max_stars_repo_path
stringlengths 6
149
| max_stars_repo_name
stringclasses 629
values | max_stars_count
int64 2.02k
191k
| id
stringlengths 3
8
| content
stringlengths 15
158k
| violations
stringclasses 51
values | bugs
stringclasses 11
values | duplicated_lines_density
stringclasses 46
values | cognitive_complexity
stringclasses 117
values | vulnerabilities
stringclasses 3
values | code_smells
stringclasses 50
values | sqale_rating
stringclasses 4
values | security_hotspots
stringclasses 17
values | complexity
stringclasses 112
values | issues
listlengths 0
100
| __index_level_0__
int64 2
13.3k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
src/python/grpcio_tests/tests/unit/_cython/_server_test.py | warlock135/grpc | 36,552 | 8047522 | # Copyright 2017 gRPC authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test servers at the level of the Cython API."""
import threading
import time
import unittest
from grpc._cython import cygrpc
class Test(unittest.TestCase):
def test_lonely_server(self):
server_call_completion_queue = cygrpc.CompletionQueue()
server_shutdown_completion_queue = cygrpc.CompletionQueue()
server = cygrpc.Server(None, False)
server.register_completion_queue(server_call_completion_queue)
server.register_completion_queue(server_shutdown_completion_queue)
port = server.add_http2_port(b'[::]:0')
server.start()
server_request_call_tag = 'server_request_call_tag'
server_request_call_start_batch_result = server.request_call(
server_call_completion_queue, server_call_completion_queue,
server_request_call_tag)
time.sleep(4)
server_shutdown_tag = 'server_shutdown_tag'
server_shutdown_result = server.shutdown(
server_shutdown_completion_queue, server_shutdown_tag)
server_request_call_event = server_call_completion_queue.poll()
server_shutdown_event = server_shutdown_completion_queue.poll()
if __name__ == '__main__':
unittest.main(verbosity=2)
| 5 | 0 | 0.0 | 1 | 0 | 5 | 1.0 | 0 | 2 | [
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 31,
"message": "Remove the unused local variable \"port\".",
"textRange": {
"endLine": 31,
"endOffset": 12,
"startLine": 31,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 35,
"message": "Remove the unused local variable \"server_request_call_start_batch_result\".",
"textRange": {
"endLine": 35,
"endOffset": 46,
"startLine": 35,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 42,
"message": "Remove the unused local variable \"server_shutdown_result\".",
"textRange": {
"endLine": 42,
"endOffset": 30,
"startLine": 42,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 44,
"message": "Remove the unused local variable \"server_request_call_event\".",
"textRange": {
"endLine": 44,
"endOffset": 33,
"startLine": 44,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 45,
"message": "Remove the unused local variable \"server_shutdown_event\".",
"textRange": {
"endLine": 45,
"endOffset": 29,
"startLine": 45,
"startOffset": 8
},
"type": "CODE_SMELL"
}
] | 4,926 |
desktop/core/ext-py/nose-1.3.7/examples/plugin/plug.py | kokosing/hue | 5,079 | 3381786 | <filename>desktop/core/ext-py/nose-1.3.7/examples/plugin/plug.py
from nose.plugins import Plugin
class ExamplePlugin(Plugin):
pass
| null | null | null | null | null | null | null | null | null | [] | 2,918 |
tests/db_functions/math/test_log.py | Lord-Elrond/django | 61,676 | 140063 | <reponame>Lord-Elrond/django
import math
from decimal import Decimal
from django.db.models.functions import Log
from django.test import TestCase
from ..models import DecimalModel, FloatModel, IntegerModel
class LogTests(TestCase):
def test_null(self):
IntegerModel.objects.create(big=100)
obj = IntegerModel.objects.annotate(
null_log_small=Log('small', 'normal'),
null_log_normal=Log('normal', 'big'),
null_log_big=Log('big', 'normal'),
).first()
self.assertIsNone(obj.null_log_small)
self.assertIsNone(obj.null_log_normal)
self.assertIsNone(obj.null_log_big)
def test_decimal(self):
DecimalModel.objects.create(n1=Decimal('12.9'), n2=Decimal('3.6'))
obj = DecimalModel.objects.annotate(n_log=Log('n1', 'n2')).first()
self.assertIsInstance(obj.n_log, Decimal)
self.assertAlmostEqual(obj.n_log, Decimal(math.log(obj.n2, obj.n1)))
def test_float(self):
FloatModel.objects.create(f1=2.0, f2=4.0)
obj = FloatModel.objects.annotate(f_log=Log('f1', 'f2')).first()
self.assertIsInstance(obj.f_log, float)
self.assertAlmostEqual(obj.f_log, math.log(obj.f2, obj.f1))
def test_integer(self):
IntegerModel.objects.create(small=4, normal=8, big=2)
obj = IntegerModel.objects.annotate(
small_log=Log('small', 'big'),
normal_log=Log('normal', 'big'),
big_log=Log('big', 'big'),
).first()
self.assertIsInstance(obj.small_log, float)
self.assertIsInstance(obj.normal_log, float)
self.assertIsInstance(obj.big_log, float)
self.assertAlmostEqual(obj.small_log, math.log(obj.big, obj.small))
self.assertAlmostEqual(obj.normal_log, math.log(obj.big, obj.normal))
self.assertAlmostEqual(obj.big_log, math.log(obj.big, obj.big))
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 4 | [] | 863 |
sklearn/gaussian_process/tests/_mini_sequence_kernel.py | MaiRajborirug/scikit-learn | 50,961 | 91634 | from sklearn.gaussian_process.kernels import Kernel, Hyperparameter
from sklearn.gaussian_process.kernels import GenericKernelMixin
from sklearn.gaussian_process.kernels import StationaryKernelMixin
import numpy as np
from sklearn.base import clone
class MiniSeqKernel(GenericKernelMixin, StationaryKernelMixin, Kernel):
"""
A minimal (but valid) convolutional kernel for sequences of variable
length.
"""
def __init__(self, baseline_similarity=0.5, baseline_similarity_bounds=(1e-5, 1)):
self.baseline_similarity = baseline_similarity
self.baseline_similarity_bounds = baseline_similarity_bounds
@property
def hyperparameter_baseline_similarity(self):
return Hyperparameter(
"baseline_similarity", "numeric", self.baseline_similarity_bounds
)
def _f(self, s1, s2):
return sum(
[1.0 if c1 == c2 else self.baseline_similarity for c1 in s1 for c2 in s2]
)
def _g(self, s1, s2):
return sum([0.0 if c1 == c2 else 1.0 for c1 in s1 for c2 in s2])
def __call__(self, X, Y=None, eval_gradient=False):
if Y is None:
Y = X
if eval_gradient:
return (
np.array([[self._f(x, y) for y in Y] for x in X]),
np.array([[[self._g(x, y)] for y in Y] for x in X]),
)
else:
return np.array([[self._f(x, y) for y in Y] for x in X])
def diag(self, X):
return np.array([self._f(x, x) for x in X])
def clone_with_theta(self, theta):
cloned = clone(self)
cloned.theta = theta
return cloned
| 3 | 0 | 0.0 | 5 | 0 | 3 | 1.0 | 0 | 11 | [
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 32,
"message": "Rename this parameter \"X\" to match the regular expression ^[_a-z][a-z0-9_]*$.",
"textRange": {
"endLine": 32,
"endOffset": 24,
"startLine": 32,
"startOffset": 23
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 32,
"message": "Rename this parameter \"Y\" to match the regular expression ^[_a-z][a-z0-9_]*$.",
"textRange": {
"endLine": 32,
"endOffset": 27,
"startLine": 32,
"startOffset": 26
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 44,
"message": "Rename this parameter \"X\" to match the regular expression ^[_a-z][a-z0-9_]*$.",
"textRange": {
"endLine": 44,
"endOffset": 20,
"startLine": 44,
"startOffset": 19
},
"type": "CODE_SMELL"
}
] | 585 |
python/tvm/relay/op/vm/vm.py | XiaoSong9905/tvm | 4,640 | 11348370 | # Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pylint: disable=no-else-return,invalid-name,len-as-condition,too-many-nested-blocks
"""Dialect operators for Relay VM."""
from . import _ffi_api
def shape_of(expr):
"""Invoke a function to get the shape of a tensor.
Parameters
----------
expr : tvm.relay.Expr
The expr used to evaluate its tensor shape.
Returns
-------
result : tvm.relay.Expr
The expression with the evaluated tensor shape.
"""
return _ffi_api.shape_of(expr)
def invoke_tvm_op(func, inputs, outputs):
"""Call a primitive function with the TVM operator calling convention.
Parameters
----------
func : tvm.relay.Expr
The input expr.
inputs : tvm.relay.Expr
A tuple of the inputs to pass to the TVM function.
outputs : tvm.relay.Expr
A tuple of the outputs to pass to the TVM function.
Returns
-------
result : tvm.relay.Expr
The invoke_tvm_op call node.
"""
return _ffi_api.invoke_tvm_op(func, inputs, outputs)
def shape_func(func, inputs, outputs, is_inputs):
"""Invoke the shape function of the passed function.
Parameters
----------
func : tvm.relay.Expr
The primitive function from which to compute the shape function.
inputs : tvm.relay.Tuple
The tupled inputs.
outputs : tvm.relay.Tuple
The tupled outputs.
is_inputs : List[bool]
A boolean list indicating whether the shape function should expect
shape or input at each position.
Returns
-------
result : tvm.relay.Expr
The shape function expression.
"""
return _ffi_api.shape_func(func, inputs, outputs, is_inputs)
def reshape_tensor(data, shape, newshape):
"""Invoke the VM ReshapeTensor instruction.
Parameters
----------
data : tvm.relay.Expr
The input data.
shape : tvm.relay.Expr
The newshape tensor.
newshape : List[tvm.ir.PrimExpr]
The new shape.
"""
return _ffi_api.reshape_tensor(data, shape, newshape)
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 4 | [] | 7,172 |
tests/sanic/conftest.py | TheVinhLuong102/Strawberry | 2,062 | 11458546 | <gh_stars>1000+
import pytest
from .app import create_app
@pytest.fixture
def sanic_client():
yield create_app()
| null | null | null | null | null | null | null | null | null | [] | 9,616 |
libs/boxes/roi.py | wesen/FastMaskRCNN | 3,509 | 11339840 | <gh_stars>1000+
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
def roi_align(feat, boxes):
"""Given features and boxes, This function crops feature """
return
def roi_cropping(feat, boxes, clses, anchors, spatial_scale=1.0/16):
"""This function computes final rpn boxes
And crops areas from the incoming features
"""
return | 8 | 0 | 0.0 | 0 | 0 | 8 | 2.0 | 0 | 2 | [
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 10,
"message": "Remove the unused function parameter \"feat\".",
"textRange": {
"endLine": 10,
"endOffset": 18,
"startLine": 10,
"startOffset": 14
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 10,
"message": "Remove the unused function parameter \"boxes\".",
"textRange": {
"endLine": 10,
"endOffset": 25,
"startLine": 10,
"startOffset": 20
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 12,
"message": "Remove this redundant return.",
"textRange": {
"endLine": 12,
"endOffset": 8,
"startLine": 12,
"startOffset": 2
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 14,
"message": "Remove the unused function parameter \"feat\".",
"textRange": {
"endLine": 14,
"endOffset": 21,
"startLine": 14,
"startOffset": 17
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 14,
"message": "Remove the unused function parameter \"clses\".",
"textRange": {
"endLine": 14,
"endOffset": 35,
"startLine": 14,
"startOffset": 30
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 14,
"message": "Remove the unused function parameter \"anchors\".",
"textRange": {
"endLine": 14,
"endOffset": 44,
"startLine": 14,
"startOffset": 37
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 14,
"message": "Remove the unused function parameter \"spatial_scale\".",
"textRange": {
"endLine": 14,
"endOffset": 66,
"startLine": 14,
"startOffset": 46
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 18,
"message": "Remove this redundant return.",
"textRange": {
"endLine": 18,
"endOffset": 8,
"startLine": 18,
"startOffset": 2
},
"type": "CODE_SMELL"
}
] | 7,121 |
desktop/core/ext-py/repoze.who-2.3/repoze/who/plugins/auth_tkt.py | kokosing/hue | 5,079 | 1667072 | import datetime
from codecs import utf_8_decode
from codecs import utf_8_encode
import hashlib
import os
import time
from wsgiref.handlers import _monthname # Locale-independent, RFC-2616
from wsgiref.handlers import _weekdayname # Locale-independent, RFC-2616
try:
from urllib.parse import urlencode, parse_qsl
except ImportError:
from urllib import urlencode
from urlparse import parse_qsl
from zope.interface import implementer
from repoze.who.interfaces import IIdentifier
from repoze.who.interfaces import IAuthenticator
from repoze.who._compat import get_cookies
import repoze.who._auth_tkt as auth_tkt
from repoze.who._compat import STRING_TYPES
_UTCNOW = None # unit tests can replace
def _utcnow(): #pragma NO COVERAGE
if _UTCNOW is not None:
return _UTCNOW
return datetime.datetime.utcnow()
@implementer(IIdentifier, IAuthenticator)
class AuthTktCookiePlugin(object):
userid_typename = 'userid_type'
userid_type_decoders = {'int': int,
'unicode': lambda x: utf_8_decode(x)[0],
}
userid_type_encoders = {int: ('int', str),
}
try:
userid_type_encoders[long] = ('int', str)
except NameError: #pragma NO COVER Python >= 3.0
pass
try:
userid_type_encoders[unicode] = ('unicode',
lambda x: utf_8_encode(x)[0])
except NameError: #pragma NO COVER Python >= 3.0
pass
def __init__(self, secret, cookie_name='auth_tkt',
secure=False, include_ip=False,
timeout=None, reissue_time=None, userid_checker=None,
digest_algo=auth_tkt.DEFAULT_DIGEST):
self.secret = secret
self.cookie_name = cookie_name
self.include_ip = include_ip
self.secure = secure
if timeout and ( (not reissue_time) or (reissue_time > timeout) ):
raise ValueError('When timeout is specified, reissue_time must '
'be set to a lower value')
self.timeout = timeout
self.reissue_time = reissue_time
self.userid_checker = userid_checker
self.digest_algo = digest_algo
# IIdentifier
def identify(self, environ):
cookies = get_cookies(environ)
cookie = cookies.get(self.cookie_name)
if cookie is None or not cookie.value:
return None
if self.include_ip:
remote_addr = environ['REMOTE_ADDR']
else:
remote_addr = '0.0.0.0'
try:
timestamp, userid, tokens, user_data = auth_tkt.parse_ticket(
self.secret, cookie.value, remote_addr, self.digest_algo)
except auth_tkt.BadTicket:
return None
if self.timeout and ( (timestamp + self.timeout) < time.time() ):
return None
user_data_dict = dict(parse_qsl(user_data))
userid_type = user_data_dict.get(self.userid_typename)
if userid_type:
decoder = self.userid_type_decoders.get(userid_type)
if decoder:
userid = decoder(userid)
environ['REMOTE_USER_TOKENS'] = tokens
environ['REMOTE_USER_DATA'] = user_data
environ['AUTH_TYPE'] = 'cookie'
identity = {}
identity['timestamp'] = timestamp
identity['repoze.who.plugins.auth_tkt.userid'] = userid
identity['tokens'] = tokens
identity['userdata'] = user_data_dict
return identity
# IIdentifier
def forget(self, environ, identity):
# return a set of expires Set-Cookie headers
return self._get_cookies(environ, 'INVALID', 0)
# IIdentifier
def remember(self, environ, identity):
if self.include_ip:
remote_addr = environ['REMOTE_ADDR']
else:
remote_addr = '0.0.0.0'
cookies = get_cookies(environ)
old_cookie = cookies.get(self.cookie_name)
existing = cookies.get(self.cookie_name)
old_cookie_value = getattr(existing, 'value', None)
max_age = identity.get('max_age', None)
timestamp, userid, tokens, userdata = None, '', (), ''
if old_cookie_value:
try:
timestamp,userid,tokens,userdata = auth_tkt.parse_ticket(
self.secret, old_cookie_value, remote_addr,
self.digest_algo)
except auth_tkt.BadTicket:
pass
tokens = tuple(tokens)
who_userid = identity['repoze.who.userid']
who_tokens = tuple(identity.get('tokens', ()))
who_userdata_dict = identity.get('userdata', {})
encoding_data = self.userid_type_encoders.get(type(who_userid))
if encoding_data:
encoding, encoder = encoding_data
who_userid = encoder(who_userid)
who_userdata_dict[self.userid_typename] = encoding
who_userdata = urlencode(who_userdata_dict)
old_data = (userid, tokens, userdata)
new_data = (who_userid, who_tokens, who_userdata)
if old_data != new_data or (self.reissue_time and
( (timestamp + self.reissue_time) < time.time() )):
ticket = auth_tkt.AuthTicket(
self.secret,
who_userid,
remote_addr,
tokens=who_tokens,
user_data=who_userdata,
cookie_name=self.cookie_name,
secure=self.secure,
digest_algo=self.digest_algo)
new_cookie_value = ticket.cookie_value()
if old_cookie_value != new_cookie_value:
# return a set of Set-Cookie headers
return self._get_cookies(environ, new_cookie_value, max_age)
# IAuthenticator
def authenticate(self, environ, identity):
userid = identity.get('repoze.who.plugins.auth_tkt.userid')
if userid is None:
return None
if self.userid_checker and not self.userid_checker(userid):
return None
identity['repoze.who.userid'] = userid
return userid
def _get_cookies(self, environ, value, max_age=None):
if max_age is not None:
max_age = int(max_age)
later = _utcnow() + datetime.timedelta(seconds=max_age)
# Wdy, DD-Mon-YY HH:MM:SS GMT
expires = "%s, %02d %3s %4d %02d:%02d:%02d GMT" % (
_weekdayname[later.weekday()],
later.day,
_monthname[later.month],
later.year,
later.hour,
later.minute,
later.second,
)
# the Expires header is *required* at least for IE7 (IE7 does
# not respect Max-Age)
max_age = "; Max-Age=%s; Expires=%s" % (max_age, expires)
else:
max_age = ''
secure = ''
if self.secure:
secure = '; secure; HttpOnly'
cur_domain = environ.get('HTTP_HOST', environ.get('SERVER_NAME'))
cur_domain = cur_domain.split(':')[0] # drop port
wild_domain = '.' + cur_domain
cookies = [
('Set-Cookie', '%s="%s"; Path=/%s%s' % (
self.cookie_name, value, max_age, secure)),
('Set-Cookie', '%s="%s"; Path=/; Domain=%s%s%s' % (
self.cookie_name, value, cur_domain, max_age, secure)),
('Set-Cookie', '%s="%s"; Path=/; Domain=%s%s%s' % (
self.cookie_name, value, wild_domain, max_age, secure))
]
return cookies
def __repr__(self):
return '<%s %s>' % (self.__class__.__name__,
id(self)) #pragma NO COVERAGE
def _bool(value):
if isinstance(value, STRING_TYPES):
return value.lower() in ('yes', 'true', '1')
return value
def make_plugin(secret=None,
secretfile=None,
cookie_name='auth_tkt',
secure=False,
include_ip=False,
timeout=None,
reissue_time=None,
userid_checker=None,
digest_algo=auth_tkt.DEFAULT_DIGEST,
):
from repoze.who.utils import resolveDotted
if (secret is None and secretfile is None):
raise ValueError("One of 'secret' or 'secretfile' must not be None.")
