Problem when changing the default builder config to connect_all

#1
by taghizadeh - opened

When running the following code I get error that conversion_method is not a valid keyword for builder config.

code:

from pie_datasets import load_dataset

dataset = load_dataset(path="pie/aae2", conversion_method = "connect_all")

output:

---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[1], line 3
      1 from pie_datasets import load_dataset, builders
----> 3 dataset = load_dataset(path="pie/aae2", conversion_method = "connect_all")
      4 train_docs = dataset["train"]

File ~/Library/Caches/pypoetry/virtualenvs/Z580gx8g-py3.11/lib/python3.11/site-packages/pie_datasets/core/dataset_dict.py:699, in load_dataset(*args, **kwargs)
    698 def load_dataset(*args, **kwargs) -> Union[DatasetDict, Dataset, IterableDataset]:
--> 699     dataset_or_dataset_dict = datasets.load_dataset(*args, **kwargs)
    700     if isinstance(dataset_or_dataset_dict, (Dataset, IterableDataset)):
    701         return dataset_or_dataset_dict

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/load.py:2128, in load_dataset(path, name, data_dir, data_files, split, cache_dir, features, download_config, download_mode, verification_mode, ignore_verifications, keep_in_memory, save_infos, revision, token, use_auth_token, task, streaming, num_proc, storage_options, **config_kwargs)
   2123 verification_mode = VerificationMode(
   2124     (verification_mode or VerificationMode.BASIC_CHECKS) if not save_infos else VerificationMode.ALL_CHECKS
   2125 )
   2127 # Create a dataset builder
-> 2128 builder_instance = load_dataset_builder(
   2129     path=path,
   2130     name=name,
   2131     data_dir=data_dir,
   2132     data_files=data_files,
   2133     cache_dir=cache_dir,
   2134     features=features,
   2135     download_config=download_config,
   2136     download_mode=download_mode,
   2137     revision=revision,
   2138     token=token,
   2139     storage_options=storage_options,
   2140     **config_kwargs,
   2141 )
   2143 # Return iterable dataset in case of streaming
   2144 if streaming:

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/load.py:1851, in load_dataset_builder(path, name, data_dir, data_files, cache_dir, features, download_config, download_mode, revision, token, use_auth_token, storage_options, **config_kwargs)
   1849 builder_cls = get_dataset_builder_class(dataset_module, dataset_name=dataset_name)
   1850 # Instantiate the dataset builder
-> 1851 builder_instance: DatasetBuilder = builder_cls(
   1852     cache_dir=cache_dir,
   1853     dataset_name=dataset_name,
   1854     config_name=config_name,
   1855     data_dir=data_dir,
   1856     data_files=data_files,
   1857     hash=hash,
   1858     info=info,
   1859     features=features,
   1860     token=token,
   1861     storage_options=storage_options,
   1862     **builder_kwargs,
   1863     **config_kwargs,
   1864 )
   1866 return builder_instance

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/pie_datasets/core/builder.py:129, in PieDatasetBuilder.__init__(self, base_dataset_kwargs, document_converters, **kwargs)
    125     # set base path to base builder base path. This is required so that the download manager
    126     # works correctly with relative paths.
    127     kwargs["base_path"] = self.base_builder.base_path
--> 129 super().__init__(**kwargs)
    131 self._document_converters = dict(self.DOCUMENT_CONVERTERS)
    132 if document_converters is not None:

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/builder.py:373, in DatasetBuilder.__init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, use_auth_token, repo_id, data_files, data_dir, storage_options, writer_batch_size, name, **config_kwargs)
    371 if data_dir is not None:
    372     config_kwargs["data_dir"] = data_dir
--> 373 self.config, self.config_id = self._create_builder_config(
    374     config_name=config_name,
    375     custom_features=features,
    376     **config_kwargs,
    377 )
    379 # prepare info: DatasetInfo are a standardized dataclass across all datasets
    380 # Prefill datasetinfo
    381 if info is None:
    382     # TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/builder.py:554, in DatasetBuilder._create_builder_config(self, config_name, custom_features, **config_kwargs)
    552         config_kwargs["version"] = self.VERSION
    553     print(self.BUILDER_CONFIG_CLASS)
--> 554     builder_config = self.BUILDER_CONFIG_CLASS(**config_kwargs)
    556 # otherwise use the config_kwargs to overwrite the attributes
    557 else:
    558     builder_config = copy.deepcopy(builder_config)

TypeError: BuilderConfig.__init__() got an unexpected keyword argument 'conversion_method'

Hi @taghizadeh ,

I implemented this fix: https://huggingface.co/datasets/pie/aae2/discussions/2

Can you try if this works for you, i.e. try passing revision="pr/2" to load_dataset?

