Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 499 new columns ({'0.0255741127348643.1', '0.02502606882168926', '0.023291925465838508.11', '0.02830188679245283.8', '0.028346456692913385.24', '0.011922503725782414', '0.012462612163509471', '0.022233712512926575.1', '0.028346456692913385.3', '0.023291925465838508', '0.006631927996210327', '0.02776322682032478.3', '0.02338877338877339.1', '0.008177008177008177', '0.01580826109127996', '0.013527054108216433', '0.025587467362924284.1', '0.026687598116169546', '0.02556077203964528.8', '0.02830188679245283.5', '0.028361344537815126.1', '0.012967581047381545.1', '0.014765784114052953.3', '0.0076886112445939455.1', '0.026687598116169546.11', '0.02284527518172378.5', '0.013567839195979899', '0.013164556962025316', '0.015282730514518594.1', '0.02502606882168926.1', '0.02338877338877339', '0.02556077203964528.6', '0.027225130890052355.1', '0.013131313131313131.3', '0.01245019920318725.1', '0.018442622950819672.1', '0.024479166666666666.1', '0.01309823677581864.2', '0.006134969325153374', '0.0057361376673040155', '0.005717008099094807', '0.014758269720101781.5', '0.026687598116169546.14', '0.025587467362924284', '0.011904761904761904', '0.01580826109127996.6', '0.014758269720101781.2', '0.012632642748863061.2', '0.011175898931000973.1', '0.028346456692913385', '0.02284527518172378', '0.014227642276422764.1', '0.026673640167364017', '0.023291925465838508.7', '0.018480492813141684.3', '0.02779234399580493.3', '0.008173076923076924.3', '0.008173076923076924', '0.005248091603053435.1', '0.0200617283950617
...
.012645422357106728', '0.006086142322097378', '0.013171225937183385', '0.028346456692913385.11', '0.011280039234919078', '0.011690209449585971', '0.02556077203964528.7', '0.01354062186559679.1', '0.005671077504725898', '0.013131313131313131.1', '0.026687598116169546.26', '0.024479166666666666', '0.0056657223796034', '0.013171225937183385.1', '0.022233712512926575.6', '0.024479166666666666.5', '0.02007205352547607', '0.0091478093403948', '0.02830188679245283.4', '0.010174418604651164', '0.013171225937183385.4', '0.01580020387359837', '0.02556077203964528.9', '0.02830188679245283.15', '0.01355421686746988', '0.026659696811291166.8', '0.018480492813141684.2', '0.012444001991040319.3', '0.009775171065493646', '0.013157894736842105', '0.006708193579300431.1', '0.014227642276422764', '0.027806925498426022', '0.023291925465838508.4', '0.013691683569979716.2', '0.018480492813141684', '0.02830188679245283.22', '0.0051401869158878505', '0.005245588936576061', '0.028346456692913385.6', '0.026687598116169546.21', '0.025587467362924284.5', '0.028361344537815126.4', '0.010832102412604629', '0.017957927142124165.1', '0.006704980842911878.1', '0.028346456692913385.18', '0.024479166666666666.2', '0.028346456692913385.8', '0.02830188679245283.3', '0.02779234399580493.4', '0.012632642748863061', '0.02830188679245283.17', '0.028346456692913385.21', '0.008687258687258687', '0.026687598116169546.9', '0.011892963330029732.1', '0.022857142857142857', '0.013124684502776375', '0.022857142857142857.2'}) and 499 missing columns ({'0.018628912071535022', '0.020239880059970013.4', '0.010130246020260492.3', '0.01168736303871439.2', '0.010144927536231883.12', '0.021148036253776436.13', '0.019461077844311378.5', '0.015625', '0.018670649738610903.15', '0.020454545454545454.10', '0.01868460388639761.2', '0.011627906976744186.2', '0.020239880059970013.8', '0.02042360060514372.50', '0.02180451127819549', '0.00931899641577061', '0.011670313639679067', '0.020239880059970013', '0.0131852879944483', '0.019461077844311378.4', '0.010144927536231883.9', '0.018670649738610903.16', '0.01944652206432311.17', '0.01003584229390681', '0.01868460388639761.3', '0.02042360060514372.2', '0.020239880059970013.3', '0.017857142857142856.1', '0.01065340909090909.2', '0.01944652206432311.6', '0.013960323291697281', '0.019461077844311378.13', '0.017830609212481426.12', '0.015475313190862197.4', '0.02042360060514372.3', '0.02042360060514372.10', '0.02042360060514372.36', '0.02042360060514372.13', '0.009312320916905445.2', '0.010806916426512969', '0.021148036253776436.20', '0.019461077844311378.9', '0.020454545454545454.8', '0.010660980810234541.2', '0.018615040953090096', '0.02042360060514372.18', '0.02042360060514372.48', '0.020255063765941484.4', '0.02042360060514372.9', '0.01704966641957005.6', '0.009312320916905445.1', '0.014522821576763486', '0.015475313190862197.10', '0.01944652206432311.20', '0.02042360060514372.19', '0.01944652206432311.13', '0.017857142857142856.4', '0.013215859030837005.1', '0.017830609212481426.3', '0.020
...
7714.2', '0.017830609212481426.20', '0.02262443438914027.2', '0.015475313190862197.1', '0.010877447425670777', '0.010706638115631691.1', '0.018670649738610903.14', '0.01167883211678832.3', '0.02042360060514372.8', '0.016260162601626018', '0.017011834319526627.3', '0.019667170953101363.3', '0.02042360060514372.12', '0.010137581462708182.2', '0.020454545454545454.12', '0.01079913606911447', '0.02042360060514372.15', '0.010706638115631691', '0.011871508379888268', '0.021148036253776436.24', '0.01090909090909091', '0.013939838591342627.1', '0.011188811188811189', '0.013186813186813187.1', '0.018670649738610903.12', '0.020454545454545454.2', '0.01968205904617714.1', '0.02260738507912585.2', '0.018628912071535022.7', '0.01944652206432311.12', '0.0111731843575419', '0.021021021021021023', '0.011180992313067784', '0.018628912071535022.1', '0.017830609212481426.19', '0.011661807580174927.2', '0.015475313190862197', '0.016236162361623615', '0.017830609212481426.8', '0.010699001426533523.1', '0.02042360060514372.23', '0.019667170953101363.12', '0.010668563300142247', '0.017817371937639197.3', '0.018656716417910446.1', '0.02180451127819549.23', '0.02260738507912585.3', '0.013980868285504048', '0.015475313190862197.2', '0.01592797783933518', '0.021148036253776436.10', '0.02042360060514372.35', '0.011963406052076003', '0.01704966641957005.1', '0.01314878892733564', '0.017011834319526627.5', '0.018628912071535022.3', '0.01132342533616419', '0.010144927536231883.6', '0.02180451127819549.17'}).

This happened while the csv dataset builder was generating data using

hf://datasets/petrrysavy/krebs/krebs3/threes1.tsv (at revision 229ef67a0e37072643d1ccc215629cefa560b0b0)

