regicid
commited on
Commit
·
30939fc
1
Parent(s):
944ecbb
bla
Browse files- full_data.csv +2 -2
- scripts/figures.qmd +388 -31
full_data.csv
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c989a986e4ca0d8fd3bfcbfa49b58a04a28e2b16a88271c5f8ef28fe10c461eb
|
3 |
+
size 1050676452
|
scripts/figures.qmd
CHANGED
@@ -13,19 +13,21 @@ library(dplyr)
|
|
13 |
library(tidyr)
|
14 |
sysfonts::font_add_google("EB Garamond")
|
15 |
theme_set(theme_minimal(base_family = "EB Garamond"))
|
16 |
-
theme_update(text = element_text(size =
|
17 |
library(showtext)
|
18 |
showtext_auto()
|
19 |
|
20 |
|
21 |
data = read.csv("../full_data.csv")
|
22 |
-
rubriques_lemonde = c("international","culture","politique","société","économie","sport","science/technologie","inclassable")
|
23 |
|
24 |
-
z = data$rubrique %in% rubriques_lemonde
|
25 |
-
data$rubrique[!z] = "inclassable"
|
26 |
|
27 |
data$sexe_prenom = data$sexe_prenom %>% recode(Femme = "Women",Homme = "Men")
|
28 |
-
data$rubrique
|
|
|
|
|
29 |
|
30 |
|
31 |
```
|
@@ -33,47 +35,60 @@ data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Po
|
|
33 |
```{r}
|
34 |
#| fig-cap: Masculinity rate of mentions and quotes in the whole corpus
|
35 |
|
36 |
-
d = data
|
37 |
citations_men = sum(citations_men,na.rm=T),
|
38 |
citations_women = sum(citations_women,na.rm=T),
|
39 |
mentions_men = sum(mentions_men,na.rm=T),
|
40 |
-
mentions_women = sum(mentions_women,na.rm=T)
|
|
|
|
|
41 |
)
|
42 |
d$mentions_total = d$mentions_men + d$mentions_women
|
43 |
-
ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
|
44 |
-
|
45 |
-
ylab("
|
46 |
|
|
|
47 |
|
48 |
```
|
49 |
|
50 |
```{r}
|
51 |
-
#| fig-cap: Masculinity rate of mentions per news section, excluding
|
52 |
|
53 |
|
54 |
-
d = data %>%
|
|
|
55 |
group_by(year,rubrique) %>% summarise(
|
56 |
citations_men = sum(citations_men,na.rm=T),
|
57 |
citations_women = sum(citations_women,na.rm=T),
|
58 |
mentions_men = sum(mentions_men,na.rm=T),
|
59 |
-
mentions_women = sum(mentions_women,na.rm=T)
|
|
|
|
|
60 |
)
|
|
|
61 |
d$mentions_total = d$mentions_men + d$mentions_women
|
62 |
-
|
|
|
|
|
63 |
geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
67 |
)
|
68 |
|
69 |
-
|
70 |
```
|
71 |
|
72 |
```{r}
|
73 |
#| fig-cap: Masculinity rates of mentions and quotes, depending on the journalist gender. We ignore the points where there are less than 100 mentions or citations, and the 1987-1994 and 2003-2004, where the author metadata is mostly missing due to errors of digitization.
