regicid commited on
Commit
30939fc
·
1 Parent(s): 944ecbb
Files changed (2) hide show
  1. full_data.csv +2 -2
  2. scripts/figures.qmd +388 -31
full_data.csv CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:25a1cee9f8a673e0f509e13c7e2f069ee55a7f8874261f40076806e34287a76b
3
- size 671840957
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c989a986e4ca0d8fd3bfcbfa49b58a04a28e2b16a88271c5f8ef28fe10c461eb
3
+ size 1050676452
scripts/figures.qmd CHANGED
@@ -13,19 +13,21 @@ library(dplyr)
13
  library(tidyr)
14
  sysfonts::font_add_google("EB Garamond")
15
  theme_set(theme_minimal(base_family = "EB Garamond"))
16
- theme_update(text = element_text(size = 14))
17
  library(showtext)
18
  showtext_auto()
19
 
20
 
21
  data = read.csv("../full_data.csv")
22
- rubriques_lemonde = c("international","culture","politique","société","économie","sport","science/technologie","inclassable")
23
 
24
- z = data$rubrique %in% rubriques_lemonde
25
- data$rubrique[!z] = "inclassable"
26
 
27
  data$sexe_prenom = data$sexe_prenom %>% recode(Femme = "Women",Homme = "Men")
28
- data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Politics",société = 'Society',"science/technologie" = "Science/tech",culture="Culture",international = "International")
 
 
29
 
30
 
31
  ```
@@ -33,47 +35,60 @@ data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Po
33
  ```{r}
34
  #| fig-cap: Masculinity rate of mentions and quotes in the whole corpus
35
 
36
- d = data %>% group_by(year) %>% summarise(
37
  citations_men = sum(citations_men,na.rm=T),
38
  citations_women = sum(citations_women,na.rm=T),
39
  mentions_men = sum(mentions_men,na.rm=T),
40
- mentions_women = sum(mentions_women,na.rm=T)
 
 
41
  )
42
  d$mentions_total = d$mentions_men + d$mentions_women
43
- ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
44
- geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
45
- ylab("Feminity rate") + xlab("Date") + labs(linetype="Measure") + ylim(NA, 1)
46
 
 
47
 
48
  ```
49
 
50
  ```{r}
51
- #| fig-cap: Masculinity rate of mentions per news section, excluding sports and unclassifiable
52
 
53
 
54
- d = data %>% filter(!rubrique %in% c("inclassable","sport")) %>%
 
55
  group_by(year,rubrique) %>% summarise(
56
  citations_men = sum(citations_men,na.rm=T),
57
  citations_women = sum(citations_women,na.rm=T),
58
  mentions_men = sum(mentions_men,na.rm=T),
59
- mentions_women = sum(mentions_women,na.rm=T)
 
 
60
  )
 
61
  d$mentions_total = d$mentions_men + d$mentions_women
62
- ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
 
 
63
  geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
64
- ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(c(NA,1)) + facet_wrap(.~rubrique) + theme(
65
- strip.text = element_text(size = 12, family = "EB Garamond"),
66
- axis.text.x = element_text(size = 10)
 
 
67
  )
68
 
69
-
70
  ```
71
 
72
  ```{r}
73
  #| fig-cap: Masculinity rates of mentions and quotes, depending on the journalist gender. We ignore the points where there are less than 100 mentions or citations, and the 1987-1994 and 2003-2004, where the author metadata is mostly missing due to errors of digitization.
74
  #| fig-width: 9.5
75
- missing_years = c(1987:1994,2003:2004)
76
 
 
 
 
77
  d = filter(data,sexe_prenom %in% c("Women","Men"))
78
  d = d %>% group_by(year,sexe_prenom) %>% summarise(
79
  mentions_men = sum(mentions_men,na.rm=T),
@@ -82,17 +97,53 @@ d = d %>% group_by(year,sexe_prenom) %>% summarise(
82
  citations_women = sum(citations_women,na.rm=T)
83
  )
84
  d$mentions_total = d$mentions_men + d$mentions_women
85
- a = ggplot(d %>% filter(mentions_total > 100,!year %in% missing_years),aes(year,mentions_men/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + labs(shape="Journalist gender") + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))+ theme(legend.position = "right")
86
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
 
88
- d$citations_total = d$citations_men + d$citations_women
89
- b = ggplot(d %>% filter(citations_total > 100,!year %in% missing_years),aes(year,citations_men/citations_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of quotes") + labs(shape="Journalist gender") + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + theme(legend.position = "right")
 
