File size: 10,184 Bytes
54cea06
0611d17
54cea06
 
 
 
 
7e19c68
54cea06
7e19c68
361f574
54cea06
 
0611d17
54cea06
 
 
 
 
00947c0
d0401a8
 
f1cb732
926743f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb18c
 
 
926743f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb18c
 
 
926743f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5fdb18c
 
 
 
 
 
926743f
 
54cea06
 
 
 
 
 
 
6a1ec11
54cea06
 
 
6a1ec11
 
54cea06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1ee2af2
54cea06
 
 
 
 
 
 
 
1ee2af2
54cea06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ad31813
 
 
 
54cea06
 
 
 
 
 
 
 
 
 
ad31813
 
54cea06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5b582
54cea06
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d5b582
54cea06
 
 
0611d17
 
 
 
 
 
 
 
 
 
54cea06
 
 
926743f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
---
pretty_name: LibriSpeech
annotations_creators:
- expert-generated
language_creators:
- crowdsourced
- expert-generated
language:
- en
license:
- cc-by-4.0
multilinguality:
- monolingual
paperswithcode_id: librispeech-1
size_categories:
- 100K<n<1M
source_datasets:
- original
task_categories:
- automatic-speech-recognition
- audio-classification
task_ids:
- speaker-identification
dataset_info:
- config_name: clean
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train.100
    num_bytes: 6619683041
    num_examples: 28539
  - name: train.360
    num_bytes: 23898214592
    num_examples: 104014
  - name: validation
    num_bytes: 359572231
    num_examples: 2703
  - name: test
    num_bytes: 367705423
    num_examples: 2620
  download_size: 30121377654
  dataset_size: 31245175287
- config_name: other
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train.500
    num_bytes: 31810256902
    num_examples: 148688
  - name: validation
    num_bytes: 337283304
    num_examples: 2864
  - name: test
    num_bytes: 352396474
    num_examples: 2939
  download_size: 31236565377
  dataset_size: 32499936680
- config_name: all
  features:
  - name: file
    dtype: string
  - name: audio
    dtype:
      audio:
        sampling_rate: 16000
  - name: text
    dtype: string
  - name: speaker_id
    dtype: int64
  - name: chapter_id
    dtype: int64
  - name: id
    dtype: string
  splits:
  - name: train.clean.100
    num_bytes: 6627791685
    num_examples: 28539
  - name: train.clean.360
    num_bytes: 23927767570
    num_examples: 104014
  - name: train.other.500
    num_bytes: 31852502880
    num_examples: 148688
  - name: validation.clean
    num_bytes: 359505691
    num_examples: 2703
  - name: validation.other
    num_bytes: 337213112
    num_examples: 2864
  - name: test.clean
    num_bytes: 368449831
    num_examples: 2620
  - name: test.other
    num_bytes: 353231518
    num_examples: 2939
  download_size: 61357943031
  dataset_size: 63826462287
---

# Dataset Card for librispeech_asr

## Table of Contents
- [Dataset Description](#dataset-description)
  - [Dataset Summary](#dataset-summary)
  - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
  - [Languages](#languages)
- [Dataset Structure](#dataset-structure)
  - [Data Instances](#data-instances)
  - [Data Fields](#data-fields)
  - [Data Splits](#data-splits)
- [Dataset Creation](#dataset-creation)
  - [Curation Rationale](#curation-rationale)
  - [Source Data](#source-data)
  - [Annotations](#annotations)
  - [Personal and Sensitive Information](#personal-and-sensitive-information)
- [Considerations for Using the Data](#considerations-for-using-the-data)
  - [Social Impact of Dataset](#social-impact-of-dataset)
  - [Discussion of Biases](#discussion-of-biases)
  - [Other Known Limitations](#other-known-limitations)
- [Additional Information](#additional-information)
  - [Dataset Curators](#dataset-curators)
  - [Licensing Information](#licensing-information)
  - [Citation Information](#citation-information)
  - [Contributions](#contributions)

## Dataset Description

- **Homepage:** [LibriSpeech ASR corpus](http://www.openslr.org/12)
- **Repository:** [Needs More Information]
- **Paper:** [LibriSpeech: An ASR Corpus Based On Public Domain Audio Books](https://www.danielpovey.com/files/2015_icassp_librispeech.pdf)
- **Leaderboard:** [The 🤗 Speech Bench](https://huggingface.co/spaces/huggingface/hf-speech-bench)
- **Point of Contact:** [Daniel Povey](mailto:[email protected])

### Dataset Summary

LibriSpeech is a corpus of approximately 1000 hours of 16kHz read English speech, prepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read audiobooks from the LibriVox project, and has been carefully segmented and aligned.

