mstz commited on
Commit
2fa66bf
·
1 Parent(s): def6a98

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +17 -0
  2. speeddating.csv +0 -0
  3. speeddating.py +237 -0
README.md ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - speeddating
6
+ - tabular_classification
7
+ - binary_classification
8
+ pretty_name: Speed dating
9
+ size_categories:
10
+ - 1K<n<10K
11
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
12
+ - tabular-classification
13
+ configs:
14
+ - dating
15
+ ---
16
+ # Speed dating
17
+ The [Speed dating dataset](https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536) is cool.
speeddating.csv ADDED
The diff for this file is too large to render. See raw diff
 
speeddating.py ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Speeddating Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+ _BASE_FEATURE_NAMES = [
13
+ "dater_gender",
14
+ "dater_age",
15
+ "dated_age",
16
+ "age_difference",
17
+ "dater_race",
18
+ "dated_race",
19
+ "are_same_race",
20
+ "same_race_importance_for_dater",
21
+ "same_religion_importance_for_dater",
22
+ "attractiveness_importance_for_dated",
23
+ "sincerity_importance_for_dated",
24
+ "intelligence_importance_for_dated",
25
+ "humor_importance_for_dated",
26
+ "ambition_importance_for_dated",
27
+ "shared_interests_importance_for_dated",
28
+ "attractiveness_score_of_dater_from_dated",
29
+ "sincerity_score_of_dater_from_dated",
30
+ "intelligence_score_of_dater_from_dated",
31
+ "humor_score_of_dater_from_dated",
32
+ "ambition_score_of_dater_from_dated",
33
+ "shared_interests_score_of_dater_from_dated",
34
+ "attractiveness_importance_for_dater",
35
+ "sincerity_importance_for_dater",
36
+ "intelligence_importance_for_dater",
37
+ "humor_importance_for_dater",
38
+ "ambition_importance_for_dater",
39
+ "shared_interests_importance_for_dater",
40
+ "self_reported_attractiveness_of_dater",
41
+ "self_reported_sincerity_of_dater",
42
+ "self_reported_intelligence_of_dater",
43
+ "self_reported_humor_of_dater",
44
+ "self_reported_ambition_of_dater",
45
+ "reported_attractiveness_of_dated_from_dater",
46
+ "reported_sincerity_of_dated_from_dater",
47
+ "reported_intelligence_of_dated_from_dater",
48
+ "reported_humor_of_dated_from_dater",
49
+ "reported_ambition_of_dated_from_dater",
50
+ "reported_shared_interests_of_dated_from_dater",
51
+ "dater_interest_in_sports",
52
+ "dater_interest_in_tvsports",
53
+ "dater_interest_in_exercise",
54
+ "dater_interest_in_dining",
55
+ "dater_interest_in_museums",
56
+ "dater_interest_in_art",
57
+ "dater_interest_in_hiking",
58
+ "dater_interest_in_gaming",
59
+ "dater_interest_in_clubbing",
60
+ "dater_interest_in_reading",
61
+ "dater_interest_in_tv",
62
+ "dater_interest_in_theater",
63
+ "dater_interest_in_movies",
64
+ "dater_interest_in_concerts",
65
+ "dater_interest_in_music",
66
+ "dater_interest_in_shopping",
67
+ "dater_interest_in_yoga",
68
+ "interests_correlation",
69
+ "expected_satisfaction_of_dater",
70
+ "expected_number_of_likes_of_dater_from_20_people",
71
+ "expected_number_of_dates_for_dater",
72
+ "dater_liked_dated",
73
+ "probability_dated_wants_to_date",
74
+ "already_met_before",
75
+ "dater_wants_to_date",
76
+ "dated_wants_to_date",
77
+ "is_match"
78
+ ]
79
+
80
+ DESCRIPTION = "Speed-dating dataset."