if (secret is not None and secretfile is not None):
raise ValueError("Specify only one of 'secret' or 'secretfile'.")
if secretfile:
secretfile = os.path.abspath(os.path.expanduser(secretfile))
if not os.path.exists(secretfile):
raise ValueError("No such 'secretfile': %s" % secretfile)
with open(secretfile) as f:
secret = f.read().strip()
if timeout:
timeout = int(timeout)
if reissue_time:
reissue_time = int(reissue_time)
if userid_checker is not None:
userid_checker = resolveDotted(userid_checker)
if isinstance(digest_algo, str):
try:
digest_algo = getattr(hashlib, digest_algo)
except AttributeError:
raise ValueError("No such 'digest_algo': %s" % digest_algo)
plugin = AuthTktCookiePlugin(secret,
cookie_name,
_bool(secure),
_bool(include_ip),
timeout,
reissue_time,
userid_checker,
digest_algo,
)
return plugin
| 3 | 0 | 0.0 | 48 | 0 | 3 | 1.0 | 0 | 44 | [
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 106,
"message": "Remove the unused function parameter \"identity\".",
"textRange": {
"endLine": 106,
"endOffset": 38,
"startLine": 106,
"startOffset": 30
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 118,
"message": "Remove the unused local variable \"old_cookie\".",
"textRange": {
"endLine": 118,
"endOffset": 18,
"startLine": 118,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 167,
"message": "Remove the unused function parameter \"environ\".",
"textRange": {
"endLine": 167,
"endOffset": 34,
"startLine": 167,
"startOffset": 27
},
"type": "CODE_SMELL"
}
] | 1,454 |
bokeh/server/django/__init__.py | g-parki/bokeh | 15,193 | 6771486 | <filename>bokeh/server/django/__init__.py
# Bokeh imports
from bokeh.util.dependencies import import_required
# Bokeh imports
from .apps import DjangoBokehConfig
from .routing import autoload, directory, document
from .static import static_extensions
import_required("django", "django is required by bokeh.server.django")
import_required("channels", "The package channels is required by bokeh.server.django and must be installed")
default_app_config = "bokeh.server.django.DjangoBokehConfig"
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 0 | [] | 9,179 |
packages/python/plotly/plotly/tests/test_optional/test_px/test_colors.py | mastermind88/plotly.py | 11,750 | 4327666 | <gh_stars>1000+
import plotly.express as px
def test_reversed_colorscale():
fig1 = px.scatter(
x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale="plasma_r"
)
fig2 = px.scatter(x=[1, 2], y=[2, 3], color=[3, 4], color_continuous_scale="plasma")
colors1 = [val[1] for val in fig1.layout.coloraxis.colorscale]
colors2 = [val[1] for val in fig2.layout.coloraxis.colorscale]
assert colors1 == colors2[::-1]
fig1 = px.scatter(
x=[1, 2],
y=[2, 3],
color=[3, 4],
color_continuous_scale=px.colors.sequential.Plasma,
)
fig2 = px.scatter(
x=[1, 2],
y=[2, 3],
color=[3, 4],
color_continuous_scale=px.colors.sequential.Plasma_r,
)
colors1 = [val[1] for val in fig1.layout.coloraxis.colorscale]
colors2 = [val[1] for val in fig2.layout.coloraxis.colorscale]
assert colors1 == colors2[::-1]
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 1 | [] | 13,235 |
apps/opencv_stitching_tool/opencv_stitching/image_handler.py | nowireless/opencv | 56,632 | 11523688 | <reponame>nowireless/opencv
import cv2 as cv
from .megapix_downscaler import MegapixDownscaler
from .stitching_error import StitchingError
class ImageHandler:
DEFAULT_MEDIUM_MEGAPIX = 0.6
DEFAULT_LOW_MEGAPIX = 0.1
DEFAULT_FINAL_MEGAPIX = -1
def __init__(self,
medium_megapix=DEFAULT_MEDIUM_MEGAPIX,
low_megapix=DEFAULT_LOW_MEGAPIX,
final_megapix=DEFAULT_FINAL_MEGAPIX):
if medium_megapix < low_megapix:
raise StitchingError("Medium resolution megapix need to be "
"greater or equal than low resolution "
"megapix")
self.medium_scaler = MegapixDownscaler(medium_megapix)
self.low_scaler = MegapixDownscaler(low_megapix)
self.final_scaler = MegapixDownscaler(final_megapix)
self.scales_set = False
self.img_names = []
self.img_sizes = []
def set_img_names(self, img_names):
self.img_names = img_names
def resize_to_medium_resolution(self):
return self.read_and_resize_imgs(self.medium_scaler)
def resize_to_low_resolution(self, medium_imgs=None):
if medium_imgs and self.scales_set:
return self.resize_medium_to_low(medium_imgs)
return self.read_and_resize_imgs(self.low_scaler)
def resize_to_final_resolution(self):
return self.read_and_resize_imgs(self.final_scaler)
def read_and_resize_imgs(self, scaler):
for img, size in self.input_images():
yield self.resize_img_by_scaler(scaler, size, img)
def resize_medium_to_low(self, medium_imgs):
for img, size in zip(medium_imgs, self.img_sizes):
yield self.resize_img_by_scaler(self.low_scaler, size, img)
@staticmethod
def resize_img_by_scaler(scaler, size, img):
desired_size = scaler.get_scaled_img_size(size)
return cv.resize(img, desired_size,
interpolation=cv.INTER_LINEAR_EXACT)
def input_images(self):
self.img_sizes = []
for name in self.img_names:
img = self.read_image(name)
size = self.get_image_size(img)
self.img_sizes.append(size)
self.set_scaler_scales()
yield img, size
@staticmethod
def get_image_size(img):
"""(width, height)"""
return (img.shape[1], img.shape[0])
@staticmethod
def read_image(img_name):
img = cv.imread(img_name)
if img is None:
raise StitchingError("Cannot read image " + img_name)
return img
def set_scaler_scales(self):
if not self.scales_set:
first_img_size = self.img_sizes[0]
self.medium_scaler.set_scale_by_img_size(first_img_size)
self.low_scaler.set_scale_by_img_size(first_img_size)
self.final_scaler.set_scale_by_img_size(first_img_size)
self.scales_set = True
def get_medium_to_final_ratio(self):
return self.final_scaler.scale / self.medium_scaler.scale
def get_medium_to_low_ratio(self):
return self.low_scaler.scale / self.medium_scaler.scale
def get_final_to_low_ratio(self):
return self.low_scaler.scale / self.final_scaler.scale
| 0 | 0 | 0.0 | 8 | 0 | 0 | 1.0 | 0 | 23 | [] | 9,912 |
poem/cv_mim/pipelines.py | DionysisChristopoulos/google-research | 23,901 | 11274825 | # coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Implements pipeline utility functions."""
import math
import tensorflow as tf
from poem.core import common
from poem.core import input_generator
from poem.core import keypoint_utils
from poem.core import tfe_input_layer
def create_dataset_from_tables(
input_table_patterns,
batch_sizes,
num_instances_per_record,
shuffle=False,
num_epochs=None,
drop_remainder=False,
keypoint_names_3d=None,
keypoint_names_2d=None,
feature_dim=None,
num_classes=None,
num_frames=None,
shuffle_buffer_size=4096,
num_shards=1,
shard_index=None,
common_module=common,
dataset_class=tf.data.TFRecordDataset,
input_example_parser_creator=tfe_input_layer.create_tfe_parser,
seed=None):
"""Reads data from tf.Example table.
Note that this function mainly duplicates `read_batch_from_tfe_tables` in
`v1.pipeline_utils.py` for compatible with tf2.
IMPORTANT: We assume that 2D keypoints from the input have been normalized by
image size. No normalization is expected and no denormalization will be
performed for both 2D and 3D keypoints.
Args:
input_table_patterns: A list of strings for the paths or pattern to input
tables.
batch_sizes: A list of integers for the batch sizes to read from each table.
num_instances_per_record: An integer for the number of instances per
tf.Example record.
shuffle: A boolean for whether to shuffle batch.
num_epochs: An integer for the number of epochs to read. Use `None` to read
indefinitely.
drop_remainder: A boolean for whether to drop remainder batch.
keypoint_names_3d: A list of strings for 3D keypoint names to read
(coordinates). Use None to skip reading 2D keypoints.
keypoint_names_2d: A list of strings for 2D keypoint names to read
(coordinates and scores). Use None to skip reading 2D keypoints.
feature_dim: An integer for size of pre-computed feature vectors. Use None
to skip reading feature vectors.
num_classes: An integer for total number of classification label classes to
read labels for. Use None to skip reading class labels.
num_frames: An integer for the number of frames per object each example has.
Use None to skip adding the frame dimension.
shuffle_buffer_size: An integer for the buffer size used for shuffling. A
large buffer size benefits shuffling quality.
num_shards: An integer for the number of shards to divide the dataset. This
is useful to distributed training. See `tf.data.Dataset.shard` for
details.
shard_index: An integer for the shard index to use. This is useful to
distributed training, and should usually be set to the id of a
synchronized worker. See `tf.data.Dataset.shard` for details. Note this
must be specified if `num_shards` is greater than 1.
common_module: A Python module that defines common constants.
dataset_class: A dataset class to use. Must match input table type.
input_example_parser_creator: A function handle for creating parser
function.
seed: An integer for random seed.
Returns:
A tf.data.Dataset object.
"""
parser_kwargs = {
'num_objects': num_instances_per_record,
}
if keypoint_names_3d:
parser_kwargs.update({
'keypoint_names_3d': keypoint_names_3d,
'include_keypoint_scores_3d': False,
})
if keypoint_names_2d:
parser_kwargs.update({
'keypoint_names_2d': keypoint_names_2d,
'include_keypoint_scores_2d': True,
})
if feature_dim:
parser_kwargs.update({
'feature_dim': feature_dim,
})
if num_classes:
parser_kwargs.update({
'num_classes': num_classes,
})
if num_frames:
parser_kwargs.update({
'sequence_length': num_frames,
})
parser_fn = input_example_parser_creator(
common_module=common_module, **parser_kwargs)
dataset = tfe_input_layer.read_batch_from_tables(
input_table_patterns,
batch_sizes=batch_sizes,
drop_remainder=drop_remainder,
num_epochs=num_epochs,
num_shards=num_shards,
shard_index=shard_index,
shuffle=shuffle,
shuffle_buffer_size=shuffle_buffer_size,
seed=seed,
dataset_class=dataset_class,
parser_fn=parser_fn)
return dataset
def create_model_input(inputs,
model_input_keypoint_type,
keypoint_profile_2d=None,
keypoint_profile_3d=None,
normalize_keypoints_2d=True,
min_keypoint_score_2d=-1.0,
azimuth_range=(-math.pi, math.pi),
elevation_range=(-math.pi / 6.0, math.pi / 6.0),
roll_range=(-math.pi / 6.0, math.pi / 6.0),
seed=None):
"""Creates model input features (2D keypoints) from input keypoints.
Note that this function mainly duplicates `create_model_input` in
`v1.input_generator.py` for compatible with tf2.
IMPORTANT: We assume that 2D keypoints from the inputs have been normalized by
image size. This function will reads image sizes from the input and
denormalize the 2D keypoints with them. No normalization is expected and no
denormalization will be performed for 3D keypoints.
Args:
inputs: A dictionary for tensor inputs.
model_input_keypoint_type: An enum string for model input keypoint type. See
`MODEL_INPUT_KEYPOINT_TYPE_*` for supported values.
keypoint_profile_2d: A KeypointProfile2D object for input 2D keypoints.
Required for normalizing 2D keypoints. Also required when 3D-to-2D
projection is involved.
keypoint_profile_3d: A KeypointProfile3D object for input 3D keypoints. Only
used when 3D-to-2D projection is involved.
normalize_keypoints_2d: A boolean for whether to normalize 2D keypoints at
the end.
min_keypoint_score_2d: A float for the minimum score to consider a 2D
keypoint as invalid.
azimuth_range: A tuple for minimum and maximum azimuth angles to randomly
rotate 3D keypoints with.
elevation_range: A tuple for minimum and maximum elevation angles to
randomly rotate 3D keypoints with.
roll_range: A tuple for minimum and maximum roll angles to randomly rotate
3D keypoints with.
seed: An integer for random seed.
Returns:
features: A tensor for input features. Shape = [..., feature_dim].
side_outputs: A dictionary for side outputs, which includes
`offset_points_2d` (shape = [..., 1, 2]) and `scale_distances_2d` (shape =
[..., 1, 1]) if `normalize_keypoints_2d` is True.
"""
keypoints_2d = keypoint_utils.denormalize_points_by_image_size(
inputs[common.KEY_KEYPOINTS_2D],
image_sizes=inputs[common.KEY_IMAGE_SIZES])
keypoint_scores_2d = inputs[common.KEY_KEYPOINT_SCORES_2D]
if min_keypoint_score_2d < 0.0:
keypoint_masks_2d = tf.ones_like(keypoint_scores_2d, dtype=tf.float32)
else:
keypoint_masks_2d = tf.cast(
tf.math.greater_equal(keypoint_scores_2d, min_keypoint_score_2d),
dtype=tf.float32)
keypoints_3d = inputs.get(common.KEY_KEYPOINTS_3D, None)
features, side_outputs = input_generator.create_model_input(
keypoints_2d,
keypoint_masks_2d,
keypoints_3d,
model_input_keypoint_type,
normalize_keypoints_2d=normalize_keypoints_2d,
keypoint_profile_2d=keypoint_profile_2d,
keypoint_profile_3d=keypoint_profile_3d,
azimuth_range=azimuth_range,
elevation_range=elevation_range,
roll_range=roll_range,
seed=seed)
# IMPORTANT: It is better not to modify `inputs` in TF2. Instead, we save
# results in the `side_outputs` for further computation.
side_outputs.update({
common.KEY_KEYPOINTS_2D: keypoints_2d,
common.KEY_KEYPOINT_MASKS_2D: keypoint_masks_2d
})
return features, side_outputs
| 1 | 0 | 0.0 | 7 | 0 | 1 | 1.0 | 0 | 8 | [
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 29,
"message": "Function \"create_dataset_from_tables\" has 18 parameters, which is greater than the 13 authorized.",
"textRange": {
"endLine": 46,
"endOffset": 13,
"startLine": 29,
"startOffset": 4
},
"type": "CODE_SMELL"
}
] | 6,733 |
torch_geometric/nn/acts.py | NucciTheBoss/pytorch_geometric | 12,651 | 178744 | <reponame>NucciTheBoss/pytorch_geometric<gh_stars>1000+
def swish(x):
return x * x.sigmoid()
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 1 | [] | 1,099 |
recipes/Python/578535_lndirpy_short_pythversiBSDX11_lndir/recipe-578535.py | tdiprima/code | 2,023 | 4071122 | #!/usr/bin/env python
################################################################################
# #
# Copyright (c) 2013, Mike 'Fuzzy' Partin <<EMAIL>> #
# All rights reserved. #
# #
# Redistribution and use in source and binary forms, with or without #
# modification, are permitted provided that the following conditions are met: #
# #
# 1. Redistributions of source code must retain the above copyright notice, #
# this list of conditions and the following disclaimer. #
# 2. Redistributions in binary form must reproduce the above copyright notice, #
# this list of conditions and the following disclaimer in the documentation #
# and/or other materials provided with the distribution. #
# #
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" #
# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE #
# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE #
# ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE #
# LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR #
# CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF #
# SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS #
# INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN #
# CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) #
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE #
# POSSIBILITY OF SUCH DAMAGE. #
# #
# The views and conclusions contained in the software and documentation are #
# those of the authors and should not be interpreted as representing official #
# policies, either expressed or implied, of the FreeBSD Project. #
# #
################################################################################
################################################################################
### Module imports ###
################################################################################
# Stdlib
import os
import re
import sys
import types
################################################################################
### Main logic and argument handling ###
################################################################################
try:
if __name__ == '__main__':
### check to see that all args are present on the command line
##############################################################
if len(sys.argv) < 3:
print("Usage: %s <src>/ <dst>/" % sys.argv[0])
sys.exit(1)
else:
### check to see that source and destination targets exist
##########################################################
for i in [str(sys.argv[1]), str(sys.argv[2])]:
if not os.path.isdir(i):
raise OSError("ERROR: %s is not a valid directory." % i)
### Setup some convenience
src = str(sys.argv[1])
dst = str(sys.argv[2])
src_b = None
if len(sys.argv) == 4:
src_b = sys.argv[3]
if src_b == None:
if src[-1:] == '/':
src_b = os.path.basename(src[:-1])
else:
src_b = os.path.basename(src)
### start walking the source target
###################################
dirs_c = 0 # counter for dires
file_c = 0 # counter for files
for root, dirs, files in os.walk(src):
for i in files:
os.symlink('%s/%s' % (root, i),
'%s%s/%s' % (dst, re.sub(src, '', root), i))
file_c += 1
for i in dirs:
try:
os.mkdir('%s%s/%s' % (dst, re.sub(src, '', root), i))
except OSError:
pass
dirs_c += 1
sys.stdout.write('[1;32m>[0m %-53s %6d dirs %6d files\r' % (
src_b[:52], # basename of src
dirs_c, # Dir count
file_c)) # File count
sys.stdout.flush()
sys.stdout.write('[1;32m>[0m %-53s %6d dirs %6d files\n' % (
src_b[:52], # basename of src
dirs_c, # Dir count
file_c)) # File count
sys.stdout.flush()
except OSError as msg:
print(msg)
sys.exit(0)
| 1 | 0 | 0.0 | 39 | 0 | 1 | 1.0 | 0 | 10 | [
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 74,
"message": "Use `endswith` here.",
"textRange": {
"endLine": 74,
"endOffset": 26,
"startLine": 74,
"startOffset": 11
},
"type": "CODE_SMELL"
}
] | 12,834 |
tests/components/image_processing/test_init.py | MrDelik/core | 30,023 | 6472508 | <reponame>MrDelik/core<gh_stars>1000+
"""The tests for the image_processing component."""