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1870, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 622, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2292, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2240, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              FUMARATE: string
              0.0: double
              0.0.1: double
              0.0.2: double
              0.0.3: double
              0.0.4: double
              0.0.5: double
              4.601932811780948E-4: double
              0.001388888888888889: double
              0.0037209302325581397: double
              0.004195804195804196: double
              0.0051401869158878505: double
              0.005615348619560131: double
              0.006086142322097378: double
              0.005620608899297424: double
              0.005625879043600563: double
              0.006100422336931018: double
              0.0061118946873530795: double
              0.005647058823529412: double
              0.005655042412818096: double
              0.006134969325153374: double
              0.0056657223796034: double
              0.005671077504725898: double
              0.005668398677373642: double
              0.0056657223796034.1: double
              0.005198487712665407: double
              0.005676442762535478: double
              0.006625650733554188: double
              0.006635071090047393: double
              0.006631927996210327: double
              0.006638217164532954: double
              0.006635071090047393.1: double
              0.006644518272425249: double
              0.006172839506172839: double
              0.005717008099094807: double
              0.005235602094240838: double
              0.005240590757503573: double
              0.005245588936576061: double
              0.005248091603053435: double
              0.005248091603053435.1: double
              0.005733397037744864: double
              0.0057306590257879654: double
              0.005733397037744864.1: double
              0.0057361376673040155: double
              0.006226053639846743: double
              0.006704980842911878: double
              0.006704980842911878.1: double
              0.006708193579300431: double
              0.006711409395973154: double
              0.006708193579300431.1: double
              0.00671462829736211: double
              0.00672107537205953: double
              0.007684918347742555: double
              0.0076886112445939455: double
              0.0076886112445939455.1: d
              ...
              0.02779234399580493.1: double
              0.02779234399580493.2: double
              0.02779234399580493.3: double
              0.027806925498426022: double
              0.02779234399580493.4: double
              0.027806925498426022.1: double
              0.028346456692913385: double
              0.028346456692913385.1: double
              0.028346456692913385.2: double
              0.028346456692913385.3: double
              0.028346456692913385.4: double
              0.028346456692913385.5: double
              0.028346456692913385.6: double
              0.028346456692913385.7: double
              0.028346456692913385.8: double
              0.028346456692913385.9: double
              0.028346456692913385.10: double
              0.028346456692913385.11: double
              0.028346456692913385.12: double
              0.028346456692913385.13: double
              0.028346456692913385.14: double
              0.028346456692913385.15: double
              0.028346456692913385.16: double
              0.028346456692913385.17: double
              0.028346456692913385.18: double
              0.028346456692913385.19: double
              0.028346456692913385.20: double
              0.028346456692913385.21: double
              0.028346456692913385.22: double
              0.028346456692913385.23: double
              0.028346456692913385.24: double
              0.028361344537815126: double
              0.028361344537815126.1: double
              0.028361344537815126.2: double
              0.028361344537815126.3: double
              0.028361344537815126.4: double
              0.028361344537815126.5: double
              0.028361344537815126.6: double
              0.028901734104046242: double
              0.028901734104046242.1: double
              0.028901734104046242.2: double
              0.028901734104046242.3: double
              0.028901734104046242.4: double
              0.028901734104046242.5: double
              0.029442691903259727: double
              -- schema metadata --
              pandas: '{"index_columns": [{"kind": "range", "name": null, "start": 0, "' + 71786
              to
              {'FUMARATE': Value(dtype='string', id=None), '0.017361111111111112': Value(dtype='float64', id=None), '0.015625': Value(dtype='float64', id=None), '0.01592797783933518': Value(dtype='float64', id=None), '0.015785861358956762': Value(dtype='float64', id=None), '0.01443298969072165': Value(dtype='float64', id=None), '0.015862068965517243': Value(dtype='float64', id=None), '0.014522821576763486': Value(dtype='float64', id=None), '0.013167013167013167': Value(dtype='float64', id=None), '0.013167013167013167.1': Value(dtype='float64', id=None), '0.013176144244105409': Value(dtype='float64', id=None), '0.01314878892733564': Value(dtype='float64', id=None), '0.013167013167013167.2': Value(dtype='float64', id=None), '0.013167013167013167.3': Value(dtype='float64', id=None), '0.01313969571230982': Value(dtype='float64', id=None), '0.013167013167013167.4': Value(dtype='float64', id=None), '0.013167013167013167.5': Value(dtype='float64', id=None), '0.013176144244105409.1': Value(dtype='float64', id=None), '0.013167013167013167.6': Value(dtype='float64', id=None), '0.0131852879944483': Value(dtype='float64', id=None), '0.0131852879944483.1': Value(dtype='float64', id=None), '0.013194444444444444': Value(dtype='float64', id=None), '0.0131852879944483.2': Value(dtype='float64', id=None), '0.01321279554937413': Value(dtype='float64', id=None), '0.013927576601671309': Value(dtype='float64', id=None), '0.013927576601671309.1': Value(dtype='float64', id=None), '0.013927576601671309.2': Value(d
              ...
              dtype='float64', id=None), '0.019667170953101363.4': Value(dtype='float64', id=None), '0.019667170953101363.5': Value(dtype='float64', id=None), '0.019667170953101363.6': Value(dtype='float64', id=None), '0.019667170953101363.7': Value(dtype='float64', id=None), '0.019667170953101363.8': Value(dtype='float64', id=None), '0.019667170953101363.9': Value(dtype='float64', id=None), '0.019667170953101363.10': Value(dtype='float64', id=None), '0.019667170953101363.11': Value(dtype='float64', id=None), '0.01968205904617714': Value(dtype='float64', id=None), '0.019667170953101363.12': Value(dtype='float64', id=None), '0.01968205904617714.1': Value(dtype='float64', id=None), '0.01968205904617714.2': Value(dtype='float64', id=None), '0.020454545454545454': Value(dtype='float64', id=None), '0.020454545454545454.1': Value(dtype='float64', id=None), '0.020454545454545454.2': Value(dtype='float64', id=None), '0.020454545454545454.3': Value(dtype='float64', id=None), '0.020454545454545454.4': Value(dtype='float64', id=None), '0.020454545454545454.5': Value(dtype='float64', id=None), '0.020454545454545454.6': Value(dtype='float64', id=None), '0.020454545454545454.7': Value(dtype='float64', id=None), '0.020454545454545454.8': Value(dtype='float64', id=None), '0.020454545454545454.9': Value(dtype='float64', id=None), '0.020454545454545454.10': Value(dtype='float64', id=None), '0.020454545454545454.11': Value(dtype='float64', id=None), '0.020454545454545454.12': Value(dtype='float64', id=None)}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1417, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1049, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 924, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1000, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1741, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1872, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 499 new columns ({'0.0255741127348643.1', '0.02502606882168926', '0.023291925465838508.11', '0.02830188679245283.8', '0.028346456692913385.24', '0.011922503725782414', '0.012462612163509471', '0.022233712512926575.1', '0.028346456692913385.3', '0.023291925465838508', '0.006631927996210327', '0.02776322682032478.3', '0.02338877338877339.1', '0.008177008177008177', '0.01580826109127996', '0.013527054108216433', '0.025587467362924284.1', '0.026687598116169546', '0.02556077203964528.8', '0.02830188679245283.5', '0.028361344537815126.1', '0.012967581047381545.1', '0.014765784114052953.3', '0.0076886112445939455.1', '0.026687598116169546.11', '0.02284527518172378.5', '0.013567839195979899', '0.013164556962025316', '0.015282730514518594.1', '0.02502606882168926.1', '0.02338877338877339', '0.02556077203964528.6', '0.027225130890052355.1', '0.013131313131313131.3', '0.01245019920318725.1', '0.018442622950819672.1', '0.024479166666666666.1', '0.01309823677581864.2', '0.006134969325153374', '0.0057361376673040155', '0.005717008099094807', '0.014758269720101781.5', '0.026687598116169546.14', '0.025587467362924284', '0.011904761904761904', '0.01580826109127996.6', '0.014758269720101781.2', '0.012632642748863061.2', '0.011175898931000973.1', '0.028346456692913385', '0.02284527518172378', '0.014227642276422764.1', '0.026673640167364017', '0.023291925465838508.7', '0.018480492813141684.3', '0.02779234399580493.3', '0.008173076923076924.3', '0.008173076923076924', '0.005248091603053435.1', '0.0200617283950617
              ...
              .012645422357106728', '0.006086142322097378', '0.013171225937183385', '0.028346456692913385.11', '0.011280039234919078', '0.011690209449585971', '0.02556077203964528.7', '0.01354062186559679.1', '0.005671077504725898', '0.013131313131313131.1', '0.026687598116169546.26', '0.024479166666666666', '0.0056657223796034', '0.013171225937183385.1', '0.022233712512926575.6', '0.024479166666666666.5', '0.02007205352547607', '0.0091478093403948', '0.02830188679245283.4', '0.010174418604651164', '0.013171225937183385.4', '0.01580020387359837', '0.02556077203964528.9', '0.02830188679245283.15', '0.01355421686746988', '0.026659696811291166.8', '0.018480492813141684.2', '0.012444001991040319.3', '0.009775171065493646', '0.013157894736842105', '0.006708193579300431.1', '0.014227642276422764', '0.027806925498426022', '0.023291925465838508.4', '0.013691683569979716.2', '0.018480492813141684', '0.02830188679245283.22', '0.0051401869158878505', '0.005245588936576061', '0.028346456692913385.6', '0.026687598116169546.21', '0.025587467362924284.5', '0.028361344537815126.4', '0.010832102412604629', '0.017957927142124165.1', '0.006704980842911878.1', '0.028346456692913385.18', '0.024479166666666666.2', '0.028346456692913385.8', '0.02830188679245283.3', '0.02779234399580493.4', '0.012632642748863061', '0.02830188679245283.17', '0.028346456692913385.21', '0.008687258687258687', '0.026687598116169546.9', '0.011892963330029732.1', '0.022857142857142857', '0.013124684502776375', '0.022857142857142857.2'}) and 499 missing columns ({'0.018628912071535022', '0.020239880059970013.4', '0.010130246020260492.3', '0.01168736303871439.2', '0.010144927536231883.12', '0.021148036253776436.13', '0.019461077844311378.5', '0.015625', '0.018670649738610903.15', '0.020454545454545454.10', '0.01868460388639761.2', '0.011627906976744186.2', '0.020239880059970013.8', '0.02042360060514372.50', '0.02180451127819549', '0.00931899641577061', '0.011670313639679067', '0.020239880059970013', '0.0131852879944483', '0.019461077844311378.4', '0.010144927536231883.9', '0.018670649738610903.16', '0.01944652206432311.17', '0.01003584229390681', '0.01868460388639761.3', '0.02042360060514372.2', '0.020239880059970013.3', '0.017857142857142856.1', '0.01065340909090909.2', '0.01944652206432311.6', '0.013960323291697281', '0.019461077844311378.13', '0.017830609212481426.12', '0.015475313190862197.4', '0.02042360060514372.3', '0.02042360060514372.10', '0.02042360060514372.36', '0.02042360060514372.13', '0.009312320916905445.2', '0.010806916426512969', '0.021148036253776436.20', '0.019461077844311378.9', '0.020454545454545454.8', '0.010660980810234541.2', '0.018615040953090096', '0.02042360060514372.18', '0.02042360060514372.48', '0.020255063765941484.4', '0.02042360060514372.9', '0.01704966641957005.6', '0.009312320916905445.1', '0.014522821576763486', '0.015475313190862197.10', '0.01944652206432311.20', '0.02042360060514372.19', '0.01944652206432311.13', '0.017857142857142856.4', '0.013215859030837005.1', '0.017830609212481426.3', '0.020
              ...
              7714.2', '0.017830609212481426.20', '0.02262443438914027.2', '0.015475313190862197.1', '0.010877447425670777', '0.010706638115631691.1', '0.018670649738610903.14', '0.01167883211678832.3', '0.02042360060514372.8', '0.016260162601626018', '0.017011834319526627.3', '0.019667170953101363.3', '0.02042360060514372.12', '0.010137581462708182.2', '0.020454545454545454.12', '0.01079913606911447', '0.02042360060514372.15', '0.010706638115631691', '0.011871508379888268', '0.021148036253776436.24', '0.01090909090909091', '0.013939838591342627.1', '0.011188811188811189', '0.013186813186813187.1', '0.018670649738610903.12', '0.020454545454545454.2', '0.01968205904617714.1', '0.02260738507912585.2', '0.018628912071535022.7', '0.01944652206432311.12', '0.0111731843575419', '0.021021021021021023', '0.011180992313067784', '0.018628912071535022.1', '0.017830609212481426.19', '0.011661807580174927.2', '0.015475313190862197', '0.016236162361623615', '0.017830609212481426.8', '0.010699001426533523.1', '0.02042360060514372.23', '0.019667170953101363.12', '0.010668563300142247', '0.017817371937639197.3', '0.018656716417910446.1', '0.02180451127819549.23', '0.02260738507912585.3', '0.013980868285504048', '0.015475313190862197.2', '0.01592797783933518', '0.021148036253776436.10', '0.02042360060514372.35', '0.011963406052076003', '0.01704966641957005.1', '0.01314878892733564', '0.017011834319526627.5', '0.018628912071535022.3', '0.01132342533616419', '0.010144927536231883.6', '0.02180451127819549.17'}).
              
