regicid commited on
Commit
9b3132c
·
1 Parent(s): 30939fc
Files changed (2) hide show
  1. full_data.csv +2 -2
  2. scripts/figures.qmd +18 -16
full_data.csv CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:c989a986e4ca0d8fd3bfcbfa49b58a04a28e2b16a88271c5f8ef28fe10c461eb
3
- size 1050676452
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fec1f45e6d895ed85cb6194f2deef78ffec33d6cf64bf6af4580718db20fd0d
3
+ size 1050186765
scripts/figures.qmd CHANGED
@@ -287,31 +287,33 @@ ggplot(result, aes(year,Male/Female)) + geom_point() + geom_smooth(color="black"
287
 
288
  ```{r}
289
  #Stereotypes data preparation
290
- files = read.csv("~/Downloads/citations_by_article.csv",
291
- col.names = c("filename","n_men","n_women","verbs_men",
292
- "verbs_men_lemmatized","verbs_women","verbs_women_lemmatized"))
293
- z = duplicated(files$filename)
294
- files = files[!z,]
295
- library(stringr)
296
- files$filename = str_c(files$filename,".txt")
297
- z = duplicated(data$filename)
298
- verbs_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
299
- right_join(files,by="filename")
300
  #verbs_data = filter(verbs_data,sexe_prenom =="Men")
301
  verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
302
  ```
303
 
304
  ```{r}
305
  ##Compute odds ratios
 
 
306
  threshold = 30
307
- men = verbs_data %>% group_by(year) %>% mutate(
308
  verbs_men_lemmatized = strsplit(verbs_men_lemmatized, ";")) %>%
309
  unnest(verbs_men_lemmatized) %>%
310
  count(verbs_men_lemmatized) %>% ungroup() %>%
311
  complete(verbs_men_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
312
  arrange(verbs_men_lemmatized)
313
-
314
- men <- men %>%
315
  pivot_wider(
316
  names_from = verbs_men_lemmatized,
317
  values_from = n,
@@ -324,14 +326,14 @@ men = men %>% dplyr::select(-year) %>%
324
 
325
 
326
 
327
- women = verbs_data %>% group_by(year) %>% mutate(
328
  verbs_women_lemmatized = strsplit(verbs_women_lemmatized, ";")) %>%
329
  unnest(verbs_women_lemmatized) %>%
330
  count(verbs_women_lemmatized) %>% ungroup() %>%
331
  complete(verbs_women_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
332
  arrange(verbs_women_lemmatized)
333
-
334
- women <- women %>%
335
  pivot_wider(
336
  names_from = verbs_women_lemmatized,
337
  values_from = n,
 
287
 
288
  ```{r}
289
  #Stereotypes data preparation
290
+ #files = read.csv("~/Downloads/citations_by_article.csv",
291
+ # col.names = c("filename","n_men","n_women","verbs_men",
292
+ # "verbs_men_lemmatized","verbs_women","verbs_women_lemmatized"))
293
+ #z = duplicated(files$filename)
294
+ #files = files[!z,]
295
+ #library(stringr)
296
+ #files$filename = str_c(files$filename,".txt")
297
+ #z = duplicated(data$filename)
298
+ #verbs_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
299
+ # right_join(files,by="filename")
300
  #verbs_data = filter(verbs_data,sexe_prenom =="Men")
301
  verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
302
  ```
303
 
304
  ```{r}
305
  ##Compute odds ratios
306
+ verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
307
+
308
  threshold = 30
309
+ men = data %>% group_by(year) %>% mutate(
310
  verbs_men_lemmatized = strsplit(verbs_men_lemmatized, ";")) %>%
311
  unnest(verbs_men_lemmatized) %>%
312
  count(verbs_men_lemmatized) %>% ungroup() %>%
313
  complete(verbs_men_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
314
  arrange(verbs_men_lemmatized)
315
+ z = is.na(men$verbs_men_lemmatized)
316
+ men <- men[!z,] %>%
317
  pivot_wider(
318
  names_from = verbs_men_lemmatized,
319
  values_from = n,
 
326
 
327
 
328
 
329
+ women = data %>% group_by(year) %>% mutate(
330
  verbs_women_lemmatized = strsplit(verbs_women_lemmatized, ";")) %>%
331
  unnest(verbs_women_lemmatized) %>%
332
  count(verbs_women_lemmatized) %>% ungroup() %>%
333
  complete(verbs_women_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
334
  arrange(verbs_women_lemmatized)
335
+ z = is.na(men$verbs_men_lemmatized)
336
+ women <- women[z,] %>%
337
  pivot_wider(
338
  names_from = verbs_women_lemmatized,
339
  values_from = n,