content
stringlengths
7
928k
avg_line_length
float64
3.5
33.8k
max_line_length
int64
6
139k
alphanum_fraction
float64
0.08
0.96
licenses
sequence
repository_name
stringlengths
7
104
path
stringlengths
4
230
size
int64
7
928k
lang
stringclasses
1 value
""" Structured information on a coordinate point. """ # this file was auto-generated from datetime import date, datetime from fairgraph.base_v3 import EmbeddedMetadata, IRI from fairgraph.fields import Field class CoordinatePoint(EmbeddedMetadata): """ Structured information on a coordinate point. """ type = ["https://openminds.ebrains.eu/sands/CoordinatePoint"] context = { "schema": "http://schema.org/", "kg": "https://kg.ebrains.eu/api/instances/", "vocab": "https://openminds.ebrains.eu/vocab/", "terms": "https://openminds.ebrains.eu/controlledTerms/", "core": "https://openminds.ebrains.eu/core/" } fields = [ Field("coordinates", "openminds.core.QuantitativeValue", "vocab:coordinates", multiple=True, required=True, doc="Pair or triplet of numbers defining a location in a given coordinate space."), Field("coordinate_space", ["openminds.sands.CommonCoordinateSpace", "openminds.sands.CustomCoordinateSpace"], "vocab:coordinateSpace", multiple=False, required=True, doc="Two or three dimensional geometric setting."), ]
34.205882
173
0.675838
[ "Apache-2.0" ]
HumanBrainProject/fairgraph
fairgraph/openminds/sands/miscellaneous/coordinate_point.py
1,163
Python
# coding=utf-8 from pyecharts.chart import Chart def kline_tooltip_formatter(params): text = ( params[0].seriesName + "<br/>" + "- open:" + params[0].data[1] + "<br/>" + "- close:" + params[0].data[2] + "<br/>" + "- lowest:" + params[0].data[3] + "<br/>" + "- highest:" + params[0].data[4] ) return text class Kline(Chart): """ <<< K 线图 >>> 红涨蓝跌 """ def __init__(self, title="", subtitle="", **kwargs): super(Kline, self).__init__(title, subtitle, **kwargs) def add(self, *args, **kwargs): self.__add(*args, **kwargs) return self def __add(self, name, x_axis, y_axis, **kwargs): """ :param name: 系列名称,用于 tooltip 的显示,legend 的图例筛选。 :param x_axis: x 坐标轴数据。 :param y_axis: y 坐标轴数据。数据中,每一行是一个『数据项』,每一列属于一个『维度』。 数据项具体为 [open, close, lowest, highest] (即:[开盘值, 收盘值, 最低值, 最高值])。 :param kwargs: """ kwargs.update(type="candlestick", x_axis=x_axis) if "tooltip_formatter" not in kwargs: kwargs["tooltip_formatter"] = kline_tooltip_formatter if "tooltip_trigger" not in kwargs: kwargs["tooltip_trigger"] = "axis" chart = self._get_all_options(**kwargs) xaxis, yaxis = chart["xy_axis"] self._option.update(xAxis=xaxis, yAxis=yaxis) self._option.get("xAxis")[0]["scale"] = True self._option.get("yAxis")[0]["scale"] = True self._option.get("yAxis")[0]["splitArea"] = {"show": True} self._option.get("legend")[0].get("data").append(name) self._option.get("series").append( { "type": "candlestick", "name": name, "data": y_axis, "markPoint": chart["mark_point"], "markLine": chart["mark_line"], "seriesId": self._option.get("series_id"), } ) self._config_components(**kwargs)
27.884615
67
0.486437
[ "Apache-2.0" ]
Amoswish/graduaction_design_pubgprediction
venv/lib/python3.7/site-packages/pyecharts/charts/kline.py
2,347
Python
from pyexcel_io.sheet import ( SheetReader, SheetWriter, NamedContent ) from pyexcel_io.book import BookWriter from pyexcel_io.utils import is_empty_array from nose.tools import raises @raises(NotImplementedError) def test_book_writer(): book = BookWriter() book.create_sheet("test") def test_is_empty_array(): a = ["", "", "", ""] assert is_empty_array(a) is True b = [1, "", "", ""] assert is_empty_array(b) is False class ArrayReader(SheetReader): @property def name(self): SheetReader.name return self._native_sheet.name def number_of_columns(self): SheetReader.number_of_columns(self) return len(self._native_sheet.payload[0]) def number_of_rows(self): SheetReader.number_of_rows(self) return len(self._native_sheet.payload) def cell_value(self, row, column): SheetReader.cell_value(self, row, column) return self._native_sheet.payload[row][column] class ArrayWriter(SheetWriter): def set_sheet_name(self, name): self._native_sheet.name = name def write_row(self, array): self._native_sheet.payload.append(array) class TestSheetReader: @raises(NotImplementedError) def