81
+ _HOMEPAGE = "https://www.openml.org/search?type=data&sort=nr_of_likes&status=active&id=40536"
82
+ _URLS = ("https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv")
83
+ _CITATION = """"""
84
+
85
+ # Dataset info
86
+ urls_per_split = {
87
+ "train": "https://huggingface.co/datasets/mstz/speeddating/raw/main/speeddating.csv",
88
+ }
89
+ features_types_per_config = {
90
+ "dating": {
91
+ "dater_gender": datasets.Value("int8"),
92
+ "dater_age": datasets.Value("int8"),
93
+ "dated_age": datasets.Value("int8"),
94
+ "age_difference": datasets.Value("int8"),
95
+ "dater_race": datasets.Value("string"),
96
+ "dated_race": datasets.Value("string"),
97
+ "are_same_race": datasets.Value("int8"),
98
+ "same_race_importance_for_dater": datasets.Value("int8"),
99
+ "same_religion_importance_for_dater": datasets.Value("int8"),
100
+ "attractiveness_importance_for_dated": datasets.Value("int8"),
101
+ "sincerity_importance_for_dated": datasets.Value("int8"),
102
+ "intelligence_importance_for_dated": datasets.Value("int8"),
103
+ "humor_importance_for_dated": datasets.Value("int8"),
104
+ "ambition_importance_for_dated": datasets.Value("int8"),
105
+ "shared_interests_importance_for_dated": datasets.Value("int8"),
106
+ "attractiveness_score_of_dater_from_dated": datasets.Value("int8"),
107
+ "sincerity_score_of_dater_from_dated": datasets.Value("int8"),
108
+ "intelligence_score_of_dater_from_dated": datasets.Value("int8"),
109
+ "humor_score_of_dater_from_dated": datasets.Value("int8"),
110
+ "ambition_score_of_dater_from_dated": datasets.Value("int8"),
111
+ "shared_interests_score_of_dater_from_dated": datasets.Value("int8"),
112
+ "attractiveness_importance_for_dater": datasets.Value("int8"),
113
+ "sincerity_importance_for_dater": datasets.Value("int8"),
114
+ "intelligence_importance_for_dater": datasets.Value("int8"),
115
+ "humor_importance_for_dater": datasets.Value("int8"),
116
+ "ambition_importance_for_dater": datasets.Value("int8"),
117
+ "shared_interests_importance_for_dater": datasets.Value("int8"),
118
+ "self_reported_attractiveness_of_dater": datasets.Value("int8"),
119
+ "self_reported_sincerity_of_dater": datasets.Value("int8"),
120
+ "self_reported_intelligence_of_dater": datasets.Value("int8"),
121
+ "self_reported_humor_of_dater": datasets.Value("int8"),
122
+ "self_reported_ambition_of_dater": datasets.Value("int8"),
123
+ "reported_attractiveness_of_dated_from_dater": datasets.Value("int8"),
124
+ "reported_sincerity_of_dated_from_dater": datasets.Value("int8"),
125
+ "reported_intelligence_of_dated_from_dater": datasets.Value("int8"),
126
+ "reported_humor_of_dated_from_dater": datasets.Value("int8"),
127
+ "reported_ambition_of_dated_from_dater": datasets.Value("int8"),
128
+ "reported_shared_interests_of_dated_from_dater": datasets.Value("int8"),
129
+ "dater_interest_in_sports": datasets.Value("int8"),
130
+ "dater_interest_in_tvsports": datasets.Value("int8"),
131
+ "dater_interest_in_exercise": datasets.Value("int8"),
132
+ "dater_interest_in_dining": datasets.Value("int8"),
133
+ "dater_interest_in_museums": datasets.Value("int8"),
134
+ "dater_interest_in_art": datasets.Value("int8"),
135
+ "dater_interest_in_hiking": datasets.Value("int8"),
136
+ "dater_interest_in_gaming": datasets.Value("int8"),
137
+ "dater_interest_in_clubbing": datasets.Value("int8"),
138
+ "dater_interest_in_reading": datasets.Value("int8"),
139
+ "dater_interest_in_tv": datasets.Value("int8"),
140
+ "dater_interest_in_theater": datasets.Value("int8"),
141
+ "dater_interest_in_movies": datasets.Value("int8"),
