Datasets:
import tarfile | |
import os | |
import datasets | |
_URL = "https://huggingface.co/datasets/neuclir/neumarco/resolve/main/data/neumarco.tar.gz" | |
class Neumarco(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
def _info(self): | |
return datasets.DatasetInfo( | |
features=datasets.Features({ | |
"doc_id": datasets.Value("string"), | |
"text": datasets.Value("string"), | |
}), | |
) | |
def _split_generators(self, dl_manager): | |
path = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=lang, | |
gen_kwargs={ | |
"filepath": path, | |
"tarpath": f'eng-{lang}/msmarco.collection.20210731-scale21-sockeye2-tm1.tsv' | |
}) | |
for lang in ['fas', 'rus', 'zho'] | |
] | |
def _generate_examples(self, filepath, tarpath): | |
with tarfile.open(filepath, 'r|gz') as tarf: | |
for fileinfo in tarf: | |
if fileinfo.name != tarpath: | |
continue | |
with tarf.extractfile(fileinfo) as f: | |
for key, line in enumerate(f): | |
doc_id, text = line.decode('utf8').rstrip('\n').split('\t') | |
yield key, {'doc_id': doc_id, 'text': text} | |
break | |