|
from collections import defaultdict |
|
import os |
|
import json |
|
import csv |
|
csv.field_size_limit(100000000) |
|
|
|
import datasets |
|
|
|
_NAME="annotated_catalan_common_voice_v17" |
|
_VERSION="1.0.0" |
|
_AUDIO_EXTENSIONS=".mp3" |
|
|
|
_DESCRIPTION = """ |
|
This version of the Catalan sentences of the Common Voice corpus v17 |
|
includes metadata (gender and accent) for 263 speakers annotated by a team of experts. |
|
""" |
|
|
|
_CITATION = """ |
|
@misc{armentanoannotated2024, |
|
title={Annotated Catalan Common Voice v17}, |
|
author={Armentano, Carme}, |
|
publisher={Barcelona Supercomputing Center} |
|
year={2024}, |
|
url={https://huggingface.co/datasets/projecte-aina/annotated_catalan_common_voice_v17}, |
|
} |
|
""" |
|
|
|
_HOMEPAGE = "https://huggingface.co/datasets/projecte-aina/annotated_catalan_common_voice_v17" |
|
|
|
_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/" |
|
|
|
_BASE_DATA_DIR = "corpus/" |
|
|
|
_METADATA_DEV = os.path.join(_BASE_DATA_DIR,"files","annotated_dev.tsv") |
|
_METADATA_INVALIDATED = os.path.join(_BASE_DATA_DIR,"files","annotated_invalidated.tsv") |
|
_METADATA_OTHER = os.path.join(_BASE_DATA_DIR,"files","annotated_other.tsv") |
|
_METADATA_TEST = os.path.join(_BASE_DATA_DIR,"files","annotated_test.tsv") |
|
_METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","annotated_train.tsv") |
|
_METADATA_VALIDATED = os.path.join(_BASE_DATA_DIR,"files","annotated_validated.tsv") |
|
|
|
_TARS_DEV = os.path.join(_BASE_DATA_DIR,"files","annotated_dev.paths") |
|
_TARS_INVALIDATED = os.path.join(_BASE_DATA_DIR,"files","annotated_invalidated.paths") |
|
_TARS_OTHER = os.path.join(_BASE_DATA_DIR,"files","annotated_other.paths") |
|
_TARS_TEST = os.path.join(_BASE_DATA_DIR,"files","annotated_test.paths") |
|
_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","annotated_train.paths") |
|
_TARS_VALIDATED = os.path.join(_BASE_DATA_DIR,"files","annotated_validated.paths") |
|
|
|
class AnnotatedCatalanCommonVoicev17Config(datasets.BuilderConfig): |
|
"""BuilderConfig for The Annotated Catalan Common Voice v17""" |
|
|
|
def __init__(self, name, **kwargs): |
|
name=_NAME |
|
super().__init__(name=name, **kwargs) |
|
|
|
class AnnotatedCatalanCommonVoicev17(datasets.GeneratorBasedBuilder): |
|
"""Annotated Catalan Common Voice v17""" |
|
|
|
VERSION = datasets.Version(_VERSION) |
|
BUILDER_CONFIGS = [ |
|
AnnotatedCatalanCommonVoicev17Config( |
|
name=_NAME, |
|
version=datasets.Version(_VERSION), |
|
) |
|
] |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"audio": datasets.Audio(sampling_rate=16000), |
|
"client_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"sentence_id": datasets.Value("string"), |
|
"sentence": datasets.Value("string"), |
|
"sentence_domain": datasets.Value("string"), |
|
"up_votes": datasets.Value("int32"), |
|
"down_votes": datasets.Value("int32"), |
|
"age": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"accents": datasets.Value("string"), |
|
"variant": datasets.Value("string"), |
|
"locale": datasets.Value("string"), |
|
"segment": datasets.Value("string"), |
|
"mean quality": datasets.Value("string"), |
|
"stdev quality": datasets.Value("string"), |
|
"annotated_accent": datasets.Value("string"), |
|
"annotated_accent_agreement": datasets.Value("string"), |
|
"annotated_gender": datasets.Value("string"), |
|
"annotated_gender_agreement": datasets.Value("string"), |
|
"propagated_gender": datasets.Value("string"), |
|
"propagated_accents": datasets.Value("string"), |
|
"propagated_accents_norm": datasets.Value("string"), |
|
"variant_norm": datasets.Value("string"), |
|
"assigned_accent": datasets.Value("string"), |
|
"assigned_gender": datasets.Value("string"), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
|
|
metadata_dev=dl_manager.download_and_extract(_METADATA_DEV) |
|
metadata_invalidated=dl_manager.download_and_extract(_METADATA_INVALIDATED) |
|
metadata_other=dl_manager.download_and_extract(_METADATA_OTHER) |
|
metadata_test=dl_manager.download_and_extract(_METADATA_TEST) |
|
metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN) |
|
metadata_validated=dl_manager.download_and_extract(_METADATA_VALIDATED) |
