system HF staff commited on
Commit
0611d17
·
1 Parent(s): 6a1ec11

Update files from the datasets library (from 1.9.0)

Browse files

Release notes: https://github.com/huggingface/datasets/releases/tag/1.9.0

Files changed (3) hide show
  1. README.md +14 -4
  2. dataset_infos.json +1 -1
  3. librispeech_asr.py +2 -0
README.md CHANGED
@@ -1,4 +1,5 @@
1
  ---
 
2
  annotations_creators:
3
  - expert-generated
4
  language_creators:
@@ -10,15 +11,15 @@ licenses:
10
  - cc-by-4-0
11
  multilinguality:
12
  - monolingual
 
13
  size_categories:
14
  - 100K<n<1M
15
  source_datasets:
16
  - original
17
  task_categories:
18
- - other
19
  task_ids:
20
- - other-other-automatic speech recognition
21
- paperswithcode_id: librispeech-1
22
  ---
23
 
24
  # Dataset Card for librispeech_asr
@@ -181,7 +182,16 @@ CC BY 4.0
181
 
182
  ### Citation Information
183
 
184
- [Needs More Information]
 
 
 
 
 
 
 
 
 
185
 
186
  ### Contributions
187
 
 
1
  ---
2
+ pretty_name: LibriSpeech
3
  annotations_creators:
4
  - expert-generated
5
  language_creators:
 
11
  - cc-by-4-0
12
  multilinguality:
13
  - monolingual
14
+ paperswithcode_id: librispeech-1
15
  size_categories:
16
  - 100K<n<1M
17
  source_datasets:
18
  - original
19
  task_categories:
20
+ - automatic-speech-recognition
21
  task_ids:
22
+ - speech-recognition
 
23
  ---
24
 
25
  # Dataset Card for librispeech_asr
 
182
 
183
  ### Citation Information
184
 
185
+ ```
186
+ @inproceedings{panayotov2015librispeech,
187
+ title={Librispeech: an ASR corpus based on public domain audio books},
188
+ author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},
189
+ booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},
190
+ pages={5206--5210},
191
+ year={2015},
192
+ organization={IEEE}
193
+ }
194
+ ```
195
 
196
  ### Contributions
197
 
dataset_infos.json CHANGED
@@ -1 +1 @@
1
- {"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 43049490, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 56636505, "size_in_bytes": 30178014159}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 59561081, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 907644, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 934838, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 61403563, "size_in_bytes": 31297968940}}
 