from unittest.mock import PropertyMock, patch
import pytest
import homeassistant.components.http as http
import homeassistant.components.image_processing as ip
from homeassistant.const import ATTR_ENTITY_PICTURE
from homeassistant.exceptions import HomeAssistantError
from homeassistant.setup import async_setup_component
from tests.common import assert_setup_component, async_capture_events
from tests.components.image_processing import common
@pytest.fixture
def aiohttp_unused_port(loop, aiohttp_unused_port, socket_enabled):
"""Return aiohttp_unused_port and allow opening sockets."""
return aiohttp_unused_port
def get_url(hass):
"""Return camera url."""
state = hass.states.get("camera.demo_camera")
return f"{hass.config.internal_url}{state.attributes.get(ATTR_ENTITY_PICTURE)}"
async def setup_image_processing(hass, aiohttp_unused_port):
"""Set up things to be run when tests are started."""
await async_setup_component(
hass,
http.DOMAIN,
{http.DOMAIN: {http.CONF_SERVER_PORT: aiohttp_unused_port()}},
)
config = {ip.DOMAIN: {"platform": "test"}, "camera": {"platform": "demo"}}
await async_setup_component(hass, ip.DOMAIN, config)
await hass.async_block_till_done()
async def setup_image_processing_alpr(hass):
"""Set up things to be run when tests are started."""
config = {ip.DOMAIN: {"platform": "demo"}, "camera": {"platform": "demo"}}
await async_setup_component(hass, ip.DOMAIN, config)
await hass.async_block_till_done()
return async_capture_events(hass, "image_processing.found_plate")
async def setup_image_processing_face(hass):
"""Set up things to be run when tests are started."""
config = {ip.DOMAIN: {"platform": "demo"}, "camera": {"platform": "demo"}}
await async_setup_component(hass, ip.DOMAIN, config)
await hass.async_block_till_done()
return async_capture_events(hass, "image_processing.detect_face")
async def test_setup_component(hass):
"""Set up demo platform on image_process component."""
config = {ip.DOMAIN: {"platform": "demo"}}
with assert_setup_component(1, ip.DOMAIN):
assert await async_setup_component(hass, ip.DOMAIN, config)
async def test_setup_component_with_service(hass):
"""Set up demo platform on image_process component test service."""
config = {ip.DOMAIN: {"platform": "demo"}}
with assert_setup_component(1, ip.DOMAIN):
assert await async_setup_component(hass, ip.DOMAIN, config)
assert hass.services.has_service(ip.DOMAIN, "scan")
@patch(
"homeassistant.components.demo.camera.Path.read_bytes",
return_value=b"Test",
)
async def test_get_image_from_camera(
mock_camera_read, hass, aiohttp_unused_port, enable_custom_integrations
):
"""Grab an image from camera entity."""
await setup_image_processing(hass, aiohttp_unused_port)
common.async_scan(hass, entity_id="image_processing.test")
await hass.async_block_till_done()
state = hass.states.get("image_processing.test")
assert mock_camera_read.called
assert state.state == "1"
assert state.attributes["image"] == b"Test"
@patch(
"homeassistant.components.camera.async_get_image",
side_effect=HomeAssistantError(),
)
async def test_get_image_without_exists_camera(
mock_image, hass, aiohttp_unused_port, enable_custom_integrations
):
"""Try to get image without exists camera."""
await setup_image_processing(hass, aiohttp_unused_port)
hass.states.async_remove("camera.demo_camera")
common.async_scan(hass, entity_id="image_processing.test")
await hass.async_block_till_done()
state = hass.states.get("image_processing.test")
assert mock_image.called
assert state.state == "0"
async def test_alpr_event_single_call(hass, aioclient_mock):
"""Set up and scan a picture and test plates from event."""
alpr_events = await setup_image_processing_alpr(hass)
aioclient_mock.get(get_url(hass), content=b"image")
common.async_scan(hass, entity_id="image_processing.demo_alpr")
await hass.async_block_till_done()
state = hass.states.get("image_processing.demo_alpr")
assert len(alpr_events) == 4
assert state.state == "AC3829"
event_data = [
event.data for event in alpr_events if event.data.get("plate") == "AC3829"
]
assert len(event_data) == 1
assert event_data[0]["plate"] == "AC3829"
assert event_data[0]["confidence"] == 98.3
assert event_data[0]["entity_id"] == "image_processing.demo_alpr"
async def test_alpr_event_double_call(hass, aioclient_mock):
"""Set up and scan a picture and test plates from event."""
alpr_events = await setup_image_processing_alpr(hass)
aioclient_mock.get(get_url(hass), content=b"image")
common.async_scan(hass, entity_id="image_processing.demo_alpr")
common.async_scan(hass, entity_id="image_processing.demo_alpr")
await hass.async_block_till_done()
state = hass.states.get("image_processing.demo_alpr")
assert len(alpr_events) == 4
assert state.state == "AC3829"
event_data = [
event.data for event in alpr_events if event.data.get("plate") == "AC3829"
]
assert len(event_data) == 1
assert event_data[0]["plate"] == "AC3829"
assert event_data[0]["confidence"] == 98.3
assert event_data[0]["entity_id"] == "image_processing.demo_alpr"
@patch(
"homeassistant.components.demo.image_processing.DemoImageProcessingAlpr.confidence",
new_callable=PropertyMock(return_value=95),
)
async def test_alpr_event_single_call_confidence(confidence_mock, hass, aioclient_mock):
"""Set up and scan a picture and test plates from event."""
alpr_events = await setup_image_processing_alpr(hass)
aioclient_mock.get(get_url(hass), content=b"image")
common.async_scan(hass, entity_id="image_processing.demo_alpr")
await hass.async_block_till_done()
state = hass.states.get("image_processing.demo_alpr")
assert len(alpr_events) == 2
assert state.state == "AC3829"
event_data = [
event.data for event in alpr_events if event.data.get("plate") == "AC3829"
]
assert len(event_data) == 1
assert event_data[0]["plate"] == "AC3829"
assert event_data[0]["confidence"] == 98.3
assert event_data[0]["entity_id"] == "image_processing.demo_alpr"
async def test_face_event_call(hass, aioclient_mock):
"""Set up and scan a picture and test faces from event."""
face_events = await setup_image_processing_face(hass)
aioclient_mock.get(get_url(hass), content=b"image")
common.async_scan(hass, entity_id="image_processing.demo_face")
await hass.async_block_till_done()
state = hass.states.get("image_processing.demo_face")
assert len(face_events) == 2
assert state.state == "Hans"
assert state.attributes["total_faces"] == 4
event_data = [
event.data for event in face_events if event.data.get("name") == "Hans"
]
assert len(event_data) == 1
assert event_data[0]["name"] == "Hans"
assert event_data[0]["confidence"] == 98.34
assert event_data[0]["gender"] == "male"
assert event_data[0]["entity_id"] == "image_processing.demo_face"
@patch(
"homeassistant.components.demo.image_processing."
"DemoImageProcessingFace.confidence",
new_callable=PropertyMock(return_value=None),
)
async def test_face_event_call_no_confidence(mock_config, hass, aioclient_mock):
"""Set up and scan a picture and test faces from event."""
face_events = await setup_image_processing_face(hass)
aioclient_mock.get(get_url(hass), content=b"image")
common.async_scan(hass, entity_id="image_processing.demo_face")
await hass.async_block_till_done()
state = hass.states.get("image_processing.demo_face")
assert len(face_events) == 3
assert state.state == "4"
assert state.attributes["total_faces"] == 4
event_data = [
event.data for event in face_events if event.data.get("name") == "Hans"
]
assert len(event_data) == 1
assert event_data[0]["name"] == "Hans"
assert event_data[0]["confidence"] == 98.34
assert event_data[0]["gender"] == "male"
assert event_data[0]["entity_id"] == "image_processing.demo_face"
| 8 | 5 | 0.0 | 0 | 0 | 3 | 1.0 | 0 | 19 | [
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 90,
"message": "Define a constant instead of duplicating this literal \"image_processing.test\" 4 times.",
"textRange": {
"endLine": 90,
"endOffset": 61,
"startLine": 90,
"startOffset": 38
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 126,
"message": "Define a constant instead of duplicating this literal \"image_processing.demo_alpr\" 10 times.",
"textRange": {
"endLine": 126,
"endOffset": 66,
"startLine": 126,
"startOffset": 38
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "RELIABILITY"
}
],
"line": 139,
"message": "Do not perform equality checks with floating point values.",
"textRange": {
"endLine": 139,
"endOffset": 46,
"startLine": 139,
"startOffset": 11
},
"type": "BUG"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "RELIABILITY"
}
],
"line": 162,
"message": "Do not perform equality checks with floating point values.",
"textRange": {
"endLine": 162,
"endOffset": 46,
"startLine": 162,
"startOffset": 11
},
"type": "BUG"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "RELIABILITY"
}
],
"line": 188,
"message": "Do not perform equality checks with floating point values.",
"textRange": {
"endLine": 188,
"endOffset": 46,
"startLine": 188,
"startOffset": 11
},
"type": "BUG"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 197,
"message": "Define a constant instead of duplicating this literal \"image_processing.demo_face\" 6 times.",
"textRange": {
"endLine": 197,
"endOffset": 66,
"startLine": 197,
"startOffset": 38
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "RELIABILITY"
}
],
"line": 211,
"message": "Do not perform equality checks with floating point values.",
"textRange": {
"endLine": 211,
"endOffset": 47,
"startLine": 211,
"startOffset": 11
},
"type": "BUG"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "RELIABILITY"
}
],
"line": 240,
"message": "Do not perform equality checks with floating point values.",
"textRange": {
"endLine": 240,
"endOffset": 47,
"startLine": 240,
"startOffset": 11
},
"type": "BUG"
}
] | 4,150 |
pipenv/patched/piptools/repositories/__init__.py | Enzime/pipenv | 18,636 | 9671823 | <gh_stars>1000+
# flake8: noqa
from .local import LocalRequirementsRepository
from .pypi import PyPIRepository
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 0 | [] | 5,906 |
torch/autograd/profiler.py | xiaohanhuang/pytorch | 60,067 | 11457937 | <gh_stars>1000+
from torch.autograd.profiler_util import (
EventList, FunctionEvent, MemRecordsAcc, MEMORY_EVENT_NAME,
_filter_name, _filter_stack_entry, _rewrite_name
)
from torch.autograd import (
DeviceType, ProfilerActivity, ProfilerConfig, ProfilerState,
kineto_available, _ProfilerResult, _disable_profiler, _enable_profiler,
_prepare_profiler, _supported_activities
)
import torch
import torch.cuda
from torch.futures import Future
from typing import Any, Dict, List, Optional
from warnings import warn
try:
# Available in Python >= 3.2
from contextlib import ContextDecorator
except ImportError:
import functools
class ContextDecorator(object): # type: ignore[no-redef]
def __enter__(self):
raise NotImplementedError
def __exit__(self, exc_type, exc_val, exc_tb):
raise NotImplementedError
def __call__(self, func):
@functools.wraps(func)
def wrapped(*args, **kwargs):
with self:
return func(*args, **kwargs)
return wrapped
class profile(object):
"""Context manager that manages autograd profiler state and holds a summary of results.
Under the hood it just records events of functions being executed in C++ and
exposes those events to Python. You can wrap any code into it and it will
only report runtime of PyTorch functions.
Note: profiler is thread local and is automatically propagated into the async tasks
Args:
enabled (bool, optional): Setting this to False makes this context manager a no-op.
use_cuda (bool, optional): Enables timing of CUDA events as well using the cudaEvent API.
Adds approximately 4us of overhead to each tensor operation.
record_shapes (bool, optional): If shapes recording is set, information
about input dimensions will be collected. This allows one to see which
dimensions have been used under the hood and further group by them
using prof.key_averages(group_by_input_shape=True). Please note that
shape recording might skew your profiling data. It is recommended to
use separate runs with and without shape recording to validate the timing.
Most likely the skew will be negligible for bottom most events (in a case
of nested function calls). But for higher level functions the total
self cpu time might be artificially increased because of the shape
collection.
with_flops (bool, optional): If with_flops is set, the profiler will estimate
the FLOPs (floating point operations) value using the operator's input shape.
This allows one to estimate the hardware performance. Currently,
this option only works for the matrix multiplication and 2D convolution operators.
profile_memory (bool, optional): track tensor memory allocation/deallocation.
with_stack (bool, optional): record source information (file and line number) for the ops.
with_modules (bool): record module hierarchy (including function names)
corresponding to the callstack of the op. e.g. If module A's forward call's
module B's forward which contains an aten::add op,
then aten::add's module hierarchy is A.B
Note that this support exist, at the moment, only for TorchScript models
and not eager mode models.
use_kineto (bool, optional): experimental, enable profiling with Kineto profiler.
use_cpu (bool, optional): profile CPU events; setting to ``False`` requires
``use_kineto=True`` and can be used to lower the overhead for GPU-only profiling.
.. warning:
Enabling memory profiling or source attribution incurs additional profiler
overhead
.. warning:
This context managers should not be called recursively, i.e. no nested
instances are allowed
.. warning:
Due to some CUDA multiprocessing limitations (multiprocessing-cuda-note_),
one cannot use the profiler with ``use_cuda = True`` to benchmark
DataLoaders with ``num_workers > 0``. If you wish to benchmark data loading,
please use ``use_cuda = False`` or ``num_workers = 0``.
Example:
>>> x = torch.randn((1, 1), requires_grad=True)
>>> with torch.autograd.profiler.profile() as prof:
>>> for _ in range(100): # any normal python code, really!
>>> y = x ** 2
>> y.backward()
>>> # NOTE: some columns were removed for brevity
>>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
----------------------------------- --------------- --------------- ---------------
Name Self CPU total CPU time avg Number of Calls
----------------------------------- --------------- --------------- ---------------
mul 32.048ms 32.048ms 200
pow 27.041ms 27.041ms 200
PowBackward0 9.727ms 55.483ms 100
torch::autograd::AccumulateGrad 9.148ms 9.148ms 100
torch::autograd::GraphRoot 691.816us 691.816us 100
----------------------------------- --------------- --------------- ---------------
"""
def __init__(
self,
enabled=True,
*,
use_cuda=False,
record_shapes=False,
with_flops=False,
profile_memory=False,
with_stack=False,
with_modules=False,
use_kineto=False,
use_cpu=True):
self.enabled: bool = enabled
if not self.enabled:
return
self.use_cuda = use_cuda
self.function_events: Optional[EventList] = None
self.entered = False
self.record_shapes = record_shapes
self.with_flops = with_flops
self.record_shapes |= self.with_flops
self.profile_memory = profile_memory
self.with_stack = with_stack
self.with_modules = with_modules
self.use_cpu = use_cpu
self.kineto_results: Optional[_ProfilerResult] = None
if not self.use_cpu:
assert use_kineto, \
"Device-only events supported only with Kineto (use_kineto=True)"
if self.use_cuda and not torch.cuda.is_available():
warn("CUDA is not available, disabling CUDA profiling")
self.use_cuda = False
self.kineto_activities = set()
if self.use_cpu:
self.kineto_activities.add(ProfilerActivity.CPU)
self.profiler_kind = ProfilerState.KINETO
if self.use_cuda:
if (not use_kineto or ProfilerActivity.CUDA not in
_supported_activities()):
assert self.use_cpu, "Legacy CUDA profiling requires use_cpu=True"
self.profiler_kind = ProfilerState.KINETO_GPU_FALLBACK
else:
self.kineto_activities.add(ProfilerActivity.CUDA)
assert len(self.kineto_activities) > 0, \
"No activities specified for the profiler"
def config(self):
return ProfilerConfig(
self.profiler_kind,
self.record_shapes,
self.profile_memory,
self.with_stack,
self.with_flops,
self.with_modules)
def __enter__(self):
if not self.enabled:
return
if self.entered:
raise RuntimeError("Profiler context manager is not reentrant")
self._prepare_trace()
self._start_trace()
return self
def _prepare_trace(self):
self.entered = True
_prepare_profiler(self.config(), self.kineto_activities)
def _start_trace(self):
self.entered = True
_enable_profiler(self.config(), self.kineto_activities)
def __exit__(self, exc_type, exc_val, exc_tb):
if not self.enabled:
return
if self.use_cuda:
torch.cuda.synchronize()
self.kineto_results = _disable_profiler()
parsed_results = self._parse_kineto_results(self.kineto_results)
self.function_events = EventList(
parsed_results,
use_cuda=self.use_cuda,
profile_memory=self.profile_memory,
with_flops=self.with_flops)
self.function_events._build_tree()
return False
def __repr__(self):
if self.function_events is None:
return '<unfinished torch.autograd.profile>'
return repr(self.function_events)
def __str__(self):
if self.function_events is None:
return '<unfinished torch.autograd.profile>'
return str(self.function_events)
def _check_finish(self):
if self.function_events is None:
raise RuntimeError("Profiler didn't finish running")
def table(self, sort_by=None, row_limit=100, max_src_column_width=75, header=None, top_level_events_only=False):
self._check_finish()
assert self.function_events is not None
return self.function_events.table(
sort_by=sort_by, row_limit=row_limit, max_src_column_width=max_src_column_width, header=header,
top_level_events_only=top_level_events_only
)
table.__doc__ = EventList.table.__doc__
def export_chrome_trace(self, path):
self._check_finish()
if kineto_available():
self.kineto_results.save(path) # type: ignore[union-attr]
else:
return self.function_events.export_chrome_trace(path) # type: ignore[union-attr]
export_chrome_trace.__doc__ = EventList.export_chrome_trace.__doc__
def export_stacks(self, path: str, metric: str = "self_cpu_time_total"):
self._check_finish()
assert self.function_events is not None, "Expected profiling results"
assert self.with_stack, "export_stacks() requires with_stack=True"
return self.function_events.export_stacks(path, metric)
def key_averages(self, group_by_input_shape=False, group_by_stack_n=0):
self._check_finish()
assert self.function_events is not None, "Expected profiling results"
return self.function_events.key_averages(group_by_input_shape, group_by_stack_n)
key_averages.__doc__ = EventList.key_averages.__doc__
def total_average(self):
self._check_finish()
assert self.function_events is not None, "Expected profiling results"
return self.function_events.total_average()
total_average.__doc__ = EventList.total_average.__doc__
@property
def self_cpu_time_total(self):
""" Returns total time spent on CPU obtained as a sum of
all self times across all the events.
