_array_equal(clf.predict(np.array([[0, 0]])), np.array([2])) assert_array_equal(clf.n_categories_, np.array([2, 2])) @pytest.mark.parametrize( "min_categories, exp_X1_count, exp_X2_count, new_X, exp_n_categories_", [ # check min_categories with int > observed categories ( 3, np.array([[2, 0, 0], [1, 1, 0]]), np.array([[1, 1, 0], [1, 1, 0]]), np.array([[0, 2]]), np.array([3, 3]), ), # check with list input ( [3, 4], np.array([[2, 0, 0], [1, 1, 0]]), np.array([[1, 1, 0, 0], [1, 1, 0, 0]]), np.array([[0, 3]]), np.array([3, 4]), ), # check min_categories with min less than actual ( [ 1, np.array([[2, 0], [1, 1]]), np.array([[1, 1], [1, 1]]), np.array([[0, 1]]), np.array([2, 2]), ] ), ], ) def test_categoricalnb_with_min_categories( min_categories, exp_X1_count, exp_X2_count, new_X, exp_n_categories_ ): X_n_categories = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y_n_categories = np.array([1, 1, 2, 2]) expected_prediction = np.array([1]) clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories) clf.fit(X_n_categories, y_n_categories) X1_count, X2_count = clf.category_count_ assert_array_equal(X1_count, exp_X1_count) assert_array_equal(X2_count, exp_X2_count) predictions = clf.predict(new_X) assert_array_equal(predictions, expected_prediction) assert_array_equal(clf.n_categories_, exp_n_categories_) @pytest.mark.parametrize( "min_categories, error_msg", [ ([[3, 2], [2, 4]], "'min_categories' should have shape"), ], ) def test_categoricalnb_min_categories_errors(min_categories, error_msg): X = np.array([[0, 0], [0, 1], [0, 0], [1, 1]]) y = np.array([1, 1, 2, 2]) clf = CategoricalNB(alpha=1, fit_prior=False, min_categories=min_categories) with pytest.raises(ValueError, match=error_msg): clf.fit(X, y) def test_alpha(): # Setting alpha=0 should not output nan results when p(x_i|y_j)=0 is a case X = np.array([[1, 0], [1, 1]]) y = np.array([0, 1]) nb = BernoulliNB(alpha=0.0) msg = "alpha too small will result in numeric errors, setting alpha = 1.0e-10" with pytest.warns(UserWarning, match=msg): nb.partial_fit(X, y, classes=[0, 1]) with pytest.warns(UserWarning, match=msg): nb.fit(X, y) prob = np.array([[1, 0], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = MultinomialNB(alpha=0.0) with pytest.warns(UserWarning, match=msg): nb.partial_fit(X, y, classes=[0, 1]) with pytest.warns(UserWarning, match=msg): nb.fit(X, y) prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = CategoricalNB(alpha=0.0) with pytest.warns(UserWarning, match=msg): nb.fit(X, y) prob = np.array([[1.0, 0.0], [0.0, 1.0]]) assert_array_almost_equal(nb.predict_proba(X), prob) # Test sparse X X = scipy.sparse.csr_matrix(X) nb = BernoulliNB(alpha=0.0) with pytest.warns(UserWarning, match=msg): nb.fit(X, y) prob = np.array([[1, 0], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) nb = MultinomialNB(alpha=0.0) with pytest.warns(UserWarning, match=msg): nb.fit(X, y) prob = np.array([[2.0 / 3, 1.0 / 3], [0, 1]]) assert_array_almost_equal(nb.predict_proba(X), prob) def test_alpha_vector(): X = np.array([[1, 0], [1, 1]]) y = np.array([0, 1]) # Setting alpha=np.array with same length # as number of features should be fine alpha = np.array([1, 2]) nb = MultinomialNB(alpha=alpha) nb.partial_fit(X, y, classes=[0, 1]) # Test feature probabilities uses pseudo-counts (alpha) feature_prob = np.array([[1 / 2, 1 / 2], [2 / 5, 3 / 5]]) assert_array_almost_equal(nb.feature_log_prob_, np.log(feature_prob)) # Test predictions prob = np.array([[5 / 9, 4 / 9], [25 / 49, 24 / 49]]) assert_array_almost_equal(nb.predict_proba(X), prob) # Test alpha non-negative alpha = np.array([1.0, -0.1]) m_nb = MultinomialNB(alpha=alpha) expected_msg = "All values in alpha must be greater than 0." with pytest.raises(ValueError, match=expected_msg): m_nb.fit(X, y) # Test that too small pseudo-counts are replaced ALPHA_MIN = 1e-10 alpha = np.array([ALPHA_MIN / 2, 0.5]) m_nb = MultinomialNB(alpha=alpha) m_nb.partial_fit(X, y, classes=[0, 1]) assert_array_almost_equal(m_nb._check_alpha(), [ALPHA_MIN, 0.5], decimal=12) # Test correct dimensions alpha = np.array([1.0, 2.0, 3.0]) m_nb = MultinomialNB(alpha=alpha) expected_msg = "When alpha is an array, it should contains `n_features`" with pytest.raises(ValueError, match=expected_msg): m_nb.fit(X, y) def test_check_accuracy_on_digits(): # Non regression test to make sure that any further refactoring / optim # of the NB models do not harm the performance on a slightly non-linearly # separable dataset X, y = load_digits(return_X_y=True) binary_3v8 = np.logical_or(y == 3, y == 8) X_3v8, y_3v8 = X[binary_3v8], y[binary_3v8] # Multinomial NB scores = cross_val_score(MultinomialNB(alpha=10), X, y, cv=10) assert scores.mean() > 0.86 scores = cross_val_score(MultinomialNB(alpha=10), X_3v8, y_3v8, cv=10) assert scores.mean() > 0.94 # Bernoulli NB scores = cross_val_score(BernoulliNB(alpha=10), X > 4, y, cv=10) assert scores.mean() > 0.83 scores = cross_val_score(BernoulliNB(alpha=10), X_3v8 > 4, y_3v8, cv=10) assert scores.mean() > 0.92 # Gaussian NB scores = cross_val_score(GaussianNB(), X, y, cv=10) assert scores.mean() > 0.77 scores = cross_val_score(GaussianNB(var_smoothing=0.1), X, y, cv=10) assert scores.mean() > 0.89 scores = cross_val_score(GaussianNB(), X_3v8, y_3v8, cv=10) assert scores.mean() > 0.86 # TODO(1.4): Remove @pytest.mark.parametrize("Estimator", DISCRETE_NAIVE_BAYES_CLASSES) @pytest.mark.parametrize("alpha", [1, [0.1, 1e-11], 1e-12]) def test_force_alpha_deprecation(Estimator, alpha): if Estimator is CategoricalNB and isinstance(alpha, list): pytest.skip("CategoricalNB does not support array-like alpha values.") X = np.array([[1, 2], [3, 4]]) y = np.array([1, 0]) alpha_min = 1e-10 msg = "The default value for `force_alpha` will change to `True`" est = Estimator(alpha=alpha) est_force = Estimator(alpha=alpha, force_alpha=True) if np.min(alpha) < alpha_min: with pytest.warns(FutureWarning, match=msg): est.fit(X, y) else: est.fit(X, y) est_force.fit(X, y) def test_check_alpha(): """The provided value for alpha must only be used if alpha < _ALPHA_MIN and force_alpha is True. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/10772 """ _ALPHA_MIN = 1e-10 b = BernoulliNB(alpha=0, force_alpha=True) assert b._check_alpha() == 0 alphas = np.array([0.0, 1.0]) b = BernoulliNB(alpha=alphas, force_alpha=True) # We manually set `n_features_in_` not to have `_check_alpha` err b.n_features_in_ = alphas.shape[0] assert_array_equal(b._check_alpha(), alphas) msg = ( "alpha too small will result in numeric errors, setting alpha = %.1e" % _ALPHA_MIN ) b = BernoulliNB(alpha=0, force_alpha=False) with pytest.warns(UserWarning, match=msg): assert b._check_alpha() == _ALPHA_MIN b = BernoulliNB(alpha=0) with pytest.warns(UserWarning, match=msg): assert b._check_alpha() == _ALPHA_MIN b = BernoulliNB(alpha=alphas, force_alpha=False) # We manually set `n_features_in_` not to have `_check_alpha` err b.n_features_in_ = alphas.shape[0] with pytest.warns(UserWarning, match=msg): assert_array_equal(b._check_alpha(), np.array([_ALPHA_MIN, 1.0])) @pytest.mark.parametrize("Estimator", ALL_NAIVE_BAYES_CLASSES) def test_predict_joint_proba(Estimator): est = Estimator().fit(X2, y2) jll = est.predict_joint_log_proba(X2) log_prob_x = logsumexp(jll, axis=1) log_prob_x_y = jll - np.atleast_2d(log_prob_x).T assert_allclose(est.predict_log_proba(X2), log_prob_x_y)
bsd-3-clause
anntzer/scikit-learn
sklearn/ensemble/_voting.py
9
22265
""" Soft Voting/Majority Rule classifier and Voting regressor. This module contains: - A Soft Voting/Majority Rule classifier for classification estimators. - A Voting regressor for regression estimators. """ # Authors: Sebastian Raschka <[email protected]>, # Gilles Louppe <[email protected]>, # Ramil Nugmanov <[email protected]> # Mohamed Ali Jamaoui <[email protected]> # # License: BSD 3 clause from abc import abstractmethod from numbers import Integral import numpy as np from joblib import Parallel from ..base import ClassifierMixin from ..base import RegressorMixin from ..base import TransformerMixin from ..base import clone from ._base import _fit_single_estimator from ._base import _BaseHeterogeneousEnsemble from ..preprocessing import LabelEncoder from ..utils import Bunch from ..utils.metaestimators import available_if from ..utils.validation import check_is_fitted from ..utils.validation import _check_feature_names_in from ..utils.multiclass import check_classification_targets from ..utils.validation import column_or_1d from ..utils._param_validation import StrOptions from ..exceptions import NotFittedError from ..utils._estimator_html_repr import _VisualBlock from ..utils.fixes import delayed class _BaseVoting(TransformerMixin, _BaseHeterogeneousEnsemble): """Base class for voting. Warning: This class should not be used directly. Use derived classes instead. """ _parameter_constraints: dict = { "estimators": [list], "weights": ["array-like", None], "n_jobs": [None, Integral], "verbose": ["verbose"], } def _log_message(self, name, idx, total): if not self.verbose: return None return f"({idx} of {total}) Processing {name}" @property def _weights_not_none(self): """Get the weights of not `None` estimators.""" if self.weights is None: return None return [w for est, w in zip(self.estimators, self.weights) if est[1] != "drop"] def _predict(self, X): """Collect results from clf.predict calls.""" return np.asarray([est.predict(X) for est in self.estimators_]).T @abstractmethod def fit(self, X, y, sample_weight=None): """Get common fit operations.""" names, clfs = self._validate_estimators() if self.weights is not None and len(self.weights) != len(self.estimators): raise ValueError( "Number of `estimators` and weights must be equal; got" f" {len(self.weights)} weights, {len(self.estimators)} estimators" ) self.estimators_ = Parallel(n_jobs=self.n_jobs)( delayed(_fit_single_estimator)( clone(clf), X, y, sample_weight=sample_weight, message_clsname="Voting", message=self._log_message(names[idx], idx + 1, len(clfs)), ) for idx, clf in enumerate(clfs) if clf != "drop" ) self.named_estimators_ = Bunch() # Uses 'drop' as placeholder for dropped estimators est_iter = iter(self.estimators_) for name, est in self.estimators: current_est = est if est == "drop" else next(est_iter) self.named_estimators_[name] = current_est if hasattr(current_est, "feature_names_in_"): self.feature_names_in_ = current_est.feature_names_in_ return self def fit_transform(self, X, y=None, **fit_params): """Return class labels or probabilities for each estimator. Return predictions for X for each estimator. Parameters ---------- X : {array-like, sparse matrix, dataframe} of shape \ (n_samples, n_features) Input samples. y : ndarray of shape (n_samples,), default=None Target values (None for unsupervised transformations). **fit_params : dict Additional fit parameters. Returns ------- X_new : ndarray array of shape (n_samples, n_features_new) Transformed array. """ return super().fit_transform(X, y, **fit_params) @property def n_features_in_(self): """Number of features seen during :term:`fit`.""" # For consistency with other estimators we raise a AttributeError so # that hasattr() fails if the estimator isn't fitted. try: check_is_fitted(self) except NotFittedError as nfe: raise AttributeError( "{} object has no n_features_in_ attribute.".format( self.__class__.__name__ ) ) from nfe return self.estimators_[0].n_features_in_ def _sk_visual_block_(self): names, estimators = zip(*self.estimators) return _VisualBlock("parallel", estimators, names=names) def _more_tags(self): return {"preserves_dtype": []} class VotingClassifier(ClassifierMixin, _BaseVoting): """Soft Voting/Majority Rule classifier for unfitted estimators. Read more in the :ref:`User Guide <voting_classifier>`. .. versionadded:: 0.17 Parameters ---------- estimators : list of (str, estimator) tuples Invoking the ``fit`` method on the ``VotingClassifier`` will fit clones of those original estimators that will be stored in the class attribute ``self.estimators_``. An estimator can be set to ``'drop'`` using :meth:`set_params`. .. versionchanged:: 0.21 ``'drop'`` is accepted. Using None was deprecated in 0.22 and support was removed in 0.24. voting : {'hard', 'soft'}, default='hard' If 'hard', uses predicted class labels for majority rule voting. Else if 'soft', predicts the class label based on the argmax of the sums of the predicted probabilities, which is recommended for an ensemble of well-calibrated classifiers. weights : array-like of shape (n_classifiers,), default=None Sequence of weights (`float` or `int`) to weight the occurrences of predicted class labels (`hard` voting) or class probabilities before averaging (`soft` voting). Uses uniform weights if `None`. n_jobs : int, default=None The number of jobs to run in parallel for ``fit``. