Datasets:
metadata
language:
- en
dataset_info:
features:
- name: instruction
dtype: string
- name: context
dtype: string
- name: response
dtype: string
- name: category
dtype: string
- name: messages
list:
- name: content
dtype: string
- name: role
dtype: string
splits:
- name: train
num_bytes: 34692013
num_examples: 15011
download_size: 15166632
dataset_size: 34692013
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
task_categories:
- question-answering
- text2text-generation
Dataset Card for "databricks-dolly-15k-chatml"
Dataset Summary
This dataset has been created by Re:cast AI to transform the existing dataset databricks/databricks-dolly-15k into a chatml friendly format for use in SFT tasks with pretrained models.
Dataset Structure
messages = [
{ "content": "You are an expert Q&A system that is trusted around the world. You always... etc.", "role": "system" },
{ "content": "(Optional) Context information is below.\n----------------\nVirgin Australia, the... etc.", "role": "user" },
{ "content": "Virgin Australia commenced services on 31 August 2000... etc.", "role": "assistant" } ]
]
Usage
from datasets import load_dataset
dataset = load_dataset("recastai/databricks-dolly-15k-chatml", split="train")
Processing applied to original dataset
INSTRUCTIONS = """You are an expert Q&A system that is trusted around the world. You always answer the user's query in a helpful and friendly way.
Some rules you always follow:
1. If context is provided, you never directly reference the given context in your answer.
2. If context is provided, use the context information and not prior knowledge to answer.
3. Avoid statements like 'Based on the context, ...' or 'The context information ...' or 'The answer to the user's query...' or anything along those lines.
4. If no context is provided use your internal knowledge to answer."""
# databricks-dolly-15k features:
# - instruction: The user query/question
# - context: (optional) context to use to help the assistant
# - response: The assistant's response to the query/question
#
key_mapping = dict(
query = "instruction",
context = "context",
response = "response"
)
def process_chatml_fn(example, validation=False):
"""
Processing specific to databricks-dolly-15k into a chat format.
"""
user_content = (
"(Optional) Context information is below.\n"
"----------------\n"
"{context}\n"
"----------------\n"
"Answer the following query.\n"
"{query}\n"
)
assistant_content = "{response}"
message = [
{"role": "system", "content": INSTRUCTIONS},
{"role": "user", "content": user_content.format(context=example[key_mapping['context']], query=example[key_mapping['query']])},
{"role": "assistant", "content": assistant_content.format(response=example[key_mapping['response']])}
]
return message