"""
self._check_finish()
assert self.function_events is not None
return self.function_events.self_cpu_time_total
def _parse_kineto_results(self, result):
# result.events() has most of the events - PyTorch op-level and device-level events
trace_start_us = result.trace_start_us()
mem_records = [[evt, False] for evt in result.events() if evt.name() == MEMORY_EVENT_NAME]
mem_records_acc = MemRecordsAcc(mem_records)
def _cpu_memory_usage(mem_record):
return mem_record.nbytes() if \
mem_record.device_type() in [DeviceType.CPU, DeviceType.MKLDNN, DeviceType.IDEEP] \
else 0
def _cuda_memory_usage(mem_record):
return mem_record.nbytes() if \
mem_record.device_type() in [DeviceType.CUDA, DeviceType.HIP] \
else 0
# Create and return FunctionEvent list
function_events = []
cuda_corr_map: Dict[int, List[FunctionEvent]] = {}
max_evt_id = 0
for kineto_event in result.events():
if _filter_name(kineto_event.name()):
continue
rel_start_us = kineto_event.start_us() - trace_start_us
rel_end_us = rel_start_us + kineto_event.duration_us()
abs_end_us = kineto_event.start_us() + kineto_event.duration_us()
cpu_memory_usage = 0
cuda_memory_usage = 0
if kineto_event.device_type() == DeviceType.CPU:
# find the corresponding memory allocation events
for mem_record in mem_records_acc.in_interval(kineto_event.start_us(), abs_end_us):
cpu_memory_usage += _cpu_memory_usage(mem_record[0])
cuda_memory_usage += _cuda_memory_usage(mem_record[0])
mem_record[1] = True
is_async = kineto_event.is_async() or (
kineto_event.start_thread_id() != kineto_event.end_thread_id()
)
fe = FunctionEvent(
id=kineto_event.correlation_id(),
name=_rewrite_name(name=kineto_event.name(), with_wildcard=True),
trace_name=_rewrite_name(name=kineto_event.name(), with_wildcard=False),
thread=kineto_event.start_thread_id(),
start_us=rel_start_us,
end_us=rel_end_us,
fwd_thread=kineto_event.fwd_thread_id(),
input_shapes=kineto_event.shapes(),
stack=[entry for entry in kineto_event.stack() if _filter_stack_entry(entry)],
scope=kineto_event.scope(),
cpu_memory_usage=cpu_memory_usage,
cuda_memory_usage=cuda_memory_usage,
is_async=is_async,
sequence_nr=kineto_event.sequence_nr(),
device_type=kineto_event.device_type(),
device_index=kineto_event.device_index(),
flops=kineto_event.flops(),
)
max_evt_id = fe.id if fe.id > max_evt_id else max_evt_id
if fe.device_type == DeviceType.CPU and not fe.is_async:
# Check if we have CUDA time as a fallback
cuda_time = kineto_event.cuda_elapsed_us()
if cuda_time > 0:
fe.append_kernel(
fe.name,
fe.device_index,
cuda_time)
fe.is_legacy = True
function_events.append(fe)
corr_id = kineto_event.linked_correlation_id()
if corr_id > 0:
if corr_id not in cuda_corr_map:
cuda_corr_map[corr_id] = []
cuda_corr_map[corr_id].append(fe)
# associate CUDA kernels and CUDA runtime (CPU) with CPU events
for fe in function_events:
if (fe.device_type == DeviceType.CPU and not fe.is_async and
fe.id in cuda_corr_map):
for f_evt in cuda_corr_map[fe.id]:
if f_evt.device_type == DeviceType.CUDA:
fe.append_kernel(
f_evt.name,
f_evt.device_index,
f_evt.time_range.end - f_evt.time_range.start)
elif f_evt.device_type == DeviceType.CPU:
# make sure that 'thread' of a CPU Kineto (e.g. CUDA Runtime) event is associated
# with the 'thread' of the corresponding linked PyTorch event to properly track
# parents and children
f_evt.thread = fe.thread
# output top-level memory events
for mem_record in mem_records:
if not mem_record[1]:
rel_start_us = mem_record[0].start_us() - trace_start_us
max_evt_id += 1
fe = FunctionEvent(
id=max_evt_id,
name=MEMORY_EVENT_NAME,
trace_name=None, # not outputting in the trace
thread=mem_record[0].start_thread_id(),
start_us=rel_start_us,
end_us=rel_start_us, # no duration
fwd_thread=mem_record[0].start_thread_id(),
input_shapes=[],
stack=[],
scope=0, # RecordScope::FUNCTION
cpu_memory_usage=_cpu_memory_usage(mem_record[0]),
cuda_memory_usage=_cuda_memory_usage(mem_record[0]),
is_async=False,
sequence_nr=-1,
device_type=DeviceType.CPU,
device_index=0,
)
function_events.append(fe)
function_events.sort(key=lambda evt: [evt.time_range.start, -evt.time_range.end])
return function_events
class record_function(ContextDecorator):
"""Context manager/function decorator that adds a label to a block of
Python code (or function) when running autograd profiler. It is
useful when tracing the code profile.
Args:
name (str): Label assigned to the block of code.
node_id (int): ID of node, for distributed profiling. Unset in
non-distributed cases.
Example:
>>> x = torch.randn((1, 1), requires_grad=True)
>>> with torch.autograd.profiler.profile() as prof:
... y = x ** 2
... with torch.autograd.profiler.record_function("label-z"): # label the block
... z = y ** 3
... y.backward()
...
>>> # NOTE: some columns were removed for brevity
>>> print(prof.key_averages().table(sort_by="self_cpu_time_total"))
----------------------------------- --------------- --------------- ---------------
Name Self CPU total % CPU time avg Number of Calls
----------------------------------- --------------- --------------- ---------------
pow 60.77% 47.470us 3
mul 21.73% 25.465us 2
PowBackward0 12.03% 121.891us 1
torch::autograd::AccumulateGrad 2.70% 6.324us 1
label-z 2.13% 12.421us 1
torch::autograd::GraphRoot 0.64% 1.503us 1
----------------------------------- --------------- --------------- ---------------
Self CPU time total: 234.344us
CUDA time total: 0.000us
"""
def __init__(self, name: str, args: Optional[str] = None):
self.name: str = name
self.args: Optional[str] = args
# Whether or not we should run record function's end callbacks when exiting.
self.run_callbacks_on_exit: bool = True
# Stores underlying RecordFunction as a tensor. TODO: move to custom
# class (https://github.com/pytorch/pytorch/issues/35026).
self.handle: torch.Tensor = torch.zeros(1)
def __enter__(self):
self.handle = torch.ops.profiler._record_function_enter(self.name, self.args)
return self
def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any):
if self.run_callbacks_on_exit:
torch.ops.profiler._record_function_exit(self.handle)
def _call_end_callbacks_on_future(self, fut: Future[Any]) -> Future[Any]:
"""
_call_end_callbacks_on_future is meant to be used for profiling async
calls that return a future. Calling this function will extend recording
beyond this scope, until the future is satisfied. It is useful for profiling
the end to end time of asynchronous calls. This function should only be called
once to attach the callback onto the future, and will throw if called multiple
times.
Args:
fut: (torch._C.Future): future for which to schedule
callback for.
Returns:
A future that completes with the value of the passed in future when
the profiling callbacks have ran.
"""
# Throw if we have already attached a callback onto the future.
if not self.run_callbacks_on_exit:
raise RuntimeError("_call_end_callbacks_on_future can only be called once.")
# We are scheduling to run this RecordFunction's end callbacks when the
# passed in future completes, so don't run end callbacks on exit.
self.run_callbacks_on_exit = False
profiled_future = torch.ops.profiler._call_end_callbacks_on_jit_fut(self.handle, fut)
return profiled_future
class emit_nvtx(object):
"""Context manager that makes every autograd operation emit an NVTX range.
It is useful when running the program under nvprof::
nvprof --profile-from-start off -o trace_name.prof -- <regular command here>
Unfortunately, there's no way to force nvprof to flush the data it collected
to disk, so for CUDA profiling one has to use this context manager to annotate
nvprof traces and wait for the process to exit before inspecting them.
Then, either NVIDIA Visual Profiler (nvvp) can be used to visualize the timeline, or
:func:`torch.autograd.profiler.load_nvprof` can load the results for inspection
e.g. in Python REPL.
.. warning:
This context manager should not be called recursively, i.e. at most one
instance should be enabled at any given time.
Args:
enabled (bool, optional, default=True): Setting ``enabled=False`` makes this context manager a no-op.
Default: ``True``.
record_shapes (bool, optional, default=False): If ``record_shapes=True``, the nvtx range wrapping
each autograd op will append information about the sizes of Tensor arguments received
by that op, in the following format:
``[[arg0.size(0), arg0.size(1), ...], [arg1.size(0), arg1.size(1), ...], ...]``
Non-tensor arguments will be represented by ``[]``.
Arguments will be listed in the order they are received by the backend op.
Please note that this order may not match the order in which those arguments were passed
on the Python side. Also note that shape recording may increase the overhead of nvtx range creation.
Example:
>>> with torch.cuda.profiler.profile():
... model(x) # Warmup CUDA memory allocator and profiler
... with torch.autograd.profiler.emit_nvtx():
... model(x)
**Forward-backward correlation**
When viewing a profile created using :class:`emit_nvtx` in the Nvidia Visual Profiler,
correlating each backward-pass op with the corresponding forward-pass op can be difficult.
To ease this task, :class:`emit_nvtx` appends sequence number information to the ranges it
generates.
During the forward pass, each function range is decorated with ``seq=<N>``. ``seq`` is a running
counter, incremented each time a new backward Function object is created and stashed for backward.
Thus, the ``seq=<N>`` annotation associated with each forward function range tells you that
if a backward Function object is created by this forward function,
the backward object will receive sequence number N.
During the backward pass, the top-level range wrapping each C++ backward Function's
``apply()`` call is decorated with ``stashed seq=<M>``. ``M`` is the sequence number that
the backward object was created with. By comparing ``stashed seq`` numbers in backward with ``seq``
numbers in forward, you can track down which forward op created each backward Function.
Any functions executed during the backward pass are also decorated with ``seq=<N>``. During
default backward (with ``create_graph=False``) this information is irrelevant, and in fact,
``N`` may simply be 0 for all such functions. Only the top-level ranges associated with
backward Function objects' ``apply()`` methods are useful, as a way to correlate these Function
objects with the earlier forward pass.
**Double-backward**
If, on the other hand, a backward pass with ``create_graph=True`` is underway (in other words,
if you are setting up for a double-backward), each function's execution during backward
is given a nonzero, useful ``seq=<N>``. Those functions may themselves create Function objects
to be executed later during double-backward, just as the original functions in the forward pass did.
The relationship between backward and double-backward is conceptually the same as the relationship
between forward and backward: The functions still emit current-sequence-number-tagged ranges,
the Function objects they create still stash those sequence numbers, and during the eventual
double-backward, the Function objects' ``apply()`` ranges are still tagged with ``stashed seq``
numbers, which can be compared to `seq` numbers from the backward pass.
.. warning:
The sequence number is thread-local, and some forward functions don't create an associated
backward Function object (instead delegating that to sub-functions further down the call chain).
For these reasons, the correspondence of stashed sequence numbers in
backward Function ``apply()`` ranges with `seq` numbers in forward-pass ranges is
not guaranteed to be 1 to 1. The sequence numbers alone may not be enough to fully
disambiguate which forward function created which
backward Function object. You may need to make a judgment based on analytic knowledge of what
the expected correspondence should be.
"""
def __init__(self, enabled=True, record_shapes=False):
self.enabled = enabled
self.entered = False
self.record_shapes = record_shapes
def __enter__(self):
if not self.enabled:
return
if self.entered:
raise RuntimeError("NVTX annotation context manager is not reentrant")
self.entered = True
torch.cuda.synchronize()
_enable_profiler(
ProfilerConfig(
ProfilerState.NVTX,
self.record_shapes,
False,
False,
False,
False),
set()
)
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if not self.enabled:
return
torch.cuda.synchronize()
_disable_profiler()
return False
def load_nvprof(path):
"""Opens an nvprof trace file and parses autograd annotations.
Args:
path (str): path to nvprof trace
"""
return EventList(parse_nvprof_trace(path))
class EnforceUnique(object):
"""Raises an error if a key is seen more than once."""
def __init__(self):
self.seen = set()
def see(self, *key):
if key in self.seen:
raise RuntimeError('duplicate key: ' + str(key))
self.seen.add(key)
def parse_nvprof_trace(path):
import sqlite3
conn = sqlite3.connect(path)
conn.row_factory = sqlite3.Row
# Parse strings table
strings = {}
for r in conn.execute("SELECT _id_ as id, value FROM StringTable"):
strings[r["id"]] = torch._C._demangle(r["value"])
# First, find all functions and create FunctionEvents for them
marker_query = """
SELECT
start.id AS marker_id, start.name, start.timestamp AS start_time, end.timestamp AS end_time
FROM
CUPTI_ACTIVITY_KIND_MARKER AS start INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
ON start.id = end.id
WHERE
start.name != 0 AND end.name = 0
"""
functions = []
functions_map = {}
unique = EnforceUnique()
for row in conn.execute(marker_query):
unique.see(row['marker_id'])
evt = FunctionEvent(id=row['marker_id'],
node_id=0, # missing a node_id when calling FunctionEvent. This is just to ensure
# that pytorch doesn't crash when creating a FunctionEvent() object
name=strings[row['name']],
start_us=row['start_time'],
end_us=row['end_time'],
thread=0) # TODO: find in sqlite database
functions.append(evt)
functions_map[evt.id] = evt
# Now, correlate all kernels with FunctionEvents
kernel_query = """
SELECT
start.id AS marker_id, start.name, start.timestamp, end.timestamp,
runtime._id_ AS runtime_id, runtime.cbid, runtime.start AS runtime_start, runtime.end AS runtime_end,
kernel.start AS kernel_start, kernel.end AS kernel_end, kernel.name AS kernel_name
FROM
CUPTI_ACTIVITY_KIND_MARKER AS start
INNER JOIN CUPTI_ACTIVITY_KIND_MARKER AS end
ON start.id = end.id
INNER JOIN CUPTI_ACTIVITY_KIND_RUNTIME as runtime
ON (start.timestamp < runtime.start AND runtime.end < end.timestamp)
INNER JOIN CUPTI_ACTIVITY_KIND_CONCURRENT_KERNEL AS kernel
ON kernel.correlationId = runtime.correlationId
"""
unique = EnforceUnique()
for row in conn.execute(kernel_query):
unique.see(row['marker_id'], row['runtime_id'])
# 211 is cudaKernelLaunch for cuda >= 9.2
assert (row['cbid'] == 211)
evt = functions_map[row['marker_id']]
evt.append_kernel(row['kernel_name'],
0,
row['kernel_end'] - row['kernel_start'])
functions.sort(key=lambda evt: evt.time_range.start)
return functions
| null | null | null | null | null | null | null | null | null | [] | 9,615 |
tests/validation/tests/v1_api/test_deployment.py | ursinnDev/rancher_rancher | 18,697 | 9768808 | from .common import * # NOQA
import pytest
namespace = {"client": None, "ns": None}
def test_namespace_create():
template = read_yaml_from_resource_dir("namespace.yaml")
template["metadata"]["name"] = random_test_name()
client = namespace["client"]
res = client.create_namespace(template)
# validate the namespace is created
ns = client.by_id_namespace(res.id)
assert ns.id == res.id
# delete the namespace at the end
client.delete(ns)
def test_deployment():
client = namespace["client"]
ns = namespace["ns"]
template = read_json_from_resource_dir("deployment_1.json")
name = random_name()
# set name
template["metadata"]["name"] = name
# set namespace
template["metadata"]["namespace"] = ns.id
# set container image and name
template["spec"]["template"]["spec"]["containers"][0]["image"] = TEST_IMAGE_V1
template["spec"]["template"]["spec"]["containers"][0]["name"] = name
# set label and selector
label_value = "apps.deployment-{}-{}".format(ns.id, name)
labels = template["spec"]["template"]["metadata"]["labels"]
labels["workload.user.cattle.io/workloadselector"] = label_value
matches = template["spec"]["selector"]["matchLabels"]
matches["workload.user.cattle.io/workloadselector"] = label_value
deployment = client.create_apps_deployment(template)
deployment = validate_deployment(client, deployment)
# scale up to 5 pods
deployment.spec.replicas = 5
deployment = client.update(deployment, deployment)
deployment = validate_deployment(client, deployment)
client.delete(deployment)
def validate_deployment(client, deployment):
# wait for the deployment to be active
wait_for(lambda: client.reload(deployment).metadata.state.name == "active",
timeout_message="time out waiting for deployment to be ready")
res = client.reload(deployment)
name = res["metadata"]["name"]
namespace = res["metadata"]["namespace"]
replicas = res["spec"]["replicas"]
# Rancher Dashboard gets pods by passing the label selector
target_label = 'workload.user.cattle.io/workloadselector=apps.deployment-{}-{}'
pods = client.list_pod(
labelSelector=target_label.format(namespace, name))
assert "data" in pods.keys(), "failed to get pods"
assert len(pods.data) == replicas, "failed to get the right number of pods"
for pod in pods.data:
assert pod.metadata.state.name == "running"
return res
@pytest.fixture(scope='module', autouse="True")
def create_client(request):
client = get_cluster_client_for_token_v1()
template = read_yaml_from_resource_dir("namespace.yaml")
template["metadata"]["name"] = random_test_name()
ns = client.create_namespace(template)
namespace["client"] = client
namespace["ns"] = ns
def fin():
client.delete(namespace["ns"])
request.addfinalizer(fin)
| null | null | null | null | null | null | null | null | null | [] | 6,232 |
tests/components/motion_blinds/__init__.py | tbarbette/core | 30,023 | 8241861 | <reponame>tbarbette/core
"""Tests for the Motion Blinds integration."""
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 0 | [] | 9,202 |
posthog/settings/cloud.py | dorucioclea/posthog | 7,409 | 9633711 | # Overridden in posthog-cloud
import sys
from posthog.settings.utils import get_from_env, print_warning, str_to_bool
# Early exit to avoid issues with cloud not being properly included
if get_from_env("MULTI_TENANCY", False, type_cast=str_to_bool):
print_warning(("️Environment variable MULTI_TENANCY is set, but cloud settings have not been included",))
sys.exit("[ERROR] Stopping Django server…\n")
| null | null | null | null | null | null | null | null | null | [] | 5,668 |
xirl/xirl/evaluators/reward_visualizer.py | xxdreck/google-research | 23,901 | 10173439 | # coding=utf-8
# Copyright 2021 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Reward visualizer."""
from .base import Evaluator
from .base import EvaluatorOutput
import matplotlib.pyplot as plt
import numpy as np
from scipy.spatial.distance import cdist
class RewardVisualizer(Evaluator):
"""Distance to goal state visualizer."""
def __init__(self, distance, num_plots):
"""Constructor.
