File size: 11,087 Bytes
86e9383
 
 
 
13e504a
86e9383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from collections import defaultdict
import os
import json
import csv
csv.field_size_limit(100000000)

import datasets

_NAME="annotated_catalan_common_voice_v17"
_VERSION="1.0.0"
_AUDIO_EXTENSIONS=".mp3"

_DESCRIPTION = """
This version of the Catalan sentences of the Common Voice corpus v17
includes metadata (gender and accent) for 263 speakers annotated by a team of experts. 
"""

_CITATION = """
@misc{armentanoannotated2024,
      title={Annotated Catalan Common Voice v17}, 
      author={Armentano, Carme},
      publisher={Barcelona Supercomputing Center}
      year={2024},
      url={https://huggingface.co/datasets/projecte-aina/annotated_catalan_common_voice_v17},
}
"""

_HOMEPAGE = "https://huggingface.co/datasets/projecte-aina/annotated_catalan_common_voice_v17"

_LICENSE = "CC-BY-4.0, See https://creativecommons.org/licenses/by/4.0/"

_BASE_DATA_DIR = "corpus/"

_METADATA_DEV   = os.path.join(_BASE_DATA_DIR,"files","annotated_dev.tsv")
_METADATA_INVALIDATED  = os.path.join(_BASE_DATA_DIR,"files","annotated_invalidated.tsv")
_METADATA_OTHER   = os.path.join(_BASE_DATA_DIR,"files","annotated_other.tsv")
_METADATA_TEST  = os.path.join(_BASE_DATA_DIR,"files","annotated_test.tsv")
_METADATA_TRAIN = os.path.join(_BASE_DATA_DIR,"files","annotated_train.tsv")
_METADATA_VALIDATED  = os.path.join(_BASE_DATA_DIR,"files","annotated_validated.tsv")

_TARS_DEV   = os.path.join(_BASE_DATA_DIR,"files","annotated_dev.paths")
_TARS_INVALIDATED  = os.path.join(_BASE_DATA_DIR,"files","annotated_invalidated.paths")
_TARS_OTHER   = os.path.join(_BASE_DATA_DIR,"files","annotated_other.paths")
_TARS_TEST  = os.path.join(_BASE_DATA_DIR,"files","annotated_test.paths")
_TARS_TRAIN = os.path.join(_BASE_DATA_DIR,"files","annotated_train.paths")
_TARS_VALIDATED  = os.path.join(_BASE_DATA_DIR,"files","annotated_validated.paths")

class AnnotatedCatalanCommonVoicev17Config(datasets.BuilderConfig):
    """BuilderConfig for The Annotated Catalan Common Voice v17"""

    def __init__(self, name, **kwargs):
        name=_NAME
        super().__init__(name=name, **kwargs)

class AnnotatedCatalanCommonVoicev17(datasets.GeneratorBasedBuilder):
    """Annotated Catalan Common Voice v17"""

    VERSION = datasets.Version(_VERSION)
    BUILDER_CONFIGS = [
        AnnotatedCatalanCommonVoicev17Config(
            name=_NAME,
            version=datasets.Version(_VERSION),
        )
    ]

    def _info(self):
        features = datasets.Features(
            {
                "audio": datasets.Audio(sampling_rate=16000),             
                "client_id": datasets.Value("string"),
                "path": datasets.Value("string"),
                "sentence_id": datasets.Value("string"),
                "sentence": datasets.Value("string"),
                "sentence_domain": datasets.Value("string"),
                "up_votes": datasets.Value("int32"),
                "down_votes": datasets.Value("int32"),
                "age": datasets.Value("string"),
                "gender": datasets.Value("string"),
                "accents": datasets.Value("string"),
                "variant": datasets.Value("string"),
                "locale": datasets.Value("string"),
                "segment": datasets.Value("string"),
                "mean quality": datasets.Value("string"),
                "stdev quality": datasets.Value("string"),
                "annotated_accent": datasets.Value("string"),
                "annotated_accent_agreement": datasets.Value("string"),
                "annotated_gender": datasets.Value("string"),
                "annotated_gender_agreement": datasets.Value("string"),
                "propagated_gender": datasets.Value("string"),
                "propagated_accents": datasets.Value("string"),
                "propagated_accents_norm": datasets.Value("string"),
                "variant_norm": datasets.Value("string"),
                "assigned_accent": datasets.Value("string"),
                "assigned_gender": datasets.Value("string"),
            }
        )
        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            homepage=_HOMEPAGE,
            license=_LICENSE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
    