 
90
 
 
91
 
92
- library(cowplot)
93
- legend <- get_legend(a)
94
- plots = plot_grid(a + theme(legend.position = "none"),b + theme(legend.position = "none"))
95
- plot_grid(plots,legend,ncol = 2,rel_widths = c(1, 0.15))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
96
 
97
  ```
98
 
@@ -101,7 +152,7 @@ plot_grid(plots,legend,ncol = 2,rel_widths = c(1, 0.15))
101
 
102
  library(dplyr)
103
 
104
- d = filter(data,sexe_prenom %in% c("Women","Men"),!rubrique %in% c("inclassable","sport"))
105
  d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
106
  mentions_men = sum(mentions_men,na.rm=T),
107
  mentions_women = sum(mentions_women,na.rm=T),
@@ -111,17 +162,22 @@ d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
111
  d$mentions_total = d$mentions_men + d$mentions_women
112
  d$citations_total = d$citations_men + d$citations_women
113
 
114
- ggplot(d %>% filter(citations_women > 10),aes(year,citations_women/citations_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of quotes") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
115
  strip.text = element_text(size = 10, family = "EB Garamond"),
116
  axis.text.x = element_text(size = 7)) + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))
 
 
 
117
  ```
118
 
119
  ```{r}
120
- #| fig-cap: Masculinity rates of quotes, depending on the journalist gender, by news section (omitting sports and unclassifiable articles).
121
  ggplot(d %>% filter(mentions_women > 100),aes(year,mentions_women/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
122
  strip.text = element_text(size = 10, family = "EB Garamond"),
123
  axis.text.x = element_text(size = 7)
124
  ) + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + xlab("Date")
 
 
125
  ```
126
 
127
  ```{r}
@@ -138,8 +194,6 @@ d$citations_total = d$citations_men + d$citations_women
138
  d$feminity_mentions = d$mentions_women/d$mentions_total
139
  d$feminity_citations = d$citations_women/d$citations_total
140
 
141
- #ggplot(d %>% filter(mentions_total > 200),aes(year,mentions_women/mentions_total,color=sexe_prenom)) + geom_point() + ylab("Masculinité")
142
-
143
  d_bis = d %>% filter(citations_total > 100) %>% select(year,sexe_prenom,feminity_mentions,feminity_citations) %>% pivot_wider(names_from = sexe_prenom, values_from = c(feminity_mentions,feminity_citations), id_cols = c( year))
144
 
145
  ggplot(d_bis,aes(year,feminity_citations_Women-feminity_citations_Men,color="Citations")) + geom_point() + geom_smooth(se=F) + geom_point(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions")) + geom_smooth(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions"),se=F) + ylab("Gap between women and men journalists") + labs(color="Measure") + xlab("Date")
@@ -158,4 +212,307 @@ d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
158
  d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
159
 
160
  ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161
  ```
 
13
  library(tidyr)
14
  sysfonts::font_add_google("EB Garamond")
15
  theme_set(theme_minimal(base_family = "EB Garamond"))
16
+ theme_update(text = element_text(size = 50))
17
  library(showtext)
18
  showtext_auto()
19
 
20
 
21
  data = read.csv("../full_data.csv")
22
+ #rubriques_lemonde = c("international","culture","politique","société","économie","sport","science/technologie","inclassable")
23
 
24
+ #z = data$rubrique %in% rubriques_lemonde
25
+ #data$rubrique[!z] = "inclassable"
26
 
27
  data$sexe_prenom = data$sexe_prenom %>% recode(Femme = "Women",Homme = "Men")
28
+ data$rubrique[data$rubrique=="Science/tech"] = "Culture"
29
+ data$rubrique = data$rubrique %>% recode(économie = "Economics",politique = "Politics",société = 'Society',"science/technologie" = "Science/tech",culture="Culture",international = "International",sport="Sport",inclassable = "Unclassifiable")
30
+
31
 
32
 
33
  ```
 
35
  ```{r}
36
  #| fig-cap: Masculinity rate of mentions and quotes in the whole corpus
37
 