|
74 |
#| fig-width: 9.5
|
75 |
-
missing_years = c(1987:1994,2003:2004)
|
76 |
|
|
|
|
|
|
|
77 |
d = filter(data,sexe_prenom %in% c("Women","Men"))
|
78 |
d = d %>% group_by(year,sexe_prenom) %>% summarise(
|
79 |
mentions_men = sum(mentions_men,na.rm=T),
|
@@ -82,17 +97,53 @@ d = d %>% group_by(year,sexe_prenom) %>% summarise(
|
|
82 |
citations_women = sum(citations_women,na.rm=T)
|
83 |
)
|
84 |
d$mentions_total = d$mentions_men + d$mentions_women
|
85 |
-
|
86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
|
|
|
91 |
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
```
|
98 |
|
@@ -101,7 +152,7 @@ plot_grid(plots,legend,ncol = 2,rel_widths = c(1, 0.15))
|
|
101 |
|
102 |
library(dplyr)
|
103 |
|
104 |
-
d = filter(data,sexe_prenom %in% c("Women","Men"),!rubrique %in% c("
|
105 |
d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
|
106 |
mentions_men = sum(mentions_men,na.rm=T),
|
107 |
mentions_women = sum(mentions_women,na.rm=T),
|
@@ -111,17 +162,22 @@ d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
|
|
111 |
d$mentions_total = d$mentions_men + d$mentions_women
|
112 |
d$citations_total = d$citations_men + d$citations_women
|
113 |
|
114 |
-
ggplot(d %>% filter(citations_women > 10),aes(year,citations_women/citations_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of quotes") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
|
115 |
strip.text = element_text(size = 10, family = "EB Garamond"),
|
116 |
axis.text.x = element_text(size = 7)) + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))
|
|
|
|
|
|
|
117 |
```
|
118 |
|
119 |
```{r}
|
120 |
-
#| fig-cap: Masculinity rates of
|
121 |
ggplot(d %>% filter(mentions_women > 100),aes(year,mentions_women/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
|
122 |
strip.text = element_text(size = 10, family = "EB Garamond"),
|
123 |
axis.text.x = element_text(size = 7)
|
124 |
) + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + xlab("Date")
|
|
|
|
|
125 |
```
|
126 |
|
127 |
```{r}
|
@@ -138,8 +194,6 @@ d$citations_total = d$citations_men + d$citations_women
|
|
138 |
d$feminity_mentions = d$mentions_women/d$mentions_total
|
139 |
d$feminity_citations = d$citations_women/d$citations_total
|
140 |
|
141 |
-
#ggplot(d %>% filter(mentions_total > 200),aes(year,mentions_women/mentions_total,color=sexe_prenom)) + geom_point() + ylab("Masculinité")
|
142 |
-
|
143 |
d_bis = d %>% filter(citations_total > 100) %>% select(year,sexe_prenom,feminity_mentions,feminity_citations) %>% pivot_wider(names_from = sexe_prenom, values_from = c(feminity_mentions,feminity_citations), id_cols = c( year))
|
144 |
|
145 |
ggplot(d_bis,aes(year,feminity_citations_Women-feminity_citations_Men,color="Citations")) + geom_point() + geom_smooth(se=F) + geom_point(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions")) + geom_smooth(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions"),se=F) + ylab("Gap between women and men journalists") + labs(color="Measure") + xlab("Date")
|
@@ -158,4 +212,307 @@ d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
|
|
158 |
d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
|
159 |
|
160 |
ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
```
|
|
|
13 |
library(tidyr)
|
14 |
sysfonts::font_add_google("EB Garamond")
|
15 |
theme_set(theme_minimal(base_family = "EB Garamond"))
|
16 |
+
theme_update(text = element_text(size = 50))
|
17 |
library(showtext)
|
18 |
showtext_auto()
|
19 |
|
20 |
|
21 |
data = read.csv("../full_data.csv")
|
22 |
+
#rubriques_lemonde = c("international","culture","politique","société","économie","sport","science/technologie","inclassable")
|
23 |
|
24 |
+
#z = data$rubrique %in% rubriques_lemonde
|
25 |
+
#data$rubrique[!z] = "inclassable"
|
26 |
|
27 |
data$sexe_prenom = data$sexe_prenom %>% recode(Femme = "Women",Homme = "Men")
