Datasets:
File size: 5,157 Bytes
2fa66bf 8b31bca 6611b47 d1e0cf4 93776af d1e0cf4 8b31bca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 |
---
language:
- en
tags:
- speeddating
- tabular_classification
- binary_classification
pretty_name: Speed dating
size_categories:
- 1K<n<10K
task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
- tabular-classification
configs:
- dating
---
# Speed dating
The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) from OpenML.
# Configurations and tasks
| **Configuration** | **Task** | Description |
|-------------------|---------------------------|---------------------------------------------------------------|
| dating | Binary classification | Will the two date? |
# Usage
```python
from datasets import load_dataset
dataset = load_dataset("mstz/speeddating")["train"]
```
# Features
|**Features** |**Type** |
|---------------------------------------------------|---------|
|`is_dater_male` |`int8` |
|`dater_age` |`int8` |
|`dated_age` |`int8` |
|`age_difference` |`int8` |
|`dater_race` |`string` |
|`dated_race` |`string` |
|`are_same_race` |`int8` |
|`same_race_importance_for_dater` |`float64`|
|`same_religion_importance_for_dater` |`float64`|
|`attractiveness_importance_for_dated` |`float64`|
|`sincerity_importance_for_dated` |`float64`|
|`intelligence_importance_for_dated` |`float64`|
|`humor_importance_for_dated` |`float64`|
|`ambition_importance_for_dated` |`float64`|
|`shared_interests_importance_for_dated` |`float64`|
|`attractiveness_score_of_dater_from_dated` |`float64`|
|`sincerity_score_of_dater_from_dated` |`float64`|
|`intelligence_score_of_dater_from_dated` |`float64`|
|`humor_score_of_dater_from_dated` |`float64`|
|`ambition_score_of_dater_from_dated` |`float64`|
|`shared_interests_score_of_dater_from_dated` |`float64`|
|`attractiveness_importance_for_dater` |`float64`|
|`sincerity_importance_for_dater` |`float64`|
|`intelligence_importance_for_dater` |`float64`|
|`humor_importance_for_dater` |`float64`|
|`ambition_importance_for_dater` |`float64`|
|`shared_interests_importance_for_dater` |`float64`|
|`self_reported_attractiveness_of_dater` |`float64`|
|`self_reported_sincerity_of_dater` |`float64`|
|`self_reported_intelligence_of_dater` |`float64`|
|`self_reported_humor_of_dater` |`float64`|
|`self_reported_ambition_of_dater` |`float64`|
|`reported_attractiveness_of_dated_from_dater` |`float64`|
|`reported_sincerity_of_dated_from_dater` |`float64`|
|`reported_intelligence_of_dated_from_dater` |`float64`|
|`reported_humor_of_dated_from_dater` |`float64`|
|`reported_ambition_of_dated_from_dater` |`float64`|
|`reported_shared_interests_of_dated_from_dater` |`float64`|
|`dater_interest_in_sports` |`float64`|
|`dater_interest_in_tvsports` |`float64`|
|`dater_interest_in_exercise` |`float64`|
|`dater_interest_in_dining` |`float64`|
|`dater_interest_in_museums` |`float64`|
|`dater_interest_in_art` |`float64`|
|`dater_interest_in_hiking` |`float64`|
|`dater_interest_in_gaming` |`float64`|
|`dater_interest_in_clubbing` |`float64`|
|`dater_interest_in_reading` |`float64`|
|`dater_interest_in_tv` |`float64`|
|`dater_interest_in_theater` |`float64`|
|`dater_interest_in_movies` |`float64`|
|`dater_interest_in_concerts` |`float64`|
|`dater_interest_in_music` |`float64`|
|`dater_interest_in_shopping` |`float64`|
|`dater_interest_in_yoga` |`float64`|
|`interests_correlation` |`float64`|
|`expected_satisfaction_of_dater` |`float64`|
|`expected_number_of_likes_of_dater_from_20_people` |`int8` |
|`expected_number_of_dates_for_dater` |`int8` |
|`dater_liked_dated` |`float64`|
|`probability_dated_wants_to_date` |`float64`|
|`already_met_before` |`int8` |
|`dater_wants_to_date` |`int8` |
|`dated_wants_to_date` |`int8` |
|