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. .. versionadded:: 0.18 flatten_transform : bool, default=True Affects shape of transform output only when voting='soft' If voting='soft' and flatten_transform=True, transform method returns matrix with shape (n_samples, n_classifiers * n_classes). If flatten_transform=False, it returns (n_classifiers, n_samples, n_classes). verbose : bool, default=False If True, the time elapsed while fitting will be printed as it is completed. .. versionadded:: 0.23 Attributes ---------- estimators_ : list of classifiers The collection of fitted sub-estimators as defined in ``estimators`` that are not 'drop'. named_estimators_ : :class:`~sklearn.utils.Bunch` Attribute to access any fitted sub-estimators by name. .. versionadded:: 0.20 le_ : :class:`~sklearn.preprocessing.LabelEncoder` Transformer used to encode the labels during fit and decode during prediction. classes_ : ndarray of shape (n_classes,) The classes labels. n_features_in_ : int Number of features seen during :term:`fit`. Only defined if the underlying classifier exposes such an attribute when fit. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Only defined if the underlying estimators expose such an attribute when fit. .. versionadded:: 1.0 See Also -------- VotingRegressor : Prediction voting regressor. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LogisticRegression >>> from sklearn.naive_bayes import GaussianNB >>> from sklearn.ensemble import RandomForestClassifier, VotingClassifier >>> clf1 = LogisticRegression(multi_class='multinomial', random_state=1) >>> clf2 = RandomForestClassifier(n_estimators=50, random_state=1) >>> clf3 = GaussianNB() >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]]) >>> y = np.array([1, 1, 1, 2, 2, 2]) >>> eclf1 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], voting='hard') >>> eclf1 = eclf1.fit(X, y) >>> print(eclf1.predict(X)) [1 1 1 2 2 2] >>> np.array_equal(eclf1.named_estimators_.lr.predict(X), ... eclf1.named_estimators_['lr'].predict(X)) True >>> eclf2 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft') >>> eclf2 = eclf2.fit(X, y) >>> print(eclf2.predict(X)) [1 1 1 2 2 2] To drop an estimator, :meth:`set_params` can be used to remove it. Here we dropped one of the estimators, resulting in 2 fitted estimators: >>> eclf2 = eclf2.set_params(lr='drop') >>> eclf2 = eclf2.fit(X, y) >>> len(eclf2.estimators_) 2 Setting `flatten_transform=True` with `voting='soft'` flattens output shape of `transform`: >>> eclf3 = VotingClassifier(estimators=[ ... ('lr', clf1), ('rf', clf2), ('gnb', clf3)], ... voting='soft', weights=[2,1,1], ... flatten_transform=True) >>> eclf3 = eclf3.fit(X, y) >>> print(eclf3.predict(X)) [1 1 1 2 2 2] >>> print(eclf3.transform(X).shape) (6, 6) """ _parameter_constraints: dict = { **_BaseVoting._parameter_constraints, "voting": [StrOptions({"hard", "soft"})], "flatten_transform": ["boolean"], } def __init__( self, estimators, *, voting="hard", weights=None, n_jobs=None, flatten_transform=True, verbose=False, ): super().__init__(estimators=estimators) self.voting = voting self.weights = weights self.n_jobs = n_jobs self.flatten_transform = flatten_transform self.verbose = verbose def fit(self, X, y, sample_weight=None): """Fit the estimators. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. .. versionadded:: 0.18 Returns ------- self : object Returns the instance itself. """ self._validate_params() check_classification_targets(y) if isinstance(y, np.ndarray) and len(y.shape) > 1 and y.shape[1] > 1: raise NotImplementedError( "Multilabel and multi-output classification is not supported." ) self.le_ = LabelEncoder().fit(y) self.classes_ = self.le_.classes_ transformed_y = self.le_.transform(y) return super().fit(X, transformed_y, sample_weight) def predict(self, X): """Predict class labels for X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Returns ------- maj : array-like of shape (n_samples,) Predicted class labels. """ check_is_fitted(self) if self.voting == "soft": maj = np.argmax(self.predict_proba(X), axis=1) else: # 'hard' voting predictions = self._predict(X) maj = np.apply_along_axis( lambda x: np.argmax(np.bincount(x, weights=self._weights_not_none)), axis=1, arr=predictions, ) maj = self.le_.inverse_transform(maj) return maj def _collect_probas(self, X): """Collect results from clf.predict calls.""" return np.asarray([clf.predict_proba(X) for clf in self.estimators_]) def _check_voting(self): if self.voting == "hard": raise AttributeError( f"predict_proba is not available when voting={repr(self.voting)}" ) return True @available_if(_check_voting) def predict_proba(self, X): """Compute probabilities of possible outcomes for samples in X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Returns ------- avg : array-like of shape (n_samples, n_classes) Weighted average probability for each class per sample. """ check_is_fitted(self) avg = np.average( self._collect_probas(X), axis=0, weights=self._weights_not_none ) return avg def transform(self, X): """Return class labels or probabilities for X for each estimator. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. Returns ------- probabilities_or_labels If `voting='soft'` and `flatten_transform=True`: returns ndarray of shape (n_samples, n_classifiers * n_classes), being class probabilities calculated by each classifier. If `voting='soft' and `flatten_transform=False`: ndarray of shape (n_classifiers, n_samples, n_classes) If `voting='hard'`: ndarray of shape (n_samples, n_classifiers), being class labels predicted by each classifier. """ check_is_fitted(self) if self.voting == "soft": probas = self._collect_probas(X) if not self.flatten_transform: return probas return np.hstack(probas) else: return self._predict(X) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ if self.voting == "soft" and not self.flatten_transform: raise ValueError( "get_feature_names_out is not supported when `voting='soft'` and " "`flatten_transform=False`" ) _check_feature_names_in(self, input_features, generate_names=False) class_name = self.__class__.__name__.lower() active_names = [name for name, est in self.estimators if est != "drop"] if self.voting == "hard": return np.asarray( [f"{class_name}_{name}" for name in active_names], dtype=object ) # voting == "soft" n_classes = len(self.classes_) names_out = [ f"{class_name}_{name}{i}" for name in active_names for i in range(n_classes) ] return np.asarray(names_out, dtype=object) class VotingRegressor(RegressorMixin, _BaseVoting): """Prediction voting regressor for unfitted estimators. A voting regressor is an ensemble meta-estimator that fits several base regressors, each on the whole dataset. Then it averages the individual predictions to form a final prediction. Read more in the :ref:`User Guide <voting_regressor>`. .. versionadded:: 0.21 Parameters ---------- estimators : list of (str, estimator) tuples Invoking the ``fit`` method on the ``VotingRegressor`` will fit clones of those original estimators that will be stored in the class attribute ``self.estimators_``. An estimator can be set to ``'drop'`` using :meth:`set_params`. .. versionchanged:: 0.21 ``'drop'`` is accepted. Using None was deprecated in 0.22 and support was removed in 0.24. weights : array-like of shape (n_regressors,), default=None Sequence of weights (`float` or `int`) to weight the occurrences of predicted values before averaging. Uses uniform weights if `None`. n_jobs : int, default=None The number of jobs to run in parallel for ``fit``. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. verbose : bool, default=False If True, the time elapsed while fitting will be printed as it is completed. .. versionadded:: 0.23 Attributes ---------- estimators_ : list of regressors The collection of fitted sub-estimators as defined in ``estimators`` that are not 'drop'. named_estimators_ : :class:`~sklearn.utils.Bunch` Attribute to access any fitted sub-estimators by name. .. versionadded:: 0.20 n_features_in_ : int Number of features seen during :term:`fit`. Only defined if the underlying regressor exposes such an attribute when fit. .. versionadded:: 0.24 feature_names_in_ : ndarray of shape (`n_features_in_`,) Names of features seen during :term:`fit`. Only defined if the underlying estimators expose such an attribute when fit. .. versionadded:: 1.0 See Also -------- VotingClassifier : Soft Voting/Majority Rule classifier. Examples -------- >>> import numpy as np >>> from sklearn.linear_model import LinearRegression >>> from sklearn.ensemble import RandomForestRegressor >>> from sklearn.ensemble import VotingRegressor >>> from sklearn.neighbors import KNeighborsRegressor >>> r1 = LinearRegression() >>> r2 = RandomForestRegressor(n_estimators=10, random_state=1) >>> r3 = KNeighborsRegressor() >>> X = np.array([[1, 1], [2, 4], [3, 9], [4, 16], [5, 25], [6, 36]]) >>> y = np.array([2, 6, 12, 20, 30, 42]) >>> er = VotingRegressor([('lr', r1), ('rf', r2), ('r3', r3)]) >>> print(er.fit(X, y).predict(X)) [ 6.8... 8.4... 12.5... 17.8... 26... 34...] In the following example, we drop the `'lr'` estimator with :meth:`~VotingRegressor.set_params` and fit the remaining two estimators: >>> er = er.set_params(lr='drop') >>> er = er.fit(X, y) >>> len(er.estimators_) 2 """ def __init__(self, estimators, *, weights=None, n_jobs=None, verbose=False): super().__init__(estimators=estimators) self.weights = weights self.n_jobs = n_jobs self.verbose = verbose def fit(self, X, y, sample_weight=None): """Fit the estimators. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) Training vectors, where `n_samples` is the number of samples and `n_features` is the number of features. y : array-like of shape (n_samples,) Target values. sample_weight : array-like of shape (n_samples,), default=None Sample weights. If None, then samples are equally weighted. Note that this is supported only if all underlying estimators support sample weights. Returns ------- self : object Fitted estimator. """ self._validate_params() y = column_or_1d(y, warn=True) return super().fit(X, y, sample_weight) def predict(self, X): """Predict regression target for X. The predicted regression target of an input sample is computed as the mean predicted regression targets of the estimators in the ensemble. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Returns ------- y : ndarray of shape (n_samples,) The predicted values. """ check_is_fitted(self) return np.average(self._predict(X), axis=1, weights=self._weights_not_none) def transform(self, X): """Return predictions for X for each estimator. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The input samples. Returns ------- predictions : ndarray of shape (n_samples, n_classifiers) Values predicted by each regressor. """ check_is_fitted(self) return self._predict(X) def get_feature_names_out(self, input_features=None): """Get output feature names for transformation. Parameters ---------- input_features : array-like of str or None, default=None Not used, present here for API consistency by convention. Returns ------- feature_names_out : ndarray of str objects Transformed feature names. """ _check_feature_names_in(self, input_features, generate_names=False) class_name = self.__class__.__name__.lower() return np.asarray( [f"{class_name}_{name}" for name, est in self.estimators if est != "drop"], dtype=object, )
bsd-3-clause
anntzer/scikit-learn
examples/model_selection/plot_randomized_search.py
13
3040
""" ========================================================================= Comparing randomized search and grid search for hyperparameter estimation ========================================================================= Compare randomized search and grid search for optimizing hyperparameters of a linear SVM with SGD training. All parameters that influence the learning are searched simultaneously (except for the number of estimators, which poses a time / quality tradeoff). The randomized search and the grid search explore exactly the same space of parameters. The result in parameter settings is quite similar, while the run time for randomized search is drastically lower. The performance is may slightly worse for the randomized search, and is likely due to a noise effect and would not carry over to a held-out test set. Note that in practice, one would not search over this many different parameters simultaneously using grid search, but pick only the ones deemed most important. """ import numpy as np from time import time import scipy.stats as stats from sklearn.utils.fixes import loguniform from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.datasets import load_digits from sklearn.linear_model import SGDClassifier # get some data X, y = load_digits(return_X_y=True, n_class=3) # build a classifier clf = SGDClassifier(loss="hinge", penalty="elasticnet", fit_intercept=True) # Utility function to report best scores def report(results, n_top=3): for i in range(1, n_top + 1): candidates = np.flatnonzero(results["rank_test_score"] == i) for candidate in candidates: print("Model with rank: {0}".format(i)) print( "Mean validation score: {0:.3f} (std: {1:.3f})".format( results["mean_test_score"][candidate], results["std_test_score"][candidate], ) ) print("Parameters: {0}".format(results["params"][candidate])) print("") # specify parameters and distributions to sample from param_dist = { "average": [True, False], "l1_ratio": stats.uniform(0, 1), "alpha": loguniform(1e-2, 1e0), } # run randomized search n_iter_search = 15 random_search = RandomizedSearchCV( clf, param_distributions=param_dist, n_iter=n_iter_search ) start = time() random_search.fit(X, y) print( "RandomizedSearchCV took %.2f seconds for %d candidates parameter settings." % ((time() - start), n_iter_search) ) report(random_search.cv_results_) # use a full grid over all parameters param_grid = { "average": [True, False], "l1_ratio": np.linspace(0, 1, num=10), "alpha": np.power(10, np.arange(-2, 1, dtype=float)), } # run grid search grid_search = GridSearchCV(clf, param_grid=param_grid) start = time() grid_search.fit(X, y) print( "GridSearchCV took %.2f seconds for %d candidate parameter settings." % (time() - start, len(grid_search.cv_results_["params"])) ) report(grid_search.cv_results_)