              This happened while the csv dataset builder was generating data using
              
              hf://datasets/petrrysavy/krebs/krebs3/threes1.tsv (at revision 229ef67a0e37072643d1ccc215629cefa560b0b0)
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

FUMARATE
string
0.017361111111111112
float64
0.015625
float64
0.01592797783933518
float64
0.015785861358956762
float64
0.01443298969072165
float64
0.015862068965517243
float64
0.014522821576763486
float64
0.013167013167013167
float64
0.013167013167013167.1
float64
0.013176144244105409
float64
0.01314878892733564
float64
0.013167013167013167.2
float64
0.013167013167013167.3
float64
0.01313969571230982
float64
0.013167013167013167.4
float64
0.013167013167013167.5
float64
0.013176144244105409.1
float64
0.013167013167013167.6
float64
0.0131852879944483
float64
0.0131852879944483.1
float64
0.013194444444444444
float64
0.0131852879944483.2
float64
0.01321279554937413
float64
0.013927576601671309
float64
0.013927576601671309.1
float64
0.013927576601671309.2
float64
0.01394700139470014
float64
0.013917884481558803
float64
0.011871508379888268
float64
0.011180992313067784
float64
0.0111731843575419
float64
0.011188811188811189
float64
0.011188811188811189.1
float64
0.011204481792717087
float64
0.012640449438202247
float64
0.01263157894736842
float64
0.012658227848101266
float64
0.012649332396345749
float64
0.01267605633802817
float64
0.011980267794221282
float64
0.011963406052076003
float64
0.011980267794221282.1
float64
0.011980267794221282.2
float64
0.012684989429175475
float64
0.011997177134791814
float64
0.012711864406779662
float64
0.01272984441301273
float64
0.012022630834512023
float64
0.012031139419674451
float64
0.012048192771084338
float64
0.01132342533616419
float64
0.010630758327427357
float64
0.010638297872340425
float64
0.0106458481192335
float64
0.01065340909090909
float64
0.010668563300142247
float64
0.010660980810234541
float64
0.010660980810234541.1
float64
0.01065340909090909.1
float64
0.010660980810234541.2
float64
0.01065340909090909.2
float64
0.010660980810234541.3
float64
0.010660980810234541.4
float64
0.010660980810234541.5
float64
0.010676156583629894
float64
0.010683760683760684
float64
0.011396011396011397
float64
0.010699001426533523
float64
0.010706638115631691
float64
0.010699001426533523.1
float64
0.010706638115631691.1
float64
0.01072961373390558
float64
0.01072961373390558.1
float64
0.01072961373390558.2
float64
0.01003584229390681
float64
0.010014306151645207
float64
0.00931899641577061
float64
0.009312320916905445
float64
0.009312320916905445.1
float64
0.009312320916905445.2
float64
0.009312320916905445.3
float64
0.008602150537634409
float64
0.008614501076812634
float64
0.008602150537634409.1
float64
0.009345794392523364
float64
0.010822510822510822
float64
0.01079913606911447
float64
0.010814708002883922
float64
0.010814708002883922.1
float64
0.010806916426512969
float64
0.010814708002883922.2
float64
0.010830324909747292
float64
0.01012292118582791
float64
0.010130246020260492
float64
0.010130246020260492.1
float64
0.010130246020260492.2
float64
0.010130246020260492.3
float64
0.010137581462708182
float64
0.010137581462708182.1
float64
0.010137581462708182.2
float64
0.010144927536231883
float64
0.010144927536231883.1
float64
0.010144927536231883.2
float64
0.010144927536231883.3
float64
0.010144927536231883.4
float64
0.010144927536231883.5
float64
0.010144927536231883.6
float64
0.010144927536231883.7
float64
0.010144927536231883.8
float64
0.010137581462708182.3
float64
0.010144927536231883.9
float64
0.010144927536231883.10
float64
0.010144927536231883.11
float64
0.010144927536231883.12
float64
0.010159651669085631
float64
0.01088534107402032
float64
0.010893246187363835
float64
0.010877447425670777
float64
0.011627906976744186
float64
0.011619462599854757
float64
0.011627906976744186.1
float64
0.011627906976744186.2
float64
0.01090909090909091
float64
0.01090909090909091.1
float64
0.011644832605531296
float64
0.011644832605531296.1
float64
0.011644832605531296.2
float64
0.011653313911143482
float64
0.011644832605531296.3
float64
0.011661807580174927
float64
0.011661807580174927.1
float64
0.01167883211678832
float64
0.011661807580174927.2
float64
0.01167883211678832.1
float64
0.01167883211678832.2
float64
0.011670313639679067
float64
0.01167883211678832.3
float64
0.01167883211678832.4
float64
0.01167883211678832.5
float64
0.01168736303871439
float64
0.011670313639679067.1
float64
0.01168736303871439.1
float64
0.01168736303871439.2
float64
0.012426900584795321
float64
0.012426900584795321.1
float64
0.012435991221653255
float64
0.013177159590043924
float64
0.013177159590043924.1
float64
0.013186813186813187
float64
0.013186813186813187.1
float64
0.013186813186813187.2
float64
0.013929618768328446
float64
0.013929618768328446.1
float64
0.013939838591342627
float64
0.013929618768328446.2
float64
0.013939838591342627.1
float64
0.013215859030837005
float64
0.013215859030837005.1
float64
0.013215859030837005.2
float64
0.013960323291697281
float64
0.013970588235294118
float64
0.013980868285504048
float64
0.013980868285504048.1
float64
0.015475313190862197
float64
0.015475313190862197.1
float64
0.015475313190862197.2
float64
0.015475313190862197.3
float64
0.015475313190862197.4
float64
0.015475313190862197.5
float64
0.015475313190862197.6
float64
0.015475313190862197.7
float64
0.015475313190862197.8
float64
0.015475313190862197.9
float64
0.015475313190862197.10
float64
0.015475313190862197.11
float64
0.015498154981549815
float64
0.016236162361623615
float64
0.016260162601626018
float64
0.01624815361890694
float64
0.016260162601626018.1
float64
0.016260162601626018.2
float64
0.01624815361890694.1
float64
0.017011834319526627
float64
0.017011834319526627.1
float64
0.017011834319526627.2
float64
0.017011834319526627.3
float64
0.017011834319526627.4
float64
0.017024426350851222
float64
0.017011834319526627.5
float64
0.017037037037037038
float64
0.017037037037037038.1
float64
0.01704966641957005
float64
0.01704966641957005.1
float64
0.01704966641957005.2
float64
0.01704966641957005.3
float64
0.01704966641957005.4
float64
0.01704966641957005.5
float64
0.01704966641957005.6
float64
0.017062314540059347
float64
0.017817371937639197
float64
0.017817371937639197.1
float64
0.017817371937639197.2
float64
0.017817371937639197.3
float64
0.017817371937639197.4
float64
0.017804154302670624
float64
0.017817371937639197.5
float64
0.017817371937639197.6
float64
0.017817371937639197.7
float64
0.017804154302670624.1
float64
0.017817371937639197.8
float64
0.017817371937639197.9
float64
0.017804154302670624.2
float64
0.017830609212481426
float64
0.017830609212481426.1
float64
0.017830609212481426.2
float64
0.017830609212481426.3
float64
0.017830609212481426.4
float64
0.017830609212481426.5
float64
0.017830609212481426.6
float64
0.017830609212481426.7
float64
0.017830609212481426.8
float64
0.017830609212481426.9
float64
0.017830609212481426.10
float64
0.017830609212481426.11
float64
0.017830609212481426.12
float64
0.017830609212481426.13
float64
0.017830609212481426.14
float64
0.017830609212481426.15
float64
0.017830609212481426.16
float64
0.017830609212481426.17
float64
0.017830609212481426.18
float64
0.017830609212481426.19
float64
0.017843866171003718
float64
0.017830609212481426.20
float64
0.017843866171003718.1
float64
0.017843866171003718.2
float64
0.017843866171003718.3
float64
0.017843866171003718.4
float64
0.017843866171003718.5
float64
0.017857142857142856
float64
0.017843866171003718.6
float64
0.017857142857142856.1
float64
0.017857142857142856.2
float64
0.017857142857142856.3
float64
0.017857142857142856.4
float64
0.017857142857142856.5
float64
0.018615040953090096
float64
0.018601190476190476
float64
0.018628912071535022
float64
0.018628912071535022.1
float64
0.018628912071535022.2
float64
0.018628912071535022.3
float64
0.018628912071535022.4
float64
0.018628912071535022.5
float64
0.018628912071535022.6
float64
0.018628912071535022.7
float64
0.018642803877703208
float64
0.018628912071535022.8
float64
0.018642803877703208.1
float64
0.018642803877703208.2
float64
0.018642803877703208.3
float64
0.018656716417910446
float64
0.018642803877703208.4
float64
0.018656716417910446.1
float64
0.018656716417910446.2
float64
0.018656716417910446.3
float64
0.018670649738610903
float64
0.018670649738610903.1
float64
0.018670649738610903.2
float64
0.018670649738610903.3
float64
0.018670649738610903.4
float64
0.018670649738610903.5
float64
0.018670649738610903.6
float64
0.018670649738610903.7
float64
0.018670649738610903.8
float64
0.018670649738610903.9
float64
0.018670649738610903.10
float64
0.018670649738610903.11
float64
0.018670649738610903.12
float64
0.018670649738610903.13
float64
0.018670649738610903.14
float64
0.018670649738610903.15
float64
0.01868460388639761
float64
0.018670649738610903.16
float64
0.01868460388639761.1
float64
0.01868460388639761.2
float64
0.01868460388639761.3
float64
0.01944652206432311
float64
0.01944652206432311.1
float64
0.01944652206432311.2
float64
0.01944652206432311.3