38
+ d = data%>% group_by(year) %>% summarise(
39
  citations_men = sum(citations_men,na.rm=T),
40
  citations_women = sum(citations_women,na.rm=T),
41
  mentions_men = sum(mentions_men,na.rm=T),
42
+ mentions_women = sum(mentions_women,na.rm=T),
43
+ nwords = sum(nwords)
44
+ #entities = sum(entities)
45
  )
46
  d$mentions_total = d$mentions_men + d$mentions_women
47
+ fig = ggplot(d %>% filter(mentions_women > 20),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
48
+ geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) + #scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
49
+ ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(.5, 1)
50
 
51
+ ggsave("../figures/fig1.png",fig,dpi=320,bg="white",width=7, height=5)
52
 
53
  ```
54
 
55
  ```{r}
56
+ #| fig-cap: Masculinity rate of mentions per news section, excluding unclassifiable
57
 
58
 
59
+ d = data %>%
60
+ filter(!rubrique %in% c("Unclassifiable")) %>%
61
  group_by(year,rubrique) %>% summarise(
62
  citations_men = sum(citations_men,na.rm=T),
63
  citations_women = sum(citations_women,na.rm=T),
64
  mentions_men = sum(mentions_men,na.rm=T),
65
+ mentions_women = sum(mentions_women,na.rm=T),
66
+ signatures_men = sum(sexe_prenom=="Men"),
67
+ signatures_women= sum(sexe_prenom=="Women")
68
  )
69
+
70
  d$mentions_total = d$mentions_men + d$mentions_women
71
+
72
+
73
+ ggplot(d %>% filter(mentions_women > 20,year > 1944),aes(year,mentions_men/(mentions_men+mentions_women),linetype="Mentions")) + geom_line() +
74
  geom_line(aes(year,citations_men/(citations_men+citations_women),linetype="Quotes")) +
75
+ #geom_line(data = filter(d,!year %in% missing_years),aes(year,signatures_men/(signatures_men+signatures_women),linetype="Signatures")) +
76
+ # scale_linetype_manual(values = c("Mentions" = "solid", "Quotes" = "dotted")) +
77
+ ylab("Masculinity rate") + xlab("Date") + labs(linetype="Measure") + ylim(c(.5,1)) + facet_wrap(.~rubrique,nrow = 2,ncol=3) + theme(
78
+ strip.text = element_text(size = 40, family = "EB Garamond"),
79
+ axis.text.x = element_text(size = 30)
80
  )
81
 
82
+ ggsave("../figures/masc_mentions_sections.png",dpi=320,bg="white",width=7, height=5)
83
  ```
84
 
85
  ```{r}
86
  #| fig-cap: Masculinity rates of mentions and quotes, depending on the journalist gender. We ignore the points where there are less than 100 mentions or citations, and the 1987-1994 and 2003-2004, where the author metadata is mostly missing due to errors of digitization.
87
  #| fig-width: 9.5
 
88
 
89
+ library(cowplot)
90
+ missing_years = c(1987:1994,2003:2004)
91
+
92
  d = filter(data,sexe_prenom %in% c("Women","Men"))
93
  d = d %>% group_by(year,sexe_prenom) %>% summarise(
94
  mentions_men = sum(mentions_men,na.rm=T),
 
97
  citations_women = sum(citations_women,na.rm=T)
98
  )
99
  d$mentions_total = d$mentions_men + d$mentions_women
100
+ d$citations_total = d$citations_men + d$citations_women
101
 
102
+ # Create the plots
103
+ a <- ggplot(d %>% filter(mentions_total > 100, !year %in% missing_years),
104
+ aes(year, mentions_men/mentions_total, shape = sexe_prenom)) +
105
+ geom_point() +
106
+ ylab("Mentions masculinity rate") +
107
+ labs(shape = "Journalist gender") +
108
+ xlab("Date") +
109
+ scale_shape_manual(values = c("Women" = 2, "Men" = 16))
110
+
111
+ b <- ggplot(d %>% filter(citations_total > 100, !year %in% missing_years),
112
+ aes(year, citations_men/citations_total, shape = sexe_prenom)) +
113
+ geom_point() +
114
+ ylab("Quotes masculinity rate") +
115
+ labs(shape = "Journalist gender") +
116
+ xlab("Date") +
117
+ scale_shape_manual(values = c("Women" = 2, "Men" = 16))
118
+ # Create the legend separately
119
+ legend <- get_legend(a)
120
 
121
+ # Combine the plots and legend
122
+ plots <- plot_grid(a + theme(legend.position = "none"),
123
+ b + theme(legend.position = "none"),
124
+ nrow=2,rel_heights = c(.5,.5))
125
 