Args:
distance: The distance metric to use when calculating nearest-neighbours.
num_plots: The number of reward plots to display.
Raises:
ValueError: If the distance metric is invalid.
"""
super().__init__(inter_class=False)
if distance not in ["sqeuclidean", "cosine"]:
raise ValueError(
"{} is not a supported distance metric.".format(distance))
# For plotting, we don't want to display squared euclidean distances so we
# will override to `euclidean` if it was selected.
if distance == "sqeuclidean":
distance = "euclidean"
self.distance = distance
self.num_plots = num_plots
def _gen_reward_plot(self, rewards):
"""Create a pyplot plot and save to buffer."""
fig, axes = plt.subplots(1, len(rewards), figsize=(6.4 * len(rewards), 4.8))
if len(rewards) == 1:
axes = [axes]
for i, rew in enumerate(rewards):
axes[i].plot(rew)
fig.text(0.5, 0.04, "Timestep", ha="center")
fig.text(0.04, 0.5, "Reward", va="center", rotation="vertical")
fig.canvas.draw()
img_arr = np.array(fig.canvas.renderer.buffer_rgba())[:, :, :3]
plt.close()
return img_arr
def _compute_goal_emb(self, embs):
"""Compute the mean of all last frame embeddings."""
goal_emb = [emb[-1, :] for emb in embs]
goal_emb = np.stack(goal_emb, axis=0)
goal_emb = np.mean(goal_emb, axis=0, keepdims=True)
return goal_emb
def evaluate(self, outs):
embs = [o.embs for o in outs]
goal_emb = self._compute_goal_emb(embs)
# Make sure we sample only as many as are available.
num_plots = min(len(embs), self.num_plots)
rand_idxs = np.random.choice(
np.arange(len(embs)), size=num_plots, replace=False)
# Compute rewards as distances to the goal embedding.
rewards = []
for idx in rand_idxs:
emb = embs[idx]
dists = cdist(emb, goal_emb, self.distance)
rewards.append(-dists)
image = self._gen_reward_plot(rewards)
return EvaluatorOutput(image=image)
| null | null | null | null | null | null | null | null | null | [] | 11,923 |
python/paddle/fluid/tests/unittests/test_conv2d_transpose_op_depthwise_conv.py | zmxdream/Paddle | 17,085 | 10185976 | # Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
paddle.enable_static()
import paddle.fluid.core as core
import paddle.fluid as fluid
from op_test import OpTest
from test_conv2d_transpose_op import TestConv2DTransposeOp
class TestDepthwiseConvTranspose(TestConv2DTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [1, 8, 4, 4] # NCHW
self.groups = 8
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [self.input_size[1], f_c, 4, 4]
self.op_type = "depthwise_conv2d_transpose"
class TestDepthwiseConvTransposeAsymmetricPad(TestConv2DTransposeOp):
def init_test_case(self):
self.pad = [1, 1, 1, 2]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [1, 8, 4, 4] # NCHW
self.groups = 8
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [self.input_size[1], f_c, 3, 3]
self.op_type = "depthwise_conv2d_transpose"
self.data_format = 'NCHW'
class TestDepthwiseConvTransposeSAMEPad(TestConv2DTransposeOp):
def init_test_case(self):
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [1, 8, 4, 4] # NHWC
self.groups = 8
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [self.input_size[1], f_c, 3, 3]
self.op_type = "depthwise_conv2d_transpose"
self.padding_algorithm = 'SAME'
class TestDepthwiseConvTransposeVALIDPad(TestConv2DTransposeOp):
def init_test_case(self):
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [1, 8, 4, 4] # NHWC
self.groups = 8
assert np.mod(self.input_size[1], self.groups) == 0
f_c = self.input_size[1] // self.groups
self.filter_size = [self.input_size[1], f_c, 3, 3]
self.op_type = "depthwise_conv2d_transpose"
self.padding_algorithm = 'VALID'
class TestDepthwiseConvTranspose_NHWC_3x3kernel(TestConv2DTransposeOp):
def init_test_case(self):
self.pad = [1, 1]
self.stride = [1, 1]
self.dilations = [1, 1]
self.input_size = [1, 4, 4, 8] # NHWC
self.groups = 8
assert np.mod(self.input_size[3], self.groups) == 0
f_c = self.input_size[3] // self.groups
self.filter_size = [self.input_size[3], f_c, 3, 3]
self.op_type = "depthwise_conv2d_transpose"
self.data_format = 'NHWC'
if __name__ == '__main__':
unittest.main()
| null | null | null | null | null | null | null | null | null | [] | 12,003 |
homeassistant/components/unifiprotect/light.py | liangleslie/core | 30,023 | 515251 | <gh_stars>1000+
"""This component provides Lights for UniFi Protect."""
from __future__ import annotations
import logging
from typing import Any
from pyunifiprotect.data import Light
from homeassistant.components.light import ATTR_BRIGHTNESS, ColorMode, LightEntity
from homeassistant.config_entries import ConfigEntry
from homeassistant.core import HomeAssistant, callback
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from .const import DOMAIN
from .data import ProtectData
from .entity import ProtectDeviceEntity
_LOGGER = logging.getLogger(__name__)
async def async_setup_entry(
hass: HomeAssistant,
entry: ConfigEntry,
async_add_entities: AddEntitiesCallback,
) -> None:
"""Set up lights for UniFi Protect integration."""
data: ProtectData = hass.data[DOMAIN][entry.entry_id]
entities = [
ProtectLight(
data,
device,
)
for device in data.api.bootstrap.lights.values()
]
if not entities:
return
async_add_entities(entities)
def unifi_brightness_to_hass(value: int) -> int:
"""Convert unifi brightness 1..6 to hass format 0..255."""
return min(255, round((value / 6) * 255))
def hass_to_unifi_brightness(value: int) -> int:
"""Convert hass brightness 0..255 to unifi 1..6 scale."""
return max(1, round((value / 255) * 6))
class ProtectLight(ProtectDeviceEntity, LightEntity):
"""A Ubiquiti UniFi Protect Light Entity."""
device: Light
_attr_icon = "mdi:spotlight-beam"
_attr_color_mode = ColorMode.BRIGHTNESS
_attr_supported_color_modes = {ColorMode.BRIGHTNESS}
@callback
def _async_update_device_from_protect(self) -> None:
super()._async_update_device_from_protect()
self._attr_is_on = self.device.is_light_on
self._attr_brightness = unifi_brightness_to_hass(
self.device.light_device_settings.led_level
)
async def async_turn_on(self, **kwargs: Any) -> None:
"""Turn the light on."""
hass_brightness = kwargs.get(ATTR_BRIGHTNESS, self.brightness)
unifi_brightness = hass_to_unifi_brightness(hass_brightness)
_LOGGER.debug("Turning on light with brightness %s", unifi_brightness)
await self.device.set_light(True, unifi_brightness)
async def async_turn_off(self, **kwargs: Any) -> None:
"""Turn the light off."""
_LOGGER.debug("Turning off light")
await self.device.set_light(False)
| 0 | 0 | 0.0 | 1 | 0 | 0 | 1.0 | 0 | 7 | [] | 10,391 |
tests_django/test_settings.py | gugux289/chatterbot | 13,200 | 10102852 | <gh_stars>1000+
"""
Django settings for when tests are run.
"""
import os
from chatterbot import constants
DEBUG = True
BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
SECRET_KEY = 'fake-key'
INSTALLED_APPS = [
'django.contrib.auth',
'django.contrib.contenttypes',
'django.contrib.sessions',
'chatterbot.ext.django_chatterbot',
'tests_django',
]
CHATTERBOT = {
'name': 'Test Django ChatterBot',
'logic_adapters': [
{
'import_path': 'chatterbot.logic.BestMatch',
},
{
'import_path': 'chatterbot.logic.MathematicalEvaluation',
}
],
'storage_adapter': 'chatterbot.storage.DjangoStorageAdapter',
'django_app_name': constants.DEFAULT_DJANGO_APP_NAME,
'initialize': False
}
MIDDLEWARE_CLASSES = (
'django.contrib.sessions.middleware.SessionMiddleware',
'django.middleware.common.CommonMiddleware',
'django.contrib.auth.middleware.AuthenticationMiddleware',
'django.contrib.auth.middleware.SessionAuthenticationMiddleware',
'django.contrib.messages.middleware.MessageMiddleware',
'django.middleware.clickjacking.XFrameOptionsMiddleware',
'django.middleware.security.SecurityMiddleware',
)
DATABASES = {
'default': {
'ENGINE': 'django.db.backends.sqlite3',
'NAME': os.path.join(BASE_DIR, 'db.sqlite3'),
}
}
# Using the MD5 password hasher improves test performance
PASSWORD_HASHERS = (
'django.contrib.auth.hashers.MD5PasswordHasher',
)
USE_TZ = True
LOGGING = {
'version': 1,
'disable_existing_loggers': False,
'handlers': {
'console': {
'class': 'logging.StreamHandler',
},
},
'loggers': {
'django': {
'handlers': ['console'],
'level': os.getenv('DJANGO_LOG_LEVEL', 'INFO'),
},
},
}
| null | null | null | null | null | null | null | null | null | [] | 11,633 |
configs/paa/paa_r50_fpn_1.5x_coco.py | evgps/mmdetection_trashcan | 20,190 | 11287256 | <gh_stars>1000+
_base_ = './paa_r50_fpn_1x_coco.py'
lr_config = dict(step=[12, 16])
runner = dict(type='EpochBasedRunner', max_epochs=18)
| null | null | null | null | null | null | null | null | null | [] | 6,811 |
homeassistant/components/fastdotcom/sensor.py | MrDelik/core | 30,023 | 405011 | <reponame>MrDelik/core
"""Support for Fast.com internet speed testing sensor."""
from __future__ import annotations
from typing import Any
from homeassistant.components.sensor import SensorEntity
from homeassistant.const import DATA_RATE_MEGABITS_PER_SECOND
from homeassistant.core import HomeAssistant, callback
from homeassistant.helpers.dispatcher import async_dispatcher_connect
from homeassistant.helpers.entity_platform import AddEntitiesCallback
from homeassistant.helpers.restore_state import RestoreEntity
from homeassistant.helpers.typing import ConfigType, DiscoveryInfoType
from . import DATA_UPDATED, DOMAIN as FASTDOTCOM_DOMAIN
ICON = "mdi:speedometer"
async def async_setup_platform(
hass: HomeAssistant,
config: ConfigType,
async_add_entities: AddEntitiesCallback,
discovery_info: DiscoveryInfoType | None = None,
) -> None:
"""Set up the Fast.com sensor."""
async_add_entities([SpeedtestSensor(hass.data[FASTDOTCOM_DOMAIN])])
class SpeedtestSensor(RestoreEntity, SensorEntity):
"""Implementation of a FAst.com sensor."""
_attr_name = "Fast.com Download"
_attr_native_unit_of_measurement = DATA_RATE_MEGABITS_PER_SECOND
_attr_icon = ICON
_attr_should_poll = False
_attr_native_value = None
def __init__(self, speedtest_data: dict[str, Any]) -> None:
"""Initialize the sensor."""
self._speedtest_data = speedtest_data
async def async_added_to_hass(self) -> None:
"""Handle entity which will be added."""
await super().async_added_to_hass()
self.async_on_remove(
async_dispatcher_connect(
self.hass, DATA_UPDATED, self._schedule_immediate_update
)
)
if not (state := await self.async_get_last_state()):
return
self._attr_native_value = state.state
def update(self) -> None:
"""Get the latest data and update the states."""
if (data := self._speedtest_data.data) is None: # type: ignore[attr-defined]
return
self._attr_native_value = data["download"]
@callback
def _schedule_immediate_update(self) -> None:
self.async_schedule_update_ha_state(True)
| null | null | null | null | null | null | null | null | null | [] | 10,193 |
tests/nlu/featurizers/test_regex_featurizer.py | Next-Trends/rasa | 3,603 | 6565391 | <gh_stars>1000+
from typing import Text, List, Any, Tuple, Callable, Dict, Optional
import dataclasses
import numpy as np
import pytest
from rasa.engine.graph import ExecutionContext
from rasa.engine.storage.resource import Resource
from rasa.engine.storage.storage import ModelStorage
from rasa.nlu.featurizers.sparse_featurizer.regex_featurizer import RegexFeaturizer
from rasa.shared.nlu.training_data.training_data import TrainingData
from rasa.shared.nlu.training_data.message import Message
from rasa.nlu.tokenizers.whitespace_tokenizer import WhitespaceTokenizer
from rasa.nlu.constants import SPACY_DOCS, TOKENS_NAMES
from rasa.shared.nlu.constants import TEXT, INTENT, RESPONSE
from rasa.nlu.tokenizers.spacy_tokenizer import SpacyTokenizer
@pytest.fixture()
def resource() -> Resource:
return Resource("regex_featurizer")
@pytest.fixture()
def create_featurizer(
default_model_storage: ModelStorage,
default_execution_context: ExecutionContext,
resource: Resource,
) -> Callable[..., RegexFeaturizer]:
def inner(
config: Dict[Text, Any] = None,
known_patterns: Optional[List[Dict[Text, Any]]] = None,
) -> RegexFeaturizer:
config = config or {}
return RegexFeaturizer(
{**RegexFeaturizer.get_default_config(), **config},
default_model_storage,
resource,
default_execution_context,
known_patterns,
)
return inner
@pytest.mark.parametrize(
"sentence, expected_sequence_features, expected_sentence_features,"
"labeled_tokens",
[
(
"hey how are you today",
[
[0.0, 1.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
[0.0, 1.0, 0.0],
[0],
),
(
"hey 456 how are you",
[
[0.0, 1.0, 0.0],
[1.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
[0.0, 0.0, 0.0],
],
[1.0, 1.0, 0.0],
[1, 0],
),
(
"blah balh random eh",
[[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[0.0, 0.0, 0.0],
[],
),
(
"a 1 digit number",
[[0.0, 0.0, 0.0], [1.0, 0.0, 1.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]],
[1.0, 0.0, 1.0],
[1, 1],
),
],
)
def test_regex_featurizer(
sentence: Text,
expected_sequence_features: List[float],
expected_sentence_features: List[float],
labeled_tokens: List[int],
spacy_nlp: Any,
create_featurizer: Callable[..., RegexFeaturizer],
spacy_tokenizer: SpacyTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
{"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
]
ftr = create_featurizer(known_patterns=patterns)
# adds tokens to the message
message = Message(data={TEXT: sentence, RESPONSE: sentence})
message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence))
spacy_tokenizer.process([message])
sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT)
assert np.allclose(
sequence_features.toarray(), expected_sequence_features, atol=1e-10
)
assert np.allclose(
sentence_features.toarray(), expected_sentence_features, atol=1e-10
)
# the tokenizer should have added tokens
assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0
# the number of regex matches on each token should match
for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])):
token_matches = token.get("pattern").values()
num_matches = sum(token_matches)
assert num_matches == labeled_tokens.count(i)
@pytest.mark.parametrize(
"sentence, tokens, expected_sequence_features, expected_sentence_features,"
"labeled_tokens",
[
(
"明天上海的天气怎么样?",
[("明天", 0), ("上海", 2), ("的", 4), ("天气", 5), ("怎么样", 7), ("?", 10)],
[[0.0, 1.0], [1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[1.0, 1.0],
[0.0, 1.0],
),
(
"北京的天气如何?",
[("北京", 0), ("的", 2), ("天气", 3), ("如何", 5), ("?", 7)],
[[1.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[1.0, 0.0],
[0.0],
),
(
"昨天和今天的天气都不错",
[("昨天", 0), ("和", 2), ("今天", 3), ("的", 5), ("天气", 6), ("都", 8), ("不错", 9)],
[
[0.0, 1.0],
[0.0, 0.0],
[0.0, 1.0],
[0.0, 0.0],
[0.0, 0.0],
[0.0, 0.0],
[0.0, 0.0],
],
[0.0, 1.0],
[0.0, 2.0],
),
(
"后天呢?",
[("后天", 0), ("呢", 2), ("?", 3)],
[[0.0, 1.0], [0.0, 0.0], [0.0, 0.0]],
[0.0, 1.0],
[0.0],
),
],
)
def test_lookup_tables_without_use_word_boundaries(
sentence: Text,
tokens: List[Tuple[Text, float]],
expected_sequence_features: List[float],
expected_sentence_features: List[float],
labeled_tokens: List[float],
create_featurizer: Callable[..., RegexFeaturizer],
):
from rasa.nlu.tokenizers.tokenizer import Token
lookups = [
{"name": "cites", "elements": ["北京", "上海", "广州", "深圳", "杭州"]},
{"name": "dates", "elements": ["昨天", "今天", "明天", "后天"]},
]
ftr = create_featurizer({"use_word_boundaries": False})
training_data = TrainingData()
training_data.lookup_tables = lookups
ftr.train(training_data)
# adds tokens to the message
message = Message(data={TEXT: sentence})
message.set(TOKENS_NAMES[TEXT], [Token(word, start) for (word, start) in tokens])
sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT)
assert np.allclose(
sequence_features.toarray(), expected_sequence_features, atol=1e-10
)
assert np.allclose(
sentence_features.toarray(), expected_sentence_features, atol=1e-10
)
# the number of regex matches on each token should match
for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])):
token_matches = token.get("pattern").values()
num_matches = sum(token_matches)
assert num_matches == labeled_tokens.count(i)
@pytest.mark.parametrize(
"sentence, expected_sequence_features, expected_sentence_features, "
"labeled_tokens",
[
(
"lemonade and mapo tofu",
[[1.0, 0.0], [0.0, 0.0], [0.0, 1.0], [0.0, 1.0]],
[1.0, 1.0],
[0.0, 2.0, 3.0],
),
(
"a cup of tea",
[[0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [1.0, 0.0]],
[1.0, 0.0],
[3.0],
),
(
"Is burrito my favorite food?",
[[0.0, 0.0], [0.0, 1.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0], [0.0, 0.0]],
[0.0, 1.0],
[1.0],
),
("I want club?mate", [[0.0, 0.0], [0.0, 0.0], [1.0, 0.0]], [1.0, 0.0], [2.0]),
],
)
def test_lookup_tables(
sentence: Text,
expected_sequence_features: List[float],
expected_sentence_features: List[float],
labeled_tokens: List[float],
spacy_nlp: Any,
spacy_tokenizer: SpacyTokenizer,
create_featurizer: Callable[..., RegexFeaturizer],
):
lookups = [
{
"name": "drinks",
"elements": ["mojito", "lemonade", "sweet berry wine", "tea", "club?mate"],
},
{"name": "plates", "elements": "data/test/lookup_tables/plates.txt"},
]
ftr = create_featurizer()
training_data = TrainingData()
training_data.lookup_tables = lookups
ftr.train(training_data)
ftr.process_training_data(training_data)
# adds tokens to the message
message = Message(data={TEXT: sentence})
message.set("text_spacy_doc", spacy_nlp(sentence))
spacy_tokenizer.process([message])
sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT)
assert np.allclose(
sequence_features.toarray(), expected_sequence_features, atol=1e-10
)
assert np.allclose(
sentence_features.toarray(), expected_sentence_features, atol=1e-10
)
# the tokenizer should have added tokens
assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0
# the number of regex matches on each token should match
for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])):
token_matches = token.get("pattern").values()
num_matches = sum(token_matches)
assert num_matches == labeled_tokens.count(i)
@pytest.mark.parametrize(
"sentence, expected_sequence_features, expected_sentence_features",
[
("hey how are you today", [0.0, 1.0, 0.0], [0.0, 1.0, 0.0]),
("hey 456 how are you", [0.0, 1.0, 0.0], [1.0, 1.0, 0.0]),
("blah balh random eh", [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]),
("a 1 digit number", [0.0, 0.0, 0.0], [1.0, 0.0, 1.0]),
],
)
def test_regex_featurizer_no_sequence(
sentence: Text,
expected_sequence_features: List[float],
expected_sentence_features: List[float],
spacy_nlp: Any,
create_featurizer: Callable[..., RegexFeaturizer],
spacy_tokenizer: SpacyTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
{"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
]
ftr = create_featurizer(known_patterns=patterns)
# adds tokens to the message
message = Message(data={TEXT: sentence})
message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence))
spacy_tokenizer.process([message])
sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT)
assert np.allclose(
sequence_features.toarray()[0], expected_sequence_features, atol=1e-10
)
assert np.allclose(
sentence_features.toarray()[-1], expected_sentence_features, atol=1e-10
)
def test_regex_featurizer_train(
create_featurizer: Callable[..., RegexFeaturizer],
whitespace_tokenizer: WhitespaceTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
{"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
]
featurizer = create_featurizer()
sentence = "hey how are you today 19.12.2019 ?"