float64
0.01944652206432311.4
float64
0.01944652206432311.5
float64
0.01944652206432311.6
float64
0.01944652206432311.7
float64
0.01944652206432311.8
float64
0.01944652206432311.9
float64
0.01944652206432311.10
float64
0.01944652206432311.11
float64
0.01944652206432311.12
float64
0.01944652206432311.13
float64
0.01944652206432311.14
float64
0.01944652206432311.15
float64
0.01944652206432311.16
float64
0.01944652206432311.17
float64
0.01944652206432311.18
float64
0.019461077844311378
float64
0.01944652206432311.19
float64
0.019461077844311378.1
float64
0.01944652206432311.20
float64
0.01944652206432311.21
float64
0.01944652206432311.22
float64
0.01944652206432311.23
float64
0.01944652206432311.24
float64
0.01944652206432311.25
float64
0.019461077844311378.2
float64
0.01944652206432311.26
float64
0.019461077844311378.3
float64
0.019461077844311378.4
float64
0.019461077844311378.5
float64
0.019461077844311378.6
float64
0.019461077844311378.7
float64
0.019461077844311378.8
float64
0.019461077844311378.9
float64
0.019461077844311378.10
float64
0.019461077844311378.11
float64
0.019461077844311378.12
float64
0.019461077844311378.13
float64
0.019461077844311378.14
float64
0.019461077844311378.15
float64
0.019461077844311378.16
float64
0.019461077844311378.17
float64
0.01947565543071161
float64
0.020239880059970013
float64
0.020239880059970013.1
float64
0.020239880059970013.2
float64
0.020239880059970013.3
float64
0.020239880059970013.4
float64
0.020239880059970013.5
float64
0.020239880059970013.6
float64
0.020239880059970013.7
float64
0.020239880059970013.8
float64
0.020239880059970013.9
float64
0.020239880059970013.10
float64
0.020239880059970013.11
float64
0.020255063765941484
float64
0.020255063765941484.1
float64
0.020255063765941484.2
float64
0.020255063765941484.3
float64
0.020255063765941484.4
float64
0.020255063765941484.5
float64
0.020255063765941484.6
float64
0.021021021021021023
float64
0.021021021021021023.1
float64
0.021021021021021023.2
float64
0.021788129226145755
float64
0.02180451127819549
float64
0.02180451127819549.1
float64
0.02180451127819549.2
float64
0.02180451127819549.3
float64
0.02180451127819549.4
float64
0.02180451127819549.5
float64
0.02180451127819549.6
float64
0.02180451127819549.7
float64
0.02180451127819549.8
float64
0.02180451127819549.9
float64
0.02180451127819549.10
float64
0.02180451127819549.11
float64
0.02180451127819549.12
float64
0.02180451127819549.13
float64
0.02180451127819549.14
float64
0.02180451127819549.15
float64
0.02180451127819549.16
float64
0.02180451127819549.17
float64
0.02180451127819549.18
float64
0.02180451127819549.19
float64
0.02180451127819549.20
float64
0.02180451127819549.21
float64
0.02180451127819549.22
float64
0.02180451127819549.23
float64
0.02108433734939759
float64
0.02260738507912585
float64
0.02260738507912585.1
float64
0.02260738507912585.2
float64
0.02260738507912585.3
float64
0.02262443438914027
float64
0.02262443438914027.1
float64
0.02262443438914027.2
float64
0.02188679245283019
float64
0.02188679245283019.1
float64
0.02188679245283019.2
float64
0.021148036253776436
float64
0.021148036253776436.1
float64
0.021148036253776436.2
float64
0.021148036253776436.3
float64
0.021148036253776436.4
float64
0.021148036253776436.5
float64
0.021148036253776436.6
float64
0.021148036253776436.7
float64
0.021148036253776436.8
float64
0.021148036253776436.9
float64
0.021148036253776436.10
float64
0.021148036253776436.11
float64
0.021148036253776436.12
float64
0.021148036253776436.13
float64
0.021148036253776436.14
float64
0.021148036253776436.15
float64
0.021148036253776436.16
float64
0.021148036253776436.17
float64
0.021148036253776436.18
float64
0.021148036253776436.19
float64
0.021148036253776436.20
float64
0.021148036253776436.21
float64
0.021148036253776436.22
float64
0.021148036253776436.23
float64
0.021148036253776436.24
float64
0.02040816326530612
float64
0.02040816326530612.1
float64
0.02040816326530612.2
float64
0.02042360060514372
float64
0.02042360060514372.1
float64
0.02042360060514372.2
float64
0.02042360060514372.3
float64
0.02042360060514372.4
float64
0.02042360060514372.5
float64
0.02042360060514372.6
float64
0.02042360060514372.7
float64
0.02042360060514372.8
float64
0.02042360060514372.9
float64
0.02042360060514372.10
float64
0.02042360060514372.11
float64
0.02042360060514372.12
float64
0.02042360060514372.13
float64
0.02042360060514372.14
float64
0.02042360060514372.15
float64
0.02042360060514372.16
float64
0.02042360060514372.17
float64
0.02042360060514372.18
float64
0.02042360060514372.19
float64
0.02042360060514372.20
float64
0.02042360060514372.21
float64
0.02042360060514372.22
float64
0.02042360060514372.23
float64
0.02042360060514372.24
float64
0.02042360060514372.25
float64
0.02042360060514372.26
float64
0.02042360060514372.27
float64
0.02042360060514372.28
float64
0.02042360060514372.29
float64
0.02042360060514372.30
float64
0.02042360060514372.31
float64
0.02042360060514372.32
float64
0.02042360060514372.33
float64
0.02042360060514372.34
float64
0.02042360060514372.35
float64
0.02042360060514372.36
float64
0.02042360060514372.37
float64
0.02042360060514372.38
float64
0.02042360060514372.39
float64
0.02042360060514372.40
float64
0.02042360060514372.41
float64
0.02042360060514372.42
float64
0.02042360060514372.43
float64
0.02042360060514372.44
float64
0.02042360060514372.45
float64
0.02042360060514372.46
float64
0.02042360060514372.47
float64
0.02042360060514372.48
float64
0.02042360060514372.49
float64
0.02042360060514372.50
float64
0.02040816326530612.3
float64
0.019667170953101363
float64
0.019667170953101363.1
float64
0.019667170953101363.2
float64
0.019667170953101363.3
float64
0.019667170953101363.4
float64
0.019667170953101363.5
float64
0.019667170953101363.6
float64
0.019667170953101363.7
float64
0.019667170953101363.8
float64
0.019667170953101363.9
float64
0.019667170953101363.10
float64
0.019667170953101363.11
float64
0.01968205904617714
float64
0.019667170953101363.12
float64
0.01968205904617714.1
float64
0.01968205904617714.2
float64
0.020454545454545454
float64
0.020454545454545454.1
float64
0.020454545454545454.2
float64
0.020454545454545454.3
float64
0.020454545454545454.4
float64
0.020454545454545454.5
float64
0.020454545454545454.6
float64
0.020454545454545454.7
float64
0.020454545454545454.8
float64
0.020454545454545454.9
float64
0.020454545454545454.10
float64
0.020454545454545454.11
float64
0.020454545454545454.12
float64
GTP
0.043056
0.04212
0.042936
0.042553
0.043299
0.045517
0.045643
0.045738
0.045738
0.04577
0.045675
0.045738
0.045738
0.045643
0.045738
0.045738
0.04577
0.045738
0.045802
0.045802
0.045833
0.045802
0.047288
0.047354
0.047354
0.047354
0.04742
0.047321
0.048184
0.048917
0.048883
0.05035
0.05035
0.05112
0.051966
0.052632
0.052743
0.052706
0.053521
0.053559
0.053483
0.053559
0.053559
0.053559
0.05434
0.054379
0.054455
0.054455
0.054494
0.05528
0.055202
0.05528
0.055319
0.056068
0.056818
0.056899
0.056859
0.056859
0.056818
0.056859
0.056818
0.056859
0.056859
0.056859
0.058363
0.058405
0.058405
0.058488
0.05853
0.058488
0.05853
0.058655
0.058655
0.058655
0.058781
0.058655
0.058781
0.058739
0.058739
0.058739
0.058739
0.058781
0.058866
0.058781
0.059669
0.059885
0.059755
0.059841
0.059841
0.059798
0.059841
0.059928
0.060738
0.060781
0.060781
0.060781
0.060781
0.060825
0.060825
0.060825
0.061594
0.061594
0.061594
0.061594
0.061594
0.061594
0.061594
0.061594
0.061594
0.06155
0.061594
0.061594
0.061594
0.061594
0.062409
0.062409
0.062455
0.062364
0.0625
0.062455
0.0625
0.0625
0.062545
0.062545
0.062591
0.062591
0.062591
0.062637
0.062591
0.063411
0.063411
0.063504
0.063411
0.063504
0.063504
0.063457
0.063504
0.063504
0.063504
0.06355
0.063457
0.06355
0.06355
0.063596
0.063596
0.064375
0.064422
0.064422
0.064469
0.064469
0.064469
0.064516
0.064516
0.064563
0.064516
0.064563
0.064611
0.064611
0.064611
0.064658
0.064706
0.065489
0.066225
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.066323
0.067159
0.067159
0.067997
0.067947
0.067997
0.067997
0.067947
0.068047
0.068047
0.068047
0.068047
0.068047
0.068098
0.068047
0.068889
0.068889
0.069681
0.069681
0.069681
0.069681
0.069681
0.069681
0.069681
0.070475
0.070527
0.070527
0.070527
0.070527
0.070527
0.070475
0.070527
0.070527
0.070527
0.070475
0.070527
0.070527
0.070475
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071322
0.071375
0.071322
0.071375
0.071375
0.071375
0.071375
0.071375
0.071429
0.071375
0.071429
0.071429
0.071429
0.071429
0.071429
0.071482
0.071429
0.07228
0.07228
0.07228
0.07228
0.07228
0.07228
0.07228
0.07228
0.072334
0.07228
0.072334
0.072334
0.072334
0.072388
0.072334
0.072388
0.072388
0.072388
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073189
0.073244
0.073189
0.073244
0.073244
0.073244
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073353
0.073298
0.073353
0.073298
0.073298
0.073298
0.073298
0.073298
0.073298
0.073353
0.073298
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.073353
0.074157
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.074213