|
28 |
+
data$rubrique[data$rubrique=="Science/tech"] = "Culture"
|
29 |
+
data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Politics",société = 'Society',"science/technologie" = "Science/tech",culture="Culture",international = "International",sport="Sport",inclassable = "Unclassifiable")
|
30 |
+
|
31 |
|
32 |
|
33 |
```
|
|
|
35 |
```{r}
|
36 |
#| fig-cap: Masculinity rate of mentions and quotes in the whole corpus
|
37 |
|
38 |
+
d = data%>% group_by(year) %>% summarise(
|
39 |
citations_men = sum(citations_men,na.rm=T),
|
40 |
citations_women = sum(citations_women,na.rm=T),
|
41 |
mentions_men = sum(mentions_men,na.rm=T),
|
42 |
+
mentions_women = sum(mentions_women,na.rm=T),
|
43 |
+
nwords = sum(nwords)
|
44 |
+
#entities = sum(entities)
|
45 |
)
|
46 |
d$mentions_total = d$mentions_men + d$mentions_women
|
47 |
+
fig = ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
|
48 |
+
geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) + #scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
|
49 |
+
ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(.5, 1)
|
50 |
|
51 |
+
ggsave("../figures/fig1.png",fig,dpi=320,bg="white",width=7, height=5)
|
52 |
|
53 |
```
|
54 |
|
55 |
```{r}
|
56 |
+
#| fig-cap: Masculinity rate of mentions per news section, excluding unclassifiable
|
57 |
|
58 |
|
59 |
+
d = data %>%
|
60 |
+
filter(!rubrique %in% c("Unclassifiable")) %>%
|
61 |
group_by(year,rubrique) %>% summarise(
|
62 |
citations_men = sum(citations_men,na.rm=T),
|
63 |
citations_women = sum(citations_women,na.rm=T),
|
64 |
mentions_men = sum(mentions_men,na.rm=T),
|
65 |
+
mentions_women = sum(mentions_women,na.rm=T),
|
66 |
+
signatures_men = sum(sexe_prenom=="Men"),
|
67 |
+
signatures_women= sum(sexe_prenom=="Women")
|
68 |
)
|
69 |
+
|
70 |
d$mentions_total = d$mentions_men + d$mentions_women
|
71 |
+
|
72 |
+
|
73 |
+
ggplot(d %>% filter(mentions_women > 20,year > 1944),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
|
74 |
geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
|
75 |
+
#geom_line(data = filter(d,!year %in% missing_years),aes(year,signatures_men/(signatures_men+signatures_women),linetype="Signatures")) +
|
76 |
+
# scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
|
77 |
+
ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(c(.5,1)) + facet_wrap(.~rubrique,nrow = 2,ncol=3) + theme(
|
78 |
+
strip.text = element_text(size = 40, family = "EB Garamond"),
|
79 |
+
axis.text.x = element_text(size = 30)
|
80 |
)
|
81 |
|
82 |
+
ggsave("../figures/masc_mentions_sections.png",dpi=320,bg="white",width=7, height=5)
|
83 |
```
|
84 |
|
85 |
```{r}
|
86 |
#| fig-cap: Masculinity rates of mentions and quotes, depending on the journalist gender. We ignore the points where there are less than 100 mentions or citations, and the 1987-1994 and 2003-2004, where the author metadata is mostly missing due to errors of digitization.
|
87 |
#| fig-width: 9.5
|
|
|
88 |
|
89 |
+
library(cowplot)
|
90 |
+
missing_years = c(1987:1994,2003:2004)
|
91 |
+
|
92 |
d = filter(data,sexe_prenom %in% c("Women","Men"))
|
93 |
d = d %>% group_by(year,sexe_prenom) %>% summarise(
|
94 |
mentions_men = sum(mentions_men,na.rm=T),
|
|
|
97 |
citations_women = sum(citations_women,na.rm=T)
|
98 |
)
|
99 |
d$mentions_total = d$mentions_men + d$mentions_women
|
100 |
+
d$citations_total = d$citations_men + d$citations_women
|
101 |
|
102 |
+
# Create the plots
|
103 |
+
a <- ggplot(d %>% filter(mentions_total > 100, !year %in% missing_years),
|
104 |
+
aes(year, mentions_men/mentions_total, shape = sexe_prenom)) +
|
105 |
+
geom_point() +
|
106 |
+
ylab("Mentions masculinity rate") +
|
107 |
+
labs(shape = "Journalist gender") +
|
108 |
+
xlab("Date") +
|
109 |
+
scale_shape_manual(values = c("Women" = 2, "Men" = 16))