126
+ fig <- plot_grid(plots, legend, ncol = 2, rel_widths = c(1, 0.15))
127
 
128
+
129
+
130
+ d$mmr = d$mentions_men/d$mentions_total
131
+ z = d$mentions_total < 100
132
+ d$mmr[z] = NA
133
+ d$qmr = d$citations_men/d$citations_total
134
+ z = d$citations_total < 100
135
+ d$qmr[z] = NA
136
+ dd = gather(d %>% select("year","sexe_prenom","qmr","mmr"),"key","value",-year,-sexe_prenom)
137
+
138
+ dd$key = dd$key %>% recode(mmr = "Mentions",qmr = "Quotes")
139
+ ggplot(dd %>% filter(!year %in% missing_years),
140
+ aes(year, value, shape = sexe_prenom)) +
141
+ geom_point() +
142
+ ylab("Masculinity rate") +
143
+ labs(shape = "Journalist gender") +
144
+ xlab("Date") +
145
+ scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + facet_wrap(.~key,nrow = 2)
146
+ ggsave("../figures/measures_journalist_gender.png", dpi=320, bg="white", width=7, height=5)
147
 
148
  ```
149
 
 
152
 
153
  library(dplyr)
154
 
155
+ d = filter(data,sexe_prenom %in% c("Women","Men"),!rubrique %in% c("Unclassifiable"))
156
  d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
157
  mentions_men = sum(mentions_men,na.rm=T),
158
  mentions_women = sum(mentions_women,na.rm=T),
 
162
  d$mentions_total = d$mentions_men + d$mentions_women
163
  d$citations_total = d$citations_men + d$citations_women
164
 
165
+ ggplot(d %>% filter(citations_women > 10),aes(year,citations_women/citations_total,shape=sexe_prenom)) + geom_point() + geom_smooth(se=F) + ylab("Masculinity rate of quotes") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
166
  strip.text = element_text(size = 10, family = "EB Garamond"),
167
  axis.text.x = element_text(size = 7)) + xlab("Date") + scale_shape_manual(values = c("Women" = 2, "Men" = 16))
168
+
169
+ ggsave("../figures/measures_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
170
+
171
  ```
172
 
173
  ```{r}
174
+ #| fig-cap: Masculinity rates of mentions, depending on the journalist gender, by news section (omitting unclassifiable articles).
175
  ggplot(d %>% filter(mentions_women > 100),aes(year,mentions_women/mentions_total,shape=sexe_prenom)) + geom_point() + ylab("Masculinity rate of mentions") + facet_wrap(.~rubrique,scales="free_y") + labs(shape="Journalist gender") + theme(
176
  strip.text = element_text(size = 10, family = "EB Garamond"),
177
  axis.text.x = element_text(size = 7)
178
  ) + scale_shape_manual(values = c("Women" = 2, "Men" = 16)) + xlab("Date")
179
+ ggsave("../figures/mentions_journalist_gender_sections.png", dpi=320, bg="white", width=7, height=5)
180
+
181
  ```
182
 