message = Message(data={TEXT: sentence})
message.set(RESPONSE, sentence)
message.set(INTENT, "intent")
whitespace_tokenizer.process_training_data(TrainingData([message]))
training_data = TrainingData([message], regex_features=patterns)
featurizer.train(training_data)
featurizer.process_training_data(training_data)
expected = np.array([0, 1, 0])
expected_cls = np.array([1, 1, 1])
seq_vecs, sen_vec = message.get_sparse_features(TEXT, [])
if seq_vecs:
seq_vecs = seq_vecs.features
if sen_vec:
sen_vec = sen_vec.features
assert (6, 3) == seq_vecs.shape
assert (1, 3) == sen_vec.shape
assert np.all(seq_vecs.toarray()[0] == expected)
assert np.all(sen_vec.toarray()[-1] == expected_cls)
seq_vecs, sen_vec = message.get_sparse_features(RESPONSE, [])
if seq_vecs:
seq_vecs = seq_vecs.features
if sen_vec:
sen_vec = sen_vec.features
assert (6, 3) == seq_vecs.shape
assert (1, 3) == sen_vec.shape
assert np.all(seq_vecs.toarray()[0] == expected)
assert np.all(sen_vec.toarray()[-1] == expected_cls)
seq_vecs, sen_vec = message.get_sparse_features(INTENT, [])
if seq_vecs:
seq_vecs = seq_vecs.features
if sen_vec:
sen_vec = sen_vec.features
assert seq_vecs is None
assert sen_vec is None
@pytest.mark.parametrize(
"sentence, expected_sequence_features, expected_sentence_features,"
"case_sensitive",
[
("Hey How are you today", [0.0, 0.0, 0.0], [0.0, 0.0, 0.0], True),
("Hey How are you today", [0.0, 1.0, 0.0], [0.0, 1.0, 0.0], False),
("Hey 456 How are you", [0.0, 0.0, 0.0], [1.0, 0.0, 0.0], True),
("Hey 456 How are you", [0.0, 1.0, 0.0], [1.0, 1.0, 0.0], False),
],
)
def test_regex_featurizer_case_sensitive(
sentence: Text,
expected_sequence_features: List[float],
expected_sentence_features: List[float],
case_sensitive: bool,
spacy_nlp: Any,
create_featurizer: Callable[..., RegexFeaturizer],
spacy_tokenizer: SpacyTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
{"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
]
ftr = create_featurizer({"case_sensitive": case_sensitive}, known_patterns=patterns)
# adds tokens to the message
message = Message(data={TEXT: sentence})
message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence))
spacy_tokenizer.process([message])
sequence_features, sentence_features = ftr._features_for_patterns(message, TEXT)
assert np.allclose(
sequence_features.toarray()[0], expected_sequence_features, atol=1e-10
)
assert np.allclose(
sentence_features.toarray()[-1], expected_sentence_features, atol=1e-10
)
@pytest.mark.parametrize(
"sentence, expected_sequence_features, expected_sentence_features,"
"labeled_tokens, use_word_boundaries",
[
("how are you", [[1.0], [0.0], [0.0]], [1.0], [0.0], True),
("how are you", [[1.0], [0.0], [0.0]], [1.0], [0.0], False),
("Take a shower", [[0.0], [0.0], [0.0]], [0.0], [], True),
("Take a shower", [[0.0], [0.0], [1.0]], [1.0], [2.0], False),
("What a show", [[0.0], [0.0], [0.0]], [0.0], [], True),
("What a show", [[0.0], [0.0], [1.0]], [1.0], [2.0], False),
("The wolf howled", [[0.0], [0.0], [0.0]], [0.0], [], True),
("The wolf howled", [[0.0], [0.0], [1.0]], [1.0], [2.0], False),
],
)
def test_lookup_with_and_without_boundaries(
sentence: Text,
expected_sequence_features: List[List[float]],
expected_sentence_features: List[float],
labeled_tokens: List[float],
use_word_boundaries: bool,
spacy_nlp: Any,
create_featurizer: Callable[..., RegexFeaturizer],
spacy_tokenizer: SpacyTokenizer,
):
ftr = create_featurizer({"use_word_boundaries": use_word_boundaries})
training_data = TrainingData()
# we use lookups because the "use_word_boundaries" flag is only used when
# producing patterns from lookup tables
lookups = [{"name": "how", "elements": ["how"]}]
training_data.lookup_tables = lookups
ftr.train(training_data)
# adds tokens to the message
message = Message(data={TEXT: sentence})
message.set(SPACY_DOCS[TEXT], spacy_nlp(sentence))
spacy_tokenizer.process([message])
(sequence_features, sentence_features) = ftr._features_for_patterns(message, TEXT)
sequence_features = sequence_features.toarray()
sentence_features = sentence_features.toarray()
num_of_patterns = sum([len(lookup["elements"]) for lookup in lookups])
assert sequence_features.shape == (
len(message.get(TOKENS_NAMES[TEXT])),
num_of_patterns,
)
num_of_lookup_tables = len(lookups)
assert sentence_features.shape == (num_of_lookup_tables, num_of_patterns)
# sequence_features should be {0,1} for each token: 1 if match, 0 if not
assert np.allclose(sequence_features, expected_sequence_features, atol=1e-10)
# sentence_features should be {0,1} for each lookup table: 1 if sentence
# contains match from that table, 0 if not
assert np.allclose(sentence_features, expected_sentence_features, atol=1e-10)
# the tokenizer should have added tokens
assert len(message.get(TOKENS_NAMES[TEXT], [])) > 0
# the number of regex matches on each token should match
for i, token in enumerate(message.get(TOKENS_NAMES[TEXT])):
token_matches = token.get("pattern").values()
num_matches = sum(token_matches)
# labeled_tokens should list the token(s) which match a pattern
assert num_matches == labeled_tokens.count(i)
def test_persist_load_for_finetuning(
create_featurizer: Callable[..., RegexFeaturizer],
default_model_storage: ModelStorage,
default_execution_context: ExecutionContext,
resource: Resource,
whitespace_tokenizer: WhitespaceTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
{"pattern": "[0-1]+", "name": "binary", "usage": "intent"},
]
featurizer = create_featurizer()
sentence = "hey how are you today 19.12.2019 ?"
message = Message(data={TEXT: sentence})
message.set(RESPONSE, sentence)
message.set(INTENT, "intent")
training_data = TrainingData([message], regex_features=patterns)
whitespace_tokenizer.process_training_data(training_data)
featurizer.train(training_data)
loaded_featurizer = RegexFeaturizer.load(
RegexFeaturizer.get_default_config(),
default_model_storage,
resource,
dataclasses.replace(default_execution_context, is_finetuning=True),
)
# Test component loaded in finetune mode and also with
# same patterns as before and vocabulary statistics
assert loaded_featurizer.known_patterns == featurizer.known_patterns
assert loaded_featurizer.finetune_mode
new_lookups = [{"name": "plates", "elements": "data/test/lookup_tables/plates.txt"}]
training_data = TrainingData()
training_data.lookup_tables = new_lookups
loaded_featurizer.train(training_data)
# Test merging of a new pattern to an already trained component.
assert len(loaded_featurizer.known_patterns) == 4
def test_vocabulary_expand_for_finetuning(
create_featurizer: Callable[..., RegexFeaturizer],
default_model_storage: ModelStorage,
resource: Resource,
default_execution_context: ExecutionContext,
whitespace_tokenizer: WhitespaceTokenizer,
):
patterns = [
{"pattern": "[0-9]+", "name": "number", "usage": "intent"},
{"pattern": "\\bhey*", "name": "hello", "usage": "intent"},
]
featurizer = create_featurizer()
sentence = "hey hey 2020"
message = Message(data={TEXT: sentence})
message.set(RESPONSE, sentence)
message.set(INTENT, "intent")
training_data = TrainingData([message], regex_features=patterns)
whitespace_tokenizer.process_training_data(training_data)
featurizer.train(training_data)
featurizer.process_training_data(training_data)
# Test featurization of message
expected = np.array([1, 0])
expected_cls = np.array([1, 1])
seq_vecs, sen_vec = message.get_sparse_features(TEXT, [])
if seq_vecs:
seq_vecs = seq_vecs.features
if sen_vec:
sen_vec = sen_vec.features
assert (3, 2) == seq_vecs.shape
assert (1, 2) == sen_vec.shape
assert np.all(seq_vecs.toarray()[0] == expected)
assert np.all(sen_vec.toarray()[-1] == expected_cls)
loaded_featurizer = RegexFeaturizer.load(
RegexFeaturizer.get_default_config(),
default_model_storage,
resource,
dataclasses.replace(default_execution_context, is_finetuning=True),
)
new_patterns = [
{"pattern": "\\btoday*", "name": "day", "usage": "intent"},
{"pattern": "\\bhey+", "name": "hello", "usage": "intent"},
]
new_sentence = "hey today"
message = Message(data={TEXT: new_sentence})
message.set(RESPONSE, new_sentence)
message.set(INTENT, "intent")
new_training_data = TrainingData([message], regex_features=patterns + new_patterns)
whitespace_tokenizer.process_training_data(new_training_data)
loaded_featurizer.train(new_training_data)
loaded_featurizer.process_training_data(new_training_data)
# Test featurization of message, this time for the extra pattern as well.
expected_token_1 = np.array([1, 0, 0])
expected_token_2 = np.array([0, 0, 1])
expected_cls = np.array([1, 0, 1])
seq_vecs, sen_vec = message.get_sparse_features(TEXT, [])
if seq_vecs:
seq_vecs = seq_vecs.features
if sen_vec:
sen_vec = sen_vec.features
assert (2, 3) == seq_vecs.shape
assert (1, 3) == sen_vec.shape
assert np.all(seq_vecs.toarray()[0] == expected_token_1)
assert np.all(seq_vecs.toarray()[1] == expected_token_2)
assert np.all(sen_vec.toarray()[-1] == expected_cls)
# let's check if the order of patterns is preserved
for old_index, pattern in enumerate(featurizer.known_patterns):
assert pattern["name"] == loaded_featurizer.known_patterns[old_index]["name"]
# we also modified a pattern, check if that is correctly modified
pattern_to_check = [
pattern
for pattern in loaded_featurizer.known_patterns
if pattern["name"] == "hello"
]
assert pattern_to_check == [new_patterns[1]]
| null | null | null | null | null | null | null | null | null | [] | 4,471 |
tests/components/eafm/__init__.py | tbarbette/core | 30,023 | 3327514 | """Tests for eafm."""
| 0 | 0 | 0.0 | 0 | 0 | 0 | 1.0 | 0 | 0 | [] | 2,608 |
OpenCorePkg/Debug/Scripts/gdb_uefi.py | CEOALT1/RefindPlusUDK | 10,125 | 11351705 | <gh_stars>1000+
"""
Allows loading TianoCore symbols into a GDB session attached to EFI
Firmware.
This is how it works: build GdbSyms - it's a dummy binary that
contains the relevant symbols needed to find and load image symbols.
$ gdb /path/to/GdbSyms.dll
(gdb) target remote ....
(gdb) source Scripts/gdb_uefi.py
(gdb) reload-uefi -o /path/to/GdbSyms.dll
N.B: it was noticed that GDB for certain targets behaves strangely
when run without any binary - like assuming a certain physical
address space size and endianness. To avoid this madness and
seing strange bugs, make sure to pass /path/to/GdbSyms.dll
when starting gdb.
The -o option should be used if you've debugging EFI, where the PE
images were converted from MACH-O or ELF binaries.
"""
import array
import getopt
import binascii
import re
import sys
import os
import subprocess
import sys
sys.path.append(os.path.dirname(__file__))
from common_uefi import *
__license__ = "BSD"
__version = "1.0.0"
__maintainer__ = "<NAME>"
__email__ = "<EMAIL>"
__status__ = "Works"
if sys.version_info > (3,):
long = int
class ReloadUefi (gdb.Command):
"""Reload UEFI symbols"""
#
# Various constants.
#
EINVAL = 0xffffffff
CV_NB10 = 0x3031424E
CV_RSDS = 0x53445352
CV_MTOC = 0x434F544D
DOS_MAGIC = 0x5A4D
PE32PLUS_MAGIC = 0x20b
EST_SIGNATURE = 0x5453595320494249
DEBUG_GUID = [0x49152E77, 0x1ADA, 0x4764,
[0xB7,0xA2,0x7A,0xFE,
0xFE,0xD9,0x5E, 0x8B]]
DEBUG_IS_UPDATING = 0x1
#
# If the images were built as ELF/MACH-O and then converted to PE,
# then the base address needs to be offset by PE headers.
#
offset_by_headers = False
def __init__ (self):
super (ReloadUefi, self).__init__ ("reload-uefi", gdb.COMMAND_OBSCURE)
#
# Returns gdb.Type for a type.
#
def type (self, typename):
return gdb.lookup_type (typename)
#
# Returns gdb.Type for a pointer to a type.
#
def ptype (self, typename):
return gdb.lookup_type (typename).pointer ()
#
# Computes CRC32 on an array of data.
#
def crc32 (self, data):
return binascii.crc32 (data) & 0xFFFFFFFF
#
# Sets a field in a struct to a value, i.e.
# value->field_name = data.
#
# Newer Py bindings to Gdb provide access to the inferior
# memory, but not all, so have to do it this awkward way.
#
def set_field (self, value, field_name, data):
gdb.execute ("set *(%s *) 0x%x = 0x%x" % \
(str (value[field_name].type), \
long (value[field_name].address), data))
#
# Returns data backing a gdb.Value as an array.
# Same comment as above regarding newer Py bindings...
#
def value_data (self, value, bytes=0):
value_address = gdb.Value (value.address)
array_t = self.ptype ('UINT8')
value_array = value_address.cast (array_t)
if bytes == 0:
bytes = value.type.sizeof
data = array.array ('B')
for i in range (0, bytes):
data.append (value_array[i])
return data
#
# Locates the EFI_SYSTEM_TABLE as per UEFI spec 17.4.
# Returns base address or -1.
#
def search_est (self):
address = 0
estp_t = self.ptype ('EFI_SYSTEM_TABLE_POINTER')
while True:
try:
estp = gdb.Value(address).cast(estp_t)
if estp['Signature'] == self.EST_SIGNATURE:
oldcrc = long(estp['Crc32'])
self.set_field (estp, 'Crc32', 0)
newcrc = self.crc32 (self.value_data (estp.dereference (), 0))
self.set_field (estp, 'Crc32', long(oldcrc))
if newcrc == oldcrc:
print('EFI_SYSTEM_TABLE_POINTER @ 0x%x' % address)
return estp['EfiSystemTableBase']
except gdb.MemoryError:
pass
address += 4 * 2**20
if address >= 2**32:
return self.EINVAL
#
# Searches for a vendor-specific configuration table (in EST),
# given a vendor-specific table GUID. GUID is a list like -
# [32-bit, 16-bit, 16-bit, [8 bytes]]
#
def search_config (self, cfg_table, count, guid):
index = 0
while index != count:
cfg_entry = cfg_table[index]['VendorGuid']
if cfg_entry['Data1'] == guid[0] and \
cfg_entry['Data2'] == guid[1] and \
cfg_entry['Data3'] == guid[2] and \
self.value_data (cfg_entry['Data4']).tolist () == guid[3]:
return cfg_table[index]['VendorTable']
index = index + 1
return gdb.Value(self.EINVAL)
#
# Returns offset of a field within structure. Useful
# for getting container of a structure.
#
def offsetof (self, typename, field):
t = gdb.Value (0).cast (self.ptype (typename))
return long(t[field].address)
#
# Returns sizeof of a type.
#
def sizeof (self, typename):
return self.type (typename).sizeof
#
# Returns the EFI_IMAGE_NT_HEADERS32 pointer, given
# an ImageBase address as a gdb.Value.
#
def pe_headers (self, imagebase):
dosh_t = self.ptype ('EFI_IMAGE_DOS_HEADER')
head_t = self.ptype ('EFI_IMAGE_OPTIONAL_HEADER_UNION')
dosh = imagebase.cast (dosh_t)
h_addr = long(imagebase)
if dosh['e_magic'] == self.DOS_MAGIC:
h_addr = h_addr + long(dosh['e_lfanew'])
return gdb.Value(h_addr).cast (head_t)
#
# Returns a dictionary with PE sections.
#
def pe_sections (self, opt, file, imagebase):
sect_t = self.ptype ('EFI_IMAGE_SECTION_HEADER')
sections = (opt.address + 1).cast (sect_t)
sects = {}
for i in range (file['NumberOfSections']):
name = UefiMisc.parse_utf8 (sections[i]['Name'])
addr = long(sections[i]['VirtualAddress'])
if name != '':