|
110 |
+
|
111 |
+
b <- ggplot(d %>% filter(citations_total > 100, !year %in% missing_years),
|
112 |
+
aes(year, citations_men/citations_total, shape = sexe_prenom)) +
|
113 |
+
geom_point() +
|
114 |
+
ylab("Quotes masculinity rate") +
|
115 |
+
labs(shape = "Journalist gender") +
|
116 |
+
xlab("Date") +
|
117 |
+
scale_shape_manual(values = c("Women" = 2, "Men" = 16))
|
118 |
+
# Create the legend separately
|
119 |
+
legend <- get_legend(a)
|
120 |
|
121 |
+
# Combine the plots and legend
|
122 |
+
plots <- plot_grid(a + theme(legend.position = "none"),
|
123 |
+
b + theme(legend.position = "none"),
|
124 |
+
nrow=2,rel_heights = c(.5,.5))
|
125 |
|
126 |
+
fig <- plot_grid(plots, legend, ncol = 2, rel_widths = c(1, 0.15))
|
127 |
|
128 |
+
|
129 |
+
|
130 |
+
d$mmr = d$mentions_men/d$mentions_total
|
131 |
+
z = d$mentions_total < 100
|
132 |
+
d$mmr[z] = NA
|
133 |
+
d$qmr = d$citations_men/d$citations_total
|
134 |
+
z = d$citations_total < 100
|
135 |
+
d$qmr[z] = NA
|
136 |
+
dd = gather(d %>% select("year","sexe_prenom","qmr","mmr"),"key","value",-year,-sexe_prenom)
|
137 |
+
|
138 |
+
dd$key = dd$key %>% recode(mmr = "Mentions",qmr = "Quotes")
|
139 |
+
ggplot(dd %>% filter(!year %in% missing_years),
|
140 |
+
aes(year, value, shape = sexe_prenom)) +
|
141 |
+
geom_point() +
|
142 |
+
ylab("Masculinity rate") +
|
143 |
+
labs(shape = "Journalist gender") +
|
144 |
+
xlab("Date") +
|
145 |
+
scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + facet_wrap(.~key,nrow = 2)
|
146 |
+
ggsave("../figures/measures_journalist_gender.png", dpi=320, bg="white", width=7, height=5)
|
147 |
|
148 |
```
|
149 |
|
|
|
152 |
|
153 |
library(dplyr)
|
154 |
|
155 |
+
d = filter(data,sexe_prenom %in% c("Women","Men"),!rubrique %in% c("Unclassifiable"))
|
156 |
d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
|
157 |
mentions_men = sum(mentions_men,na.rm=T),
|
158 |
mentions_women = sum(mentions_women,na.rm=T),
|
|
|
162 |
d$mentions_total = d$mentions_men + d$mentions_women
|
163 |
d$citations_total = d$citations_men + d$citations_women
|
164 |
|
165 |
+
ggplot(d %>% filter(citations_women > 10),aes(year,citations_women/citations_total,shape=sexe_prenom)) + geom_point() + geom_smooth(se=F) + ylab("Masculinity rate of quotes") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
|
166 |
strip.text = element_text(size = 10, family = "EB Garamond"),
|
167 |
axis.text.x = element_text(size = 7)) + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))
|
168 |
+
|
169 |
+
ggsave("../figures/measures_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
|
170 |
+
|
171 |
```
|
172 |
|
173 |
```{r}
|
174 |
+
#| fig-cap: Masculinity rates of mentions, depending on the journalist gender, by news section (omitting unclassifiable articles).
|
175 |
ggplot(d %>% filter(mentions_women > 100),aes(year,mentions_women/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
|
176 |
strip.text = element_text(size = 10, family = "EB Garamond"),
|
177 |
axis.text.x = element_text(size = 7)
|
178 |
) + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + xlab("Date")
|
179 |
+
ggsave("../figures/mentions_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
|
180 |
+
|
181 |
```
|
182 |
|
183 |
```{r}
|
|
|
194 |
d$feminity_mentions = d$mentions_women/d$mentions_total
|
195 |
d$feminity_citations = d$citations_women/d$citations_total
|
196 |
|
|
|
|
|
197 |
d_bis = d %>% filter(citations_total > 100) %>% select(year,sexe_prenom,feminity_mentions,feminity_citations) %>% pivot_wider(names_from = sexe_prenom, values_from = c(feminity_mentions,feminity_citations), id_cols = c( year))
|
198 |
|
199 |