bsd-3-clause
zvelo/msg
python/msg_pb2_grpc.py
1
3554
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 import msg_pb2 as msg__pb2 class APIv1Stub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Query = channel.unary_unary( '/zvelo.msg.APIv1/Query', request_serializer=msg__pb2.QueryRequests.SerializeToString, response_deserializer=msg__pb2.QueryReplies.FromString, ) self.Result = channel.unary_unary( '/zvelo.msg.APIv1/Result', request_serializer=msg__pb2.RequestID.SerializeToString, response_deserializer=msg__pb2.QueryResult.FromString, ) self.Suggest = channel.unary_unary( '/zvelo.msg.APIv1/Suggest', request_serializer=msg__pb2.Suggestion.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.Stream = channel.unary_stream( '/zvelo.msg.APIv1/Stream', request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, response_deserializer=msg__pb2.QueryResult.FromString, ) class APIv1Servicer(object): # missing associated documentation comment in .proto file pass def Query(self, request, context): """Create new query """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Result(self, request, context): """Results of active or unexpired query """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Suggest(self, request, context): """Suggest new datasets for a URL """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Stream(self, request, context): """Stream returns all QueryResult messages processed by zveloAPI """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_APIv1Servicer_to_server(servicer, server): rpc_method_handlers = { 'Query': grpc.unary_unary_rpc_method_handler( servicer.Query, request_deserializer=msg__pb2.QueryRequests.FromString, response_serializer=msg__pb2.QueryReplies.SerializeToString, ), 'Result': grpc.unary_unary_rpc_method_handler( servicer.Result, request_deserializer=msg__pb2.RequestID.FromString, response_serializer=msg__pb2.QueryResult.SerializeToString, ), 'Suggest': grpc.unary_unary_rpc_method_handler( servicer.Suggest, request_deserializer=msg__pb2.Suggestion.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), 'Stream': grpc.unary_stream_rpc_method_handler( servicer.Stream, request_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, response_serializer=msg__pb2.QueryResult.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'zvelo.msg.APIv1', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
mit
anntzer/scikit-learn
sklearn/tests/test_calibration.py
9
39439
# Authors: Alexandre Gramfort <[email protected]> # License: BSD 3 clause import pytest import numpy as np from numpy.testing import assert_allclose from scipy import sparse from sklearn.base import BaseEstimator, clone from sklearn.dummy import DummyClassifier from sklearn.model_selection import LeaveOneOut, train_test_split from sklearn.utils._testing import ( assert_array_almost_equal, assert_almost_equal, assert_array_equal, ) from sklearn.utils.extmath import softmax from sklearn.exceptions import NotFittedError from sklearn.datasets import make_classification, make_blobs, load_iris from sklearn.preprocessing import LabelEncoder from sklearn.model_selection import KFold, cross_val_predict from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import ( RandomForestClassifier, VotingClassifier, ) from sklearn.linear_model import LogisticRegression, LinearRegression from sklearn.tree import DecisionTreeClassifier from sklearn.svm import LinearSVC from sklearn.pipeline import Pipeline, make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.isotonic import IsotonicRegression from sklearn.feature_extraction import DictVectorizer from sklearn.impute import SimpleImputer from sklearn.metrics import brier_score_loss from sklearn.calibration import ( _CalibratedClassifier, _SigmoidCalibration, _sigmoid_calibration, CalibratedClassifierCV, CalibrationDisplay, calibration_curve, ) from sklearn.utils._mocking import CheckingClassifier from sklearn.utils._testing import _convert_container N_SAMPLES = 200 @pytest.fixture(scope="module") def data(): X, y = make_classification(n_samples=N_SAMPLES, n_features=6, random_state=42) return X, y @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibration(data, method, ensemble): # Test calibration objects with isotonic and sigmoid n_samples = N_SAMPLES // 2 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test, y_test = X[n_samples:], y[n_samples:] # Naive-Bayes clf = MultinomialNB(force_alpha=True).fit(X_train, y_train, sample_weight=sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] cal_clf = CalibratedClassifierCV(clf, cv=y.size + 1, ensemble=ensemble) with pytest.raises(ValueError): cal_clf.fit(X, y) # Naive Bayes with calibration for this_X_train, this_X_test in [ (X_train, X_test), (sparse.csr_matrix(X_train), sparse.csr_matrix(X_test)), ]: cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble) # Note that this fit overwrites the fit on the entire training # set cal_clf.fit(this_X_train, y_train, sample_weight=sw_train) prob_pos_cal_clf = cal_clf.predict_proba(this_X_test)[:, 1] # Check that brier score has improved after calibration assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss( y_test, prob_pos_cal_clf ) # Check invariance against relabeling [0, 1] -> [1, 2] cal_clf.fit(this_X_train, y_train + 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [-1, 1] cal_clf.fit(this_X_train, 2 * y_train - 1, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] assert_array_almost_equal(prob_pos_cal_clf, prob_pos_cal_clf_relabeled) # Check invariance against relabeling [0, 1] -> [1, 0] cal_clf.fit(this_X_train, (y_train + 1) % 2, sample_weight=sw_train) prob_pos_cal_clf_relabeled = cal_clf.predict_proba(this_X_test)[:, 1] if method == "sigmoid": assert_array_almost_equal(prob_pos_cal_clf, 1 - prob_pos_cal_clf_relabeled) else: # Isotonic calibration is not invariant against relabeling # but should improve in both cases assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss( (y_test + 1) % 2, prob_pos_cal_clf_relabeled ) def test_calibration_default_estimator(data): # Check estimator default is LinearSVC X, y = data calib_clf = CalibratedClassifierCV(cv=2) calib_clf.fit(X, y) base_est = calib_clf.calibrated_classifiers_[0].estimator assert isinstance(base_est, LinearSVC) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibration_cv_splitter(data, ensemble): # Check when `cv` is a CV splitter X, y = data splits = 5 kfold = KFold(n_splits=splits) calib_clf = CalibratedClassifierCV(cv=kfold, ensemble=ensemble) assert isinstance(calib_clf.cv, KFold) assert calib_clf.cv.n_splits == splits calib_clf.fit(X, y) expected_n_clf = splits if ensemble else 1 assert len(calib_clf.calibrated_classifiers_) == expected_n_clf @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) def test_sample_weight(data, method, ensemble): n_samples = N_SAMPLES // 2 X, y = data sample_weight = np.random.RandomState(seed=42).uniform(size=len(y)) X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_test = X[n_samples:] estimator = LinearSVC(random_state=42) calibrated_clf = CalibratedClassifierCV(estimator, method=method, ensemble=ensemble) calibrated_clf.fit(X_train, y_train, sample_weight=sw_train) probs_with_sw = calibrated_clf.predict_proba(X_test) # As the weights are used for the calibration, they should still yield # different predictions calibrated_clf.fit(X_train, y_train) probs_without_sw = calibrated_clf.predict_proba(X_test) diff = np.linalg.norm(probs_with_sw - probs_without_sw) assert diff > 0.1 @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) def test_parallel_execution(data, method, ensemble): """Test parallel calibration""" X, y = data X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=42) estimator = LinearSVC(random_state=42) cal_clf_parallel = CalibratedClassifierCV( estimator, method=method, n_jobs=2, ensemble=ensemble ) cal_clf_parallel.fit(X_train, y_train) probs_parallel = cal_clf_parallel.predict_proba(X_test) cal_clf_sequential = CalibratedClassifierCV( estimator, method=method, n_jobs=1, ensemble=ensemble ) cal_clf_sequential.fit(X_train, y_train) probs_sequential = cal_clf_sequential.predict_proba(X_test) assert_allclose(probs_parallel, probs_sequential) @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) # increase the number of RNG seeds to assess the statistical stability of this # test: @pytest.mark.parametrize("seed", range(2)) def test_calibration_multiclass(method, ensemble, seed): def multiclass_brier(y_true, proba_pred, n_classes): Y_onehot = np.eye(n_classes)[y_true] return np.sum((Y_onehot - proba_pred) ** 2) / Y_onehot.shape[0] # Test calibration for multiclass with classifier that implements # only decision function. clf = LinearSVC(random_state=7) X, y = make_blobs( n_samples=500, n_features=100, random_state=seed, centers=10, cluster_std=15.0 ) # Use an unbalanced dataset by collapsing 8 clusters into one class # to make the naive calibration based on a softmax more unlikely # to work. y[y > 2] = 2 n_classes = np.unique(y).shape[0] X_train, y_train = X[::2], y[::2] X_test, y_test = X[1::2], y[1::2] clf.fit(X_train, y_train) cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble) cal_clf.fit(X_train, y_train) probas = cal_clf.predict_proba(X_test) # Check probabilities sum to 1 assert_allclose(np.sum(probas, axis=1), np.ones(len(X_test))) # Check that the dataset is not too trivial, otherwise it's hard # to get interesting calibration data during the internal # cross-validation loop. assert 0.65 < clf.score(X_test, y_test) < 0.95 # Check that the accuracy of the calibrated model is never degraded # too much compared to the original classifier. assert cal_clf.score(X_test, y_test) > 0.95 * clf.score(X_test, y_test) # Check that Brier loss of calibrated classifier is smaller than # loss obtained by naively turning OvR decision function to # probabilities via a softmax uncalibrated_brier = multiclass_brier( y_test, softmax(clf.decision_function(X_test)), n_classes=n_classes ) calibrated_brier = multiclass_brier(y_test, probas, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier # Test that calibration of a multiclass classifier decreases log-loss # for RandomForestClassifier clf = RandomForestClassifier(n_estimators=30, random_state=42) clf.fit(X_train, y_train) clf_probs = clf.predict_proba(X_test) uncalibrated_brier = multiclass_brier(y_test, clf_probs, n_classes=n_classes) cal_clf = CalibratedClassifierCV(clf, method=method, cv=5, ensemble=ensemble) cal_clf.fit(X_train, y_train) cal_clf_probs = cal_clf.predict_proba(X_test) calibrated_brier = multiclass_brier(y_test, cal_clf_probs, n_classes=n_classes) assert calibrated_brier < 1.1 * uncalibrated_brier def test_calibration_zero_probability(): # Test an edge case where _CalibratedClassifier avoids numerical errors # in the multiclass normalization step if all the calibrators output # are zero all at once for a given sample and instead fallback to uniform # probabilities. class ZeroCalibrator: # This function is called from _CalibratedClassifier.predict_proba. def predict(self, X): return np.zeros(X.shape[0]) X, y = make_blobs( n_samples=50, n_features=10, random_state=7, centers=10, cluster_std=15.0 ) clf = DummyClassifier().fit(X, y) calibrator = ZeroCalibrator() cal_clf = _CalibratedClassifier( estimator=clf, calibrators=[calibrator], classes=clf.classes_ ) probas = cal_clf.predict_proba(X) # Check that all probabilities are uniformly 1. / clf.n_classes_ assert_allclose(probas, 1.0 / clf.n_classes_) def test_calibration_prefit(): """Test calibration for prefitted classifiers""" n_samples = 50 X, y = make_classification(n_samples=3 * n_samples, n_features=6, random_state=42) sample_weight = np.random.RandomState(seed=42).uniform(size=y.size) X -= X.min() # MultinomialNB only allows positive X # split train and test X_train, y_train, sw_train = X[:n_samples], y[:n_samples], sample_weight[:n_samples] X_calib, y_calib, sw_calib = ( X[n_samples : 2 * n_samples], y[n_samples : 2 * n_samples], sample_weight[n_samples : 2 * n_samples], ) X_test, y_test = X[2 * n_samples :], y[2 * n_samples :] # Naive-Bayes clf = MultinomialNB(force_alpha=True) # Check error if clf not prefit unfit_clf = CalibratedClassifierCV(clf, cv="prefit") with pytest.raises(NotFittedError): unfit_clf.fit(X_calib, y_calib) clf.fit(X_train, y_train, sw_train) prob_pos_clf = clf.predict_proba(X_test)[:, 1] # Naive Bayes with calibration for this_X_calib, this_X_test in [ (X_calib, X_test), (sparse.csr_matrix(X_calib), sparse.csr_matrix(X_test)), ]: for method in ["isotonic", "sigmoid"]: cal_clf = CalibratedClassifierCV(clf, method=method, cv="prefit") for sw in [sw_calib, None]: cal_clf.fit(this_X_calib, y_calib, sample_weight=sw) y_prob = cal_clf.predict_proba(this_X_test) y_pred = cal_clf.predict(this_X_test) prob_pos_cal_clf = y_prob[:, 1] assert_array_equal(y_pred, np.array([0, 1])[np.argmax(y_prob, axis=1)]) assert brier_score_loss(y_test, prob_pos_clf) > brier_score_loss( y_test, prob_pos_cal_clf ) @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) def test_calibration_ensemble_false(data, method): # Test that `ensemble=False` is the same as using predictions from # `cross_val_predict` to train calibrator. X, y = data clf = LinearSVC(random_state=7) cal_clf = CalibratedClassifierCV(clf, method=method, cv=3, ensemble=False) cal_clf.fit(X, y) cal_probas = cal_clf.predict_proba(X) # Get probas manually unbiased_preds = cross_val_predict(clf, X, y, cv=3, method="decision_function") if method == "isotonic": calibrator = IsotonicRegression(out_of_bounds="clip") else: calibrator = _SigmoidCalibration() calibrator.fit(unbiased_preds, y) # Use `clf` fit on all data clf.fit(X, y) clf_df = clf.decision_function(X) manual_probas = calibrator.predict(clf_df) assert_allclose(cal_probas[:, 1], manual_probas) def test_sigmoid_calibration(): """Test calibration values with Platt sigmoid model""" exF = np.array([5, -4, 1.0]) exY = np.array([1, -1, -1]) # computed from my python port of the C++ code in LibSVM AB_lin_libsvm = np.array([-0.20261354391187855, 0.65236314980010512]) assert_array_almost_equal(AB_lin_libsvm, _sigmoid_calibration(exF, exY), 3) lin_prob = 1.0 / (1.0 + np.exp(AB_lin_libsvm[0] * exF + AB_lin_libsvm[1])) sk_prob = _SigmoidCalibration().fit(exF, exY).predict(exF) assert_array_almost_equal(lin_prob, sk_prob, 6) # check that _SigmoidCalibration().fit only accepts 1d array or 2d column # arrays with pytest.raises(ValueError): _SigmoidCalibration().fit(np.vstack((exF, exF)), exY) def test_calibration_curve(): """Check calibration_curve function""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0.0, 0.1, 0.2, 0.8, 0.9, 1.0]) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) assert len(prob_true) == len(prob_pred) assert len(prob_true) == 2 assert_almost_equal(prob_true, [0, 1]) assert_almost_equal(prob_pred, [0.1, 0.9]) # Probabilities outside [0, 1] should not be accepted at all. with pytest.raises(ValueError): calibration_curve([1], [-0.1]) # test that quantiles work as expected y_true2 = np.array([0, 0, 0, 0, 1, 1]) y_pred2 = np.array([0.0, 0.1, 0.2, 0.5, 0.9, 1.0]) prob_true_quantile, prob_pred_quantile = calibration_curve( y_true2, y_pred2, n_bins=2, strategy="quantile" ) assert len(prob_true_quantile) == len(prob_pred_quantile) assert len(prob_true_quantile) == 2 assert_almost_equal(prob_true_quantile, [0, 2 / 3]) assert_almost_equal(prob_pred_quantile, [0.1, 0.8]) # Check that error is raised when invalid strategy is selected with pytest.raises(ValueError): calibration_curve(y_true2, y_pred2, strategy="percentile") # TODO(1.3): Remove this test. def test_calibration_curve_with_unnormalized_proba(): """Tests the `normalize` parameter of `calibration_curve`""" y_true = np.array([0, 0, 0, 1, 1, 1]) y_pred = np.array([0.0, 0.1, 0.2, 0.8, 0.9, 1.0]) # Ensure `normalize` == False raises a FutureWarning. with pytest.warns(FutureWarning): calibration_curve(y_true, y_pred, n_bins=2, normalize=False) # Ensure `normalize` == True raises a FutureWarning and behaves as expected. with pytest.warns(FutureWarning): prob_true_unnormalized, prob_pred_unnormalized = calibration_curve( y_true, y_pred * 2, n_bins=2, normalize=True ) prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=2) assert_almost_equal(prob_true, prob_true_unnormalized) assert_almost_equal(prob_pred, prob_pred_unnormalized) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibration_nan_imputer(ensemble): """Test that calibration can accept nan""" X, y = make_classification( n_samples=10, n_features=2, n_informative=2, n_redundant=0, random_state=42 ) X[0, 0] = np.nan clf = Pipeline( [("imputer", SimpleImputer()), ("rf", RandomForestClassifier(n_estimators=1))] ) clf_c = CalibratedClassifierCV(clf, cv=2, method="isotonic", ensemble=ensemble) clf_c.fit(X, y) clf_c.predict(X) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibration_prob_sum(ensemble): # Test that sum of probabilities is 1. A non-regression test for # issue #7796 num_classes = 2 X, y = make_classification(n_samples=10, n_features=5, n_classes=num_classes) clf = LinearSVC(C=1.0, random_state=7) clf_prob = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) clf_prob.fit(X, y) probs = clf_prob.predict_proba(X) assert_array_almost_equal(probs.sum(axis=1), np.ones(probs.shape[0])) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibration_less_classes(ensemble): # Test to check calibration works fine when train set in a test-train # split does not contain all classes # Since this test uses LOO, at each iteration train set will not contain a # class label X = np.random.randn(10, 5) y = np.arange(10) clf = LinearSVC(C=1.0, random_state=7) cal_clf = CalibratedClassifierCV( clf, method="sigmoid", cv=LeaveOneOut(), ensemble=ensemble ) cal_clf.fit(X, y) for i, calibrated_classifier in enumerate(cal_clf.calibrated_classifiers_): proba = calibrated_classifier.predict_proba(X) if ensemble: # Check that the unobserved class has proba=0 assert_array_equal(proba[:, i], np.zeros(len(y))) # Check for all other classes proba>0 assert np.all(proba[:, :i] > 0) assert np.all(proba[:, i + 1 :] > 0) else: # Check `proba` are all 1/n_classes assert np.allclose(proba, 1 / proba.shape[0]) @pytest.mark.parametrize( "X", [ np.random.RandomState(42).randn(15, 5, 2), np.random.RandomState(42).randn(15, 5, 2, 6), ], ) def test_calibration_accepts_ndarray(X): """Test that calibration accepts n-dimensional arrays as input""" y = [1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0] class MockTensorClassifier(BaseEstimator): """A toy estimator that accepts tensor inputs""" def fit(self, X, y): self.classes_ = np.unique(y) return self def decision_function(self, X): # toy decision function that just needs to have the right shape: return X.reshape(X.shape[0], -1).sum(axis=1) calibrated_clf = CalibratedClassifierCV(MockTensorClassifier()) # we should be able to fit this classifier with no error calibrated_clf.fit(X, y) @pytest.fixture def dict_data(): dict_data = [ {"state": "NY", "age": "adult"}, {"state": "TX", "age": "adult"}, {"state": "VT", "age": "child"}, ] text_labels = [1, 0, 1] return dict_data, text_labels @pytest.fixture def dict_data_pipeline(dict_data): X, y = dict_data pipeline_prefit = Pipeline( [("vectorizer", DictVectorizer()), ("clf", RandomForestClassifier())] ) return pipeline_prefit.fit(X, y) def test_calibration_dict_pipeline(dict_data, dict_data_pipeline): """Test that calibration works in prefit pipeline with transformer `X` is not array-like, sparse matrix or dataframe at the start. See https://github.com/scikit-learn/scikit-learn/issues/8710 Also test it can predict without running into validation errors. See https://github.com/scikit-learn/scikit-learn/issues/19637 """ X, y = dict_data clf = dict_data_pipeline calib_clf = CalibratedClassifierCV(clf, cv="prefit") calib_clf.fit(X, y) # Check attributes are obtained from fitted estimator assert_array_equal(calib_clf.classes_, clf.classes_) # Neither the pipeline nor the calibration meta-estimator # expose the n_features_in_ check on this kind of data. assert not hasattr(clf, "n_features_in_") assert not hasattr(calib_clf, "n_features_in_") # Ensure that no error is thrown with predict and predict_proba calib_clf.predict(X) calib_clf.predict_proba(X) @pytest.mark.parametrize( "clf, cv", [ pytest.param(LinearSVC(C=1), 2), pytest.param(LinearSVC(C=1), "prefit"), ], ) def test_calibration_attributes(clf, cv): # Check that `n_features_in_` and `classes_` attributes created properly X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) if cv == "prefit": clf = clf.fit(X, y) calib_clf = CalibratedClassifierCV(clf, cv=cv) calib_clf.fit(X, y) if cv == "prefit": assert_array_equal(calib_clf.classes_, clf.classes_) assert calib_clf.n_features_in_ == clf.n_features_in_ else: classes = LabelEncoder().fit(y).classes_ assert_array_equal(calib_clf.classes_, classes) assert calib_clf.n_features_in_ == X.shape[1] def test_calibration_inconsistent_prefit_n_features_in(): # Check that `n_features_in_` from prefit base estimator # is consistent with training set X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) clf = LinearSVC(C=1).fit(X, y) calib_clf = CalibratedClassifierCV(clf, cv="prefit") msg = "X has 3 features, but LinearSVC is expecting 5 features as input." with pytest.raises(ValueError, match=msg): calib_clf.fit(X[:, :3], y) def test_calibration_votingclassifier(): # Check that `CalibratedClassifier` works with `VotingClassifier`. # The method `predict_proba` from `VotingClassifier` is dynamically # defined via a property that only works when voting="soft". X, y = make_classification(n_samples=10, n_features=5, n_classes=2, random_state=7) vote = VotingClassifier( estimators=[("lr" + str(i), LogisticRegression()) for i in range(3)], voting="soft", ) vote.fit(X, y) calib_clf = CalibratedClassifierCV(estimator=vote, cv="prefit") # smoke test: should not raise an error calib_clf.fit(X, y) @pytest.fixture(scope="module") def iris_data(): return load_iris(return_X_y=True) @pytest.fixture(scope="module") def iris_data_binary(iris_data): X, y = iris_data return X[y < 2], y[y < 2] def test_calibration_display_validation(pyplot, iris_data, iris_data_binary): X, y = iris_data X_binary, y_binary = iris_data_binary reg = LinearRegression().fit(X, y) msg = "'estimator' should be a fitted classifier" with pytest.raises(ValueError, match=msg): CalibrationDisplay.from_estimator(reg, X, y) clf = LinearSVC().fit(X, y) msg = "response method predict_proba is not defined in" with pytest.raises(ValueError, match=msg): CalibrationDisplay.from_estimator(clf, X, y) clf = LogisticRegression() with pytest.raises(NotFittedError): CalibrationDisplay.from_estimator(clf, X, y) @pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"]) def test_calibration_display_non_binary(pyplot, iris_data, constructor_name): X, y = iris_data clf = DecisionTreeClassifier() clf.fit(X, y) y_prob = clf.predict_proba(X) if constructor_name == "from_estimator": msg = "to be a binary classifier, but got" with pytest.raises(ValueError, match=msg): CalibrationDisplay.from_estimator(clf, X, y) else: msg = "y should be a 1d array, got an array of shape" with pytest.raises(ValueError, match=msg): CalibrationDisplay.from_predictions(y, y_prob) @pytest.mark.parametrize("n_bins", [5, 10]) @pytest.mark.parametrize("strategy", ["uniform", "quantile"]) def test_calibration_display_compute(pyplot, iris_data_binary, n_bins, strategy): # Ensure `CalibrationDisplay.from_predictions` and `calibration_curve` # compute the same results. Also checks attributes of the # CalibrationDisplay object. X, y = iris_data_binary lr = LogisticRegression().fit(X, y) viz = CalibrationDisplay.from_estimator( lr, X, y, n_bins=n_bins, strategy=strategy, alpha=0.8 ) y_prob = lr.predict_proba(X)[:, 1] prob_true, prob_pred = calibration_curve( y, y_prob, n_bins=n_bins, strategy=strategy ) assert_allclose(viz.prob_true, prob_true) assert_allclose(viz.prob_pred, prob_pred) assert_allclose(viz.y_prob, y_prob) assert viz.estimator_name == "LogisticRegression" # cannot fail thanks to pyplot fixture import matplotlib as mpl # noqa assert isinstance(viz.line_, mpl.lines.Line2D) assert viz.line_.get_alpha() == 0.8 assert isinstance(viz.ax_, mpl.axes.Axes) assert isinstance(viz.figure_, mpl.figure.Figure) assert viz.ax_.get_xlabel() == "Mean predicted probability (Positive class: 1)" assert viz.ax_.get_ylabel() == "Fraction of positives (Positive class: 1)" expected_legend_labels = ["LogisticRegression", "Perfectly calibrated"] legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels def test_plot_calibration_curve_pipeline(pyplot, iris_data_binary): # Ensure pipelines are supported by CalibrationDisplay.from_estimator X, y = iris_data_binary clf = make_pipeline(StandardScaler(), LogisticRegression()) clf.fit(X, y) viz = CalibrationDisplay.from_estimator(clf, X, y) expected_legend_labels = [viz.estimator_name, "Perfectly calibrated"] legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels @pytest.mark.parametrize( "name, expected_label", [(None, "_line1"), ("my_est", "my_est")] ) def test_calibration_display_default_labels(pyplot, name, expected_label): prob_true = np.array([0, 1, 1, 0]) prob_pred = np.array([0.2, 0.8, 0.8, 0.4]) y_prob = np.array([]) viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name) viz.plot() expected_legend_labels = [] if name is None else [name] expected_legend_labels.append("Perfectly calibrated") legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels def test_calibration_display_label_class_plot(pyplot): # Checks that when instantiating `CalibrationDisplay` class then calling # `plot`, `self.estimator_name` is the one given in `plot` prob_true = np.array([0, 1, 1, 0]) prob_pred = np.array([0.2, 0.8, 0.8, 0.4]) y_prob = np.array([]) name = "name one" viz = CalibrationDisplay(prob_true, prob_pred, y_prob, estimator_name=name) assert viz.estimator_name == name name = "name two" viz.plot(name=name) expected_legend_labels = [name, "Perfectly