mstz commited on
Commit
091254c
·
1 Parent(s): ae986bd

Upload 3 files

Browse files
Files changed (3) hide show
  1. README.md +29 -1
  2. shuttle.csv +0 -0
  3. shuttle.py +202 -0
README.md CHANGED
@@ -1,3 +1,31 @@
1
  ---
2
- license: cc-by-4.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
+ language:
3
+ - en
4
+ tags:
5
+ - shuttle
6
+ - tabular_classification
7
+ - binary_classification
8
+ - multiclass_classification
9
+ pretty_name: Shuttle
10
+ size_categories:
11
+ - 10K<n<100K
12
+ task_categories: # Full list at https://github.com/huggingface/hub-docs/blob/main/js/src/lib/interfaces/Types.ts
13
+ - tabular-classification
14
+ configs:
15
+ - shuttle
16
+ - shuttle_binary
17
  ---
18
+ # Shuttle
19
+ The [Shuttle dataset](https://archive-beta.ics.uci.edu/dataset/146/statlog+shuttle+satellite) from the [UCI repository](https://archive-beta.ics.uci.edu/).
20
+
21
+ # Configurations and tasks
22
+ | **Configuration** | **Task** | **Description** |
23
+ |-----------------------|---------------------------|-------------------------|
24
+ | shuttle | Multiclass classification.| |
25
+ | shuttle_0 | Binary classification. | Is the image of class 0? |
26
+ | shuttle_1 | Binary classification. | Is the image of class 1? |
27
+ | shuttle_2 | Binary classification. | Is the image of class 2? |
28
+ | shuttle_3 | Binary classification. | Is the image of class 3? |
29
+ | shuttle_4 | Binary classification. | Is the image of class 4? |
30
+ | shuttle_5 | Binary classification. | Is the image of class 5? |
31
+ | shuttle_6 | Binary classification. | Is the image of class 6? |
shuttle.csv ADDED
The diff for this file is too large to render. See raw diff
 
shuttle.py ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Shuttle Dataset"""
2
+
3
+ from typing import List
4
+ from functools import partial
5
+
6
+ import datasets
7
+
8
+ import pandas
9
+
10
+
11
+ VERSION = datasets.Version("1.0.0")
12
+
13
+ _ENCODING_DICS = {}
14
+
15
+ DESCRIPTION = "Shuttle dataset."
16
+ _HOMEPAGE = "https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle"
17
+ _URLS = ("https://archive-beta.ics.uci.edu/dataset/148/statlog+shuttle")
18
+ _CITATION = """
19
+ @misc{misc_statlog_(shuttle)_148,
20
+ title = {{Statlog (Shuttle)}},
21
+ howpublished = {UCI Machine Learning Repository},
22
+ note = {{DOI}: \url{10.24432/C5WS31}}
23
+ }
24
+ """
25
+
26
+ # Dataset info
27
+ urls_per_split = {
28
+ "train": "https://huggingface.co/datasets/mstz/shuttle/raw/main/shuttle.csv"
29
+ }
30
+ features_types_per_config = {
31
+ "shuttle": {
32
+ "time": datasets.Value("float64"),
33
+ "rad_flow": datasets.Value("float64"),
34
+ "fpv_close": datasets.Value("float64"),
35
+ "fpv_open": datasets.Value("float64"),
36
+ "high": datasets.Value("float64"),
37
+ "bypass": datasets.Value("float64"),
38
+ "bvp_close": datasets.Value("float64"),
39
+ "bvp_open": datasets.Value("float64"),
40
+ "feature": datasets.Value("float64"),
41
+ "class": datasets.ClassLabel(num_classes=7),
42
+ },
43
+ "shuttle_0": {
44
+ "time": datasets.Value("float64"),
45
+ "rad_flow": datasets.Value("float64"),
46
+ "fpv_close": datasets.Value("float64"),
47
+ "fpv_open": datasets.Value("float64"),