ggplot(d_bis,aes(year,feminity_citations_Women-feminity_citations_Men,color="Citations")) + geom_point() + geom_smooth(se=F) + geom_point(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions")) + geom_smooth(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions"),se=F) + ylab("Gap between women and men journalists") + labs(color="Measure") + xlab("Date")
|
|
|
212 |
d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
|
213 |
|
214 |
ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date")
|
215 |
+
ggsave("../figures/signatures.png",dpi=320,bg="white",width=7, height=5)
|
216 |
+
|
217 |
+
```
|
218 |
+
|
219 |
+
```{r}
|
220 |
+
d = filter(data,sexe_prenom %in% c("Women","Men"), rubrique != "Unclassifiable")
|
221 |
+
|
222 |
+
|
223 |
+
d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
|
224 |
+
n = n()
|
225 |
+
)
|
226 |
+
d[d$year %in% missing_years,"n"] = NA
|
227 |
+
|
228 |
+
d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
|
229 |
+
d_bis = d_bis %>% mutate(Women = replace_na(Women, 0))
|
230 |
+
|
231 |
+
d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
|
232 |
+
|
233 |
+
|
234 |
+
ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date") + facet_wrap(.~rubrique)
|
235 |
+
ggsave("../figures/signatures_rubriques.png",dpi=320,bg="white",width=7, height=5)
|
236 |
+
|
237 |
+
```
|
238 |
+
|
239 |
+
```{r}
|
240 |
+
z = data %>% group_by(year) %>% summarise(nwords = sum(nwords))
|
241 |
+
ggplot(z,aes(year,nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year")
|
242 |
+
ggsave("../figures/nwords.png",dpi=320,bg="white",width=7, height=5)
|
243 |
+
|
244 |
+
```
|
245 |
+
|
246 |
+
```{r}
|
247 |
+
z = data %>% filter(!rubrique %in% c("Unclassifiable","Science/tech")) %>% group_by(year,rubrique) %>% summarise(nwords = sum(nwords))
|
248 |
+
z = z %>% group_by(year) %>% mutate(total_nwords_per_year = sum(nwords),
|
249 |
+
normalized_nwords = nwords / total_nwords_per_year) %>%
|
250 |
+
ungroup()
|
251 |
+
ggplot(z,aes(year,normalized_nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year in the corpus") + facet_wrap(.~rubrique, ncol = 3, nrow = 2)
|
252 |
+
|
253 |
+
ggsave("../figures/nwords_rubrique.png",dpi=320,bg="white",width=7, height=5)
|
254 |
+
|
255 |
+
```
|
256 |
+
|
257 |
+
```{r}
|
258 |
+
library(glue)
|
259 |
+
library(tidyr)
|
260 |
+
mean_male = vector()
|
261 |
+
mean_female = vector()
|
262 |
+
for(i in 1945:2022){
|
263 |
+
a = read.csv(glue("~/Downloads/verbs_nonagg/quotes_verbs_{i}.csv"),sep = "\t")
|
264 |
+
mean_male = c(mean_male,mean(a[a$speaker_gender=="Male",]$n_tok))
|
265 |
+
mean_female = c(mean_female,mean(a[a$speaker_gender=="Female",]$n_tok))
|
266 |
+
}
|
267 |
+
|
268 |
+
result = data.frame(year = 1945:2022,Male = mean_male,Female = mean_female)
|
269 |
+
result_gather = gather(result,"Gender","value",-year)
|
270 |
+
|
271 |
+
ggplot(result_gather,aes(year)) +
|
272 |
+
geom_ribbon(data = result,
|
273 |
+
aes(ymin = pmin(Male, Female),
|
274 |
+
ymax = pmax(Male, Female),
|
275 |
+
fill = Male > Female,
|
276 |
+
group = cumsum(c(0, diff(Male > Female) != 0))),
|
277 |
+
alpha = .3,show.legend = FALSE) + geom_line(aes(y=value,linetype=Gender)) +
|
278 |
+
xlab("Date") + ylab("Mean quote length (words)")+
|
279 |
+
scale_fill_manual(values = c("TRUE" = "lightblue", "FALSE" = "pink"),
|
280 |
+
labels = c("TRUE" = "Male > Female", "FALSE" = "Female > Male"),
|
281 |
+
name = "Difference")
|
282 |
+
|
283 |
+
ggsave("../figures/length_quotes.png",dpi=320,bg="white",width=7, height=5)
|
284 |
+
ggplot(result, aes(year,Male/Female)) + geom_point() + geom_smooth(color="black",se=F)
|
285 |
+
|
286 |
+
```
|
287 |
+
|
288 |
+
```{r}
|
289 |
+
#Stereotypes data preparation
|
290 |
+
files = read.csv("~/Downloads/citations_by_article.csv",
|
291 |
+
col.names = c("filename","n_men","n_women","verbs_men",
|
292 |
+
"verbs_men_lemmatized","verbs_women","verbs_women_lemmatized"))
|
293 |
+
z = duplicated(files$filename)
|
294 |
+