0.075019
0.075019
0.075019
0.075019
0.075019
0.075019
0.075019
0.075075
0.075075
0.075075
0.075131
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.07594
0.076807
0.076865
0.076865
0.076865
0.076865
0.077677
0.077677
0.077677
0.077736
0.077736
0.077736
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077795
0.077853
0.077853
0.077853
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078609
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078669
0.078728
0.078669
0.078728
0.078728
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
0.078788
H2O
0.133333
0.14606
0.119806
0.115305
0.112715
0.106897
0.102351
0.099792
0.099792
0.099168
0.09827
0.09702
0.096327
0.098202
0.096327
0.096327
0.0957
0.096327
0.094379
0.094379
0.09375
0.094379
0.09249
0.091922
0.091922
0.091922
0.090656
0.091162
0.087989
0.085255
0.084497
0.082517
0.082517
0.081232
0.079354
0.08
0.078059
0.078707
0.076761
0.075405
0.075299
0.073996
0.073996
0.073996
0.072689
0.07274
0.071429
0.071429
0.070771
0.068746
0.069356
0.068037
0.067376
0.066714
0.066051
0.064723
0.065387
0.064677
0.064631
0.063966
0.064631
0.063966
0.063966
0.063966
0.062633
0.061966
0.062678
0.061341
0.060671
0.061341
0.060671
0.058655
0.058655
0.058655
0.055197
0.056509
0.05448
0.054441
0.054441
0.054441
0.054441
0.053763
0.051687
0.053047
0.051042
0.049062
0.050396
0.049027
0.049027
0.049712
0.049027
0.048375
0.046999
0.04631
0.04631
0.04631
0.04631
0.045619
0.045619
0.045619
0.044928
0.044928
0.044928
0.044928
0.044928
0.044928
0.044928
0.044928
0.044928
0.045619
0.044928
0.044928
0.044928
0.044928
0.043541
0.044267
0.043573
0.044235
0.042878
0.043573
0.042878
0.042878
0.042182
0.042182
0.042213
0.042213
0.042213
0.041515
0.042213
0.040816
0.040816
0.039416
0.040816
0.038686
0.037956
0.038658
0.037956
0.037956
0.037956
0.037253
0.038658
0.037253
0.037253
0.037281
0.037281
0.036576
0.036603
0.036603
0.035897
0.035897
0.035897
0.035924
0.035924
0.035216
0.035924
0.035216
0.034508
0.034508
0.034508
0.034533
0.033824
0.032377
0.031641
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.030214
0.028782
0.02952
0.028086
0.028804
0.027347
0.026608
0.027326
0.026627
0.026627
0.026627
0.026627
0.026627
0.025907
0.026627
0.025185
0.025185
0.024463
0.024463
0.024463
0.024463
0.024463
0.024463
0.024463
0.023739
0.023756
0.023756
0.023756
0.023756
0.023756
0.024481
0.023756
0.023756
0.023014
0.023739
0.023014
0.022272
0.022997
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.021545
0.020818
0.021545
0.020818
0.020818
0.020818
0.020818
0.020818
0.020089
0.020818
0.020089
0.020089
0.020089
0.020089
0.020089
0.020104
0.020833
0.019374
0.019374
0.019374
0.019374
0.019374
0.019374
0.019374
0.019374
0.018643
0.019374
0.018643
0.018643
0.018643
0.01791
0.018643
0.01791
0.01791
0.01791
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.017177
0.016442
0.017177
0.016442
0.016442
0.016442
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.016455
0.015719
0.016455
0.015719
0.015707
0.015707
0.015707
0.015707
0.015707
0.015707
0.01497
0.015707
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.01497
0.014232
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.014243
0.013503
0.013503
0.013503
0.013503
0.013503
0.013503
0.013503
0.013514
0.013514
0.013514
0.013524
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.012782
0.011295
0.011304
0.011304
0.011304
0.011304
0.010558
0.010558
0.010558
0.009811
0.009811
0.009811
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.009063
0.008314
0.008314
0.008314
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007564
0.007559
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006808
0.006056
0.006808
0.006056
0.006056
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
0.006061
CIS-ACONITATE
0.006944
0.026495
0.001385
0.002745
0.004124
0.002069
0.000692
0.000693
0.001386
0.001387
0.001384
0
0
0.002075
0
0
0.000693
0.001386
0
0
0
0.000694
0
0
0.000696
0.000696
0
0.000696
0.000698
0.000699
0.000698
0.000699
0.000699
0
0
0.001404
0
0.000703
0
0.000705
0.001407
0
0
0
0
0
0
0.000707
0
0
0.001415
0.000709
0
0.00071
0.00071
0
0.000711
0
0
0
0.00071
0
0
0
0
0
0.000712
0
0
0.000713
0
0
0.000715
0.000715
0
0.001431
0
0
0
0
0
0
0
0.002151
0.000719
0
0.00144
0
0
0.00072
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000724
0
0
0
0
0
0.000726
0
0.000725
0
0.000726
0
0
0
0
0
0
0
0
0.000728
0
0
0
0.001458
0
0
0.000729
0
0
0
0
0.001459
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000733
0
0
0
0
0
0
0.000736
0.001472
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000738
0
0.000739
0
0
0.000739
0
0
0
0
0
0
0.00074
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000742
0
0
0
0.000742
0
0
0.000742
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000743
0
0
0
0
0
0
0.000743
0
0
0
0
0
0
0.000744
0
0
0
0
0
0
0
0
0
0.000745
0
0
0
0
0.000746
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000747
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000748
0
0
0
0
0
0
0
0
0.000748
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000756
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
MALATE
0.008333
0.002717
0.001385
0.001373
0.002749
0.001379
0.003458
0.004158
0.004158
0.004161
0.00346
0.003465
0.003465
0.003458
0.003465
0.003465
0.003467
0.003465
0.00347
0.00347
0.003472
0.00347
0.003477
0.003482
0.003482
0.003482
0.003487
0.003479
0.005587
0.004892
0.00419
0.003497
0.003497
0.003501
0.002809
0.002807
0.002813
0.002811
0.002817
0.003524
0.002815
0.002819
0.002819
0.002819
0.003529
0.003531
0.003536
0.004243
0.003539
0.003544
0.004246
0.004252
0.004255
0.004258
0.004261
0.004267
0.004264
0.004264
0.004261
0.004264
0.004261
0.004264
0.004264
0.004264
0.00427
0.004274
0.004274
0.004993
0.004996
0.004993
0.004996
0.005007
0.004292
0.004292
0.005018
0.004292
0.005018
0.005014
0.005014
0.005014
0.005014
0.005735
0.005025
0.005018
0.005032
0.005051
0.00504
0.005047
0.005047
0.005043
0.005047
0.005776
0.006508
0.005789
0.005065
0.005065
0.005065
0.005069
0.005069
0.005069
0.005072
0.005072
0.005072
0.005072
0.005072
0.005072
0.005072
0.005072
0.005072
0.005069
0.005072
0.005072
0.005072
0.005072
0.00508
0.00508
0.005084
0.005076
0.005087
0.005084
0.005087
0.005087
0.005818
0.005818
0.005822
0.005822
0.005822
0.005827
0.005822
0.005831
0.005831
0.005839
0.005831
0.005839
0.005839
0.005835
0.005839
0.005839
0.005839
0.005844
0.005835
0.005844
0.005844
0.005848
0.005848
0.005121
0.005124
0.004392
0.004396
0.004396
0.004396
0.004399
0.004399
0.004402
0.004399
0.004402
0.00514
0.004405
0.004405
0.003674
0.003676
0.003679
0.003679
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.003685
0.00369
0.00369
0.003695
0.003693
0.003695
0.003695
0.003693
0.002959
0.002959
0.002959
0.002959
0.002959
0.002961
0.002959
0.002963
0.002963
0.002965
0.002965
0.002965
0.002965
0.002965
0.002965
0.002965
0.002967
0.00297
0.00297
0.00297
0.00297
0.00297
0.002967
0.00297
0.00297
0.00297
0.002967
0.00297
0.00297
0.002967
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002972
0.002974
0.002972
0.002974
0.002974
0.002974
0.002974
0.002974
0.002976
0.002974
0.002976
0.002976
0.002976
0.002976
0.002976
0.002978
0.002976
0.002981
0.002981
0.002981
0.002981
0.002981
0.002981
0.002981
0.002981
0.002983
0.002981
0.002983
0.002983
0.002983
0.002985
0.002983
0.002985
0.002985
0.002985
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.002987
0.00299
0.002987
0.00299
0.00299
0.00299
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002994
0.002992
0.002994
0.002992
0.002992
0.002992
0.002992
0.002992
0.002992
0.002994
0.002992
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002994
0.002996
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.002999
0.003001
0.003001
0.003001
0.003001
0.003001
0.003001
0.003001
0.003003
0.003003
0.003003
0.003005
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.003008
0.002256
0.002256
0.003012
0.003014
0.003014
0.003014
0.003014
0.003017
0.003017
0.003017
0.003774
0.003019
0.003019
0.003776
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.003021
0.002266
0.002266
0.002266
0.002266
0.002266
0.002266
0.002266
0.003023
0.003023
0.003023
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003026
0.003023
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003782
0.003785
0.003782
0.003785
0.003785
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
0.003788
OXALOACETATE
0
0.01087
0.001385
0
0
0.001379
0
0.000693
0
0
0.000692
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.002795
0.001397
0.000699
0
0
0.000702
0
0
0
0
0
0.001407
0
0
0
0
0
0
0
0.000708
0
0
0.000709
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000715
0
0
0.001431
0
0
0
0
0
0
0.001436
0
0
0
0
0
0
0
0
0
0
0.000724
0.000724
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000732
0
0.000732
0
0
0
0
0
0
0
0
0
0.000734
0
0.000735
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.00074
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000752
0
0
0
0
0
0
0
0
0
0
0.000755
0
0
0.000755
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0.000755