calibrated"] legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels @pytest.mark.parametrize("constructor_name", ["from_estimator", "from_predictions"]) def test_calibration_display_name_multiple_calls( constructor_name, pyplot, iris_data_binary ): # Check that the `name` used when calling # `CalibrationDisplay.from_predictions` or # `CalibrationDisplay.from_estimator` is used when multiple # `CalibrationDisplay.viz.plot()` calls are made. X, y = iris_data_binary clf_name = "my hand-crafted name" clf = LogisticRegression().fit(X, y) y_prob = clf.predict_proba(X)[:, 1] constructor = getattr(CalibrationDisplay, constructor_name) params = (clf, X, y) if constructor_name == "from_estimator" else (y, y_prob) viz = constructor(*params, name=clf_name) assert viz.estimator_name == clf_name pyplot.close("all") viz.plot() expected_legend_labels = [clf_name, "Perfectly calibrated"] legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels pyplot.close("all") clf_name = "another_name" viz.plot(name=clf_name) assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels def test_calibration_display_ref_line(pyplot, iris_data_binary): # Check that `ref_line` only appears once X, y = iris_data_binary lr = LogisticRegression().fit(X, y) dt = DecisionTreeClassifier().fit(X, y) viz = CalibrationDisplay.from_estimator(lr, X, y) viz2 = CalibrationDisplay.from_estimator(dt, X, y, ax=viz.ax_) labels = viz2.ax_.get_legend_handles_labels()[1] assert labels.count("Perfectly calibrated") == 1 @pytest.mark.parametrize("dtype_y_str", [str, object]) def test_calibration_curve_pos_label_error_str(dtype_y_str): """Check error message when a `pos_label` is not specified with `str` targets.""" rng = np.random.RandomState(42) y1 = np.array(["spam"] * 3 + ["eggs"] * 2, dtype=dtype_y_str) y2 = rng.randint(0, 2, size=y1.size) err_msg = ( "y_true takes value in {'eggs', 'spam'} and pos_label is not " "specified: either make y_true take value in {0, 1} or {-1, 1} or " "pass pos_label explicitly" ) with pytest.raises(ValueError, match=err_msg): calibration_curve(y1, y2) @pytest.mark.parametrize("dtype_y_str", [str, object]) def test_calibration_curve_pos_label(dtype_y_str): """Check the behaviour when passing explicitly `pos_label`.""" y_true = np.array([0, 0, 0, 1, 1, 1, 1, 1, 1]) classes = np.array(["spam", "egg"], dtype=dtype_y_str) y_true_str = classes[y_true] y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9, 1.0]) # default case prob_true, _ = calibration_curve(y_true, y_pred, n_bins=4) assert_allclose(prob_true, [0, 0.5, 1, 1]) # if `y_true` contains `str`, then `pos_label` is required prob_true, _ = calibration_curve(y_true_str, y_pred, n_bins=4, pos_label="egg") assert_allclose(prob_true, [0, 0.5, 1, 1]) prob_true, _ = calibration_curve(y_true, 1 - y_pred, n_bins=4, pos_label=0) assert_allclose(prob_true, [0, 0, 0.5, 1]) prob_true, _ = calibration_curve(y_true_str, 1 - y_pred, n_bins=4, pos_label="spam") assert_allclose(prob_true, [0, 0, 0.5, 1]) @pytest.mark.parametrize("pos_label, expected_pos_label", [(None, 1), (0, 0), (1, 1)]) def test_calibration_display_pos_label( pyplot, iris_data_binary, pos_label, expected_pos_label ): """Check the behaviour of `pos_label` in the `CalibrationDisplay`.""" X, y = iris_data_binary lr = LogisticRegression().fit(X, y) viz = CalibrationDisplay.from_estimator(lr, X, y, pos_label=pos_label) y_prob = lr.predict_proba(X)[:, expected_pos_label] prob_true, prob_pred = calibration_curve(y, y_prob, pos_label=pos_label) assert_allclose(viz.prob_true, prob_true) assert_allclose(viz.prob_pred, prob_pred) assert_allclose(viz.y_prob, y_prob) assert ( viz.ax_.get_xlabel() == f"Mean predicted probability (Positive class: {expected_pos_label})" ) assert ( viz.ax_.get_ylabel() == f"Fraction of positives (Positive class: {expected_pos_label})" ) expected_legend_labels = [lr.__class__.__name__, "Perfectly calibrated"] legend_labels = viz.ax_.get_legend().get_texts() assert len(legend_labels) == len(expected_legend_labels) for labels in legend_labels: assert labels.get_text() in expected_legend_labels @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibrated_classifier_cv_double_sample_weights_equivalence(method, ensemble): """Check that passing repeating twice the dataset `X` is equivalent to passing a `sample_weight` with a factor 2.""" X, y = load_iris(return_X_y=True) # Scale the data to avoid any convergence issue X = StandardScaler().fit_transform(X) # Only use 2 classes X, y = X[:100], y[:100] sample_weight = np.ones_like(y) * 2 # Interlace the data such that a 2-fold cross-validation will be equivalent # to using the original dataset with a sample weights of 2 X_twice = np.zeros((X.shape[0] * 2, X.shape[1]), dtype=X.dtype) X_twice[::2, :] = X X_twice[1::2, :] = X y_twice = np.zeros(y.shape[0] * 2, dtype=y.dtype) y_twice[::2] = y y_twice[1::2] = y estimator = LogisticRegression() calibrated_clf_without_weights = CalibratedClassifierCV( estimator, method=method, ensemble=ensemble, cv=2, ) calibrated_clf_with_weights = clone(calibrated_clf_without_weights) calibrated_clf_with_weights.fit(X, y, sample_weight=sample_weight) calibrated_clf_without_weights.fit(X_twice, y_twice) # Check that the underlying fitted estimators have the same coefficients for est_with_weights, est_without_weights in zip( calibrated_clf_with_weights.calibrated_classifiers_, calibrated_clf_without_weights.calibrated_classifiers_, ): assert_allclose( est_with_weights.estimator.coef_, est_without_weights.estimator.coef_, ) # Check that the predictions are the same y_pred_with_weights = calibrated_clf_with_weights.predict_proba(X) y_pred_without_weights = calibrated_clf_without_weights.predict_proba(X) assert_allclose(y_pred_with_weights, y_pred_without_weights) @pytest.mark.parametrize("fit_params_type", ["list", "array"]) def test_calibration_with_fit_params(fit_params_type, data): """Tests that fit_params are passed to the underlying base estimator. Non-regression test for: https://github.com/scikit-learn/scikit-learn/issues/12384 """ X, y = data fit_params = { "a": _convert_container(y, fit_params_type), "b": _convert_container(y, fit_params_type), } clf = CheckingClassifier(expected_fit_params=["a", "b"]) pc_clf = CalibratedClassifierCV(clf) pc_clf.fit(X, y, **fit_params) @pytest.mark.parametrize( "sample_weight", [ [1.0] * N_SAMPLES, np.ones(N_SAMPLES), ], ) def test_calibration_with_sample_weight_base_estimator(sample_weight, data): """Tests that sample_weight is passed to the underlying base estimator. """ X, y = data clf = CheckingClassifier(expected_sample_weight=True) pc_clf = CalibratedClassifierCV(clf) pc_clf.fit(X, y, sample_weight=sample_weight) def test_calibration_without_sample_weight_base_estimator(data): """Check that even if the estimator doesn't support sample_weight, fitting with sample_weight still works. There should be a warning, since the sample_weight is not passed on to the estimator. """ X, y = data sample_weight = np.ones_like(y) class ClfWithoutSampleWeight(CheckingClassifier): def fit(self, X, y, **fit_params): assert "sample_weight" not in fit_params return super().fit(X, y, **fit_params) clf = ClfWithoutSampleWeight() pc_clf = CalibratedClassifierCV(clf) with pytest.warns(UserWarning): pc_clf.fit(X, y, sample_weight=sample_weight) def test_calibration_with_fit_params_inconsistent_length(data): """fit_params having different length than data should raise the correct error message. """ X, y = data fit_params = {"a": y[:5]} clf = CheckingClassifier(expected_fit_params=fit_params) pc_clf = CalibratedClassifierCV(clf) msg = ( r"Found input variables with inconsistent numbers of " r"samples: \[" + str(N_SAMPLES) + r", 5\]" ) with pytest.raises(ValueError, match=msg): pc_clf.fit(X, y, **fit_params) @pytest.mark.parametrize("method", ["sigmoid", "isotonic"]) @pytest.mark.parametrize("ensemble", [True, False]) def test_calibrated_classifier_cv_zeros_sample_weights_equivalence(method, ensemble): """Check that passing removing some sample from the dataset `X` is equivalent to passing a `sample_weight` with a factor 0.""" X, y = load_iris(return_X_y=True) # Scale the data to avoid any convergence issue X = StandardScaler().fit_transform(X) # Only use 2 classes and select samples such that 2-fold cross-validation # split will lead to an equivalence with a `sample_weight` of 0 X = np.vstack((X[:40], X[50:90])) y = np.hstack((y[:40], y[50:90])) sample_weight = np.zeros_like(y) sample_weight[::2] = 1 estimator = LogisticRegression() calibrated_clf_without_weights = CalibratedClassifierCV( estimator, method=method, ensemble=ensemble, cv=2, ) calibrated_clf_with_weights = clone(calibrated_clf_without_weights) calibrated_clf_with_weights.fit(X, y, sample_weight=sample_weight) calibrated_clf_without_weights.fit(X[::2], y[::2]) # Check that the underlying fitted estimators have the same coefficients for est_with_weights, est_without_weights in zip( calibrated_clf_with_weights.calibrated_classifiers_, calibrated_clf_without_weights.calibrated_classifiers_, ): assert_allclose( est_with_weights.estimator.coef_, est_without_weights.estimator.coef_, ) # Check that the predictions are the same y_pred_with_weights = calibrated_clf_with_weights.predict_proba(X) y_pred_without_weights = calibrated_clf_without_weights.predict_proba(X) assert_allclose(y_pred_with_weights, y_pred_without_weights) # TODO(1.4): Remove def test_calibrated_classifier_error_base_estimator(data): """Check that we raise an error is a user set both `base_estimator` and `estimator`.""" calibrated_classifier = CalibratedClassifierCV( base_estimator=LogisticRegression(), estimator=LogisticRegression() ) with pytest.raises(ValueError, match="Both `base_estimator` and `estimator`"): calibrated_classifier.fit(*data) # TODO(1.4): Remove def test_calibrated_classifier_deprecation_base_estimator(data): """Check that we raise a warning regarding the deprecation of `base_estimator`.""" calibrated_classifier = CalibratedClassifierCV(base_estimator=LogisticRegression()) warn_msg = "`base_estimator` was renamed to `estimator`" with pytest.warns(FutureWarning, match=warn_msg): calibrated_classifier.fit(*data)
bsd-3-clause
anntzer/scikit-learn
examples/cluster/plot_optics.py
11
3572
""" =================================== Demo of OPTICS clustering algorithm =================================== .. currentmodule:: sklearn Finds core samples of high density and expands clusters from them. This example uses data that is generated so that the clusters have different densities. The :class:`~cluster.OPTICS` is first used with its Xi cluster detection method, and then setting specific thresholds on the reachability, which corresponds to :class:`~cluster.DBSCAN`. We can see that the different clusters of OPTICS's Xi method can be recovered with different choices of thresholds in DBSCAN. """ # Authors: Shane Grigsby <[email protected]> # Adrin Jalali <[email protected]> # License: BSD 3 clause from sklearn.cluster import OPTICS, cluster_optics_dbscan import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt import numpy as np # Generate sample data np.random.seed(0) n_points_per_cluster = 250 C1 = [-5, -2] + 0.8 * np.random.randn(n_points_per_cluster, 2) C2 = [4, -1] + 0.1 * np.random.randn(n_points_per_cluster, 2) C3 = [1, -2] + 0.2 * np.random.randn(n_points_per_cluster, 2) C4 = [-2, 3] + 0.3 * np.random.randn(n_points_per_cluster, 2) C5 = [3, -2] + 1.6 * np.random.randn(n_points_per_cluster, 2) C6 = [5, 6] + 2 * np.random.randn(n_points_per_cluster, 2) X = np.vstack((C1, C2, C3, C4, C5, C6)) clust = OPTICS(min_samples=50, xi=0.05, min_cluster_size=0.05) # Run the fit clust.fit(X) labels_050 = cluster_optics_dbscan( reachability=clust.reachability_, core_distances=clust.core_distances_, ordering=clust.ordering_, eps=0.5, ) labels_200 = cluster_optics_dbscan( reachability=clust.reachability_, core_distances=clust.core_distances_, ordering=clust.ordering_, eps=2, ) space = np.arange(len(X)) reachability = clust.reachability_[clust.ordering_] labels = clust.labels_[clust.ordering_] plt.figure(figsize=(10, 7)) G = gridspec.GridSpec(2, 3) ax1 = plt.subplot(G[0, :]) ax2 = plt.subplot(G[1, 0]) ax3 = plt.subplot(G[1, 1]) ax4 = plt.subplot(G[1, 2]) # Reachability plot colors = ["g.", "r.", "b.", "y.", "c."] for klass, color in zip(range(0, 5), colors): Xk = space[labels == klass] Rk = reachability[labels == klass] ax1.plot(Xk, Rk, color, alpha=0.3) ax1.plot(space[labels == -1], reachability[labels == -1], "k.", alpha=0.3) ax1.plot(space, np.full_like(space, 2.0, dtype=float), "k-", alpha=0.5) ax1.plot(space, np.full_like(space, 0.5, dtype=float), "k-.", alpha=0.5) ax1.set_ylabel("Reachability (epsilon distance)") ax1.set_title("Reachability Plot") # OPTICS colors = ["g.", "r.", "b.", "y.", "c."] for klass, color in zip(range(0, 5), colors): Xk = X[clust.labels_ == klass] ax2.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3) ax2.plot(X[clust.labels_ == -1, 0], X[clust.labels_ == -1, 1], "k+", alpha=0.1) ax2.set_title("Automatic Clustering\nOPTICS") # DBSCAN at 0.5 colors = ["g", "greenyellow", "olive", "r", "b", "c"] for klass, color in zip(range(0, 6), colors): Xk = X[labels_050 == klass] ax3.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3, marker=".") ax3.plot(X[labels_050 == -1, 0], X[labels_050 == -1, 1], "k+", alpha=0.1) ax3.set_title("Clustering at 0.5 epsilon cut\nDBSCAN") # DBSCAN at 2. colors = ["g.", "m.", "y.", "c."] for klass, color in zip(range(0, 4), colors): Xk = X[labels_200 == klass] ax4.plot(Xk[:, 0], Xk[:, 1], color, alpha=0.3) ax4.plot(X[labels_200 == -1, 0], X[labels_200 == -1, 1], "k+", alpha=0.1) ax4.set_title("Clustering at 2.0 epsilon cut\nDBSCAN") plt.tight_layout() plt.show()