48
+ "high": datasets.Value("float64"),
49
+ "bypass": datasets.Value("float64"),
50
+ "bvp_close": datasets.Value("float64"),
51
+ "bvp_open": datasets.Value("float64"),
52
+ "feature": datasets.Value("float64"),
53
+ "class": datasets.ClassLabel(num_classes=2),
54
+ },
55
+ "shuttle_1": {
56
+ "time": datasets.Value("float64"),
57
+ "rad_flow": datasets.Value("float64"),
58
+ "fpv_close": datasets.Value("float64"),
59
+ "fpv_open": datasets.Value("float64"),
60
+ "high": datasets.Value("float64"),
61
+ "bypass": datasets.Value("float64"),
62
+ "bvp_close": datasets.Value("float64"),
63
+ "bvp_open": datasets.Value("float64"),
64
+ "feature": datasets.Value("float64"),
65
+ "class": datasets.ClassLabel(num_classes=2),
66
+ },
67
+ "shuttle_2": {
68
+ "time": datasets.Value("float64"),
69
+ "rad_flow": datasets.Value("float64"),
70
+ "fpv_close": datasets.Value("float64"),
71
+ "fpv_open": datasets.Value("float64"),
72
+ "high": datasets.Value("float64"),
73
+ "bypass": datasets.Value("float64"),
74
+ "bvp_close": datasets.Value("float64"),
75
+ "bvp_open": datasets.Value("float64"),
76
+ "feature": datasets.Value("float64"),
77
+ "class": datasets.ClassLabel(num_classes=2),
78
+ },
79
+ "shuttle_3": {
80
+ "time": datasets.Value("float64"),
81
+ "rad_flow": datasets.Value("float64"),
82
+ "fpv_close": datasets.Value("float64"),
83
+ "fpv_open": datasets.Value("float64"),
84
+ "high": datasets.Value("float64"),
85
+ "bypass": datasets.Value("float64"),
86
+ "bvp_close": datasets.Value("float64"),
87
+ "bvp_open": datasets.Value("float64"),
88
+ "feature": datasets.Value("float64"),
89
+ "class": datasets.ClassLabel(num_classes=2),
90
+ },
91
+ "shuttle_4": {
92
+ "time": datasets.Value("float64"),
93
+ "rad_flow": datasets.Value("float64"),
94
+ "fpv_close": datasets.Value("float64"),
95
+ "fpv_open": datasets.Value("float64"),
96
+ "high": datasets.Value("float64"),
97
+ "bypass": datasets.Value("float64"),
98
+ "bvp_close": datasets.Value("float64"),
99
+ "bvp_open": datasets.Value("float64"),
100
+ "feature": datasets.Value("float64"),
101
+ "class": datasets.ClassLabel(num_classes=2),
102
+ },
103
+ "shuttle_5": {
104
+ "time": datasets.Value("float64"),
105
+ "rad_flow": datasets.Value("float64"),
106
+ "fpv_close": datasets.Value("float64"),
107
+ "fpv_open": datasets.Value("float64"),
108
+ "high": datasets.Value("float64"),
109
+ "bypass": datasets.Value("float64"),
110
+ "bvp_close": datasets.Value("float64"),
111
+ "bvp_open": datasets.Value("float64"),
112
+ "feature": datasets.Value("float64"),
113
+ "class": datasets.ClassLabel(num_classes=2),
114
+ },
115
+ "shuttle_6": {
116
+ "time": datasets.Value("float64"),
117
+ "rad_flow": datasets.Value("float64"),
118
+ "fpv_close": datasets.Value("float64"),
119
+ "fpv_open": datasets.Value("float64"),
120
+ "high": datasets.Value("float64"),
121
+ "bypass": datasets.Value("float64"),
122
+ "bvp_close": datasets.Value("float64"),
123
+ "bvp_open": datasets.Value("float64"),
124
+ "feature": datasets.Value("float64"),
125
+ "class": datasets.ClassLabel(num_classes=2),
126
+ },
127
+ }
128
+ features_per_config = {k: datasets.Features(features_types_per_config[k]) for k in features_types_per_config}