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
FAD
0.135417
0.132473
0.135042
0.133837
0.134021
0.133103
0.133472
0.133749
0.133749
0.133842
0.133564
0.133749
0.133749
0.133472
0.133749
0.133749
0.133842
0.133749
0.133935
0.133935
0.134028
0.133935
0.134214
0.133705
0.133705
0.133705
0.133891
0.133612
0.134078
0.134172
0.134078
0.134266
0.134266
0.134454
0.133427
0.133333
0.133615
0.133521
0.133803
0.133897
0.133709
0.133897
0.133897
0.133192
0.13338
0.132768
0.132956
0.132956
0.13305
0.133239
0.13305
0.133239
0.133333
0.133428
0.133523
0.133713
0.133618
0.133618
0.133523
0.133618
0.133523
0.133618
0.133618
0.133618
0.133808
0.133903
0.133191
0.133381
0.133476
0.133381
0.133476
0.133763
0.133763
0.133763
0.13405
0.133763
0.13405
0.133954
0.133954
0.133954
0.133954
0.13405
0.134243
0.13405
0.133717
0.132756
0.132469
0.13266
0.13266
0.132565
0.13266
0.13213
0.132321
0.132417
0.132417
0.132417
0.132417
0.132513
0.132513
0.132513
0.132609
0.132609
0.132609
0.132609
0.132609
0.132609
0.132609
0.132609
0.132609
0.132513
0.132609
0.132609
0.132609
0.132609
0.132801
0.132075
0.132171
0.13198
0.131541
0.131445
0.131541
0.131541
0.131636
0.131636
0.131004
0.131004
0.131004
0.1311
0.131004
0.131195
0.131195
0.131387
0.131195
0.131387
0.131387
0.131291
0.131387
0.131387
0.131387
0.131483
0.131291
0.131483
0.131483
0.130848
0.130848
0.130944
0.130307
0.130307
0.130403
0.130403
0.130403
0.129765
0.129765
0.129861
0.129765
0.129861
0.129956
0.129956
0.129956
0.129317
0.129412
0.129507
0.129507
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128224
0.128413
0.127675
0.127864
0.12777
0.127864
0.127864
0.12777
0.127219
0.127219
0.127219
0.127219
0.127219
0.127313
0.127219
0.127407
0.127407
0.127502
0.127502
0.127502
0.127502
0.127502
0.127502
0.127502
0.127596
0.126949
0.126949
0.126949
0.126949
0.126949
0.126855
0.126949
0.126949
0.126949
0.126855
0.126949
0.126949
0.126855
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127043
0.127138
0.127043
0.127138
0.127138
0.127138
0.127138
0.127138
0.127232
0.127138
0.127232
0.127232
0.127232
0.127232
0.127232
0.126582
0.126488
0.126677
0.126677
0.126677
0.126677
0.126677
0.126677
0.126677
0.126677
0.126771
0.126677
0.126771
0.126771
0.126771
0.126866
0.126771
0.126866
0.126866
0.126866
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.12696
0.127055
0.12696
0.127055
0.127055
0.127055
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126497
0.126402
0.126497
0.126402
0.126402
0.126402
0.126402
0.126402
0.126402
0.126497
0.126402
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126497
0.126592
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.125937
0.126032
0.126032
0.126032
0.126032
0.126032
0.126032
0.126032
0.125375
0.125375
0.125375
0.124718
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.124812
0.125
0.123587
0.123587
0.123587
0.123587
0.12368
0.12368
0.12368
0.123774
0.123774
0.123774
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123867
0.123961
0.123961
0.123961
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.123961
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124054
0.124148
0.124054
0.124148
0.124148
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
0.123485
SUCCINYL-COA
0
0
0
0.004804
0.019931
0.018621
0.021438
0.022869
0.023562
0.023578
0.025606
0.027027
0.02772
0.027663
0.028413
0.028413
0.029126
0.029106
0.029146
0.02984
0.029861
0.030534
0.029207
0.029248
0.029944
0.029944
0.029986
0.032011
0.032821
0.032145
0.032821
0.032867
0.033566
0.033613
0.033708
0.032982
0.033755
0.033732
0.033099
0.033827
0.033779
0.034531
0.035941
0.03735
0.037403
0.037429
0.037482
0.03819
0.039632
0.039688
0.041755
0.041814
0.042553
0.041874
0.042614
0.042674
0.042644
0.044065
0.044034
0.045487
0.046875
0.046908
0.046908
0.046908
0.045552
0.045584
0.046296
0.047076
0.047109
0.047789
0.047823
0.047926
0.047926
0.048641
0.049462
0.050787
0.050896
0.05086
0.051576
0.051576
0.051576
0.051613
0.051687
0.051613
0.051042
0.051948
0.053276
0.053353
0.054795
0.054755
0.055516
0.055596
0.054953
0.054993
0.054993
0.054993
0.055716
0.055757
0.055757
0.055757
0.055072
0.055072
0.055072
0.055072
0.055797
0.056522
0.057246
0.057971
0.057971
0.057929
0.057971
0.057971
0.057971
0.057971
0.057329
0.057329
0.058097
0.058738
0.058866
0.058824
0.058866
0.059593
0.059636
0.059636
0.05968
0.060408
0.061135
0.06118
0.062591
0.062682
0.062682
0.063504
0.063411
0.063504
0.064234
0.065646
0.065693
0.066423
0.067153
0.067202
0.067104
0.067202
0.069394
0.069444
0.069444
0.069495
0.069546
0.070278
0.07033
0.071062
0.071062
0.071114
0.071114
0.0719
0.071848
0.0719
0.071953
0.071953
0.071953
0.072741
0.073529
0.072848
0.072112
0.072218
0.072955
0.072955
0.072955
0.072955
0.072955
0.073692
0.073692
0.075166
0.075903
0.07664
0.07664
0.076753
0.076753
0.076866
0.076809
0.076866
0.076866
0.076809
0.076923
0.076923
0.077663
0.077663
0.077663
0.07772
0.077663
0.077037
0.077037
0.077094
0.077094
0.077094
0.077094
0.077094
0.077094
0.077094
0.076409
0.077209
0.077209
0.077209
0.077209
0.077209
0.077151
0.077951
0.077951
0.079436
0.079377
0.079436
0.079436
0.080119
0.079495
0.080238
0.080981
0.080981
0.080981
0.080981
0.080981
0.080981
0.080981
0.080981
0.081724
0.081724
0.081724
0.081724
0.081724
0.081724
0.081724
0.081724
0.081724
0.081724
0.081784
0.08321
0.083271
0.083271
0.083271
0.083271
0.083271
0.083333
0.083271
0.083333
0.083333
0.083333
0.084077
0.084077
0.08414
0.084821
0.084203
0.084948
0.084948
0.084948
0.084948
0.084948
0.084948
0.084948
0.085011
0.085693
0.086503
0.087248
0.087248
0.087313
0.087248
0.087313
0.08806
0.088806
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088872
0.088939
0.088872
0.088939
0.090433
0.090433
0.090501
0.090501
0.090501
0.090501
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091249
0.091317
0.091249
0.091317
0.091249
0.091997
0.092745
0.093493
0.093493
0.093493
0.093563
0.093493
0.093563
0.093563
0.093563
0.093563
0.093563
0.094311
0.094311
0.094311
0.09506
0.09506
0.09506
0.09506
0.09506
0.095808
0.095808
0.09588
0.095952
0.095952
0.095952
0.096702
0.096702
0.096702
0.096702
0.096702
0.096702
0.096702
0.096702
0.096702
0.096774
0.097524
0.097524
0.097524
0.097524
0.097524
0.097524
0.097598
0.097598
0.097598
0.097671
0.096992
0.097744
0.097744
0.097744
0.098496
0.098496
0.099248
0.099248
0.099248
0.099248
0.099248
0.099248
0.099248
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.1
0.100752
0.100752
0.100151
0.100226
0.100226
0.10098
0.10098
0.100302
0.100302
0.100302
0.100377
0.100377
0.100377
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.100453
0.101208
0.101208
0.101964
0.101964
0.101964
0.102041
0.102041
0.102041
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.101362
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.102118
0.103553
0.103631
0.103631
0.104387
0.104387
0.104387
0.104387
0.104387
0.104387
0.104387
0.104387
0.105144
0.105144
0.105223
0.105144
0.105223
0.105223
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
0.105303
NAD
0.441667
0.421196
0.421745
0.374056
0.358076
0.353103
0.347856
0.344421
0.343728
0.343273
0.337024
0.336105
0.333333
0.332642
0.33264
0.329868
0.329404
0.329175
0.328938
0.326856
0.326389
0.325468
0.326147
0.325905
0.325209
0.325209
0.324965
0.320807
0.320531
0.317959
0.312849
0.30979
0.307692
0.306723
0.304775
0.304561
0.304501
0.303584
0.304225
0.301621
0.299789
0.298097
0.295278
0.293869
0.293578
0.293785
0.294201
0.293494
0.29087
0.289157
0.285916
0.285613
0.285106
0.285309
0.283381
0.283784
0.282871
0.28145
0.27983
0.278607
0.276989
0.277186
0.276475
0.276475
0.276868
0.277066
0.276353
0.276034
0.276231
0.275321
0.275517
0.274678
0.273963
0.273247
0.271685
0.26681
0.267384
0.264327
0.26361
0.26361
0.262894
0.263082
0.262024
0.261649
0.262401
0.261183
0.259179
0.259553
0.258111
0.257925
0.25739
0.257762
0.258134
0.257598
0.256874
0.256874
0.256151
0.256336
0.256336
0.256336
0.256522
0.256522
0.256522
0.256522
0.255797
0.255072
0.254348
0.253623
0.253623
0.25344
0.253623
0.252174
0.252174
0.252174
0.25254
0.25254
0.251997
0.248731
0.249273
0.249092
0.249273
0.248547
0.248727
0.248727
0.248908
0.24818
0.247453
0.246176
0.244541
0.244169
0.24344
0.243066
0.242711
0.243066
0.240146
0.238512
0.238686
0.237226
0.236496
0.236669
0.235594
0.235939
0.233747
0.233918
0.233918
0.231895
0.232064
0.2306
0.230769
0.230037
0.230037
0.230205
0.230205
0.228907
0.228739
0.228173
0.228341
0.227606
0.227606
0.226304
0.225735
0.225901
0.225901
0.225497
0.224761
0.224761
0.224761
0.224761
0.224761
0.224024
0.224024
0.22255
0.221813
0.221076
0.221076
0.219926
0.219926
0.219512
0.21935
0.218773
0.217295
0.217134
0.216716
0.215976
0.215237
0.215237
0.215237
0.215396
0.215237
0.215556
0.214815
0.214233
0.214233
0.214233
0.214233
0.214233
0.214233
0.214233
0.21365
0.213066
0.213066
0.213066
0.213066
0.213066
0.212908
0.212324
0.211581
0.210097
0.209941
0.210097
0.208612
0.207715
0.208024
0.207281
0.206538
0.206538
0.206538
0.206538
0.206538
0.206538
0.206538
0.206538
0.205795
0.205795
0.205795
0.205795