bsd-3-clause
pytorch/fairseq
fairseq/data/audio/speech_to_text_dataset.py
1
19717
# Copyright (c) Facebook, Inc. and its affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import csv import io import logging import re from collections import defaultdict from dataclasses import dataclass from pathlib import Path from typing import Dict, List, Optional import numpy as np import torch import torch.nn.functional as F from fairseq.data import ConcatDataset, Dictionary, FairseqDataset, ResamplingDataset from fairseq.data import data_utils as fairseq_data_utils from fairseq.data.audio.audio_utils import ( FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS, get_fbank, get_waveform, is_npy_data, is_sf_audio_data, parse_path, read_from_stored_zip, ) from fairseq.data.audio.data_cfg import S2TDataConfig from fairseq.data.audio.feature_transforms import CompositeAudioFeatureTransform logger = logging.getLogger(__name__) def get_features_from_npy_or_audio(path): ext = Path(path).suffix if ext not in FEATURE_OR_SF_AUDIO_FILE_EXTENSIONS: raise ValueError(f'Unsupported file format for "{path}"') return np.load(path) if ext == ".npy" else get_fbank(path) def get_features_or_waveform_from_stored_zip( path, byte_offset, byte_size, need_waveform=False, use_sample_rate=None, ): assert path.endswith(".zip") data = read_from_stored_zip(path, byte_offset, byte_size) f = io.BytesIO(data) if is_npy_data(data): features_or_waveform = np.load(f) elif is_sf_audio_data(data): features_or_waveform = ( get_waveform(f, always_2d=False, output_sample_rate=use_sample_rate)[0] if need_waveform else get_fbank(f) ) else: raise ValueError(f'Unknown file format for "{path}"') return features_or_waveform def get_features_or_waveform(path: str, need_waveform=False, use_sample_rate=None): """Get speech features from .npy file or waveform from .wav/.flac file. The file may be inside an uncompressed ZIP file and is accessed via byte offset and length. Args: path (str): File path in the format of "<.npy/.wav/.flac path>" or "<zip path>:<byte offset>:<byte length>". need_waveform (bool): return waveform instead of features. use_sample_rate (int): change sample rate for the input wave file Returns: features_or_waveform (numpy.ndarray): speech features or waveform. """ _path, slice_ptr = parse_path(path) if len(slice_ptr) == 0: if need_waveform: return get_waveform( _path, always_2d=False, output_sample_rate=use_sample_rate )[0] return get_features_from_npy_or_audio(_path) elif len(slice_ptr) == 2: features_or_waveform = get_features_or_waveform_from_stored_zip( _path, slice_ptr[0], slice_ptr[1], need_waveform=need_waveform, use_sample_rate=use_sample_rate, ) else: raise ValueError(f"Invalid path: {path}") return features_or_waveform def _collate_frames( frames: List[torch.Tensor], is_audio_input: bool = False ) -> torch.Tensor: """ Convert a list of 2D frames into a padded 3D tensor Args: frames (list): list of 2D frames of size L[i]*f_dim. Where L[i] is length of i-th frame and f_dim is static dimension of features Returns: 3D tensor of size len(frames)*len_max*f_dim where len_max is max of L[i] """ max_len = max(frame.size(0) for frame in frames) if is_audio_input: out = frames[0].new_zeros((len(frames), max_len)) else: out = frames[0].new_zeros((len(frames), max_len, frames[0].size(1))) for i, v in enumerate(frames): out[i, : v.size(0)] = v return out @dataclass class SpeechToTextDatasetItem(object): index: int source: torch.Tensor target: Optional[torch.Tensor] = None speaker_id: Optional[int] = None class SpeechToTextDataset(FairseqDataset): LANG_TAG_TEMPLATE = "<lang:{}>" def __init__( self, split: str, is_train_split: bool, cfg: S2TDataConfig, audio_paths: List[str], n_frames: List[int], src_texts: Optional[List[str]] = None, tgt_texts: Optional[List[str]] = None, speakers: Optional[List[str]] = None, src_langs: Optional[List[str]] = None, tgt_langs: Optional[List[str]] = None, ids: Optional[List[str]] = None, tgt_dict: Optional[Dictionary] = None, pre_tokenizer=None, bpe_tokenizer=None, n_frames_per_step=1, speaker_to_id=None, append_eos=True, ): self.split, self.is_train_split = split, is_train_split self.cfg = cfg self.audio_paths, self.n_frames = audio_paths, n_frames self.n_samples = len(audio_paths) assert len(n_frames) == self.n_samples > 0 assert src_texts is None or len(src_texts) == self.n_samples assert tgt_texts is None or len(tgt_texts) == self.n_samples assert speakers is None or len(speakers) == self.n_samples assert src_langs is None or len(src_langs) == self.n_samples assert tgt_langs is None or len(tgt_langs) == self.n_samples assert ids is None or len(ids) == self.n_samples assert (tgt_dict is None and tgt_texts is None) or ( tgt_dict is not None and tgt_texts is not None ) self.src_texts, self.tgt_texts = src_texts, tgt_texts self.src_langs, self.tgt_langs = src_langs, tgt_langs self.speakers = speakers self.tgt_dict = tgt_dict self.check_tgt_lang_tag() self.ids = ids self.shuffle = cfg.shuffle if is_train_split else False self.feature_transforms = CompositeAudioFeatureTransform.from_config_dict( self.cfg.get_feature_transforms(split, is_train_split) ) self.pre_tokenizer = pre_tokenizer self.bpe_tokenizer = bpe_tokenizer self.n_frames_per_step = n_frames_per_step self.speaker_to_id = speaker_to_id self.tgt_lens = self.get_tgt_lens_and_check_oov() self.append_eos = append_eos logger.info(self.__repr__()) def get_tgt_lens_and_check_oov(self): if self.tgt_texts is None: return [0 for _ in range(self.n_samples)] tgt_lens = [] n_tokens, n_oov_tokens = 0, 0 for i in range(self.n_samples): tokenized = self.get_tokenized_tgt_text(i).split(" ") oov_tokens = [ t for t in tokenized if self.tgt_dict.index(t) == self.tgt_dict.unk_index ] n_tokens += len(tokenized) n_oov_tokens += len(oov_tokens) tgt_lens.append(len(tokenized)) logger.info(f"'{self.split}' has {n_oov_tokens / n_tokens * 100:.2f}% OOV") return tgt_lens def __repr__(self): return ( self.__class__.__name__ + f'(split="{self.split}", n_samples={self.n_samples:_}, ' f"prepend_tgt_lang_tag={self.cfg.prepend_tgt_lang_tag}, " f"shuffle={self.shuffle}, transforms={self.feature_transforms}, " f"n_frames_per_step={self.n_frames_per_step}" ) @classmethod def is_lang_tag(cls, token): pattern = cls.LANG_TAG_TEMPLATE.replace("{}", "(.*)") return re.match(pattern, token) def check_tgt_lang_tag(self): if self.cfg.prepend_tgt_lang_tag: assert self.tgt_langs is not None and self.tgt_dict is not None tgt_lang_tags = [ self.LANG_TAG_TEMPLATE.format(t) for t in set(self.tgt_langs) ] assert all(t in self.tgt_dict for t in tgt_lang_tags) @classmethod def tokenize(cls, tokenizer, text: str): return text if tokenizer is None else tokenizer.encode(text) def get_tokenized_tgt_text(self, index: int): text = self.tokenize(self.pre_tokenizer, self.tgt_texts[index]) text = self.tokenize(self.bpe_tokenizer, text) return text def pack_frames(self, feature: torch.Tensor): if self.n_frames_per_step == 1: return feature n_packed_frames = feature.shape[0] // self.n_frames_per_step feature = feature[: self.n_frames_per_step * n_packed_frames] return feature.reshape(n_packed_frames, -1) @classmethod def get_lang_tag_idx(cls, lang: str, dictionary: Dictionary): lang_tag_idx = dictionary.index(cls.LANG_TAG_TEMPLATE.format(lang)) assert lang_tag_idx != dictionary.unk() return lang_tag_idx def _get_source_audio(self, index: int) -> torch.Tensor: source = get_features_or_waveform( self.audio_paths[index], need_waveform=self.cfg.use_audio_input, use_sample_rate=self.cfg.use_sample_rate, ) if self.cfg.use_audio_input: source = torch.from_numpy(source).float() if self.cfg.standardize_audio: with torch.no_grad(): source = F.layer_norm(source, source.shape) else: if self.feature_transforms is not None: source = self.feature_transforms(source) source = torch.from_numpy(source).float() return source def __getitem__(self, index: int) -> SpeechToTextDatasetItem: source = self._get_source_audio(index) source = self.pack_frames(source) target = None if self.tgt_texts is not None: tokenized = self.get_tokenized_tgt_text(index) target = self.tgt_dict.encode_line( tokenized, add_if_not_exist=False, append_eos=self.append_eos ).long() if self.cfg.prepend_tgt_lang_tag: lang_tag_idx = self.get_lang_tag_idx( self.tgt_langs[index], self.tgt_dict ) target = torch.cat((torch.LongTensor([lang_tag_idx]), target), 0) if self.cfg.prepend_bos_and_append_tgt_lang_tag: bos = torch.LongTensor([self.tgt_dict.bos()]) lang_tag_idx = self.get_lang_tag_idx(self.tgt_langs[index], self.tgt_dict) assert lang_tag_idx != self.tgt_dict.unk() lang_tag_idx = torch.LongTensor([lang_tag_idx]) target = torch.cat((bos, target, lang_tag_idx), 0) speaker_id = None if self.speaker_to_id is not None: speaker_id = self.speaker_to_id[self.speakers[index]] return SpeechToTextDatasetItem( index=index, source=source, target=target, speaker_id=speaker_id ) def __len__(self): return self.n_samples def collater( self, samples: List[SpeechToTextDatasetItem], return_order: bool = False ) -> Dict: if len(samples) == 0: return {} indices = torch.tensor([x.index for x in samples], dtype=torch.long) frames = _collate_frames([x.source for x in samples], self.cfg.use_audio_input) # sort samples by descending number of frames n_frames = torch.tensor([x.source.size(0) for x in samples], dtype=torch.long) n_frames, order = n_frames.sort(descending=True) indices = indices.index_select(0, order) frames = frames.index_select(0, order) target, target_lengths = None, None prev_output_tokens = None ntokens = None if self.tgt_texts is not None: target = fairseq_data_utils.collate_tokens( [x.target for x in samples], self.tgt_dict.pad(), self.tgt_dict.eos(), left_pad=False, move_eos_to_beginning=False, ) target = target.index_select(0, order) target_lengths = torch.tensor( [x.target.size(0) for x in samples], dtype=torch.long ).index_select(0, order) prev_output_tokens = fairseq_data_utils.collate_tokens( [x.target for x in samples], self.tgt_dict.pad(), eos_idx=None, left_pad=False, move_eos_to_beginning=True, ) prev_output_tokens = prev_output_tokens.index_select(0, order) ntokens = sum(x.target.size(0) for x in samples) speaker = None if self.speaker_to_id is not None: speaker = ( torch.tensor([s.speaker_id for s in samples], dtype=torch.long) .index_select(0, order) .view(-1, 1) ) net_input = { "src_tokens": frames, "src_lengths": n_frames, "prev_output_tokens": prev_output_tokens, } out = { "id": indices, "net_input": net_input, "speaker": speaker, "target": target, "target_lengths": target_lengths, "ntokens": ntokens, "nsentences": len(samples), } if return_order: out["order"] = order return out def num_tokens(self, index): return self.n_frames[index] def size(self, index): return self.n_frames[index], self.tgt_lens[index] @property def sizes(self): return np.array(self.n_frames) @property def can_reuse_epoch_itr_across_epochs(self): return True def ordered_indices(self): if self.shuffle: order = [np.random.permutation(len(self))] else: order = [np.arange(len(self))] # first by descending order of # of frames then by original/random order order.append([-n for n in self.n_frames]) return np.lexsort(order) def prefetch(self, indices): raise False class SpeechToTextDatasetCreator(object): # mandatory columns KEY_ID, KEY_AUDIO, KEY_N_FRAMES = "id", "audio", "n_frames" KEY_TGT_TEXT = "tgt_text" # optional columns KEY_SPEAKER, KEY_SRC_TEXT = "speaker", "src_text" KEY_SRC_LANG, KEY_TGT_LANG = "src_lang", "tgt_lang" # default values DEFAULT_SPEAKER = DEFAULT_SRC_TEXT = DEFAULT_LANG = "" @classmethod def _from_list( cls, split_name: str, is_train_split, samples: List[Dict], cfg: S2TDataConfig, tgt_dict, pre_tokenizer, bpe_tokenizer, n_frames_per_step, speaker_to_id, ) -> SpeechToTextDataset: audio_root = Path(cfg.audio_root) ids = [s[cls.KEY_ID] for s in samples] audio_paths = [(audio_root / s[cls.KEY_AUDIO]).as_posix() for s in samples] n_frames = [int(s[cls.KEY_N_FRAMES]) for s in samples] tgt_texts = [s[cls.KEY_TGT_TEXT] for s in samples] src_texts = [s.get(cls.KEY_SRC_TEXT, cls.DEFAULT_SRC_TEXT) for s in samples] speakers = [s.get(cls.KEY_SPEAKER, cls.DEFAULT_SPEAKER) for s in samples] src_langs = [s.get(cls.KEY_SRC_LANG, cls.DEFAULT_LANG) for s in samples] tgt_langs = [s.get(cls.KEY_TGT_LANG, cls.DEFAULT_LANG) for s in samples] return SpeechToTextDataset( split_name, is_train_split, cfg, audio_paths, n_frames, src_texts=src_texts, tgt_texts=tgt_texts, speakers=speakers, src_langs=src_langs, tgt_langs=tgt_langs, ids=ids, tgt_dict=tgt_dict, pre_tokenizer=pre_tokenizer, bpe_tokenizer=bpe_tokenizer, n_frames_per_step=n_frames_per_step, speaker_to_id=speaker_to_id, ) @classmethod def get_size_ratios( cls, datasets: List[SpeechToTextDataset], alpha: float = 1.0 ) -> List[float]: """Size ratios for temperature-based sampling (https://arxiv.org/abs/1907.05019)""" id_to_lp, lp_to_sz = {}, defaultdict(int) for ds in datasets: lang_pairs = {f"{s}->{t}" for s, t in zip(ds.src_langs, ds.tgt_langs)} assert len(lang_pairs) == 1 lang_pair = list(lang_pairs)[0] id_to_lp[ds.split] = lang_pair lp_to_sz[lang_pair] += sum(ds.n_frames) sz_sum = sum(v for v in lp_to_sz.values()) lp_to_prob = {k: v / sz_sum for k, v in lp_to_sz.items()} lp_to_tgt_prob = {k: v**alpha for k, v in lp_to_prob.items()} prob_sum = sum(v for v in lp_to_tgt_prob.values()) lp_to_tgt_prob = {k: v / prob_sum for k, v in lp_to_tgt_prob.items()} lp_to_sz_ratio = { k: (lp_to_tgt_prob[k] * sz_sum) / v for k, v in lp_to_sz.items() } size_ratio = [lp_to_sz_ratio[id_to_lp[ds.split]] for ds in datasets] p_formatted = { k: f"{lp_to_prob[k]:.3f}->{lp_to_tgt_prob[k]:.3f}" for k in lp_to_sz } logger.info(f"sampling probability balancing: {p_formatted}") sr_formatted = {ds.split: f"{r:.3f}" for ds, r in zip(datasets, size_ratio)} logger.info(f"balanced sampling size ratio: {sr_formatted}") return size_ratio @classmethod def _load_samples_from_tsv(cls, root: str, split: str): tsv_path = Path(root) / f"{split}.tsv" if not tsv_path.is_file(): raise FileNotFoundError(f"Dataset not found: {tsv_path}") with open(tsv_path) as f: reader = csv.DictReader( f, delimiter="\t", quotechar=None, doublequote=False, lineterminator="\n", quoting=csv.QUOTE_NONE, ) samples = [dict(e) for e in reader] if len(samples) == 0: raise ValueError(f"Empty manifest: {tsv_path}") return samples @classmethod def _from_tsv( cls, root: str, cfg: S2TDataConfig, split: str, tgt_dict, is_train_split: bool, pre_tokenizer, bpe_tokenizer, n_frames_per_step, speaker_to_id, ) -> SpeechToTextDataset: samples = cls._load_samples_from_tsv(root, split) return cls._from_list( split, is_train_split, samples, cfg, tgt_dict, pre_tokenizer, bpe_tokenizer, n_frames_per_step, speaker_to_id, ) @classmethod def from_tsv( cls, root: str, cfg: S2TDataConfig, splits: str, tgt_dict, pre_tokenizer, bpe_tokenizer, is_train_split: bool, epoch: int, seed: int, n_frames_per_step: int = 1, speaker_to_id=None, ) -> SpeechToTextDataset: datasets = [ cls._from_tsv( root, cfg, split, tgt_dict, is_train_split, pre_tokenizer, bpe_tokenizer, n_frames_per_step, speaker_to_id, ) for split in splits.split(",") ] if is_train_split and len(datasets) > 1 and cfg.sampling_alpha != 1.0: # temperature-based sampling size_ratios = cls.get_size_ratios(datasets, alpha=cfg.sampling_alpha) datasets = [ ResamplingDataset( d, size_ratio=r, seed=seed, epoch=epoch, replace=(r >= 1.0) ) for r, d in zip(size_ratios, datasets) ] return ConcatDataset(datasets) if len(datasets) > 1 else datasets[0]
mit
florian-f/sklearn
examples/cluster/plot_kmeans_digits.py
4
4494
""" =========================================================== A demo of K-Means clustering on the handwritten digits data =========================================================== In this example with compare the various initialization strategies for K-means in terms of runtime and quality of the results. As the ground truth is known here, we also apply different cluster quality metrics to judge the goodness of fit of the cluster labels to the ground truth. Cluster quality metrics evaluated (see :ref:`clustering_evaluation` for definitions and discussions of the metrics): =========== ======================================================== Shorthand full name =========== ======================================================== homo homogeneity score compl completeness score v-meas V measure ARI adjusted Rand index AMI adjusted mutual information silhouette silhouette coefficient =========== ======================================================== """ print(__doc__) from time import time import numpy as np import pylab as pl from sklearn import metrics from sklearn.cluster import KMeans from sklearn.datasets import load_digits from sklearn.decomposition import PCA from sklearn.preprocessing import scale np.random.seed(42) digits = load_digits() data = scale(digits.data) n_samples, n_features = data.shape n_digits = len(np.unique(digits.target)) labels = digits.target sample_size = 300 print("n_digits: %d, \t n_samples %d, \t n_features %d" % (n_digits, n_samples, n_features)) print(79 * '_') print('% 9s' % 'init' ' time inertia homo compl v-meas ARI AMI silhouette') def bench_k_means(estimator, name, data): t0 = time() estimator.fit(data) print('% 9s %.2fs %i %.3f %.3f %.3f %.3f %.3f %.3f' % (name, (time() - t0), estimator.inertia_, metrics.homogeneity_score(labels, estimator.labels_), metrics.completeness_score(labels, estimator.labels_), metrics.v_measure_score(labels, estimator.labels_), metrics.adjusted_rand_score(labels, estimator.labels_), metrics.adjusted_mutual_info_score(labels, estimator.labels_), metrics.silhouette_score(data, estimator.labels_, metric='euclidean', sample_size=sample_size))) bench_k_means(KMeans(init='k-means++', n_clusters=n_digits, n_init=10), name="k-means++", data=data) bench_k_means(KMeans(init='random', n_clusters=n_digits, n_init=10), name="random", data=data) # in this case the seeding of the centers is deterministic, hence we run the # kmeans algorithm only once with n_init=1 pca = PCA(n_components=n_digits).fit(data) bench_k_means(KMeans(init=pca.components_, n_clusters=n_digits, n_init=1), name="PCA-based", data=data) print(79 * '_') ############################################################################### # Visualize the results on PCA-reduced data reduced_data = PCA(n_components=2).fit_transform(data) kmeans = KMeans(init='k-means++', n_clusters=n_digits, n_init=10) kmeans.fit(reduced_data) # Step size of the mesh. Decrease to increase the quality of the VQ. h = .02 # point in the mesh [x_min, m_max]x[y_min, y_max]. # Plot the decision boundary. For that, we will asign a color to each x_min, x_max = reduced_data[:, 0].min() + 1, reduced_data[:, 0].max() - 1 y_min, y_max = reduced_data[:, 1].min() + 1, reduced_data[:, 1].max() - 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h)) # Obtain labels for each point in mesh. Use last trained model. Z = kmeans.predict(np.c_[xx.ravel(), yy.ravel()]) # Put the result into a color plot Z = Z.reshape(xx.shape) pl.figure(1) pl.clf() pl.imshow(Z, interpolation='nearest', extent=(xx.min(), xx.max(), yy.min(), yy.max()), cmap=pl.cm.Paired, aspect='auto', origin='lower') pl.plot(reduced_data[:, 0], reduced_data[:, 1], 'k.', markersize=2) # Plot the centroids as a white X centroids = kmeans.cluster_centers_ pl.scatter(centroids[:, 0], centroids[:, 1], marker='x', s=169, linewidths=3, color='w', zorder=10) pl.title('K-means clustering on the digits dataset (PCA-reduced data)\n' 'Centroids are marked with white cross') pl.xlim(x_min, x_max) pl.ylim(y_min, y_max) pl.xticks(()) pl.yticks(()) pl.show()
bsd-3-clause
florian-f/sklearn
sklearn/decomposition/tests/test_factor_analysis.py
7
1674
# Author: Christian Osendorfer <[email protected]> # Alexandre Gramfort <[email protected]> # Licence: BSD3 import numpy as np from sklearn.utils.testing import assert_true from sklearn.utils.testing import assert_raises from sklearn.utils.testing import assert_almost_equal from sklearn.decomposition import FactorAnalysis def test_factor_analysis(): """Test FactorAnalysis ability to recover the data covariance structure """ rng = np.random.RandomState(0) n_samples, n_features, n_components = 20, 5, 3 # Some random settings for the generative model W = rng.randn(n_components, n_features) # latent variable of dim 3, 20 of it h = rng.randn(n_samples, n_components) # using gamma to model different noise variance # per component noise = rng.gamma(1, size=n_features) * rng.randn(n_samples, n_features) # generate observations # wlog, mean is 0 X = np.dot(h, W) + noise fa = FactorAnalysis(n_components=n_components) fa.fit(X) X_t = fa.transform(X) assert_true(X_t.shape == (n_samples, n_components)) assert_almost_equal(fa.loglike_[-1], fa.score(X).sum()) # Make log likelihood increases at each iteration assert_true(np.all(np.diff(fa.loglike_) > 0.)) # Sample Covariance scov = np.cov(X, rowvar=0., bias=1.) # Model Covariance mcov = fa.get_covariance() diff = np.sum(np.abs(scov - mcov)) / W.size assert_true(diff < 0.1, "Mean absolute difference is %f" % diff) fa = FactorAnalysis(n_components=n_components, noise_variance_init=np.ones(n_features)) assert_raises(ValueError, fa.fit, X[:, :2])
bsd-3-clause
anntzer/scikit-learn
sklearn/linear_model/tests/test_huber.py
17
7463
# Authors: Manoj Kumar [email protected] # License: BSD 3 clause import numpy as np from scipy import optimize, sparse from sklearn.utils._testing import assert_almost_equal from sklearn.utils._testing import assert_array_equal from sklearn.utils._testing import assert_array_almost_equal from sklearn.datasets import make_regression from sklearn.linear_model import HuberRegressor, LinearRegression, SGDRegressor, Ridge from sklearn.linear_model._huber import _huber_loss_and_gradient def make_regression_with_outliers(n_samples=50, n_features=20): rng = np.random.RandomState(0) # Generate data with outliers by replacing 10% of the samples with noise. X, y = make_regression( n_samples=n_samples, n_features=n_features, random_state=0, noise=0.05 ) # Replace 10% of the sample with noise. num_noise = int(0.1 * n_samples) random_samples = rng.randint(0, n_samples, num_noise) X[random_samples, :] = 2.0 * rng.normal(0, 1, (num_noise, X.shape[1])) return X, y def test_huber_equals_lr_for_high_epsilon(): # Test that Ridge matches LinearRegression for large epsilon X, y = make_regression_with_outliers() lr = LinearRegression() lr.fit(X, y) huber = HuberRegressor(epsilon=1e3, alpha=0.0) huber.fit(X, y) assert_almost_equal(huber.coef_, lr.coef_, 3) assert_almost_equal(huber.intercept_, lr.intercept_, 2) def test_huber_max_iter(): X, y = make_regression_with_outliers() huber = HuberRegressor(max_iter=1) huber.fit(X, y) assert huber.n_iter_ == huber.max_iter def test_huber_gradient(): # Test that the gradient calculated by _huber_loss_and_gradient is correct rng = np.random.RandomState(1) X, y = make_regression_with_outliers() sample_weight = rng.randint(1, 3, (y.shape[0])) def loss_func(x, *args): return _huber_loss_and_gradient(x, *args)[0] def grad_func(x, *args): return _huber_loss_and_gradient(x, *args)[1] # Check using optimize.check_grad that the gradients are equal. for _ in range(5): # Check for both fit_intercept and otherwise. for n_features in [X.shape[1] + 1, X.shape[1] + 2]: w = rng.randn(n_features) w[-1] = np.abs(w[-1]) grad_same = optimize.check_grad( loss_func, grad_func, w, X, y, 0.01, 0.1, sample_weight ) assert_almost_equal(grad_same, 1e-6, 4) def test_huber_sample_weights(): # Test sample_weights implementation in HuberRegressor""" X, y = make_regression_with_outliers() huber = HuberRegressor() huber.fit(X, y) huber_coef = huber.coef_ huber_intercept = huber.intercept_ # Rescale coefs before comparing with assert_array_almost_equal to make # sure that the number of decimal places used is somewhat insensitive to # the amplitude of the coefficients and therefore to the scale of the # data and the regularization parameter scale = max(np.mean(np.abs(huber.coef_)), np.mean(np.abs(huber.intercept_))) huber.fit(X, y, sample_weight=np.ones(y.shape[0])) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) X, y = make_regression_with_outliers(n_samples=5, n_features=20) X_new = np.vstack((X, np.vstack((X[1], X[1], X[3])))) y_new = np.concatenate((y, [y[1]], [y[1]], [y[3]])) huber.fit(X_new, y_new) huber_coef = huber.coef_ huber_intercept = huber.intercept_ sample_weight = np.ones(X.shape[0]) sample_weight[1] = 3 sample_weight[3] = 2 huber.fit(X, y, sample_weight=sample_weight) assert_array_almost_equal(huber.coef_ / scale, huber_coef / scale) assert_array_almost_equal(huber.intercept_ / scale, huber_intercept / scale) # Test sparse implementation with sample weights. X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor() huber_sparse.fit(X_csr, y, sample_weight=sample_weight) assert_array_almost_equal(huber_sparse.coef_ / scale, huber_coef / scale) def test_huber_sparse(): X, y = make_regression_with_outliers() huber = HuberRegressor(alpha=0.1) huber.fit(X, y) X_csr = sparse.csr_matrix(X) huber_sparse = HuberRegressor(alpha=0.1) huber_sparse.fit(X_csr, y) assert_array_almost_equal(huber_sparse.coef_, huber.coef_) assert_array_equal(huber.outliers_, huber_sparse.outliers_) def test_huber_scaling_invariant(): # Test that outliers filtering is scaling independent. X, y = make_regression_with_outliers() huber = HuberRegressor(fit_intercept=False, alpha=0.0) huber.fit(X, y) n_outliers_mask_1 = huber.outliers_ assert not np.all(n_outliers_mask_1) huber.fit(X, 2.0 * y) n_outliers_mask_2 = huber.outliers_ assert_array_equal(n_outliers_mask_2, n_outliers_mask_1) huber.fit(2.0 * X, 2.0 * y) n_outliers_mask_3 = huber.outliers_ assert_array_equal(n_outliers_mask_3, n_outliers_mask_1) def test_huber_and_sgd_same_results(): # Test they should converge to same coefficients for same parameters X, y = make_regression_with_outliers(n_samples=10, n_features=2) # Fit once to find out the scale parameter. Scale down X and y by scale # so that the scale parameter is optimized to 1.0 huber = HuberRegressor(fit_intercept=False, alpha=0.0, epsilon=1.35) huber.fit(X, y) X_scale = X / huber.scale_ y_scale = y / huber.scale_ huber.fit(X_scale, y_scale) assert_almost_equal(huber.scale_, 1.0, 3) sgdreg = SGDRegressor( alpha=0.0, loss="huber", shuffle=True, random_state=0, max_iter=10000, fit_intercept=False, epsilon=1.35, tol=None, ) sgdreg.fit(X_scale, y_scale) assert_array_almost_equal(huber.coef_, sgdreg.coef_, 1) def test_huber_warm_start(): X, y = make_regression_with_outliers() huber_warm = HuberRegressor(alpha=1.0, max_iter=10000, warm_start=True, tol=1e-1) huber_warm.fit(X, y) huber_warm_coef = huber_warm.coef_.copy() huber_warm.fit(X, y) # SciPy performs the tol check after doing the coef updates, so # these would be almost same but not equal. assert_array_almost_equal(huber_warm.coef_, huber_warm_coef, 1) assert huber_warm.n_iter_ == 0 def test_huber_better_r2_score(): # Test that huber returns a better r2 score than non-outliers""" X, y = make_regression_with_outliers() huber = HuberRegressor(alpha=0.01) huber.fit(X, y) linear_loss = np.dot(X, huber.coef_) + huber.intercept_ - y mask = np.abs(linear_loss) < huber.epsilon * huber.scale_ huber_score = huber.score(X[mask], y[mask]) huber_outlier_score = huber.score(X[~mask], y[~mask]) # The Ridge regressor should be influenced by the outliers and hence # give a worse score on the non-outliers as compared to the huber # regressor. ridge = Ridge(alpha=0.01) ridge.fit(X, y) ridge_score = ridge.score(X[mask], y[mask]) ridge_outlier_score = ridge.score(X[~mask], y[~mask]) assert huber_score > ridge_score # The huber model should also fit poorly on the outliers. assert ridge_outlier_score > huber_outlier_score def test_huber_bool(): # Test that it does not crash with bool data X, y = make_regression(n_samples=200, n_features=2, noise=4.0, random_state=0) X_bool = X > 0 HuberRegressor().fit(X_bool, y)
bsd-3-clause