sects[name] = addr
return sects
#
# Returns True if pe_headers refer to a PE32+ image.
#
def pe_is_64 (self, pe_headers):
if pe_headers['Pe32']['OptionalHeader']['Magic'] == self.PE32PLUS_MAGIC:
return True
return False
#
# Returns the PE fileheader.
#
def pe_file (self, pe):
if self.pe_is_64 (pe):
return pe['Pe32Plus']['FileHeader']
else:
return pe['Pe32']['FileHeader']
#
# Returns the PE (not so) optional header.
#
def pe_optional (self, pe):
if self.pe_is_64 (pe):
return pe['Pe32Plus']['OptionalHeader']
else:
return pe['Pe32']['OptionalHeader']
#
# Returns the symbol file name for a PE image.
#
def pe_parse_debug (self, pe):
opt = self.pe_optional (pe)
debug_dir_entry = opt['DataDirectory'][6]
dep = debug_dir_entry['VirtualAddress'] + opt['ImageBase']
dep = dep.cast (self.ptype ('EFI_IMAGE_DEBUG_DIRECTORY_ENTRY'))
cvp = dep.dereference ()['RVA'] + opt['ImageBase']
cvv = cvp.cast(self.ptype ('UINT32')).dereference ()
if cvv == self.CV_NB10:
return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_NB10_ENTRY')
elif cvv == self.CV_RSDS:
return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_RSDS_ENTRY')
elif cvv == self.CV_MTOC:
return cvp + self.sizeof('EFI_IMAGE_DEBUG_CODEVIEW_MTOC_ENTRY')
return gdb.Value(self.EINVAL)
#
# Prepares gdb symbol load command with proper section information.
# Currently supports Mach-O and single-section files.
#
# TODO: Proper ELF support.
#
def get_sym_cmd (self, file, orgbase, sections, macho, fallack_base):
cmd = 'add-symbol-file %s' % file
# Fallback case, no sections, just load .text.
if not sections.get('.text') or not sections.get('.data'):
cmd += ' 0x%x' % (fallack_base)
return cmd
cmd += ' 0x%x' % (long(orgbase) + sections['.text'])
if not macho or not os.path.exists(file):
# Another fallback, try to load data at least.
cmd += ' -s .data 0x%x' % (long(orgbase) + sections['.data'])
return cmd
# 1. Parse Mach-O.
# FIXME: We should not rely on otool really.
commands = subprocess.check_output(['otool', '-l', file])
try:
lines = commands.decode('utf-8').split('\n')
except:
lines = commands.split('\n')
in_sect = False
machsections = {}
for line in lines:
line = line.strip()
if line.startswith('Section'):
in_sect = True
sectname = None
segname = None
elif in_sect:
if line.startswith('sectname'):
sectname = line.split()[1]
elif line.startswith('segname'):
segname = line.split()[1]
elif line.startswith('addr'):
machsections[segname + '.' + sectname] = long(line.split()[1], base=16)
in_sect = False
# 2. Convert section names to gdb sections.
mapping = {
'__TEXT.__cstring': '.cstring',
'__TEXT.__const': '.const',
'__TEXT.__ustring': '__TEXT.__ustring',
'__DATA.__const': '.const_data',
'__DATA.__data': '.data',
'__DATA.__bss': '.bss',
'__DATA.__common': '__DATA.__common',
# FIXME: These should not be loadable, but gdb still loads them :/
# '__DWARF.__apple_names': '__DWARF.__apple_names',
# '__DWARF.__apple_namespac': '__DWARF.__apple_namespac',
# '__DWARF.__apple_types': '__DWARF.__apple_types',
# '__DWARF.__apple_objc': '__DWARF.__apple_objc',
}
# 3. Rebase.
for entry in mapping:
if machsections.get(entry):
cmd += ' -s %s 0x%x' % (mapping[entry], long(orgbase) + machsections[entry])
return cmd
#
# Parses an EFI_LOADED_IMAGE_PROTOCOL, figuring out the symbol file name.
# This file name is then appended to list of loaded symbols.
#
# TODO: Support TE images.
#
def parse_image (self, image, syms):
orgbase = base = image['ImageBase']
pe = self.pe_headers (base)
opt = self.pe_optional (pe)
file = self.pe_file (pe)
sym_name = self.pe_parse_debug (pe)
sections = self.pe_sections (opt, file, base)
# For ELF and Mach-O-derived images...
if self.offset_by_headers:
base = base + opt['SizeOfHeaders']
if sym_name != self.EINVAL:
sym_name = sym_name.cast (self.ptype('CHAR8')).string ()
sym_name_dbg = re.sub(r"\.dll$", ".debug", sym_name)
macho = False
if os.path.isdir(sym_name + '.dSYM'):
sym_name += '.dSYM/Contents/Resources/DWARF/' + os.path.basename(sym_name)
macho = True
elif sym_name_dbg != sym_name and os.path.exists(sym_name_dbg):
# TODO: implement .elf handling.
sym_name = sym_name_dbg
syms.append (self.get_sym_cmd (sym_name, long(orgbase), sections, macho, long(base)))
#
# Parses table EFI_DEBUG_IMAGE_INFO structures, builds
# a list of add-symbol-file commands, and reloads debugger
# symbols.
#
def parse_edii (self, edii, count):
index = 0
syms = []
print ("Found {} images...".format(count))
while index != count:
entry = edii[index]
if entry['ImageInfoType'].dereference () == 1:
entry = entry['NormalImage']
self.parse_image(entry['LoadedImageProtocolInstance'], syms)
else:
print ("Skipping unknown EFI_DEBUG_IMAGE_INFO (Type 0x%x)" % \
entry['ImageInfoType'].dereference ())
index = index + 1
gdb.execute ("symbol-file")
print ("Loading new symbols...")
for sym in syms:
try:
gdb.execute (sym)
except (gdb.error) as err:
print ('Failed: %s' % err)
#
# Parses EFI_DEBUG_IMAGE_INFO_TABLE_HEADER, in order to load
# image symbols.
#
def parse_dh (self, dh):
dh_t = self.ptype ('EFI_DEBUG_IMAGE_INFO_TABLE_HEADER')
dh = dh.cast (dh_t)
print ("DebugImageInfoTable @ 0x%x, 0x%x entries" % \
(long (dh['EfiDebugImageInfoTable']), dh['TableSize']))
if dh['UpdateStatus'] & self.DEBUG_IS_UPDATING:
print ("EfiDebugImageInfoTable update in progress, retry later")
return
self.parse_edii (dh['EfiDebugImageInfoTable'], dh['TableSize'])
#
# Parses EFI_SYSTEM_TABLE, in order to load image symbols.
#
def parse_est (self, est):
est_t = self.ptype ('EFI_SYSTEM_TABLE')
est = est.cast (est_t)
print ("Connected to %s (Rev. 0x%x)" % \
(UefiMisc.parse_utf16 (est['FirmwareVendor']), \
long (est['FirmwareRevision'])))
print ("ConfigurationTable @ 0x%x, 0x%x entries" % \
(long (est['ConfigurationTable']), est['NumberOfTableEntries']))
dh = self.search_config(est['ConfigurationTable'],
est['NumberOfTableEntries'], self.DEBUG_GUID)
if dh == self.EINVAL:
print ("No EFI_DEBUG_IMAGE_INFO_TABLE_HEADER")
return
self.parse_dh (dh)
#
# Usage information.
#
def usage (self):
print ("Usage: reload-uefi [-o] [/path/to/GdbSyms.dll]")
#
# Handler for reload-uefi.
#
def invoke (self, arg, from_tty):
args = arg.split(' ')
try:
opts, args = getopt.getopt(args, "o", ["offset-by-headers"])
except (getopt.GetoptError) as err:
self.usage ()
return
for opt, arg in opts:
if opt == "-o":
self.offset_by_headers = True
if len(args) >= 1 and args[0] != '':
gdb.execute ("symbol-file")
gdb.execute ("symbol-file %s" % args[0])
else:
# FIXME: gdb.objfiles () loses files after symbol-file execution,
# so we have to extract GdbSymbs.dll manually.
lines = gdb.execute ("info files", to_string=True).split('\n')
for line in lines:
m = re.search("`([^']+)'", line)
if m:
gdb.execute ("symbol-file")
gdb.execute ("symbol-file %s" % m.group(1))
break
est = self.search_est ()
if est == self.EINVAL:
print ("No EFI_SYSTEM_TABLE...")
return
print ("EFI_SYSTEM_TABLE @ 0x%x" % est)
self.parse_est (est)
class UefiStringPrinter:
def __init__(self, val):
self.val = val
def to_string (self):
if not self.val:
return "NULL"
return 'L"' + UefiMisc.parse_utf16(self.val) + '"'
class UefiEfiStatusPrinter:
def __init__(self, val):
self.val = val
def to_string (self):
return UefiMisc.parse_status(self.val, True)
class UefiReturnStatusPrinter:
def __init__(self, val):
self.val = val
def to_string (self):
return UefiMisc.parse_status(self.val, False)
class UefiGuidPrinter:
def __init__(self, val):
self.val = val
def to_string (self):
return UefiMisc.parse_guid(self.val)
def lookup_uefi_type (val):
if str(val.type) == 'const CHAR16 *' or str(val.type) == 'CHAR16 *':
return UefiStringPrinter(val)
elif str(val.type) == 'EFI_STATUS':
return UefiEfiStatusPrinter(val)
elif str(val.type) == 'RETURN_STATUS':
return UefiReturnStatusPrinter(val)
elif str(val.type) == 'GUID' or str(val.type) == 'EFI_GUID':
return UefiGuidPrinter(val)
return None
ReloadUefi ()
gdb.pretty_printers.append (lookup_uefi_type)
| 12 | 0 | 0.0 | 81 | 0 | 12 | 1.0 | 0 | 80 | [
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 35,
"message": "Import only needed names or import the module and then use its members.",
"textRange": {
"endLine": 35,
"endOffset": 25,
"startLine": 35,
"startOffset": 0
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 119,
"message": "Rename this variable; it shadows a builtin.",
"textRange": {
"endLine": 119,
"endOffset": 17,
"startLine": 119,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 266,
"message": "Complete the task associated to this \"TODO\" comment.",
"textRange": {
"endLine": 266,
"endOffset": 31,
"startLine": 266,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 268,
"message": "Refactor this function to reduce its Cognitive Complexity from 17 to the 15 allowed.",
"textRange": {
"endLine": 268,
"endOffset": 19,
"startLine": 268,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 272,
"message": "Define a constant instead of duplicating this literal '.data' 3 times.",
"textRange": {
"endLine": 272,
"endOffset": 64,
"startLine": 272,
"startOffset": 57
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 284,
"message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.",
"textRange": {
"endLine": 284,
"endOffset": 52,
"startLine": 284,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 288,
"message": "Specify an exception class to catch or reraise the exception",
"textRange": {
"endLine": 288,
"endOffset": 14,
"startLine": 288,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 316,
"message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.",
"textRange": {
"endLine": 316,
"endOffset": 78,
"startLine": 316,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 334,
"message": "Complete the task associated to this \"TODO\" comment.",
"textRange": {
"endLine": 334,
"endOffset": 30,
"startLine": 334,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 356,
"message": "Complete the task associated to this \"TODO\" comment.",
"textRange": {
"endLine": 356,
"endOffset": 48,
"startLine": 356,
"startOffset": 16
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 437,
"message": "Remove the unused local variable \"err\".",
"textRange": {
"endLine": 437,
"endOffset": 42,
"startLine": 437,
"startOffset": 39
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 448,
"message": "Take the required action to fix the issue indicated by this \"FIXME\" comment.",
"textRange": {
"endLine": 448,
"endOffset": 77,
"startLine": 448,
"startOffset": 12
},
"type": "CODE_SMELL"
}
] | 7,187 |
code/2.7/7_decorators_args.py | suqi/suqi-interpy-zh | 6,594 | 10218124 | from functools import wraps
def logit(logfile='out.log'):
def logging_decorator(func):
@wraps(func)
def wrapped_function(*args, **kwargs):
log_string = func.__name__ + ' was called'
print log_string
with open(logfile, 'a') as opened_file:
opened_file.write(log_string + '\n')
return func(*args, **kwargs)
return wrapped_function
return logging_decorator
@logit()
def myfunc1():
pass
@logit(logfile='func2.log')
def myfunc2():
pass
def main():
myfunc1()
myfunc2()
if __name__ == '__main__':
main()
| null | null | null | null | null | null | null | null | null | [] | 12,178 |
tests/integration/test_disabled_access_control_improvements/test_row_policy.py | mrk-andreev/ClickHouse | 8,629 | 9674883 | import os
import pytest
from helpers.cluster import ClickHouseCluster
from helpers.test_tools import TSV
cluster = ClickHouseCluster(__file__)
node = cluster.add_instance(
"node",
main_configs=["configs/config.d/disable_access_control_improvements.xml"],
user_configs=[
"configs/users.d/row_policy.xml",
"configs/users.d/another_user.xml",
],
)
def copy_policy_xml(local_file_name):
script_dir = os.path.dirname(os.path.realpath(__file__))
node.copy_file_to_container(
os.path.join(script_dir, local_file_name),
"/etc/clickhouse-server/users.d/row_policy.xml",
)
node.query("SYSTEM RELOAD CONFIG")
@pytest.fixture(scope="module", autouse=True)
def started_cluster():
try:
cluster.start()
node.query(
"""
CREATE DATABASE mydb;
CREATE TABLE mydb.filtered_table1 (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a;
INSERT INTO mydb.filtered_table1 values (0, 0), (0, 1), (1, 0), (1, 1);
CREATE TABLE mydb.table (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a;
INSERT INTO mydb.table values (0, 0), (0, 1), (1, 0), (1, 1);
CREATE TABLE mydb.filtered_table2 (a UInt8, b UInt8, c UInt8, d UInt8) ENGINE MergeTree ORDER BY a;
INSERT INTO mydb.filtered_table2 values (0, 0, 0, 0), (1, 2, 3, 4), (4, 3, 2, 1), (0, 0, 6, 0);
CREATE TABLE mydb.filtered_table3 (a UInt8, b UInt8, c UInt16 ALIAS a + b) ENGINE MergeTree ORDER BY a;
INSERT INTO mydb.filtered_table3 values (0, 0), (0, 1), (1, 0), (1, 1);
CREATE TABLE mydb.`.filtered_table4` (a UInt8, b UInt8, c UInt16 ALIAS a + b) ENGINE MergeTree ORDER BY a;
INSERT INTO mydb.`.filtered_table4` values (0, 0), (0, 1), (1, 0), (1, 1);
CREATE TABLE mydb.local (a UInt8, b UInt8) ENGINE MergeTree ORDER BY a;
"""
)
node.query("INSERT INTO mydb.local values (2, 0), (2, 1), (1, 0), (1, 1)")
yield cluster
finally:
cluster.shutdown()
@pytest.fixture(autouse=True)
def reset_policies():
try:
yield
finally:
copy_policy_xml("normal_filters.xml")
node.query("DROP POLICY IF EXISTS pA, pB ON mydb.filtered_table1")
def test_introspection():
policies = [
[
"another ON mydb.filtered_table1",
"another",
"mydb",
"filtered_table1",
"6068883a-0e9d-f802-7e22-0144f8e66d3c",
"users.xml",
"1",
0,
0,
"['another']",
"[]",
],
[
"another ON mydb.filtered_table2",
"another",
"mydb",
"filtered_table2",
"c019e957-c60b-d54e-cc52-7c90dac5fb01",
"users.xml",
"1",
0,
0,
"['another']",
"[]",
],
[
"another ON mydb.filtered_table3",
"another",
"mydb",
"filtered_table3",
"4cb080d0-44e8-dbef-6026-346655143628",
"users.xml",
"1",
0,
0,
"['another']",
"[]",
],
[
"another ON mydb.local",
"another",
"mydb",
"local",
"5b23c389-7e18-06bf-a6bc-dd1afbbc0a97",
"users.xml",
"a = 1",
0,
0,
"['another']",
"[]",
],
[
"default ON mydb.filtered_table1",
"default",
"mydb",
"filtered_table1",
"9e8a8f62-4965-2b5e-8599-57c7b99b3549",
"users.xml",
"a = 1",
0,
0,
"['default']",
"[]",
],
[
"default ON mydb.filtered_table2",
"default",
"mydb",
"filtered_table2",
"cffae79d-b9bf-a2ef-b798-019c18470b25",
"users.xml",
"a + b < 1 or c - d > 5",
0,
0,
"['default']",
"[]",
],
[
"default ON mydb.filtered_table3",
"default",
"mydb",
"filtered_table3",
"12fc5cef-e3da-3940-ec79-d8be3911f42b",
"users.xml",
"c = 1",
0,
0,
"['default']",
"[]",
],
[
"default ON mydb.local",
"default",
"mydb",
"local",
"cdacaeb5-1d97-f99d-2bb0-4574f290629c",
"users.xml",
"1",
0,
0,
"['default']",
"[]",
],
]
assert node.query(
"SELECT * from system.row_policies ORDER BY short_name, database, table"
) == TSV(policies)
def test_dcl_introspection():
assert node.query("SHOW POLICIES") == TSV(
[
"another ON mydb.filtered_table1",
"another ON mydb.filtered_table2",
"another ON mydb.filtered_table3",
"another ON mydb.local",
"default ON mydb.filtered_table1",
"default ON mydb.filtered_table2",
"default ON mydb.filtered_table3",
"default ON mydb.local",
]
)
assert node.query("SHOW POLICIES ON mydb.filtered_table1") == TSV(
["another", "default"]
)
assert node.query("SHOW POLICIES ON mydb.local") == TSV(["another", "default"])
assert node.query("SHOW POLICIES ON mydb.*") == TSV(
[
"another ON mydb.filtered_table1",
"another ON mydb.filtered_table2",
"another ON mydb.filtered_table3",
"another ON mydb.local",
"default ON mydb.filtered_table1",
"default ON mydb.filtered_table2",
"default ON mydb.filtered_table3",
"default ON mydb.local",
]
)
assert node.query("SHOW POLICIES default") == TSV(
[
"default ON mydb.filtered_table1",
"default ON mydb.filtered_table2",
"default ON mydb.filtered_table3",
"default ON mydb.local",
]
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table1")
== "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table2")
== "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table3")
== "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.local")
== "CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\n"
)
assert node.query("SHOW CREATE POLICY default") == TSV(
[
"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default",
"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default",
"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default",
"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default",
]
)
assert node.query("SHOW CREATE POLICIES ON mydb.filtered_table1") == TSV(
[
"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default",
]
)
assert node.query("SHOW CREATE POLICIES ON mydb.*") == TSV(
[
"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another",
"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default",
"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default",
"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default",
"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default",
]
)
assert node.query("SHOW CREATE POLICIES") == TSV(
[
"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another",
"CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another",
"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default",
"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default",
"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default",
"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default",
]
)
expected_access = (
"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another\n"
"CREATE ROW POLICY another ON mydb.filtered_table2 FOR SELECT USING 1 TO another\n"
"CREATE ROW POLICY another ON mydb.filtered_table3 FOR SELECT USING 1 TO another\n"
"CREATE ROW POLICY another ON mydb.local FOR SELECT USING a = 1 TO another\n"
"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\n"
"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\n"
"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\n"
"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\n"
)
assert expected_access in node.query("SHOW ACCESS")
copy_policy_xml("all_rows.xml")
assert node.query("SHOW POLICIES") == TSV(
[
"another ON mydb.filtered_table1",
"another ON mydb.filtered_table2",
"another ON mydb.filtered_table3",
"default ON mydb.filtered_table1",
"default ON mydb.filtered_table2",
"default ON mydb.filtered_table3",
]
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table1")