files = files[!z,]
|
295 |
+
library(stringr)
|
296 |
+
files$filename = str_c(files$filename,".txt")
|
297 |
+
z = duplicated(data$filename)
|
298 |
+
verbs_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
|
299 |
+
right_join(files,by="filename")
|
300 |
+
#verbs_data = filter(verbs_data,sexe_prenom =="Men")
|
301 |
+
verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
|
302 |
+
```
|
303 |
+
|
304 |
+
```{r}
|
305 |
+
##Compute odds ratios
|
306 |
+
threshold = 30
|
307 |
+
men = verbs_data %>% group_by(year) %>% mutate(
|
308 |
+
verbs_men_lemmatized = strsplit(verbs_men_lemmatized, ";")) %>%
|
309 |
+
unnest(verbs_men_lemmatized) %>%
|
310 |
+
count(verbs_men_lemmatized) %>% ungroup() %>%
|
311 |
+
complete(verbs_men_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
|
312 |
+
arrange(verbs_men_lemmatized)
|
313 |
+
|
314 |
+
men <- men %>%
|
315 |
+
pivot_wider(
|
316 |
+
names_from = verbs_men_lemmatized,
|
317 |
+
values_from = n,
|
318 |
+
values_fill = 0
|
319 |
+
)
|
320 |
+
men = dplyr::filter(men,year %in% 1945:2024)
|
321 |
+
men$decade = (men$year-1945) %/% 10
|
322 |
+
men = men %>% dplyr::select(-year) %>%
|
323 |
+
group_by(decade) %>% summarise(across(everything(),sum))
|
324 |
+
|
325 |
+
|
326 |
+
|
327 |
+
women = verbs_data %>% group_by(year) %>% mutate(
|
328 |
+
verbs_women_lemmatized = strsplit(verbs_women_lemmatized, ";")) %>%
|
329 |
+
unnest(verbs_women_lemmatized) %>%
|
330 |
+
count(verbs_women_lemmatized) %>% ungroup() %>%
|
331 |
+
complete(verbs_women_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
|
332 |
+
arrange(verbs_women_lemmatized)
|
333 |
+
|
334 |
+
women <- women %>%
|
335 |
+
pivot_wider(
|
336 |
+
names_from = verbs_women_lemmatized,
|
337 |
+
values_from = n,
|
338 |
+
values_fill = 0
|
339 |
+
)
|
340 |
+
women = dplyr::filter(women,year %in% 1945:2024)
|
341 |
+
women$decade = (women$year-1945) %/% 10
|
342 |
+
women = women %>% dplyr::select(-year) %>%
|
343 |
+
group_by(decade) %>% summarise(across(everything(),sum))
|
344 |
+
|
345 |
+
|
346 |
+
total_men = rowSums(men)
|
347 |
+
total_women = rowSums(women)
|
348 |
+
odds_ratios = (men/total_men)/(women/total_women)
|
349 |
+
log_odds_ratios = odds_ratios %>% log2()
|
350 |
+
log_odds_ratios = data.frame(log_odds_ratios)
|
351 |
+
log_odds_ratios[log_odds_ratios == Inf | log_odds_ratios == -Inf] <- NA
|
352 |
+
|
353 |
+
vars = 1/men + 1/women
|
354 |
+
#log_odds_ratios[vars > .025] = NA
|
355 |
+
log_odds_ratios[men+women < threshold] = NA
|
356 |
+
vars[men+women < threshold] = NA
|
357 |
+
#vars[vars > .01] = NA
|
358 |
+
```
|
359 |
+
|
360 |
+
```{r}
|
361 |
+
##Plot degree of stereotype
|
362 |
+
v = is.na(log_odds_ratios[1,])
|
363 |
+
#stereotypes = apply(log_odds_ratios[,!v], 1, function(x) 1/sum(!is.na(x))*sum(x^2, na.rm = TRUE))
|
364 |
+
stereotypes = apply(log_odds_ratios[,!v], 1, function(x) sd(x,na.rm = TRUE))
|
365 |
+
|
366 |
+
|
367 |
+
years <- 1940 + (1:8) * 10
|
368 |
+
stereotypes_df <- data.frame(
|
369 |
+
Year = years,
|
370 |
+
stereotypes = stereotypes
|
371 |
+
)
|
372 |
+
plot1 = ggplot(stereotypes_df, aes(x = Year, y = stereotypes)) +
|
373 |
+
geom_line() + ylab("Standard deviation among verbs") +
|
374 |
+
scale_x_continuous(breaks = years) + xlab("Date")
|
375 |
+
|
376 |
+
z = log_odds_ratios
|
377 |
+
z[men + women < 100] = NA
|
378 |
+
v = is.na(z[1,])
|
379 |
+
z = z[,!v]
|
380 |
+
z$decade = 1940 + (1:8)*10
|
381 |
+
z = gather(z,"key","value",-decade)
|
382 |
+
total = colSums(men[,!as.vector(v)] + women[,!as.vector(v)],na.rm=T) %>% data.frame()
|
383 |
+
total$key = row.names(total)
|
384 |
+
z = left_join(z,total,by="key")
|
385 |
+
z = filter(z,!key %in% excl)
|
386 |
+
colnames(z)[4] = "s"
|
387 |
+
plot2 = ggplot(z,aes(decade,value,group=key)) +
|
388 |
+
geom_line(aes(alpha =log(s)),linewidth=.4) +