183
  ```{r}
 
194
  d$feminity_mentions = d$mentions_women/d$mentions_total
195
  d$feminity_citations = d$citations_women/d$citations_total
196
 
 
 
197
  d_bis = d %>% filter(citations_total > 100) %>% select(year,sexe_prenom,feminity_mentions,feminity_citations) %>% pivot_wider(names_from = sexe_prenom, values_from = c(feminity_mentions,feminity_citations), id_cols = c( year))
198
 
199
  ggplot(d_bis,aes(year,feminity_citations_Women-feminity_citations_Men,color="Citations")) + geom_point() + geom_smooth(se=F) + geom_point(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions")) + geom_smooth(aes(year,feminity_mentions_Women-feminity_mentions_Men,color="Mentions"),se=F) + ylab("Gap between women and men journalists") + labs(color="Measure") + xlab("Date")
 
212
  d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
213
 
214
  ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date")
215
+ ggsave("../figures/signatures.png",dpi=320,bg="white",width=7, height=5)
216
+
217
+ ```
218
+
219
+ ```{r}
220
+ d = filter(data,sexe_prenom %in% c("Women","Men"), rubrique != "Unclassifiable")
221
+
222
+
223
+ d = d %>% group_by(year,sexe_prenom,rubrique) %>% summarise(
224
+ n = n()
225
+ )
226
+ d[d$year %in% missing_years,"n"] = NA
227
+
228
+ d_bis = d %>% pivot_wider(names_from = sexe_prenom, values_from = n)
229
+ d_bis = d_bis %>% mutate(Women = replace_na(Women, 0))
230
+
231
+ d_bis$feminity = d_bis$Men/(d_bis$Women+d_bis$Men)
232
+
233
+
234
+ ggplot(d_bis,aes(year,feminity)) + geom_line(na.rm=T) + ylab("Masculinity of articles signatures") + labs(color="Journalist gender") +xlab("Date") + facet_wrap(.~rubrique)
235
+ ggsave("../figures/signatures_rubriques.png",dpi=320,bg="white",width=7, height=5)
236
+
237
+ ```
238
+
239
+ ```{r}
240
+ z = data %>% group_by(year) %>% summarise(nwords = sum(nwords))
241
+ ggplot(z,aes(year,nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year")
242
+ ggsave("../figures/nwords.png",dpi=320,bg="white",width=7, height=5)
243
+
244
+ ```
245
+
246
+ ```{r}
247
+ z = data %>% filter(!rubrique %in% c("Unclassifiable","Science/tech")) %>% group_by(year,rubrique) %>% summarise(nwords = sum(nwords))
248
+ z = z %>% group_by(year) %>% mutate(total_nwords_per_year = sum(nwords),
249
+ normalized_nwords = nwords / total_nwords_per_year) %>%
250
+ ungroup()
251
+ ggplot(z,aes(year,normalized_nwords)) + geom_area(stat = 'identity') + xlab("Date") + ylab("Words per year in the corpus") + facet_wrap(.~rubrique, ncol = 3, nrow = 2)
252
+
253
+ ggsave("../figures/nwords_rubrique.png",dpi=320,bg="white",width=7, height=5)
254
+
255
+ ```
256
+
257
+ ```{r}
258
+ library(glue)
259
+ library(tidyr)
260
+ mean_male = vector()
261
+ mean_female = vector()
262
+ for(i in 1945:2022){
263
+ a = read.csv(glue("~/Downloads/verbs_nonagg/quotes_verbs_{i}.csv"),sep = "\t")
264
+ mean_male = c(mean_male,mean(a[a$speaker_gender=="Male",]$n_tok))
265
+ mean_female = c(mean_female,mean(a[a$speaker_gender=="Female",]$n_tok))
266
+ }
267
+
268
+ result = data.frame(year = 1945:2022,Male = mean_male,Female = mean_female)
269
+ result_gather = gather(result,"Gender","value",-year)
270
+
271
+ ggplot(result_gather,aes(year)) +
272
+ geom_ribbon(data = result,
273
+ aes(ymin = pmin(Male, Female),
274
+ ymax = pmax(Male, Female),
275
+ fill = Male > Female,
276
+ group = cumsum(c(0, diff(Male > Female) != 0))),
277
+ alpha = .3,show.legend = FALSE) + geom_line(aes(y=value,linetype=Gender)) +
278
+ xlab("Date") + ylab("Mean quote length (words)")+
279
+ scale_fill_manual(values = c("TRUE" = "lightblue", "FALSE" = "pink"),
280
+ labels = c("TRUE" = "Male > Female", "FALSE" = "Female > Male"),
281
+ name = "Difference")
282
+
283