### Supported Tasks and Leaderboards

- `automatic-speech-recognition`, `audio-speaker-identification`: The dataset can be used to train a model for Automatic Speech Recognition (ASR). The model is presented with an audio file and asked to transcribe the audio file to written text. The most common evaluation metric is the word error rate (WER). The task has an active Hugging Face leaderboard which can be found at https://huggingface.co/spaces/huggingface/hf-speech-bench. The leaderboard ranks models uploaded to the Hub based on their WER. An external leaderboard at https://paperswithcode.com/sota/speech-recognition-on-librispeech-test-clean ranks the latest models from research and academia.

### Languages

The audio is in English. There are two configurations: `clean` and `other`. 
The speakers in the corpus were ranked according to the WER of the transcripts of a model trained on
a different dataset, and were divided roughly in the middle,
with the lower-WER speakers designated as "clean" and the higher WER speakers designated as "other".

## Dataset Structure

### Data Instances

A typical data point comprises the path to the audio file, usually called `file` and its transcription, called `text`. Some additional information about the speaker and the passage which contains the transcription is provided.

```
{'chapter_id': 141231,
 'file': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
  'audio': {'path': '/home/patrick/.cache/huggingface/datasets/downloads/extracted/b7ded9969e09942ab65313e691e6fc2e12066192ee8527e21d634aca128afbe2/dev_clean/1272/141231/1272-141231-0000.flac',
  'array': array([-0.00048828, -0.00018311, -0.00137329, ...,  0.00079346,
          0.00091553,  0.00085449], dtype=float32),
  'sampling_rate': 16000},
 'id': '1272-141231-0000',
 'speaker_id': 1272,
 'text': 'A MAN SAID TO THE UNIVERSE SIR I EXIST'}
```


### Data Fields

- file: A path to the downloaded audio file in .flac format.

- audio: A dictionary containing the path to the downloaded audio file, the decoded audio array, and the sampling rate. Note that when accessing the audio column: `dataset[0]["audio"]` the audio file is automatically decoded and resampled to `dataset.features["audio"].sampling_rate`. Decoding and resampling of a large number of audio files might take a significant amount of time. Thus it is important to first query the sample index before the `"audio"` column, *i.e.* `dataset[0]["audio"]` should **always** be preferred over `dataset["audio"][0]`.

- text: the transcription of the audio file.

- id: unique id of the data sample.

- speaker_id: unique id of the speaker. The same speaker id can be found for multiple data samples.

- chapter_id: id of the audiobook chapter which includes the transcription.

### Data Splits

The size of the corpus makes it impractical, or at least inconvenient
for some users, to distribute it as a single large archive. Thus the
training portion of the corpus is split into three subsets, with approximate size 100, 360 and 500 hours respectively.
A simple automatic
procedure was used to select the audio in the first two sets to be, on
average, of higher recording quality and with accents closer to US
English. An acoustic model was trained on WSJ’s si-84 data subset
and was used to recognize the audio in the corpus, using a bigram
LM estimated on the text of the respective books. We computed the
Word Error Rate (WER) of this automatic transcript relative to our
reference transcripts obtained from the book texts.
The speakers in the corpus were ranked according to the WER of
the WSJ model’s transcripts, and were divided roughly in the middle,
with the lower-WER speakers designated as "clean" and the higher-WER speakers designated as "other".

For "clean", the data is split into train, validation, and test set. The train set is further split into train.100 and train.360
respectively accounting for 100h and 360h of the training data. 
For "other", the data is split into train, validation, and test set. The train set contains approximately 500h of recorded speech.

|                             | Train.500 | Train.360 | Train.100  | Valid | Test |
| -----                       | ------ | ----- | ---- | ---- | ---- | 
| clean | - | 104014 | 28539 |  2703 | 2620|
| other | 148688 | - | - | 2864 | 2939 |



## Dataset Creation

### Curation Rationale

[Needs More Information]

### Source Data

#### Initial Data Collection and Normalization

[Needs More Information]

#### Who are the source language producers?

[Needs More Information]

### Annotations

#### Annotation process

[Needs More Information]

#### Who are the annotators?

[Needs More Information]

### Personal and Sensitive Information

The dataset consists of people who have donated their voice online. You agree to not attempt to determine the identity of speakers in this dataset.

## Considerations for Using the Data

### Social Impact of Dataset

[More Information Needed]

### Discussion of Biases

[More Information Needed]

### Other Known Limitations

[Needs More Information]

## Additional Information

### Dataset Curators

The dataset was initially created by Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur.

### Licensing Information

[CC BY 4.0](https://creativecommons.org/licenses/by/4.0/)

### Citation Information

```
@inproceedings{panayotov2015librispeech,
  title={Librispeech: an ASR corpus based on public domain audio books},
  author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
  booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
  pages={5206--5210},
  year={2015},
  organization={IEEE}
}
```

### Contributions

Thanks to [@patrickvonplaten](https://github.com/patrickvonplaten) for adding this dataset.