|
389 |
+
scale_alpha_continuous(guide = "none") + scale_x_continuous(breaks = years) +
|
390 |
+
ylab("Verbs log odd-ratio") + xlab("")
|
391 |
+
plot_grid(plot2,plot1,nrow=2,labels = c("A","B"),align="v",label_size = 50,label_x = .1)
|
392 |
+
ggsave("../figures/spaghetti.png",dpi=320,bg="white",width=9, height=7)
|
393 |
+
|
394 |
+
|
395 |
+
#ggsave("../figures/stereoptype_over_time.png",dpi=320,bg="white",width=7, height=5)
|
396 |
+
```
|
397 |
+
|
398 |
+
```{r}
|
399 |
+
stereotypes_verbs = colMeans(log_odds_ratios/(stereotypes/mean(stereotypes)),na.rm=T)
|
400 |
+
stereotypes_verbs[colSums(men) + colSums(women) < 100] = NA
|
401 |
+
stereotypes_verbs = stereotypes_verbs %>% data.frame()
|
402 |
+
colnames(stereotypes_verbs) = "Masculinity"
|
403 |
+
stereotypes_verbs$var = colMeans(vars,na.rm=T)/colSums(!is.na(vars))
|
404 |
+
stereotypes_verbs$Verb = colnames(men)
|
405 |
+
stereotypes_verbs = stereotypes_verbs %>% filter(!is.na(Masculinity)) %>%
|
406 |
+
arrange(Masculinity)
|
407 |
+
|
408 |
+
excl = c("naître","falloir","aimer","consacrer","savoir","demeurer","sembler","rester","mettre","devenir","devoir","diriger","créer","convier","connaître","attendre","aller",'organiser')
|
409 |
+
stereotypes_verbs = filter(stereotypes_verbs,!Verb %in% excl)
|
410 |
+
|
411 |
+
n = 20
|
412 |
+
gaps <- data.frame(
|
413 |
+
Masculinity = rep(0, 3), # No bar for the gap
|
414 |
+
var = rep(0, 3), # No error bar for the gap
|
415 |
+
Verb = c("...", "...", "...") # Multiple placeholders,
|
416 |
+
|
417 |
+
)
|
418 |
+
|
419 |
+
verbs_plot_with_gap = rbind(head(stereotypes_verbs,15),gaps,tail(stereotypes_verbs,15))
|
420 |
+
verbs_plot_with_gap$Verb_english = dplyr::recode(verbs_plot_with_gap$Verb,murmurer="Whisper",raconter="Recount",sourire="Smile",hurler="Scream",traduire="Translate",souvenir="Remember",soupirer="Sigh",témoigner='Testify',lire='Read',avouer='Avow','(s)enthousiasmer'='Enthuse',relater='Relate',réaliser="Realize",enchaîner="Continue",finir="End",estimer='Estimate',avertir='Warn',reprocher="Reproach",accuser="Accuse",calculer ="Calculate",arguer="Argue",indiquer="Indicate",menacer="Threaten",ajouter='Add',inviter="Invite",mentionner='Mention',tonner="Thunder",déclarer="Declare",promettre="Promise",prédire="Predict",'(se)désoler'='Lament',glisser='Slip', railler="Mock",exprimer="Express")
|
421 |
+
verbs_plot_with_gap$Verb = dplyr::recode(verbs_plot_with_gap$Verb,souvenir="(se)souvenir")
|
422 |
+
|
423 |
+
breaks <- c(log2(0.25), log2(0.5), 0, log2(2), log2(4), log2(8))
|
424 |
+
labels <- c("0.25x", "0.5x", "Same", "2x", "4x", "8x")
|
425 |
+
ggplot(verbs_plot_with_gap, aes(x = -Masculinity, y = reorder(Verb, -Masculinity))) +
|
426 |
+
geom_bar(stat = "identity", fill = "black",
|
427 |
+
alpha = 0.4, width = 0.3) +
|
428 |
+
geom_errorbar(aes(
|
429 |
+
xmin = -Masculinity - sqrt(var),
|
430 |
+
xmax = -Masculinity + sqrt(var)
|
431 |
+
), width = 0.2) +
|
432 |
+
geom_vline(xintercept = 0, linetype = "dashed", color = "gray50") +
|
433 |
+
ylab("Verb") +
|
434 |
+
theme(
|
435 |
+
panel.grid.major.y = element_blank(),
|
436 |
+
panel.grid.minor.x = element_blank(),
|
437 |
+
) +
|
438 |
+
scale_x_continuous(
|
439 |
+
breaks = breaks,
|
440 |
+
labels = labels,limits=c(NA,2.4)
|
441 |
+
) + xlab("Relative appearance for women vs men") + geom_text(aes(x=2.2,y = reorder(Verb, -Masculinity),label=tolower(Verb_english)),hjust=0,family = 'EB Garamond',size=14,alpha=.7)
|
442 |
+
|
443 |
+
ggsave("../figures/most_gendered_verbs.png",dpi=320,bg="white",width=9, height=5)
|
444 |
+
|
445 |
+
```
|
446 |
+
|
447 |
+
```{r}
|
448 |
+
##Segregation mentions
|
449 |
+
dd = data%>% filter(mentions_women > .995,rubrique!= "Uncl assifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(##Measuring sex-ratio experienced by women