+ ggsave("../figures/length_quotes.png",dpi=320,bg="white",width=7, height=5)
284
+ ggplot(result, aes(year,Male/Female)) + geom_point() + geom_smooth(color="black",se=F)
285
+
286
+ ```
287
+
288
+ ```{r}
289
+ #Stereotypes data preparation
290
+ files = read.csv("~/Downloads/citations_by_article.csv",
291
+ col.names = c("filename","n_men","n_women","verbs_men",
292
+ "verbs_men_lemmatized","verbs_women","verbs_women_lemmatized"))
293
+ z = duplicated(files$filename)
294
+ files = files[!z,]
295
+ library(stringr)
296
+ files$filename = str_c(files$filename,".txt")
297
+ z = duplicated(data$filename)
298
+ verbs_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
299
+ right_join(files,by="filename")
300
+ #verbs_data = filter(verbs_data,sexe_prenom =="Men")
301
+ verbs = unique(read.csv("https://raw.githubusercontent.com/gillesbastin/old_fashion_nlp/refs/heads/main/cues_all.csv")$lemmatized_cue)
302
+ ```
303
+
304
+ ```{r}
305
+ ##Compute odds ratios
306
+ threshold = 30
307
+ men = verbs_data %>% group_by(year) %>% mutate(
308
+ verbs_men_lemmatized = strsplit(verbs_men_lemmatized, ";")) %>%
309
+ unnest(verbs_men_lemmatized) %>%
310
+ count(verbs_men_lemmatized) %>% ungroup() %>%
311
+ complete(verbs_men_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
312
+ arrange(verbs_men_lemmatized)
313
+
314
+ men <- men %>%
315
+ pivot_wider(
316
+ names_from = verbs_men_lemmatized,
317
+ values_from = n,
318
+ values_fill = 0
319
+ )
320
+ men = dplyr::filter(men,year %in% 1945:2024)
321
+ men$decade = (men$year-1945) %/% 10
322
+ men = men %>% dplyr::select(-year) %>%
323
+ group_by(decade) %>% summarise(across(everything(),sum))
324
+
325
+
326
+
327
+ women = verbs_data %>% group_by(year) %>% mutate(
328
+ verbs_women_lemmatized = strsplit(verbs_women_lemmatized, ";")) %>%
329
+ unnest(verbs_women_lemmatized) %>%
330
+ count(verbs_women_lemmatized) %>% ungroup() %>%
331
+ complete(verbs_women_lemmatized = verbs,fill = list(n = 0,year = 1945)) %>%
332
+ arrange(verbs_women_lemmatized)
333
+
334
+ women <- women %>%
335
+ pivot_wider(
336
+ names_from = verbs_women_lemmatized,
337
+ values_from = n,
338
+ values_fill = 0
339
+ )
340
+ women = dplyr::filter(women,year %in% 1945:2024)
341
+ women$decade = (women$year-1945) %/% 10
342
+ women = women %>% dplyr::select(-year) %>%
343
+ group_by(decade) %>% summarise(across(everything(),sum))
344
+
345
+
346
+ total_men = rowSums(men)
347
+ total_women = rowSums(women)
348
+ odds_ratios = (men/total_men)/(women/total_women)
349
+ log_odds_ratios = odds_ratios %>% log2()
350
+ log_odds_ratios = data.frame(log_odds_ratios)
351
+ log_odds_ratios[log_odds_ratios == Inf | log_odds_ratios == -Inf] <- NA
352
+
353
+ vars = 1/men + 1/women
354
+ #log_odds_ratios[vars > .025] = NA
355
+ log_odds_ratios[men+women < threshold] = NA
356
+ vars[men+women < threshold] = NA
357
+ #vars[vars > .01] = NA
358
+ ```
359
+
360
+ ```{r}
361
+ ##Plot degree of stereotype
362
+ v = is.na(log_odds_ratios[1,])
363
+ #stereotypes = apply(log_odds_ratios[,!v], 1, function(x) 1/sum(!is.na(x))*sum(x^2, na.rm = TRUE))
364
+ stereotypes = apply(log_odds_ratios[,!v], 1, function(x) sd(x,na.rm = TRUE))
365
+
366
+
367
+ years <- 1940 + (1:8) * 10
368
+ stereotypes_df <- data.frame(
369
+ Year = years,
370
+ stereotypes = stereotypes
371
+ )
372
+ plot1 = ggplot(stereotypes_df, aes(x = Year, y = stereotypes)) +
373
+ geom_line() + ylab("Standard deviation among verbs") +
374
+ scale_x_continuous(breaks = years) + xlab("Date")
375
+
376
+ z = log_odds_ratios
377
+ z[men + women < 100] = NA
378
+ v = is.na(z[1,])
379
+ z = z[,!v]
380
+ z$decade = 1940 + (1:8)*10
381
+ z = gather(z,"key","value",-decade)
382