129
+
130
+
131
+ class ShuttleConfig(datasets.BuilderConfig):
132
+ def __init__(self, **kwargs):
133
+ super(ShuttleConfig, self).__init__(version=VERSION, **kwargs)
134
+ self.features = features_per_config[kwargs["name"]]
135
+
136
+
137
+ class Shuttle(datasets.GeneratorBasedBuilder):
138
+ # dataset versions
139
+ DEFAULT_CONFIG = "shuttle"
140
+ BUILDER_CONFIGS = [
141
+ ShuttleConfig(name="shuttle", description="Shuttle for multiclass classification."),
142
+ ShuttleConfig(name="shuttle_0", description="Shuttle for binary classification."),
143
+ ShuttleConfig(name="shuttle_1", description="Shuttle for binary classification."),
144
+ ShuttleConfig(name="shuttle_2", description="Shuttle for binary classification."),
145
+ ShuttleConfig(name="shuttle_3", description="Shuttle for binary classification."),
146
+ ShuttleConfig(name="shuttle_4", description="Shuttle for binary classification."),
147
+ ShuttleConfig(name="shuttle_5", description="Shuttle for binary classification."),
148
+ ShuttleConfig(name="shuttle_6", description="Shuttle for binary classification."),
149
+
150
+ ]
151
+
152
+
153
+ def _info(self):
154
+ info = datasets.DatasetInfo(description=DESCRIPTION, citation=_CITATION, homepage=_HOMEPAGE,
155
+ features=features_per_config[self.config.name])
156
+
157
+ return info
158
+
159
+ def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
160
+ downloads = dl_manager.download_and_extract(urls_per_split)
161
+
162
+ return [
163
+ datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloads["train"]}),
164
+ ]
165
+
166
+ def _generate_examples(self, filepath: str):
167
+ data = pandas.read_csv(filepath)
168
+ data = self.preprocess(data)
169
+
170
+ for row_id, row in data.iterrows():
171
+ data_row = dict(row)
172
+
173
+ yield row_id, data_row
174
+
175
+ def preprocess(self, data: pandas.DataFrame) -> pandas.DataFrame:
176
+ data["class"] = data["class"].apply(lambda x: x - 1)
177
+
178
+ if self.config.name == "shuttle_0":
179
+ data["class"] = data["class"].apply(lambda x: 1 if x == 0 else 0)
180
+ elif self.config.name == "shuttle_1":
181
+ data["class"] = data["class"].apply(lambda x: 1 if x == 1 else 0)
182
+ elif self.config.name == "shuttle_2":
183
+ data["class"] = data["class"].apply(lambda x: 1 if x == 2 else 0)
184
+ elif self.config.name == "shuttle_3":
185
+ data["class"] = data["class"].apply(lambda x: 1 if x == 3 else 0)
186
+ elif self.config.name == "shuttle_4":
187
+ data["class"] = data["class"].apply(lambda x: 1 if x == 4 else 0)
188
+ elif self.config.name == "shuttle_5":
189
+ data["class"] = data["class"].apply(lambda x: 1 if x == 5 else 0)
190
+ elif self.config.name == "shuttle_6":
191
+ data["class"] = data["class"].apply(lambda x: 1 if x == 6 else 0)
192
+
193
+ for feature in _ENCODING_DICS:
194
+ encoding_function = partial(self.encode, feature)
195
+ data.loc[:, feature] = data[feature].apply(encoding_function)
196
+
197
+ return data[list(features_types_per_config[self.config.name].keys())]
198
+
199
+ def encode(self, feature, value):
200
+ if feature in _ENCODING_DICS:
201
+ return _ENCODING_DICS[feature][value]
202
+ raise ValueError(f"Unknown feature: {feature}")