|
450 |
+
citations_men = sum(citations_men,na.rm=T),
|
451 |
+
citations_women = sum(citations_women-1,na.rm=T),
|
452 |
+
mentions_men = sum(mentions_men,na.rm=T),
|
453 |
+
mentions_women = sum(mentions_women-.995,na.rm=T),
|
454 |
+
nwords = sum(nwords)
|
455 |
+
#entities = sum(entities)
|
456 |
+
)
|
457 |
+
d = data %>% filter(year > 1945,rubrique!= "Unclassifiable") %>% group_by(year,rubrique) %>% summarise(##General sex ratio
|
458 |
+
citations_men = sum(citations_men,na.rm=T),
|
459 |
+
citations_women = sum(citations_women,na.rm=T),
|
460 |
+
mentions_men = sum(mentions_men,na.rm=T),
|
461 |
+
mentions_women = sum(mentions_women,na.rm=T),
|
462 |
+
nwords = sum(nwords)
|
463 |
+
#entities = sum(entities)
|
464 |
+
)
|
465 |
+
|
466 |
+
dd$women_ratio = dd$mentions_women/(dd$mentions_men+dd$mentions_women)
|
467 |
+
d$women_ratio = d$mentions_women/(d$mentions_men+d$mentions_women)
|
468 |
+
dd = dd %>% merge(d,by = c("year","rubrique"))
|
469 |
+
dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
|
470 |
+
ggplot(filter(dd,mentions_women.y > 100),aes(year,exposure_index)) + geom_line() +
|
471 |
+
facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women mentions") + scale_y_continuous(trans="log2")
|
472 |
+
ggsave("../figures/segregation_mentions.png",dpi=320,bg="white",width=9, height=5)
|
473 |
+
```
|
474 |
+
|
475 |
+
```{r}
|
476 |
+
dd = data%>% filter(citations_women > .995,rubrique!= "Unclassifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(
|
477 |
+
citations_men = sum(citations_men,na.rm=T),
|
478 |
+
citations_women = sum(citations_women-1,na.rm=T),
|
479 |
+
mentions_men = sum(mentions_men,na.rm=T),
|
480 |
+
mentions_women = sum(mentions_women-.995,na.rm=T),
|
481 |
+
nwords = sum(nwords)
|
482 |
+
#entities = sum(entities)
|
483 |
+
)
|
484 |
+
|
485 |
+
dd$women_ratio = dd$citations_women/(dd$citations_men+dd$citations_women)
|
486 |
+
d$women_ratio = d$citations_women/(d$citations_men+d$citations_women)
|
487 |
+
dd = dd %>% merge(d,by = c("year","rubrique"))
|
488 |
+
dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
|
489 |
+
ggplot(filter(dd,citations_women.y > 100),aes(year,exposure_index)) + geom_line() + ylim(c(.8,NA)) +
|
490 |
+
facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women citations") + scale_y_continuous(trans="log2")
|
491 |
+
ggsave("../figures/segregation_citations.png",dpi=320,bg="white",width=9, height=5)
|
492 |
+
```
|
493 |
+
|
494 |
+
```{r}
|
495 |
+
#quotes length data preparation
|
496 |
+
files = read.csv("~/Downloads/citations_length_by_article.csv",
|
497 |
+
col.names = c("filename","n_men","n_women","length_men",
|
498 |
+
"length_women"))
|
499 |
+
z = duplicated(files$filename)
|
500 |
+
files = files[!z,]
|
501 |
+
library(stringr)
|
502 |
+
files$filename = str_c(files$filename,".txt")
|
503 |
+
z = duplicated(data$filename)
|
504 |
+
length_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
|
505 |
+
right_join(files,by="filename")
|
506 |
+
|
507 |
+
z = length_data %>% group_by(year) %>% mutate(
|
508 |
+
length_men = strsplit(length_men, ";") %>% lapply(as.integer),
|
509 |
+
length_women = strsplit(length_women, ";") %>% lapply(as.integer))
|
510 |
+
|
511 |
+
z_men = z %>% unnest(length_men)%>% group_by(year) %>%
|
512 |
+
summarise(mean_quote_length=mean(length_men))
|
513 |
+
z_women = z %>% unnest(length_women) %>% group_by(year) %>%
|
514 |
+
summarise(mean_quote_length=mean(length_women))
|
515 |
+
z_men$ratio_length = z_men$mean_quote_length/z_women$mean_quote_length
|
516 |
+
ggplot(z_men %>% filter(year > 1944),aes(year,ratio_length)) + geom_point() + geom_smooth(color='black',se=F) + xlab("Date") + ylab("Male-to-female quote length ratio")
|
517 |
+
ggsave("../figures/length.png",dpi=320,bg="white",width=9, height=5)
|
518 |
```
|