+ total = colSums(men[,!as.vector(v)] + women[,!as.vector(v)],na.rm=T) %>% data.frame()
383
+ total$key = row.names(total)
384
+ z = left_join(z,total,by="key")
385
+ z = filter(z,!key %in% excl)
386
+ colnames(z)[4] = "s"
387
+ plot2 = ggplot(z,aes(decade,value,group=key)) +
388
+ geom_line(aes(alpha =log(s)),linewidth=.4) +
389
+ scale_alpha_continuous(guide = "none") + scale_x_continuous(breaks = years) +
390
+ ylab("Verbs log odd-ratio") + xlab("")
391
+ plot_grid(plot2,plot1,nrow=2,labels = c("A","B"),align="v",label_size = 50,label_x = .1)
392
+ ggsave("../figures/spaghetti.png",dpi=320,bg="white",width=9, height=7)
393
+
394
+
395
+ #ggsave("../figures/stereoptype_over_time.png",dpi=320,bg="white",width=7, height=5)
396
+ ```
397
+
398
+ ```{r}
399
+ stereotypes_verbs = colMeans(log_odds_ratios/(stereotypes/mean(stereotypes)),na.rm=T)
400
+ stereotypes_verbs[colSums(men) + colSums(women) < 100] = NA
401
+ stereotypes_verbs = stereotypes_verbs %>% data.frame()
402
+ colnames(stereotypes_verbs) = "Masculinity"
403
+ stereotypes_verbs$var = colMeans(vars,na.rm=T)/colSums(!is.na(vars))
404
+ stereotypes_verbs$Verb = colnames(men)
405
+ stereotypes_verbs = stereotypes_verbs %>% filter(!is.na(Masculinity)) %>%
406
+ arrange(Masculinity)
407
+
408
+ excl = c("naître","falloir","aimer","consacrer","savoir","demeurer","sembler","rester","mettre","devenir","devoir","diriger","créer","convier","connaître","attendre","aller",'organiser')
409
+ stereotypes_verbs = filter(stereotypes_verbs,!Verb %in% excl)
410
+
411
+ n = 20
412
+ gaps <- data.frame(
413
+ Masculinity = rep(0, 3), # No bar for the gap
414
+ var = rep(0, 3), # No error bar for the gap
415
+ Verb = c("...", "...", "...") # Multiple placeholders,
416
+
417
+ )
418
+
419
+ verbs_plot_with_gap = rbind(head(stereotypes_verbs,15),gaps,tail(stereotypes_verbs,15))
420
+ verbs_plot_with_gap$Verb_english = dplyr::recode(verbs_plot_with_gap$Verb,murmurer="Whisper",raconter="Recount",sourire="Smile",hurler="Scream",traduire="Translate",souvenir="Remember",soupirer="Sigh",témoigner='Testify',lire='Read',avouer='Avow','(s)enthousiasmer'='Enthuse',relater='Relate',réaliser="Realize",enchaîner="Continue",finir="End",estimer='Estimate',avertir='Warn',reprocher="Reproach",accuser="Accuse",calculer ="Calculate",arguer="Argue",indiquer="Indicate",menacer="Threaten",ajouter='Add',inviter="Invite",mentionner='Mention',tonner="Thunder",déclarer="Declare",promettre="Promise",prédire="Predict",'(se)désoler'='Lament',glisser='Slip', railler="Mock",exprimer="Express")
421
+ verbs_plot_with_gap$Verb = dplyr::recode(verbs_plot_with_gap$Verb,souvenir="(se)souvenir")
422
+
423
+ breaks <- c(log2(0.25), log2(0.5), 0, log2(2), log2(4), log2(8))
424
+ labels <- c("0.25x", "0.5x", "Same", "2x", "4x", "8x")
425
+ ggplot(verbs_plot_with_gap, aes(x = -Masculinity, y = reorder(Verb, -Masculinity))) +
426
+ geom_bar(stat = "identity", fill = "black",
427
+ alpha = 0.4, width = 0.3) +
428
+ geom_errorbar(aes(
429
+ xmin = -Masculinity - sqrt(var),
430
+ xmax = -Masculinity + sqrt(var)
431
+ ), width = 0.2) +
432
+ geom_vline(xintercept = 0, linetype = "dashed", color = "gray50") +
433
+ ylab("Verb") +
434
+ theme(
435
+ panel.grid.major.y = element_blank(),
436
+ panel.grid.minor.x = element_blank(),
437
+ ) +
438
+ scale_x_continuous(
439
+ breaks = breaks,
440
+ labels = labels,limits=c(NA,2.4)
441
+ ) + xlab("Relative appearance for women vs men") + geom_text(aes(x=2.2,y = reorder(Verb, -Masculinity),label=tolower(Verb_english)),hjust=0,family = 'EB Garamond',size=14,alpha=.7)
442
+
443
+ ggsave("../figures/most_gendered_verbs.png",dpi=320,bg="white",width=9, height=5)
444
+
445
+ ```
446
+
447
+ ```{r}
448
+ ##Segregation mentions
449