0.205795
0.205795
0.205795
0.205795
0.205795
0.205052
0.205204
0.203566
0.203717
0.202974
0.202974
0.202974
0.202974
0.203125
0.202974
0.203125
0.202381
0.202381
0.201637
0.201637
0.201042
0.200149
0.200447
0.199702
0.199702
0.199702
0.199702
0.199702
0.199702
0.199702
0.199851
0.198957
0.198359
0.197614
0.197614
0.197761
0.197614
0.197761
0.196269
0.195522
0.194922
0.194922
0.194922
0.194922
0.194922
0.194922
0.194922
0.194922
0.194922
0.194175
0.193428
0.192681
0.192681
0.191934
0.191934
0.191934
0.192078
0.191934
0.192078
0.189836
0.189836
0.189978
0.189978
0.189978
0.18923
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188482
0.188623
0.188482
0.188623
0.186986
0.186238
0.18549
0.184742
0.184742
0.184742
0.18488
0.184742
0.18488
0.18488
0.18488
0.18488
0.18488
0.184132
0.184132
0.184132
0.183383
0.183383
0.183383
0.183383
0.183383
0.182635
0.182635
0.182022
0.182159
0.182159
0.182159
0.181409
0.181409
0.181409
0.181409
0.181409
0.181409
0.181409
0.181409
0.181409
0.180795
0.180045
0.180045
0.180045
0.180045
0.180045
0.180045
0.18018
0.18018
0.18018
0.180316
0.180451
0.178947
0.178947
0.178947
0.178195
0.178195
0.177444
0.177444
0.177444
0.177444
0.177444
0.177444
0.177444
0.176692
0.176692
0.176692
0.176692
0.176692
0.176692
0.176692
0.176692
0.176692
0.175188
0.175188
0.175452
0.175584
0.175584
0.17483
0.17483
0.174962
0.174962
0.174962
0.17434
0.173585
0.173585
0.173716
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172961
0.172205
0.172205
0.17145
0.17145
0.170695
0.170695
0.170695
0.170824
0.170824
0.170824
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170953
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.170197
0.16944
0.16944
0.16944
0.16944
0.16944
0.16944
0.16944
0.16944
0.168684
0.167045
0.167171
0.167171
0.166415
0.166415
0.165658
0.165658
0.165658
0.165658
0.165658
0.165658
0.164902
0.164902
0.165026
0.164902
0.165026
0.164269
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
0.164394
A-K-GLUTARATE
0
0
0.006233
0.041867
0.028866
0.032414
0.033887
0.03465
0.033957
0.034674
0.035986
0.03465
0.036036
0.035961
0.035343
0.038115
0.037448
0.037422
0.038168
0.038862
0.039583
0.038862
0.038943
0.039694
0.038997
0.038997
0.039749
0.039666
0.038408
0.038435
0.040503
0.040559
0.041259
0.041317
0.042135
0.042105
0.041491
0.042164
0.042254
0.043693
0.043631
0.044397
0.044397
0.043693
0.043049
0.043079
0.04314
0.042433
0.041755
0.042523
0.041755
0.041814
0.041135
0.041164
0.040483
0.040541
0.041222
0.040512
0.041903
0.040512
0.039063
0.03909
0.039801
0.039801
0.039858
0.039886
0.039174
0.038516
0.038544
0.037803
0.03783
0.039342
0.039342
0.038627
0.039427
0.039342
0.039427
0.042264
0.041547
0.041547
0.042264
0.042294
0.042355
0.042294
0.042416
0.04329
0.042477
0.042538
0.041096
0.041066
0.040375
0.040433
0.040492
0.040521
0.040521
0.040521
0.039797
0.039826
0.039826
0.039826
0.039855
0.039855
0.039855
0.039855
0.03913
0.038406
0.037681
0.036957
0.036957
0.03693
0.036957
0.038406
0.038406
0.038406
0.038462
0.038462
0.037763
0.039159
0.039244
0.039216
0.039244
0.038517
0.038545
0.038545
0.038574
0.037846
0.037118
0.038602
0.037118
0.036443
0.037172
0.036496
0.036443
0.036496
0.037956
0.03647
0.036496
0.036496
0.035766
0.035793
0.03647
0.036523
0.034332
0.034357
0.034357
0.034382
0.034407
0.033675
0.0337
0.032967
0.032967
0.032991
0.032991
0.033015
0.032991
0.033749
0.033774
0.033774
0.033774
0.033064
0.032353
0.032377
0.032377
0.033161
0.032424
0.032424
0.032424
0.032424
0.032424
0.031688
0.031688
0.030214
0.029477
0.02874
0.02874
0.028782
0.028782
0.028086
0.028065
0.028825
0.030303
0.030281
0.030325
0.031065
0.030325
0.030325
0.030325
0.030348
0.030325
0.03037
0.031111
0.030393
0.030393
0.030393
0.030393
0.030393
0.030393
0.030393
0.031157
0.030438
0.030438
0.030438
0.030438
0.030438
0.030415
0.029696
0.030438
0.029696
0.029674
0.029696
0.03118
0.030415
0.030461
0.029718
0.028975
0.028975
0.028975
0.028975
0.028975
0.028975
0.028975
0.028975
0.028232
0.028232
0.028232
0.028232
0.028232
0.028232
0.028232
0.028232
0.028232
0.028975
0.028996
0.027489
0.027509
0.028253
0.028253
0.028253
0.028253
0.028274
0.028253
0.028274
0.029018
0.029018
0.028274
0.028274
0.029039
0.028274
0.028316
0.027571
0.027571
0.027571
0.027571
0.027571
0.027571
0.027571
0.027591
0.026826
0.0261
0.025354
0.025354
0.025373
0.025354
0.025373
0.025373
0.024627
0.023898
0.023898
0.023898
0.023898
0.023898
0.023898
0.023898
0.023898
0.023898
0.024645
0.025392
0.026139
0.026139
0.026886
0.026886
0.026886
0.026906
0.026886
0.026906
0.026158
0.026158
0.026178
0.026178
0.026178
0.026926
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026178
0.026198
0.026178
0.026198
0.027674
0.026926
0.026178
0.02543
0.02543
0.02543
0.025449
0.02543
0.025449
0.025449
0.025449
0.025449
0.025449
0.024701
0.024701
0.024701
0.023952
0.023952
0.023952
0.023952
0.023952
0.023204
0.023204
0.022472
0.022489
0.022489
0.022489
0.021739
0.021739
0.021739
0.021739
0.021739
0.021739
0.021739
0.021739
0.021739
0.021005
0.020255
0.020255
0.020255
0.020255
0.020255
0.020255
0.02027
0.02027
0.02027
0.020285
0.020301
0.020301
0.020301
0.020301
0.019549
0.019549
0.018797
0.018797
0.018797
0.018797
0.018797
0.018797
0.018797
0.018045
0.018045
0.018045
0.018045
0.018045
0.018045
0.018045
0.018045
0.018045
0.017293
0.017293
0.017319
0.017332
0.017332
0.016579
0.016579
0.016591
0.016591
0.016591
0.017358
0.017358
0.017358
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.017372
0.016616
0.016616
0.015861
0.015861
0.015861
0.015873
0.015873
0.015873
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015129
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.016641
0.015873
0.015885
0.015885
0.015129
0.015129
0.015885
0.015885
0.015885
0.015885
0.015885
0.015885
0.015129
0.015129
0.01514
0.015129
0.01514
0.015897
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
0.015909
GDP
0.098611
0.096467
0.098338
0.097461
0.096907
0.095172
0.095436
0.095634
0.095634
0.0957
0.095502
0.095634
0.095634
0.095436
0.095634
0.095634
0.0957
0.095634
0.095767
0.095767
0.095833
0.095767
0.094576
0.094708
0.094708
0.094708
0.09484
0.094642
0.094274
0.093641
0.093575
0.092308
0.092308
0.091737
0.091292
0.090526
0.090717
0.090654
0.090141
0.090204
0.090077
0.090204
0.090204
0.090204
0.089626
0.089689
0.089816
0.089816
0.08988
0.089298
0.089172
0.089298
0.089362
0.088715
0.088068
0.088193
0.088131
0.088131
0.088068
0.088131
0.088068
0.088131
0.088131
0.088131
0.086833
0.086895
0.086895
0.087019
0.087081
0.087019
0.087081
0.087268
0.087268
0.087268
0.087455
0.087268
0.087455
0.087393
0.087393
0.087393
0.087393
0.087455
0.087581
0.087455
0.086988
0.087302
0.087113
0.087239
0.087239
0.087176
0.087239
0.087365
0.086768
0.086831
0.086831
0.086831
0.086831
0.086894
0.086894
0.086894
0.086232
0.086232
0.086232
0.086232
0.086232
0.086232
0.086232
0.086232
0.086232
0.086169
0.086232
0.086232
0.086232
0.086232
0.085631
0.085631
0.085694
0.085569
0.085756
0.085694
0.085756
0.085756
0.085818
0.085818
0.085881
0.085881
0.085881
0.085943
0.085881
0.085277
0.085277
0.085401
0.085277
0.085401
0.085401
0.085339
0.085401
0.085401
0.085401
0.085464
0.085339
0.085464
0.085464
0.085526
0.085526
0.084857
0.084919
0.084919
0.084982
0.084982
0.084982
0.085044
0.085044
0.085106
0.085044
0.085106
0.085169
0.085169
0.085169
0.085231
0.085294
0.084621
0.083885
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.084009
0.083395
0.083395
0.082779
0.082718
0.082779
0.082779
0.082718
0.08284
0.08284
0.08284
0.08284
0.08284
0.082902
0.08284
0.082222
0.082222
0.081542
0.081542
0.081542
0.081542
0.081542
0.081542
0.081542
0.080861
0.080921
0.080921
0.080921
0.080921
0.080921
0.080861
0.080921
0.080921
0.080921
0.080861
0.080921
0.080921
0.080861
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080238
0.080297
0.080238
0.080297
0.080297
0.080297
0.080297
0.080297
0.080357
0.080297
0.080357
0.080357
0.080357
0.080357
0.080357
0.080417
0.080357
0.079732
0.079732
0.079732
0.079732
0.079732
0.079732
0.079732
0.079732
0.079791
0.079732
0.079791
0.079791
0.079791
0.079851
0.079791
0.079851
0.079851
0.079851
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079164
0.079223
0.079164
0.079223
0.079223
0.079223
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079341
0.079282
0.079341
0.079282
0.079282
0.079282
0.079282
0.079282
0.079282
0.079341
0.079282
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.079341
0.078652
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.078711
0.07802
0.07802
0.07802
0.07802
0.07802
0.07802
0.07802
0.078078
0.078078
0.078078
0.078137
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.077444
0.076807
0.076865
0.076865
0.076865
0.076865
0.076169
0.076169
0.076169
0.076226
0.076226
0.076226
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076284
0.076342
0.076342
0.076342
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075586
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.075643
0.0757
0.075643
0.0757
0.0757
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
0.075758
End of preview.