Yes thank you. The load_dataset works fine right now, but when trying to access the samples in train or test section I get the following error:

sample = dataset['train'][0]
---------------------------------------------------------------------------
TypeError                                 Traceback (most recent call last)
Cell In[8], line 1
----> 1 dataset['test'][0]

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/arrow_dataset.py:2795, in Dataset.__getitem__(self, key)
   2793 def __getitem__(self, key):  # noqa: F811
   2794     """Can be used to index columns (by string names) or rows (by integer index or iterable of indices or bools)."""
-> 2795     return self._getitem(key)

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/arrow_dataset.py:2780, in Dataset._getitem(self, key, **kwargs)
   2778 formatter = get_formatter(format_type, features=self._info.features, **format_kwargs)
   2779 pa_subtable = query_table(self._data, key, indices=self._indices if self._indices is not None else None)
-> 2780 formatted_output = format_table(
   2781     pa_subtable, key, formatter=formatter, format_columns=format_columns, output_all_columns=output_all_columns
   2782 )
   2783 return formatted_output

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/formatting/formatting.py:629, in format_table(table, key, formatter, format_columns, output_all_columns)
    627 python_formatter = PythonFormatter(features=formatter.features)
    628 if format_columns is None:
--> 629     return formatter(pa_table, query_type=query_type)
    630 elif query_type == "column":
    631     if key in format_columns:

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/datasets/formatting/formatting.py:396, in Formatter.__call__(self, pa_table, query_type)
    394 def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
    395     if query_type == "row":
--> 396         return self.format_row(pa_table)
    397     elif query_type == "column":
    398         return self.format_column(pa_table)

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/pie_datasets/core/document_formatter.py:15, in DocumentFormatter.format_row(self, pa_table)
     13 def format_row(self, pa_table: pa.Table) -> Document:
     14     row = self.python_arrow_extractor().extract_row(pa_table)
---> 15     return self.document_type.fromdict(row)

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/pytorch_ie/core/document.py:719, in Document.fromdict(cls, dct)
    717 annotation_id = annotation_dict.pop("_id")
    718 # annotations can only reference annotations
--> 719 annotation = annotation_class.fromdict(annotation_dict, annotations)
    720 annotations[annotation_id] = annotation
    721 annotations_per_field[field.name].append(annotation)

File ~/Library/Caches/pypoetry/virtualenvs/minig-Z580gx8g-py3.11/lib/python3.11/site-packages/pytorch_ie/core/document.py:306, in Annotation.fromdict(cls, dct, annotation_store)
    303         raise Exception(f"unknown annotation container type: {container_type}")
    305 tmp_dct.pop("_id", None)
--> 306 return cls(**tmp_dct)

TypeError: LabeledSpan.__init__() got an unexpected keyword argument 'slices'

ok, I added another PR with a fix: https://huggingface.co/datasets/pie/aae2/discussions/3.
can you try with revision="pr/3"?

Sorry for delay, Yep it works now.

taghizadeh changed discussion status to closed

Another issue. When I use connect_first or connect_all, the relations of claims are not appended to premises relations as I see in the code.

taghizadeh changed discussion status to open

What exactly do you mean? Can you give me a pointer to the respective lines of code and explain what you expect instead?

Well, we expect if we use use connect_first argument, Claims be connected to first MajorClaim, but when getting the relations from a document I only get the relations between premises and claims. This is the same with semantically same relations.

The line of related code:
https://huggingface.co/datasets/pie/aae2/blob/1015ee38bd8a36549b344008f7a49af72956a7fe/aae2.py#L79

for example I loaded the first document it has 6 relations with 11 spans. For 11 spans there must be at least 10 relations if consider all of them connected.
image.png

I assume you did not trigger the document conversion. The idea is that when using load_dataset(), the data is loaded as it is without any semantic changes. Just when converting it, either by calling dataset.to_document_type(ONE_OF_THE_KEYS_IN_THE_DOCUMENT_CONVERTERS)(see in the documentation or the source code for the predefined converters) or dataset.map(function), the semantics should change (e.g. new relations are added).

from pie_datasets import load_dataset, DatasetDict
from pytorch_ie.documents import TextDocumentWithLabeledSpansAndBinaryRelations

dataset: DatasetDict = load_dataset("pie/aae2", conversion_method="connect_all", revision="pr/3")
# convert the dataset. this will use either connect_all or connect_first method variant to connect all claims
dataset_converted = dataset.to_document_type(TextDocumentWithLabeledSpansAndBinaryRelations)
doc: TextDocumentWithLabeledSpansAndBinaryRelations = dataset_converted["train"][0]
print(len(doc.binary_relations))  # 12
print(len(doc.labeled_spans))  # 11

# get resolved relations for better debugging (requires pytorch-ie>=0.30.2)
resolved_relations = doc.binary_relations.resolve()
print(resolved_relations)

Does this help?

You are right. My apologies, for not reading the documentation well.

cool :) I merged https://huggingface.co/datasets/pie/aae2/discussions/3, do you think we can close this?

taghizadeh changed discussion status to closed

Sign up or log in to comment