Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
csv
Languages:
Indonesian
Size:
1K - 10K
License:
license: mit | |
task_categories: | |
- text-classification | |
language: | |
- id | |
size_categories: | |
- 1K<n<10K | |
<b>We do not maintain this repository further. For accessing the most recent Indonesian Fake News dataset that we created, please visit BRIN's dataverse: </b> <url>https://data.brin.go.id/dataset.xhtml?persistentId=hdl:20.500.12690/RIN/7QBRKQ</url></br></br> | |
Dataset for "Fact-Aware Fake-news Classification for Indonesian Language"</br></br> | |
Data originates from https://saberhoaks.jabarprov.go.id/v2/ ; https://opendata.jabarprov.go.id/id/dataset/ ; https://klinikhoaks.jatimprov.go.id/ </br> | |
The attributes of data are: </br> | |
1. Label_id: Binary class labels ("HOAX"==1 ; "NON-HOAX"==0).</br> | |
2. Label: Binary class labels ("HOAX" or "NON-HOAX").</br> | |
3. Title: Claim or headline of news article.</br> | |
4. Content: the content of news article. </br> | |
5. Fact: The summary of factual evidence that is either supporting or contradicting the correponding claim.</br> | |
6. References: URL link of news article and the corresponding verdict or factual evidence as the justification of the news article.</br> | |
7. Classification: Fine-grained classification labels for the news article:</br> | |
Class labels for saberhoax_data.csv: 'DISINFORMASI', ,'MISINFORMASI', 'FABRICATED CONTENT', 'FALSE CONNECTION', | |
'FALSE CONTEXT', 'IMPOSTER CONTENT', </br> 'MANIPULATED CONTENT', | |
'MISLEADING CONTENT', 'SATIRE OR PARODI', 'BENAR'.</br> | |
Class labels for opendata_jabar.csv: 'BENAR', 'DISINFORMASI (HOAKS)', 'FABRICATED CONTENT', | |
'FALSE CONNECTION', 'FALSE CONTEXT', 'IMPOSTER CONTENT',</br> | |
'MANIPULATED CONTENT', 'MISINFORMASI (HOAKS)', | |
'MISLEADING CONTENT' </br> | |
</br> | |
Example of usage:</br> | |
```python | |
>>> from datasets import load_dataset | |
>>> train_dataset = load_dataset( | |
... "nlp-brin-id/id-hoax-report", | |
... split="train", | |
... keep_default_na=False, | |
... ).select_columns(['Label_id', 'Title', 'Content', 'Fact']) | |
``` |