The Krebs cycle dataset

Motivation

This dataset contains simulated time series that mimic Kreb's cycle. The intent of the datasets is for causal discovery from multivariate time series data, provide ground truth causal relationships as well as allow testing on multiple scenarios, including many short time series,

few long time series, as well as relative data instead of absolute values.

The dataset was created at the Czech Technical University in Prague as part of the CoDiet project https://www.codiet.eu/, which focuses on the relationship between diet and non-transmittable diseases.

The contents of this repository are also described in the following paper: (TODO, we will provide a bibtex reference, once published)

Causal Learning in Biomedical Applications
Petr Ryšavý, Xiaoyu He, Jakub Mareček

Dataset composition

There are four datasets, each differing in the type of time series. The basic characteristics are described in the table below. Each of the datasets is contained in one of the subdirectories of this repository.

Dataset N. features Lenght N. series Initialization Concentrations
KrebsN 16 500 100 Normal distribution Absolute
Krebs3 16 500 120 Excitation of three Relative
KrebsL 16 5000 10 Normal distribution Absolute
KrebsS 16 5 10000 Normal distribution Absolute

Each of the datasets was sampled using a simulator of the Krebs cycle. Individual compounds were created in a bounding box and spread throughout the box at random locations. In each time step, the molecules move in the box, and once a reaction can happen, the reactants are removed, and the product is created. As a result, the concentrations of the particles change, resulting in one data point per time step of the simulator.

Each of the time series is in its individual file, with a name connected to the type of the series and the seed (timestamp) used for the dataset generation. Each of the rows in each of the time series files contains concentrations of one compound, where individual time steps are separated by tab character \t. The files with the individual time series are, therefore, in the TSV format (tab-separated-values) and can be opened in any text editor or tabular editor.

The features in the dataset correspond to the following molecules:

Whenever the concentrations are absolute (please see the table above), the features show the number of individual molecules in the mix. Whenever the concentrations are relative, the concentrations are normalized to zero-one interval.

The dataset contains no missing data. The source of randomness in the data comes from the initialization of the compound's concentrations and randomness of the location of the compounds in the bounding box. Despite the fact that it is unlikely, the datasets can contain repeated time series. The datasets are self-contained.

If needed for testing, the recommended train-test split is so that the first x % of the dataset is used for training, and the remaining 1-x% is used for testing. The order in which individual time series are considered is at the root of the repository.

The datasets do not contain any confidential, offensive, or similar type of data.

Dataset collection

The dataset is simulated, meaning that the data were generated by a computer program. The simulator is based on the Chemistry Engine repository (https://github.com/AugustNagro/Chemistry-Engine) by August Nagro. You can find the code used to generate the dataset in github repository at https://github.com/petrrysavy/krebsgenerator/.

Uses

The dataset is intended for testing and developing causal discovery algorithms. From the time series, one would naturally ask questions of whether higher levels of FURMATE in one-time step imply higher levels of MALATE in the next step, in an ideal case leading to the discovery of the whole cycle of reactions. The usage is, however, not limited to causal discovery; it is possible to predict concentrations at the next level or do any similar time-series analyses.

Distribution

The dataset is available at the HuggingFace repository at https://huggingface.co/datasets/petrrysavy/krebs/tree/main. The dataset is available under the CC-BY-3.0 license. The authors bear all responsibility in case of violation of rights. To download the dataset, use

git clone [email protected]:datasets/petrrysavy/krebs/

The metadata to the project in JSON format can be found at https://huggingface.co/api/datasets/petrrysavy/krebs/croissant.

Example of Usages in Custom Projects

An example usage of the dataset can be found at github repository at https://github.com/petrrysavy/krebsdynotears. The repository shows usage of the dataset to evaluate DyNoTears (see https://arxiv.org/abs/2002.00498), a State-of-the-art method for dynamic Bayesian networks. The repository also provides an example of how to load the code into Python language, here:

import os
import pandas as pd

with open("krebsN.txt", "r") as file:
    lines = file.readlines()
files = ["krebsN" + os.sep + line.strip() for line in lines]

data = [pd.read_table(path + os.sep + file, header=None, index_col=0).transpose() for file in files]

# data now contains a list of pandas data frames, one per single time-series
# columns of the data frames are concentrations of one of the 16 compounds
# rows correspond to individual time-steps, sorted by increasing time

Maintenance

With queries, requests, and errands about the dataset, please contact either Petr Ryšavý [email protected], or Jakub Mareček [email protected]. The authors of the repository are open to proposed changes and extensions of the dataset; the simplest way to do so is to open a pull request in HuggingFace, which will be merged after validation. The history of the dataset can be seen in the commit history at https://huggingface.co/datasets/petrrysavy/krebs/commits/main.

Downloads last month
143