|
## Overview |
|
Original dataset available [here](https://gluebenchmark.com/diagnostics). |
|
|
|
|
|
## Dataset curation |
|
Filled in the empty rows of columns "lexical semantics", "predicate-argument structure", |
|
"logic", "knowledge" with empty string `""`. |
|
Labels are encoded as follows |
|
|
|
``` |
|
{"entailment": 0, "neutral": 1, "contradiction": 2} |
|
``` |
|
|
|
## Code to create dataset |
|
|
|
```python |
|
import pandas as pd |
|
from datasets import Features, Value, ClassLabel, Dataset |
|
|
|
|
|
df = pd.read_csv("<path to file>/diagnostic-full.tsv", sep="\t") |
|
|
|
# column names to lower |
|
df.columns = df.columns.str.lower() |
|
|
|
# fill na |
|
assert df["label"].isna().sum() == 0 |
|
df = df.fillna("") |
|
|
|
# encode labels |
|
df["label"] = df["label"].map({"entailment": 0, "neutral": 1, "contradiction": 2}) |
|
|
|
# cast to dataset |
|
features = Features({ |
|
"lexical semantics": Value(dtype="string", id=None), |
|
"predicate-argument structure": Value(dtype="string", id=None), |
|
"logic": Value(dtype="string", id=None), |
|
"knowledge": Value(dtype="string", id=None), |
|
"domain": Value(dtype="string", id=None), |
|
"premise": Value(dtype="string", id=None), |
|
"hypothesis": Value(dtype="string", id=None), |
|
"label": ClassLabel(num_classes=3, names=["entailment", "neutral", "contradiction"]), |
|
}) |
|
|
|
dataset = Dataset.from_pandas(df, features=features) |
|
dataset.push_to_hub("glue_diagnostics", token="<token>", split="test") |
|
``` |
|
|
|
|
|
|
|
|