shuttle / shuttle.py
mstz's picture
Upload 3 files
091254c
raw
history blame
8.07 kB
"""Shuttle Dataset"""
from typing import List
from functools import partial
import datasets
import pandas
VERSION = datasets.Version("1.0.0")
_ENCODING_DICS = {}
DESCRIPTION = "Shuttle dataset."
_HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle"
_URLS = ("https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle")
_CITATION = """
@misc{misc_statlog_(shuttle)_148,
title = {{Statlog (Shuttle)}},
howpublished = {UCI Machine Learning Repository},
note = {{DOI}: \url{10.24432/C5WS31}}
}
"""
# Dataset info
urls_per_split = {
"train": "https://huggingface.co/datasets/mstz/shuttle/raw/main/shuttle.csv"
}
features_types_per_config = {
"shuttle": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=7),
},
"shuttle_0": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_1": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_2": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_3": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_4": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_5": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
"shuttle_6": {
"time": datasets.Value("float64"),
"rad_flow": datasets.Value("float64"),
"fpv_close": datasets.Value("float64"),
"fpv_open": datasets.Value("float64"),
"high": datasets.Value("float64"),
"bypass": datasets.Value("float64"),
"bvp_close": datasets.Value("float64"),
"bvp_open": datasets.Value("float64"),
"feature": datasets.Value("float64"),
"class": datasets.ClassLabel(num_classes=2),
},
}
features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
class ShuttleConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super(ShuttleConfig, self).__init__(version=VERSION, **kwargs)
self.features = features_per_config[kwargs["name"]]
class Shuttle(datasets.GeneratorBasedBuilder):
# dataset versions
DEFAULT_CONFIG = "shuttle"
BUILDER_CONFIGS = [
ShuttleConfig(name="shuttle", description="Shuttle for multiclass classification."),
ShuttleConfig(name="shuttle_0", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_1", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_2", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_3", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_4", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_5", description="Shuttle for binary classification."),
ShuttleConfig(name="shuttle_6", description="Shuttle for binary classification."),
]
def _info(self):
info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
features=features_per_config[self.config.name])
return info
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
downloads = dl_manager.download_and_extract(urls_per_split)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
]
def _generate_examples(self, filepath: str):
data = pandas.read_csv(filepath)
data = self.preprocess(data)
for row_id, row in data.iterrows():
data_row = dict(row)
yield row_id, data_row
def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
data["class"] = data["class"].apply(lambda x: x - 1)
if self.config.name == "shuttle_0":
data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
elif self.config.name == "shuttle_1":
data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
elif self.config.name == "shuttle_2":
data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
elif self.config.name == "shuttle_3":
data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
elif self.config.name == "shuttle_4":
data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
elif self.config.name == "shuttle_5":
data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
elif self.config.name == "shuttle_6":
data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
for feature in _ENCODING_DICS:
encoding_function = partial(self.encode, feature)
data.loc[:, feature] = data[feature].apply(encoding_function)
return data[list(features_types_per_config[self.config.name].keys())]
def encode(self, feature, value):
if feature in _ENCODING_DICS:
return _ENCODING_DICS[feature][value]
raise ValueError(f"Unknown feature: {feature}")