1
+ {"clean": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "clean", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.100": {"name": "train.100", "num_bytes": 11823891, "num_examples": 28539, "dataset_name": "librispeech_asr"}, "train.360": {"name": "train.360", "num_bytes": 43049490, "num_examples": 104014, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 894510, "num_examples": 2703, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 868614, "num_examples": 2620, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/dev-clean.tar.gz": {"num_bytes": 337926286, "checksum": "76f87d090650617fca0cac8f88b9416e0ebf80350acb97b343a85fa903728ab3"}, "http://www.openslr.org/resources/12/test-clean.tar.gz": {"num_bytes": 346663984, "checksum": "39fde525e59672dc6d1551919b1478f724438a95aa55f874b576be21967e6c23"}, "http://www.openslr.org/resources/12/train-clean-100.tar.gz": {"num_bytes": 6387309499, "checksum": "d4ddd1d5a6ab303066f14971d768ee43278a5f2a0aa43dc716b0e64ecbbbf6e2"}, "http://www.openslr.org/resources/12/train-clean-360.tar.gz": {"num_bytes": 23049477885, "checksum": "146a56496217e96c14334a160df97fffedd6e0a04e66b9c5af0d40be3c792ecf"}}, "download_size": 30121377654, "post_processing_size": null, "dataset_size": 56636505, "size_in_bytes": 30178014159}, "other": {"description": "LibriSpeech is a corpus of approximately 1000 hours of read English speech with sampling rate of 16 kHz,\nprepared by Vassil Panayotov with the assistance of Daniel Povey. The data is derived from read\naudiobooks from the LibriVox project, and has been carefully segmented and aligned.87\n\nNote that in order to limit the required storage for preparing this dataset, the audio\nis stored in the .flac format and is not converted to a float32 array. To convert, the audio\nfile to a float32 array, please make use of the `.map()` function as follows:\n\n\n```python\nimport soundfile as sf\n\ndef map_to_array(batch):\n speech_array, _ = sf.read(batch[\"file\"])\n batch[\"speech\"] = speech_array\n return batch\n\ndataset = dataset.map(map_to_array, remove_columns=[\"file\"])\n", "citation": "@inproceedings{panayotov2015librispeech,\n title={Librispeech: an ASR corpus based on public domain audio books},\n author={Panayotov, Vassil and Chen, Guoguo and Povey, Daniel and Khudanpur, Sanjeev},\n booktitle={Acoustics, Speech and Signal Processing (ICASSP), 2015 IEEE International Conference on},\n pages={5206--5210},\n year={2015},\n organization={IEEE}\n}\n", "homepage": "http://www.openslr.org/12", "license": "", "features": {"file": {"dtype": "string", "id": null, "_type": "Value"}, "text": {"dtype": "string", "id": null, "_type": "Value"}, "speaker_id": {"dtype": "int64", "id": null, "_type": "Value"}, "chapter_id": {"dtype": "int64", "id": null, "_type": "Value"}, "id": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": {"input": "speech", "output": "text"}, "task_templates": [{"task": "automatic-speech-recognition", "audio_file_path_column": "file", "transcription_column": "text"}], "builder_name": "librispeech_asr", "config_name": "other", "version": {"version_str": "2.1.0", "description": "", "major": 2, "minor": 1, "patch": 0}, "splits": {"train.500": {"name": "train.500", "num_bytes": 59561081, "num_examples": 148688, "dataset_name": "librispeech_asr"}, "validation": {"name": "validation", "num_bytes": 907644, "num_examples": 2864, "dataset_name": "librispeech_asr"}, "test": {"name": "test", "num_bytes": 934838, "num_examples": 2939, "dataset_name": "librispeech_asr"}}, "download_checksums": {"http://www.openslr.org/resources/12/test-other.tar.gz": {"num_bytes": 328757843, "checksum": "d09c181bba5cf717b3dee7d4d592af11a3ee3a09e08ae025c5506f6ebe961c29"}, "http://www.openslr.org/resources/12/dev-other.tar.gz": {"num_bytes": 314305928, "checksum": "12661c48e8c3fe1de2c1caa4c3e135193bfb1811584f11f569dd12645aa84365"}, "http://www.openslr.org/resources/12/train-other-500.tar.gz": {"num_bytes": 30593501606, "checksum": "ddb22f27f96ec163645d53215559df6aa36515f26e01dd70798188350adcb6d2"}}, "download_size": 31236565377, "post_processing_size": null, "dataset_size": 61403563, "size_in_bytes": 31297968940}}
librispeech_asr.py CHANGED
@@ -21,6 +21,7 @@ import glob
21
  import os
22
 
23
  import datasets
 
24
 
25
 
26
  _CITATION = """\
@@ -112,6 +113,7 @@ class LibrispeechASR(datasets.GeneratorBasedBuilder):
112
  supervised_keys=("file", "text"),
113
  homepage=_URL,
114
  citation=_CITATION,
 
115
  )
116
 
117
  def _split_generators(self, dl_manager):
 
21
  import os
22
 
23
  import datasets
24
+ from datasets.tasks import AutomaticSpeechRecognition
25
 
26
 
27
  _CITATION = """\
 
113
  supervised_keys=("file", "text"),
114
  homepage=_URL,
115
  citation=_CITATION,
116
+ task_templates=[AutomaticSpeechRecognition(audio_file_path_column="file", transcription_column="text")],
117
  )
118
 
119
  def _split_generators(self, dl_manager):