+ dd = data%>% filter(mentions_women > .995,rubrique!= "Uncl assifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(##Measuring sex-ratio experienced by women
450
+ citations_men = sum(citations_men,na.rm=T),
451
+ citations_women = sum(citations_women-1,na.rm=T),
452
+ mentions_men = sum(mentions_men,na.rm=T),
453
+ mentions_women = sum(mentions_women-.995,na.rm=T),
454
+ nwords = sum(nwords)
455
+ #entities = sum(entities)
456
+ )
457
+ d = data %>% filter(year > 1945,rubrique!= "Unclassifiable") %>% group_by(year,rubrique) %>% summarise(##General sex ratio
458
+ citations_men = sum(citations_men,na.rm=T),
459
+ citations_women = sum(citations_women,na.rm=T),
460
+ mentions_men = sum(mentions_men,na.rm=T),
461
+ mentions_women = sum(mentions_women,na.rm=T),
462
+ nwords = sum(nwords)
463
+ #entities = sum(entities)
464
+ )
465
+
466
+ dd$women_ratio = dd$mentions_women/(dd$mentions_men+dd$mentions_women)
467
+ d$women_ratio = d$mentions_women/(d$mentions_men+d$mentions_women)
468
+ dd = dd %>% merge(d,by = c("year","rubrique"))
469
+ dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
470
+ ggplot(filter(dd,mentions_women.y > 100),aes(year,exposure_index)) + geom_line() +
471
+ facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women mentions") + scale_y_continuous(trans="log2")
472
+ ggsave("../figures/segregation_mentions.png",dpi=320,bg="white",width=9, height=5)
473
+ ```
474
+
475
+ ```{r}
476
+ dd = data%>% filter(citations_women > .995,rubrique!= "Unclassifiable",year > 1945) %>% group_by(year,rubrique) %>% summarise(
477
+ citations_men = sum(citations_men,na.rm=T),
478
+ citations_women = sum(citations_women-1,na.rm=T),
479
+ mentions_men = sum(mentions_men,na.rm=T),
480
+ mentions_women = sum(mentions_women-.995,na.rm=T),
481
+ nwords = sum(nwords)
482
+ #entities = sum(entities)
483
+ )
484
+
485
+ dd$women_ratio = dd$citations_women/(dd$citations_men+dd$citations_women)
486
+ d$women_ratio = d$citations_women/(d$citations_men+d$citations_women)
487
+ dd = dd %>% merge(d,by = c("year","rubrique"))
488
+ dd$exposure_index = dd$women_ratio.x/dd$women_ratio.y
489
+ ggplot(filter(dd,citations_women.y > 100),aes(year,exposure_index)) + geom_line() + ylim(c(.8,NA)) +
490
+ facet_wrap(.~rubrique) + xlab("Date") + ylab("Women overexposure to women citations") + scale_y_continuous(trans="log2")
491
+ ggsave("../figures/segregation_citations.png",dpi=320,bg="white",width=9, height=5)
492
+ ```
493
+
494
+ ```{r}
495
+ #quotes length data preparation
496
+ files = read.csv("~/Downloads/citations_length_by_article.csv",
497
+ col.names = c("filename","n_men","n_women","length_men",
498
+ "length_women"))
499
+ z = duplicated(files$filename)
500
+ files = files[!z,]
501
+ library(stringr)
502
+ files$filename = str_c(files$filename,".txt")
503
+ z = duplicated(data$filename)
504
+ length_data = data[!z,c("filename","sexe_prenom","year","rubrique")] %>%
505
+ right_join(files,by="filename")
506
+
507
+ z = length_data %>% group_by(year) %>% mutate(
508
+ length_men = strsplit(length_men, ";") %>% lapply(as.integer),
509
+ length_women = strsplit(length_women, ";") %>% lapply(as.integer))
510
+
511
+ z_men = z %>% unnest(length_men)%>% group_by(year) %>%
512
+ summarise(mean_quote_length=mean(length_men))
513
+ z_women = z %>% unnest(length_women) %>% group_by(year) %>%
514
+ summarise(mean_quote_length=mean(length_women))
515
+ z_men$ratio_length = z_men$mean_quote_length/z_women$mean_quote_length
516
+ ggplot(z_men %>% filter(year > 1944),aes(year,ratio_length)) + geom_point() + geom_smooth(color='black',se=F) + xlab("Date") + ylab("Male-to-female quote length ratio")
517
+ ggsave("../figures/length.png",dpi=320,bg="white",width=9, height=5)
518
  ```