== "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING 1 TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table2")
== "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING 1 TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table3")
== "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING 1 TO default\n"
)
copy_policy_xml("no_rows.xml")
assert node.query("SHOW POLICIES") == TSV(
[
"another ON mydb.filtered_table1",
"another ON mydb.filtered_table2",
"another ON mydb.filtered_table3",
"default ON mydb.filtered_table1",
"default ON mydb.filtered_table2",
"default ON mydb.filtered_table3",
]
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table1")
== "CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING NULL TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table2")
== "CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING NULL TO default\n"
)
assert (
node.query("SHOW CREATE POLICY default ON mydb.filtered_table3")
== "CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING NULL TO default\n"
)
copy_policy_xml("no_filters.xml")
assert node.query("SHOW POLICIES") == ""
def test_dcl_management():
copy_policy_xml("no_filters.xml")
assert node.query("SHOW POLICIES") == ""
node.query("CREATE POLICY pA ON mydb.filtered_table1 FOR SELECT USING a<b")
assert node.query("SELECT * FROM mydb.filtered_table1") == ""
assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pA\n"
node.query("ALTER POLICY pA ON mydb.filtered_table1 TO default")
assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[0, 1]])
assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pA\n"
node.query("ALTER POLICY pA ON mydb.filtered_table1 FOR SELECT USING a>b")
assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0]])
node.query("ALTER POLICY pA ON mydb.filtered_table1 RENAME TO pB")
assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0]])
assert node.query("SHOW POLICIES ON mydb.filtered_table1") == "pB\n"
assert (
node.query("SHOW CREATE POLICY pB ON mydb.filtered_table1")
== "CREATE ROW POLICY pB ON mydb.filtered_table1 FOR SELECT USING a > b TO default\n"
)
node.query("DROP POLICY pB ON mydb.filtered_table1")
assert node.query("SELECT * FROM mydb.filtered_table1") == TSV(
[[0, 0], [0, 1], [1, 0], [1, 1]]
)
assert node.query("SHOW POLICIES") == ""
def test_dcl_users_with_policies_from_users_xml():
node.query("CREATE USER X")
node.query("GRANT SELECT ON mydb.filtered_table1 TO X")
assert node.query("SELECT * FROM mydb.filtered_table1") == TSV([[1, 0], [1, 1]])
assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == ""
node.query("DROP USER X")
def test_some_users_without_policies():
copy_policy_xml("no_filters.xml")
assert node.query("SHOW POLICIES") == ""
node.query("CREATE USER X, Y")
node.query("GRANT SELECT ON mydb.filtered_table1 TO X, Y")
# permissive a >= b for X, none for Y
node.query(
"CREATE POLICY pA ON mydb.filtered_table1 FOR SELECT USING a >= b AS permissive TO X"
)
assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV(
[[0, 0], [1, 0], [1, 1]]
)
assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == ""
# restrictive a >=b for X, none for Y
node.query("ALTER POLICY pA ON mydb.filtered_table1 AS restrictive")
assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == ""
assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == ""
# permissive a >= b for X, restrictive a <= b for X, none for Y
node.query("ALTER POLICY pA ON mydb.filtered_table1 AS permissive")
node.query(
"CREATE POLICY pB ON mydb.filtered_table1 FOR SELECT USING a <= b AS restrictive TO X"
)
assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV(
[[0, 0], [1, 1]]
)
assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == ""
# permissive a >= b for X, restrictive a <= b for Y
node.query("ALTER POLICY pB ON mydb.filtered_table1 TO Y")
assert node.query("SELECT * FROM mydb.filtered_table1", user="X") == TSV(
[[0, 0], [1, 0], [1, 1]]
)
assert node.query("SELECT * FROM mydb.filtered_table1", user="Y") == ""
node.query("DROP POLICY pA, pB ON mydb.filtered_table1")
node.query("DROP USER X, Y")
| 23 | 0 | 0.0 | 0 | 0 | 23 | 1.0 | 0 | 8 | [
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 74,
"message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table1\" 5 times.",
"textRange": {
"endLine": 74,
"endOffset": 45,
"startLine": 74,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 79,
"message": "Define a constant instead of duplicating this literal \"users.xml\" 8 times.",
"textRange": {
"endLine": 79,
"endOffset": 23,
"startLine": 79,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 83,
"message": "Define a constant instead of duplicating this literal \"['another']\" 4 times.",
"textRange": {
"endLine": 83,
"endOffset": 25,
"startLine": 83,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 87,
"message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table2\" 5 times.",
"textRange": {
"endLine": 87,
"endOffset": 45,
"startLine": 87,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 100,
"message": "Define a constant instead of duplicating this literal \"another ON mydb.filtered_table3\" 5 times.",
"textRange": {
"endLine": 100,
"endOffset": 45,
"startLine": 100,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 113,
"message": "Define a constant instead of duplicating this literal \"another ON mydb.local\" 3 times.",
"textRange": {
"endLine": 113,
"endOffset": 35,
"startLine": 113,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 126,
"message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table1\" 6 times.",
"textRange": {
"endLine": 126,
"endOffset": 45,
"startLine": 126,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 135,
"message": "Define a constant instead of duplicating this literal \"['default']\" 4 times.",
"textRange": {
"endLine": 135,
"endOffset": 25,
"startLine": 135,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 139,
"message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table2\" 6 times.",
"textRange": {
"endLine": 139,
"endOffset": 45,
"startLine": 139,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 152,
"message": "Define a constant instead of duplicating this literal \"default ON mydb.filtered_table3\" 6 times.",
"textRange": {
"endLine": 152,
"endOffset": 45,
"startLine": 152,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 165,
"message": "Define a constant instead of duplicating this literal \"default ON mydb.local\" 4 times.",
"textRange": {
"endLine": 165,
"endOffset": 35,
"startLine": 165,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 184,
"message": "Define a constant instead of duplicating this literal \"SHOW POLICIES\" 7 times.",
"textRange": {
"endLine": 184,
"endOffset": 37,
"startLine": 184,
"startOffset": 22
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 197,
"message": "Define a constant instead of duplicating this literal \"SHOW POLICIES ON mydb.filtered_table1\" 4 times.",
"textRange": {
"endLine": 197,
"endOffset": 61,
"startLine": 197,
"startOffset": 22
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 223,
"message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table1\" 3 times.",
"textRange": {
"endLine": 223,
"endOffset": 71,
"startLine": 223,
"startOffset": 19
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 227,
"message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table2\" 3 times.",
"textRange": {
"endLine": 227,
"endOffset": 71,
"startLine": 227,
"startOffset": 19
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 231,
"message": "Define a constant instead of duplicating this literal \"SHOW CREATE POLICY default ON mydb.filtered_table3\" 3 times.",
"textRange": {
"endLine": 231,
"endOffset": 71,
"startLine": 231,
"startOffset": 19
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 241,
"message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table1 FOR SELECT USING a = 1 TO default\" 4 times.",
"textRange": {
"endLine": 241,
"endOffset": 97,
"startLine": 241,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 242,
"message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table2 FOR SELECT USING ((a + b) < 1) OR ((c - d) > 5) TO default\" 3 times.",
"textRange": {
"endLine": 242,
"endOffset": 122,
"startLine": 242,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 243,
"message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.filtered_table3 FOR SELECT USING c = 1 TO default\" 3 times.",
"textRange": {
"endLine": 243,
"endOffset": 97,
"startLine": 243,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 244,
"message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY default ON mydb.local FOR SELECT USING 1 TO default\" 3 times.",
"textRange": {
"endLine": 244,
"endOffset": 83,
"startLine": 244,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 249,
"message": "Define a constant instead of duplicating this literal \"CREATE ROW POLICY another ON mydb.filtered_table1 FOR SELECT USING 1 TO another\" 3 times.",
"textRange": {
"endLine": 249,
"endOffset": 93,
"startLine": 249,
"startOffset": 12
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 338,
"message": "Define a constant instead of duplicating this literal \"no_filters.xml\" 3 times.",
"textRange": {
"endLine": 338,
"endOffset": 36,
"startLine": 338,
"startOffset": 20
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 347,
"message": "Define a constant instead of duplicating this literal \"SELECT * FROM mydb.filtered_table1\" 15 times.",
"textRange": {
"endLine": 347,
"endOffset": 58,
"startLine": 347,
"startOffset": 22
},
"type": "CODE_SMELL"
}
] | 5,922 |
recipes/Python/576505_Sudoku_solvercreator/recipe-576505.py | tdiprima/code | 2,023 | 515289 | <reponame>tdiprima/code<gh_stars>1000+
#!/usr/bin/python
# TODO: Make solve function faster!!! Have it check for singles, doubles,
# triples, and quads both naked and hidden
from random import random
def rand(lst):
"returns a random element in list or integer"
if type(lst)==type([]):
return lst[int(random()*len(lst))]
elif type(lst)==type(0):
return int(random()*lst)
else:
raise Exception,"don't know what do do with type %s!!!"%type(lst)
def reorder(lst):
"reorders a list to a random order"
ret=[]
for item in lst:
ret.insert(rand(len(ret)),item)
return ret
def row(row,puzzle):
return puzzle[row*9:row*9+9]
def col(col,puzzle):
ret=[]
for i in range(9):
ret.append(row(i,puzzle)[col])
return ret
def box(box,puzzle):
x=box%3
if box<3:
y=0
elif box<6:
y=1
else:
y=2
ret=[]
for i in range(3):
ret.extend(row(y*3+i,puzzle)[x*3:x*3+3])
return ret
def remaining(wcb):
ret=[]
for i in range(1,10):
if not i in wcb:
ret.append(i)
return reorder(ret) # does not significantly slow program
# and allows for generation of random puzzles
def coordToBox(x,y):
box=0
if x<3:
pass
elif x<6:
box+=1
else:
box+=2
if y<3:
pass
elif y<6:
box+=3
else:
box+=6
return box
def coordToLinear(x,y):
return y*9+x
def linearToCoord(index):
y=8
for i in range(9):
if index<i*9:
y-=1
x=index%9
return x,y
def possible(x,y,puzzle):
if not puzzle[coordToLinear(x,y)]==0:
return [puzzle[coordToLinear(x,y)]]
imp=[]
imp.extend(row(y,puzzle))
imp.extend(col(x,puzzle))
imp.extend(box(coordToBox(x,y),puzzle))
return remaining(imp)
def printPuzzle(puzzle):
string=((((("%s "*3)+"| ")*2+("%s "*3)+"\n")*3+"------|-------|------\n")*3)[:-22]+"\n"
text=(string%tuple(puzzle)).replace("0","_")
print text,
return text
def check(x,y,puzzle):
for i in range(9):
if not i==y and len(possible(x,i,puzzle))==0:
return False
if not i==x and len(possible(i,y,puzzle))==0:
return False
box_x,box_y=linearToCoord(coordToBox(x,y))
for i in range(box_x,box_x+3):
if i==x:
break
for j in range(box_y,box_y+3):
if j==y:
break
if len(possible(i,j,puzzle))==0:
return False
return True
def solve(puzzle,start=0): # TODO: Make this function faster!!!
if start==81:
return [puzzle[:]]
ret=[]
x,y=linearToCoord(start)
possibilities=possible(x,y,puzzle)
if len(possibilities)==0:
return
for possibility in possibilities:
p=puzzle[:]
p[coordToLinear(x,y)]=possibility
x,y=linearToCoord(start)
if not check(x,y,puzzle):
continue
solved=solve(p,start+1)
if solved:
ret.extend(solved)
if 1<len(ret): # there is more than one puzzle
return ret # enough already!!!
return ret
def solve_no_check_for_dups(puzzle,start=0):
"This solver function does not check for multiple solutions."
if start==81:
return puzzle[:]
x,y=linearToCoord(start)
possibilities=possible(x,y,puzzle)
if len(possibilities)==0:
return
for possibility in possibilities:
p=puzzle[:]
p[coordToLinear(x,y)]=possibility
x,y=linearToCoord(start)
if not check(x,y,puzzle):
continue
solved=solve_no_check_for_dups(p,start+1)
if solved:
return solved
return []
def generate(sym=True,goodness=0): # goodness=0 means evil
if sym:
RANGE=41
else:
RANGE=81
puzzle=[0]*81
soln=solve_no_check_for_dups(puzzle)
puzzle=soln[:]
spaces=range(RANGE)
for i in range(RANGE-goodness):
space=spaces.pop(rand(len(spaces)))
puzzle[space]=0
if sym:
puzzle[80-space]=0
if 1<len(solve(puzzle)):
puzzle[space]=soln[space]
if sym:
puzzle[80-space]=soln[80-space]
return puzzle
#puzzle=[]
#for i in range(9):
# puzzle.extend(map(int,raw_input().split()))
try:
import psyco
psyco.full()
except ImportError:
print "You do not have psyco installed. The program will run slower."
if __name__=="__main__":
#puzzle=generate()
#printPuzzle(puzzle)
#soln=solve(puzzle)
#printPuzzle(soln[0])
#if 1<len(soln):
# print "More than one solution!!!"
#puzzle=generate(sym=False)
#printPuzzle(puzzle)
#soln=solve(puzzle)
#printPuzzle(soln[0])
#if 1<len(soln):
# print "More than one solution!!!"
from time import sleep
while True:
puzzle=generate(sym=False)
text=printPuzzle(puzzle)
f=open("./sudoku","a")
f.write(text)
f.close()
sleep(180)
| 19 | 0 | 0.0 | 71 | 0 | 19 | 1.0 | 2 | 55 | [
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 3,
"message": "Complete the task associated to this \"TODO\" comment.",
"textRange": {
"endLine": 3,
"endOffset": 73,
"startLine": 3,
"startOffset": 0
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 15,
"message": "Replace this generic exception class with a more specific one.",
"textRange": {
"endLine": 15,
"endOffset": 17,
"startLine": 15,
"startOffset": 8
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 49,
"message": "Use the opposite operator (\"not in\") instead.",
"textRange": {
"endLine": 49,
"endOffset": 17,
"startLine": 49,
"startOffset": 5
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 54,
"message": "Rename function \"coordToBox\" to match the regular expression ^[a-z_][a-z0-9_]*$.",
"textRange": {
"endLine": 54,
"endOffset": 14,
"startLine": 54,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 57,
"message": "Either remove or fill this block of code.",
"textRange": {
"endLine": 57,
"endOffset": 6,
"startLine": 57,
"startOffset": 2
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 63,
"message": "Either remove or fill this block of code.",
"textRange": {
"endLine": 63,
"endOffset": 6,
"startLine": 63,
"startOffset": 2
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 70,
"message": "Rename function \"coordToLinear\" to match the regular expression ^[a-z_][a-z0-9_]*$.",
"textRange": {
"endLine": 70,
"endOffset": 17,
"startLine": 70,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 73,
"message": "Rename function \"linearToCoord\" to match the regular expression ^[a-z_][a-z0-9_]*$.",
"textRange": {
"endLine": 73,
"endOffset": 17,
"startLine": 73,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 82,
"message": "Use the opposite operator (\"!=\") instead.",
"textRange": {
"endLine": 82,
"endOffset": 37,
"startLine": 82,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 90,
"message": "Rename function \"printPuzzle\" to match the regular expression ^[a-z_][a-z0-9_]*$.",
"textRange": {
"endLine": 90,
"endOffset": 15,
"startLine": 90,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 93,
"message": "Replace print statement by built-in function.",
"textRange": {
"endLine": 93,
"endOffset": 6,
"startLine": 93,
"startOffset": 1
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "HIGH",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 96,
"message": "Refactor this function to reduce its Cognitive Complexity from 18 to the 15 allowed.",
"textRange": {
"endLine": 96,
"endOffset": 9,
"startLine": 96,
"startOffset": 4
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 98,
"message": "Use the opposite operator (\"!=\") instead.",
"textRange": {
"endLine": 98,
"endOffset": 13,
"startLine": 98,
"startOffset": 5
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 100,
"message": "Use the opposite operator (\"!=\") instead.",
"textRange": {
"endLine": 100,
"endOffset": 13,
"startLine": 100,
"startOffset": 5
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 113,
"message": "Complete the task associated to this \"TODO\" comment.",
"textRange": {
"endLine": 113,
"endOffset": 63,
"startLine": 113,
"startOffset": 27
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "LOW",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 162,
"message": "Remove the unused local variable \"i\".",
"textRange": {
"endLine": 162,
"endOffset": 6,
"startLine": 162,
"startOffset": 5
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 173,
"message": "Remove this commented out code.",
"textRange": {
"endLine": 173,
"endOffset": 10,
"startLine": 173,
"startOffset": 0
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 181,
"message": "Replace print statement by built-in function.",
"textRange": {
"endLine": 181,
"endOffset": 6,
"startLine": 181,
"startOffset": 1
},
"type": "CODE_SMELL"
},
{
"impacts": [
{
"severity": "MEDIUM",
"softwareQuality": "MAINTAINABILITY"
}
],
"line": 184,
"message": "Remove this commented out code.",
"textRange": {
"endLine": 184,
"endOffset": 19,
"startLine": 184,
"startOffset": 1
},
"type": "CODE_SMELL"
}
] | 10,392 |
algorithms/tree/traversal/__init__.py | Heart-throb-Rajnish/algorithms | 22,426 | 3220141 | <reponame>Heart-throb-Rajnish/algorithms<filename>algorithms/tree/traversal/__init__.py<gh_stars>1000+
from .preorder import *
from .postorder import *
from .inorder import *
| null | null | null | null | null | null | null | null | null | [] | 2,144 |
End of preview. Expand
in Dataset Viewer.
No dataset card yet
- Downloads last month
- 5