Sean MacAvaney commited on
Commit
afd48cc
·
1 Parent(s): b25df7a

added data loading script and dataset card

Browse files
Files changed (2) hide show
  1. README.md +64 -0
  2. neumarco.py +40 -0
README.md ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ annotations_creators:
3
+ - machine-generated
4
+ language:
5
+ - fa
6
+ - ru
7
+ - zh
8
+ language_creators:
9
+ - machine-generated
10
+ multilinguality:
11
+ - multilingual
12
+ pretty_name: NeuMARCO
13
+ size_categories:
14
+ - 1M<n<10M
15
+ source_datasets:
16
+ - extended|irds/msmarco-passage
17
+ tags: []
18
+ task_categories:
19
+ - text-retrieval
20
+ ---
21
+
22
+ # Dataset Card for NeuMARCO
23
+
24
+ ## Dataset Description
25
+
26
+ - **Website:** https://neuclir.github.io/
27
+
28
+ ### Dataset Summary
29
+
30
+ This is the dataset created for TREC 2022 NeuCLIR Track. The collection consists of documents from [`msmarco-passage`](ir-datasets.com/msmarco-passage) translated into
31
+ Chinese, Persian, and Russian.
32
+
33
+ ### Languages
34
+
35
+ - Chinese
36
+ - Persian
37
+ - Russian
38
+
39
+ ## Dataset Structure
40
+
41
+ ### Data Instances
42
+
43
+ | Split | Documents |
44
+ |-----------------|----------:|
45
+ | `fas` (Persian) | 8.8M |
46
+ | `rus` (Russian) | 8.8M |
47
+ | `zho` (Chinese) | 8.8M |
48
+
49
+ ### Data Fields
50
+ - `doc_id`: unique identifier for this document
51
+ - `text`: translated passage text
52
+
53
+ ## Dataset Usage
54
+
55
+ Using 🤗 Datasets:
56
+
57
+ ```python
58
+ from datasets import load_dataset
59
+
60
+ dataset = load_dataset('neuclir/neumarco')
61
+ dataset['fas'] # Persian passages
62
+ dataset['rus'] # Russian passages
63
+ dataset['zho'] # Chinese passages
64
+ ```
neumarco.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import tarfile
2
+ import os
3
+ import datasets
4
+
5
+ _URL = "https://huggingface.co/datasets/neuclir/neumarco/resolve/main/data/neumarco.tar.gz"
6
+
7
+
8
+ class Neumarco(datasets.GeneratorBasedBuilder):
9
+ VERSION = datasets.Version("1.0.0")
10
+
11
+ def _info(self):
12
+ return datasets.DatasetInfo(
13
+ features=datasets.Features({
14
+ "doc_id": datasets.Value("string"),
15
+ "text": datasets.Value("string"),
16
+ }),
17
+ )
18
+
19
+ def _split_generators(self, dl_manager):
20
+ path = dl_manager.download(_URL)
21
+ return [
22
+ datasets.SplitGenerator(
23
+ name=lang,
24
+ gen_kwargs={
25
+ "filepath": path,
26
+ "tarpath": f'eng-{lang}/msmarco.collection.20210731-scale21-sockeye2-tm1.tsv'
27
+ })
28
+ for lang in ['fas', 'rus', 'zho']
29
+ ]
30
+
31
+ def _generate_examples(self, filepath, tarpath):
32
+ with tarfile.open(filepath, 'r|gz') as tarf:
33
+ for fileinfo in tarf:
34
+ if fileinfo.name != tarpath:
35
+ continue
36
+ with tarf.extractfile(fileinfo) as f:
37
+ for key, line in enumerate(f):
38
+ doc_id, text = line.decode('utf8').rstrip('\n').split('\t')
39
+ yield key, {'doc_id': doc_id, 'text': text}
40
+ break