        metadata_dev=dl_manager.download_and_extract(_METADATA_DEV)
        metadata_invalidated=dl_manager.download_and_extract(_METADATA_INVALIDATED)
        metadata_other=dl_manager.download_and_extract(_METADATA_OTHER)
        metadata_test=dl_manager.download_and_extract(_METADATA_TEST)
        metadata_train=dl_manager.download_and_extract(_METADATA_TRAIN)
        metadata_validated=dl_manager.download_and_extract(_METADATA_VALIDATED)

        tars_dev=dl_manager.download_and_extract(_TARS_DEV)
        tars_invalidated=dl_manager.download_and_extract(_TARS_INVALIDATED)
        tars_other=dl_manager.download_and_extract(_TARS_OTHER)
        tars_test=dl_manager.download_and_extract(_TARS_TEST)
        tars_train=dl_manager.download_and_extract(_TARS_TRAIN)
        tars_validated=dl_manager.download_and_extract(_TARS_VALIDATED)

        hash_tar_files=defaultdict(dict)
        
        with open(tars_dev,'r') as f:
            hash_tar_files['validation']=[path.replace('\n','') for path in f]
        with open(tars_invalidated,'r') as f:
            hash_tar_files['invalidated']=[path.replace('\n','') for path in f]   
        with open(tars_other,'r') as f:
            hash_tar_files['other']=[path.replace('\n','') for path in f]  
        with open(tars_test,'r') as f:
            hash_tar_files['test']=[path.replace('\n','') for path in f]
        with open(tars_train,'r') as f:
            hash_tar_files['train']=[path.replace('\n','') for path in f]
        with open(tars_validated,'r') as f:
            hash_tar_files['validated']=[path.replace('\n','') for path in f]
       
        hash_meta_paths={"validation":metadata_dev,
        "invalidated":metadata_invalidated,
        "other":metadata_other,
        "test":metadata_test,
        "train":metadata_train,
        "validated":metadata_validated}
        
        audio_paths = dl_manager.download(hash_tar_files)
        
        splits=["validation","invalidated","other","test","train","validated"]
        local_extracted_audio_paths = (
            dl_manager.extract(audio_paths) if not dl_manager.is_streaming else
            {
                split:[None] * len(audio_paths[split]) for split in splits
            }
        )
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      
        return [
            datasets.SplitGenerator(
                name="validation",
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["validation"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["validation"],
                    "metadata_paths": hash_meta_paths["validation"],
                }
            ),
            datasets.SplitGenerator(
                name="invalidated",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["invalidated"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["invalidated"],
                    "metadata_paths": hash_meta_paths["invalidated"],
                }
            ),
            datasets.SplitGenerator(
                name="other",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["other"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["other"],
                    "metadata_paths": hash_meta_paths["other"],
                }
            ),
            datasets.SplitGenerator(
                name="test",
                gen_kwargs={
                    "audio_archives":[dl_manager.iter_archive(archive) for archive in audio_paths["test"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["test"],
                    "metadata_paths": hash_meta_paths["test"],
                }
            ),
            datasets.SplitGenerator(
                name="train",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["train"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["train"],
                    "metadata_paths": hash_meta_paths["train"],
                }
            ),
            datasets.SplitGenerator(
                name="validated",
                gen_kwargs={
                    "audio_archives": [dl_manager.iter_archive(archive) for archive in audio_paths["validated"]],
                    "local_extracted_archives_paths": local_extracted_audio_paths["validated"],
                    "metadata_paths": hash_meta_paths["validated"],
                }
            ),
        ]

    def _generate_examples(self, audio_archives, local_extracted_archives_paths, metadata_paths):
                  
        features = ["client_id","path","sentence_id","sentence","sentence_domain","up_votes",
                    "down_votes","age","gender","accents","variant","locale","segment",
                    "mean quality","stdev quality","annotated_accent","annotated_accent_agreement",
                    "annotated_gender","annotated_gender_agreement","propagated_gender",
                    "propagated_accents","propagated_accents_norm","variant_norm","assigned_accent",
                    "assigned_gender"]    

        with open(metadata_paths) as f:
            metadata = {x["path"]: x for x in csv.DictReader(f, delimiter="\t")}

        for audio_archive, local_extracted_archive_path in zip(audio_archives, local_extracted_archives_paths):
            for audio_filename, audio_file in audio_archive:
                audio_id =os.path.splitext(os.path.basename(audio_filename))[0]
                audio_id=audio_id+_AUDIO_EXTENSIONS
                path = os.path.join(local_extracted_archive_path, audio_filename) if local_extracted_archive_path else audio_filename
                
                try:                        
                        yield audio_id, {
                            "path": audio_id,
                            **{feature: metadata[audio_id][feature] for feature in features},
                            "audio": {"path": path, "bytes": audio_file.read()},
                }
                except:
                        continue