query-id
stringlengths
8
9
corpus-id
stringlengths
10
11
score
float64
1
1
1000-2_q1
1000-2_doc1
1
1000-2_q2
1000-2_doc2
1
1000-3_q1
1000-3_doc1
1
1000-3_q2
1000-3_doc2
1
1001-2_q1
1001-2_doc1
1
1001-2_q2
1001-2_doc2
1
1001-3_q1
1001-3_doc1
1
1001-3_q2
1001-3_doc2
1
1002-2_q1
1002-2_doc1
1
1002-2_q2
1002-2_doc2
1
1002-3_q1
1002-3_doc1
1
1002-3_q2
1002-3_doc2
1
1003-2_q1
1003-2_doc1
1
1003-2_q2
1003-2_doc2
1
1003-3_q1
1003-3_doc1
1
1003-3_q2
1003-3_doc2
1
1004-2_q1
1004-2_doc1
1
1004-2_q2
1004-2_doc2
1
1004-3_q1
1004-3_doc1
1
1004-3_q2
1004-3_doc2
1
1005-2_q1
1005-2_doc1
1
1005-2_q2
1005-2_doc2
1
1005-3_q1
1005-3_doc1
1
1005-3_q2
1005-3_doc2
1
1006-2_q1
1006-2_doc1
1
1006-2_q2
1006-2_doc2
1
1006-3_q1
1006-3_doc1
1
1006-3_q2
1006-3_doc2
1
1007-2_q1
1007-2_doc1
1
1007-2_q2
1007-2_doc2
1
1007-3_q1
1007-3_doc1
1
1007-3_q2
1007-3_doc2
1
1008-2_q1
1008-2_doc1
1
1008-2_q2
1008-2_doc2
1
1008-3_q1
1008-3_doc1
1
1008-3_q2
1008-3_doc2
1
1009-2_q1
1009-2_doc1
1
1009-2_q2
1009-2_doc2
1
1009-3_q1
1009-3_doc1
1
1009-3_q2
1009-3_doc2
1
1010-2_q1
1010-2_doc1
1
1010-2_q2
1010-2_doc2
1
1010-3_q1
1010-3_doc1
1
1010-3_q2
1010-3_doc2
1
1011-3_q1
1011-3_doc1
1
1011-3_q2
1011-3_doc2
1
1012-2_q1
1012-2_doc1
1
1012-2_q2
1012-2_doc2
1
1012-3_q1
1012-3_doc1
1
1012-3_q2
1012-3_doc2
1
1013-2_q1
1013-2_doc1
1
1013-2_q2
1013-2_doc2
1
1013-3_q1
1013-3_doc1
1
1013-3_q2
1013-3_doc2
1
1014-2_q1
1014-2_doc1
1
1014-2_q2
1014-2_doc2
1
1014-3_q1
1014-3_doc1
1
1014-3_q2
1014-3_doc2
1
1015-2_q1
1015-2_doc1
1
1015-2_q2
1015-2_doc2
1
1015-3_q1
1015-3_doc1
1
1015-3_q2
1015-3_doc2
1
1016-2_q1
1016-2_doc1
1
1016-2_q2
1016-2_doc2
1
1016-3_q1
1016-3_doc1
1
1016-3_q2
1016-3_doc2
1
1017-2_q1
1017-2_doc1
1
1017-2_q2
1017-2_doc2
1
1017-3_q1
1017-3_doc1
1
1017-3_q2
1017-3_doc2
1
1018-2_q1
1018-2_doc1
1
1018-2_q2
1018-2_doc2
1
1018-3_q1
1018-3_doc1
1
1018-3_q2
1018-3_doc2
1
1019-2_q1
1019-2_doc1
1
1019-2_q2
1019-2_doc2
1
1019-3_q1
1019-3_doc1
1
1019-3_q2
1019-3_doc2
1
1020-3_q1
1020-3_doc1
1
1020-3_q2
1020-3_doc2
1
1021-2_q1
1021-2_doc1
1
1021-2_q2
1021-2_doc2
1
1021-3_q1
1021-3_doc1
1
1021-3_q2
1021-3_doc2
1
1022-2_q1
1022-2_doc1
1
1022-2_q2
1022-2_doc2
1
1022-3_q1
1022-3_doc1
1
1022-3_q2
1022-3_doc2
1
1023-2_q1
1023-2_doc1
1
1023-2_q2
1023-2_doc2
1
1023-3_q1
1023-3_doc1
1
1023-3_q2
1023-3_doc2
1
1025-2_q1
1025-2_doc1
1
1025-2_q2
1025-2_doc2
1
1025-3_q1
1025-3_doc1
1
1025-3_q2
1025-3_doc2
1
1026-2_q1
1026-2_doc1
1
1026-2_q2
1026-2_doc2
1
1026-3_q1
1026-3_doc1
1
1026-3_q2
1026-3_doc2
1

NevIR-mteb Dataset

This is the MTEB-compatible version of the NevIR dataset, structured for information retrieval tasks focused on negation understanding.

Dataset Structure

The dataset is organized into multiple configurations:

  1. corpus: Contains all documents (doc1 and doc2 from each sample)
  2. queries: Contains all queries (q1 and q2 from each sample)
  3. qrels: Contains relevance judgments (q1 matches with doc1, q2 matches with doc2)
  4. top_ranked: Contains candidate documents for each query (both doc1 and doc2 for every query)

Usage

from datasets import load_dataset

# Load the entire dataset
dataset = load_dataset("orionweller/NevIR-mteb")

# Load specific configurations
corpus = load_dataset("orionweller/NevIR-mteb", "corpus")
queries = load_dataset("orionweller/NevIR-mteb", "queries")
qrels = load_dataset("orionweller/NevIR-mteb", "qrels")
top_ranked = load_dataset("orionweller/NevIR-mteb", "top_ranked")
Downloads last month
36