|
|
|
tars_dev=dl_manager.download_and_extract(_TARS_DEV) |
|
tars_invalidated=dl_manager.download_and_extract(_TARS_INVALIDATED) |
|
tars_other=dl_manager.download_and_extract(_TARS_OTHER) |
|
tars_test=dl_manager.download_and_extract(_TARS_TEST) |
|
tars_train=dl_manager.download_and_extract(_TARS_TRAIN) |
|
tars_validated=dl_manager.download_and_extract(_TARS_VALIDATED) |
|
|
|
hash_tar_files=defaultdict(dict) |
|
|
|
with open(tars_dev,'r') as f: |
|
hash_tar_files['validation']=[path.replace('\n','') for path in f] |
|
with open(tars_invalidated,'r') as f: |
|
hash_tar_files['invalidated']=[path.replace('\n','') for path in f] |
|
with open(tars_other,'r') as f: |
|
hash_tar_files['other']=[path.replace('\n','') for path in f] |
|
with open(tars_test,'r') as f: |
|
hash_tar_files['test']=[path.replace('\n','') for path in f] |
|
with open(tars_train,'r') as f: |
|
hash_tar_files['train']=[path.replace('\n','') for path in f] |
|
with open(tars_validated,'r') as f: |
|
hash_tar_files['validated']=[path.replace('\n','') for path in f] |
|
|
|
hash_meta_paths={"validation":metadata_dev, |
|
"invalidated":metadata_invalidated, |
|
"other":metadata_other, |
|
"test":metadata_test, |
|
"train":metadata_train, |
|
"validated":metadata_validated} |
|
|
|
audio_paths = dl_manager.download(hash_tar_files) |
|
|
|
splits=["validation","invalidated","other","test","train","validated"] |
|
local_extracted_audio_paths = ( |
|
dl_manager.extract(audio_paths) if not dl_manager.is_streaming else |
|
{ |
|
split:[None] * len(audio_paths[split]) for split in splits |
|
} |
|
) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name="validation", |
|
gen_kwargs={ |
|
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["validation"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["validation"], |
|
"metadata_paths": hash_meta_paths["validation"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="invalidated", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["invalidated"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["invalidated"], |
|
"metadata_paths": hash_meta_paths["invalidated"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="other", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["other"], |
|
"metadata_paths": hash_meta_paths["other"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="test", |
|
gen_kwargs={ |
|
"audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["test"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["test"], |
|
"metadata_paths": hash_meta_paths["test"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="train", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["train"], |
|
"metadata_paths": hash_meta_paths["train"], |
|
} |
|
), |
|
datasets.SplitGenerator( |
|
name="validated", |
|
gen_kwargs={ |
|
"audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["validated"]], |
|
"local_extracted_archives_paths": local_extracted_audio_paths["validated"], |
|
"metadata_paths": hash_meta_paths["validated"], |
|
} |
|
), |
|
] |
|
|
|
def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths): |
|
|
|
features = ["client_id","path","sentence_id","sentence","sentence_domain","up_votes", |
|
"down_votes","age","gender","accents","variant","locale","segment", |
|
"mean quality","stdev quality","annotated_accent","annotated_accent_agreement", |
|
"annotated_gender","annotated_gender_agreement","propagated_gender", |
|
"propagated_accents","propagated_accents_norm","variant_norm","assigned_accent", |
|
"assigned_gender"] |
|
|
|
with open(metadata_paths) as f: |
|
metadata = {x["path"]: x for x in csv.DictReader(f, delimiter="\t")} |
|
|
|
for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths): |
|
for audio_filename, audio_file in audio_archive: |
|
audio_id =os.path.splitext(os.path.basename(audio_filename))[0] |
|
audio_id=audio_id+_AUDIO_EXTENSIONS |
|
path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename |
|
|
|
try: |
|
yield audio_id, { |
|
"path": audio_id, |
|
**{feature: metadata[audio_id][feature] for feature in features}, |
|
"audio": {"path": path, "bytes": audio_file.read()}, |
|
} |
|
except: |
|
continue |
|
|
|
|