142
+ "dater_interest_in_concerts": datasets.Value("int8"),
143
+ "dater_interest_in_music": datasets.Value("int8"),
144
+ "dater_interest_in_shopping": datasets.Value("int8"),
145
+ "dater_interest_in_yoga": datasets.Value("int8"),
146
+ "interests_correlation": datasets.Value("float16"),
147
+ "expected_satisfaction_of_dater": datasets.Value("int8"),
148
+ "expected_number_of_likes_of_dater_from_20_people": datasets.Value("int8"),
149
+ "expected_number_of_dates_for_dater": datasets.Value("int8"),
150
+ "dater_liked_dated": datasets.Value("int8"),
151
+ "probability_dated_wants_to_date": datasets.Value("int8"),
152
+ "already_met_before": datasets.Value("int8"),
153
+ "dater_wants_to_date": datasets.Value("int8"),
154
+ "dated_wants_to_date": datasets.Value("int8"),
155
+ "is_match": datasets.ClassLabel(num_classes=2, names=("no", "yes"))
156
+ }
157
+
158
+ }
159
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
160
+
161
+
162
+ class SpeeddatingConfig(datasets.BuilderConfig):
163
+ def __init__(self, **kwargs):
164
+ super(SpeeddatingConfig, self).__init__(version=VERSION, **kwargs)
165
+ self.features = features_per_config[kwargs["name"]]
166
+
167
+
168
+ class Speeddating(datasets.GeneratorBasedBuilder):
169
+ # dataset versions
170
+ DEFAULT_CONFIG = "dating"
171
+ BUILDER_CONFIGS = [
172
+ SpeeddatingConfig(name="dating",
173
+ description="Binary classification."),
174
+ ]
175
+
176
+
177
+ def _info(self):
178
+ if self.config.name not in features_per_config:
179
+ raise ValueError(f"Unknown configuration: {self.config.name}")
180
+
181
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
182
+ features=features_per_config[self.config.name])
183
+
184
+ return info
185
+
186
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
187
+ downloads = dl_manager.download_and_extract(urls_per_split)
188
+
189
+ return [
190
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
191
+ ]
192
+
193
+ def _generate_examples(self, filepath: str):
194
+ data = pandas.read_csv(filepath)
195
+ data = self.preprocess(data, config=self.config.name)
196
+
197
+ for row_id, row in data.iterrows():
198
+ data_row = dict(row)
199
+
200
+ yield row_id, data_row
201
+
202
+ def preprocess(self, data: pandas.DataFrame, config: str = "dating") -> pandas.DataFrame:
203
+ data.loc[data.race == "?", "race"] = "unknown"
204
+ data.loc[data.race == "Asian/Pacific Islander/Asian-American", "race"] = "asian"
205
+ data.loc[data.race == "European/Caucasian-American", "race"] = "caucasian"
206
+ data.loc[data.race == "Other", "race"] = "other"
207
+ data.loc[data.race == "Latino/Hispanic American", "race"] = "hispanic"
208
+ data.loc[data.race == "Black/African American", "race"] = "african-american"
209
+
210
+ sex_transform = partial(self.encoding_dics, "sex")
211
+ data.loc[:, "sex"] = data.sex.apply(sex_transform)
212
+
213
+ data.drop("has_null", axis="columns", inplace=True)
214
+ data.drop("field", axis="columns", inplace=True)
215
+
216
+ data = data[data.age != "?"]
217
+ data = data[data.importance_same_race != "?"]
218
+ data = data[data.pref_o_attractive != "?"]
219
+ data = data[data.pref_o_sincere != "?"]
220
+ data = data[data.interests_correlate != "?"]
221
+
222
+ data.columns = _BASE_FEATURE_NAMES
223
+
224
+ if config == "dating":
225
+ return data
226
+ else:
227
+ raise ValueError(f"Unknown config: {config}")
228
+
229
+ def encoding_dics(feature, value):
230
+ match feature:
231
+ case "sex":
232
+ return {
233
+ "female": 0,
234
+ "male": 1
235
+ }
236
+ case _:
237
+ raise ValueError(f"Unknown feature: {feature}")