darshanthaker/nupic
examples/opf/experiments/anomaly/temporal/noisy_saw/description.py
32
14305
# ---------------------------------------------------------------------- # Numenta Platform for Intelligent Computing (NuPIC) # Copyright (C) 2013, Numenta, Inc. Unless you have an agreement # with Numenta, Inc., for a separate license for this software code, the # following terms and conditions apply: # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Affero Public License version 3 as # published by the Free Software Foundation. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # See the GNU Affero Public License for more details. # # You should have received a copy of the GNU Affero Public License # along with this program. If not, see http://www.gnu.org/licenses. # # http://numenta.org/licenses/ # ---------------------------------------------------------------------- """ Template file used by the OPF Experiment Generator to generate the actual description.py file by replacing $XXXXXXXX tokens with desired values. This description.py file was generated by: '~/nupic/eng/lib/python2.6/site-packages/nupic/frameworks/opf/expGenerator/ExpGenerator.py' """ from nupic.frameworks.opf.expdescriptionapi import ExperimentDescriptionAPI from nupic.frameworks.opf.expdescriptionhelpers import ( updateConfigFromSubConfig, applyValueGettersToContainer, DeferredDictLookup) from nupic.frameworks.opf.clamodelcallbacks import * from nupic.frameworks.opf.metrics import MetricSpec from nupic.frameworks.opf.opfutils import (InferenceType, InferenceElement) from nupic.support import aggregationDivide from nupic.frameworks.opf.opftaskdriver import ( IterationPhaseSpecLearnOnly, IterationPhaseSpecInferOnly, IterationPhaseSpecLearnAndInfer) # Model Configuration Dictionary: # # Define the model parameters and adjust for any modifications if imported # from a sub-experiment. # # These fields might be modified by a sub-experiment; this dict is passed # between the sub-experiment and base experiment # # # NOTE: Use of DEFERRED VALUE-GETTERs: dictionary fields and list elements # within the config dictionary may be assigned futures derived from the # ValueGetterBase class, such as DeferredDictLookup. # This facility is particularly handy for enabling substitution of values in # the config dictionary from other values in the config dictionary, which is # needed by permutation.py-based experiments. These values will be resolved # during the call to applyValueGettersToContainer(), # which we call after the base experiment's config dictionary is updated from # the sub-experiment. See ValueGetterBase and # DeferredDictLookup for more details about value-getters. # # For each custom encoder parameter to be exposed to the sub-experiment/ # permutation overrides, define a variable in this section, using key names # beginning with a single underscore character to avoid collisions with # pre-defined keys (e.g., _dsEncoderFieldName2_N). # # Example: # config = dict( # _dsEncoderFieldName2_N = 70, # _dsEncoderFieldName2_W = 5, # dsEncoderSchema = [ # base=dict( # fieldname='Name2', type='ScalarEncoder', # name='Name2', minval=0, maxval=270, clipInput=True, # n=DeferredDictLookup('_dsEncoderFieldName2_N'), # w=DeferredDictLookup('_dsEncoderFieldName2_W')), # ], # ) # updateConfigFromSubConfig(config) # applyValueGettersToContainer(config) config = { # Type of model that the rest of these parameters apply to. 'model': "CLA", # Version that specifies the format of the config. 'version': 1, # Intermediate variables used to compute fields in modelParams and also # referenced from the control section. 'aggregationInfo': { 'days': 0, 'fields': [], 'hours': 0, 'microseconds': 0, 'milliseconds': 0, 'minutes': 0, 'months': 0, 'seconds': 0, 'weeks': 0, 'years': 0}, 'predictAheadTime': None, # Model parameter dictionary. 'modelParams': { # The type of inference that this model will perform 'inferenceType': 'TemporalAnomaly', 'sensorParams': { # Sensor diagnostic output verbosity control; # if > 0: sensor region will print out on screen what it's sensing # at each step 0: silent; >=1: some info; >=2: more info; # >=3: even more info (see compute() in py/regions/RecordSensor.py) 'verbosity' : 0, # Example: # dsEncoderSchema = [ # DeferredDictLookup('__field_name_encoder'), # ], # # (value generated from DS_ENCODER_SCHEMA) 'encoders': { 'f': { 'clipInput': True, 'fieldname': u'f', 'maxval': 520, 'minval': 0, 'n': 500, 'name': u'f', 'type': 'ScalarEncoder', 'w': 21}}, # A dictionary specifying the period for automatically-generated # resets from a RecordSensor; # # None = disable automatically-generated resets (also disabled if # all of the specified values evaluate to 0). # Valid keys is the desired combination of the following: # days, hours, minutes, seconds, milliseconds, microseconds, weeks # # Example for 1.5 days: sensorAutoReset = dict(days=1,hours=12), # # (value generated from SENSOR_AUTO_RESET) 'sensorAutoReset' : None, }, 'spEnable': True, 'spParams': { # SP diagnostic output verbosity control; # 0: silent; >=1: some info; >=2: more info; 'spVerbosity' : 0, 'globalInhibition': 1, # Number of cell columns in the cortical region (same number for # SP and TP) # (see also tpNCellsPerCol) 'columnCount': 2048, 'inputWidth': 0, # SP inhibition control (absolute value); # Maximum number of active columns in the SP region's output (when # there are more, the weaker ones are suppressed) 'numActiveColumnsPerInhArea': 40, 'seed': 1956, # potentialPct # What percent of the columns's receptive field is available # for potential synapses. At initialization time, we will # choose potentialPct * (2*potentialRadius+1)^2 'potentialPct': 0.5, # The default connected threshold. Any synapse whose # permanence value is above the connected threshold is # a "connected synapse", meaning it can contribute to the # cell's firing. Typical value is 0.10. Cells whose activity # level before inhibition falls below minDutyCycleBeforeInh # will have their own internal synPermConnectedCell # threshold set below this default value. # (This concept applies to both SP and TP and so 'cells' # is correct here as opposed to 'columns') 'synPermConnected': 0.1, 'synPermActiveInc': 0.1, 'synPermInactiveDec': 0.01, }, # Controls whether TP is enabled or disabled; # TP is necessary for making temporal predictions, such as predicting # the next inputs. Without TP, the model is only capable of # reconstructing missing sensor inputs (via SP). 'tpEnable' : True, 'tpParams': { # TP diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity # (see verbosity in nupic/trunk/py/nupic/research/TP.py and TP10X*.py) 'verbosity': 0, # Number of cell columns in the cortical region (same number for # SP and TP) # (see also tpNCellsPerCol) 'columnCount': 2048, # The number of cells (i.e., states), allocated per column. 'cellsPerColumn': 32, 'inputWidth': 2048, 'seed': 1960, # Temporal Pooler implementation selector (see _getTPClass in # CLARegion.py). 'temporalImp': 'cpp', # New Synapse formation count # NOTE: If None, use spNumActivePerInhArea # # TODO: need better explanation 'newSynapseCount': 20, # Maximum number of synapses per segment # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TP # constructor, see if we should eliminate this parameter from # description.py. 'maxSynapsesPerSegment': 32, # Maximum number of segments per cell # > 0 for fixed-size CLA # -1 for non-fixed-size CLA # # TODO: for Ron: once the appropriate value is placed in TP # constructor, see if we should eliminate this parameter from # description.py. 'maxSegmentsPerCell': 128, # Initial Permanence # TODO: need better explanation 'initialPerm': 0.21, # Permanence Increment 'permanenceInc': 0.1, # Permanence Decrement # If set to None, will automatically default to tpPermanenceInc # value. 'permanenceDec' : 0.1, 'globalDecay': 0.0, 'maxAge': 0, # Minimum number of active synapses for a segment to be considered # during search for the best-matching segments. # None=use default # Replaces: tpMinThreshold 'minThreshold': 12, # Segment activation threshold. # A segment is active if it has >= tpSegmentActivationThreshold # connected synapses that are active due to infActiveState # None=use default # Replaces: tpActivationThreshold 'activationThreshold': 16, 'outputType': 'normal', # "Pay Attention Mode" length. This tells the TP how many new # elements to append to the end of a learned sequence at a time. # Smaller values are better for datasets with short sequences, # higher values are better for datasets with long sequences. 'pamLength': 1, }, 'clParams': { # Classifier implementation selection. 'implementation': 'cpp', 'regionName' : 'CLAClassifierRegion', # Classifier diagnostic output verbosity control; # 0: silent; [1..6]: increasing levels of verbosity 'clVerbosity' : 0, # This controls how fast the classifier learns/forgets. Higher values # make it adapt faster and forget older patterns faster. 'alpha': 0.0001, # This is set after the call to updateConfigFromSubConfig and is # computed from the aggregationInfo and predictAheadTime. 'steps': '1', }, 'trainSPNetOnlyIfRequested': False, }, } # end of config dictionary # Adjust base config dictionary for any modifications if imported from a # sub-experiment updateConfigFromSubConfig(config) # Compute predictionSteps based on the predictAheadTime and the aggregation # period, which may be permuted over. if config['predictAheadTime'] is not None: predictionSteps = int(round(aggregationDivide( config['predictAheadTime'], config['aggregationInfo']))) assert (predictionSteps >= 1) config['modelParams']['clParams']['steps'] = str(predictionSteps) # Adjust config by applying ValueGetterBase-derived # futures. NOTE: this MUST be called after updateConfigFromSubConfig() in order # to support value-getter-based substitutions from the sub-experiment (if any) applyValueGettersToContainer(config) control = { # The environment that the current model is being run in "environment": 'nupic', # Input stream specification per py/nupic/cluster/database/StreamDef.json. # 'dataset' : { u'info': u'cerebro_dummy', u'streams': [ { u'columns': [u'*'], u'info': u'test data', u'source': u'file://'+os.path.join(os.path.dirname(__file__), 'data.csv'), } ], u'version': 1}, # Iteration count: maximum number of iterations. Each iteration corresponds # to one record from the (possibly aggregated) dataset. The task is # terminated when either number of iterations reaches iterationCount or # all records in the (possibly aggregated) database have been processed, # whichever occurs first. # # iterationCount of -1 = iterate over the entire dataset 'iterationCount' : -1, # A dictionary containing all the supplementary parameters for inference "inferenceArgs":None, # Metrics: A list of MetricSpecs that instantiate the metrics that are # computed for this experiment 'metrics':[ MetricSpec(field=u'f', metric='aae', inferenceElement='prediction', params={'window': 1000}), ], # Logged Metrics: A sequence of regular expressions that specify which of # the metrics from the Inference Specifications section MUST be logged for # every prediction. The regex's correspond to the automatically generated # metric labels. This is similar to the way the optimization metric is # specified in permutations.py. 'loggedMetrics': ['.*nupicScore.*'], } descriptionInterface = ExperimentDescriptionAPI(modelConfig=config, control=control)
agpl-3.0