test_abstractness(self): reader = SheetReader("test") reader.cell_value(1, 2) @raises(NotImplementedError) def test_number_of_columns(self): reader = SheetReader("test") reader.number_of_columns() @raises(NotImplementedError) def test_number_of_rows(self): reader = SheetReader("test") reader.number_of_rows() def test_to_array(self): name = "test" class B(SheetReader): @property def name(self): return self._native_sheet def to_array(self): pass b = B(name) b.to_array() assert b.name == name class TestSheetWriter: @raises(NotImplementedError) def test_abstractness(self): writer = SheetWriter("te", "st", "abstract") writer.write_row([]) def test_inheritance(self): class D(SheetWriter): def write_row(self, row): pass d = D('t', 'e', 's') d.write_row([11, 11]) def test_writer(self): native_sheet = NamedContent("test", []) content = [ [1, 2], [3, 4], [5, 6] ] writer = ArrayWriter(None, native_sheet, "test") writer.write_row(content[0]) writer.write_array(content[1:]) assert native_sheet.payload == content def test_writer2(self): native_sheet = NamedContent("test", []) content = [ [1, 2], [3, 4], [5, 6] ] writer = ArrayWriter(None, native_sheet, None) writer.write_row(content[0]) writer.write_array(content[1:]) assert native_sheet.payload == content assert native_sheet.name == "pyexcel_sheet1"
25.075
56
0.606846
[ "BSD-3-Clause" ]
AverkinSergei/pyexcel-io
tests/test_base.py
3,009
Python
class FabricSheetType(ElementType,IDisposable): """ Represents a fabric sheet type,used in the generation of fabric wires. """ @staticmethod def CreateDefaultFabricSheetType(ADoc): """ CreateDefaultFabricSheetType(ADoc: Document) -> ElementId Creates a new FabricSheetType object with a default name. ADoc: The document. Returns: The newly created type id. """ pass def Dispose(self): """ Dispose(self: Element,A_0: bool) """ pass def getBoundingBox(self,*args): """ getBoundingBox(self: Element,view: View) -> BoundingBoxXYZ """ pass def GetReinforcementRoundingManager(self): """ GetReinforcementRoundingManager(self: FabricSheetType) -> FabricRoundingManager Returns an object for managing reinforcement rounding override settings. Returns: The rounding manager. """ pass def GetWireItem(self,wireIndex,direction): """ GetWireItem(self: FabricSheetType,wireIndex: int,direction: WireDistributionDirection) -> FabricWireItem Gets the Wire stored in the FabricSheetType at the associated index. wireIndex: Item index in the Fabric Sheet direction: Wire distribution direction of the inquired item Returns: Fabric wire Item """ pass def IsCustom(self): """ IsCustom(self: FabricSheetType) -> bool Verifies if the type is Custom Fabric Sheet Returns: True if Layout is set on Custom and if the wireArr is not null """ pass def IsValidMajorLapSplice(self,majorLapSplice): """ IsValidMajorLapSplice(self: FabricSheetType,majorLapSplice: float) -> bool Identifies if the input value is valid to be applied as the major lap splice value for this FabricSheetType. """ pass def IsValidMinorLapSplice(self,minorLapSplice): """ IsValidMinorLapSplice(self: FabricSheetType,minorLapSplice: float) -> bool Identifies if the input value is valid to be applied as the minor lap splice value for this FabricSheetType. """ pass def ReleaseUnmanagedResources(self,*args): """ ReleaseUnmanagedResources(self: Element,disposing: bool) """ pass def setElementType(self,*args): """ setElementType(self: Element,type: ElementType,incompatibleExceptionMessage: str) """ pass def SetLayoutAsCustomPattern(self,minorStartOverhang,minorEndOverhang,majorStartOverhang,majorEndOverhang,minorFabricWireItems,majorFabricWireItems): """ SetLayoutAsCustomPattern(self: FabricSheetType,minorStartOverhang: float,minorEndOverhang: float,majorStartOverhang: float,majorEndOverhang: float,minorFabricWireItems: IList[FabricWireItem],majorFabricWireItems: IList[FabricWireItem]) """ pass def SetMajorLayoutAsActualSpacing(self,overallWidth,minorStartOverhang,spacing): """ SetMajorLayoutAsActualSpacing(self: FabricSheetType,overallWidth: float,minorStartOverhang: float,spacing: float) Sets the major layout pattern as ActualSpacing,while specifying the needed parameters for this pattern. overallWidth: The entire width of the wire sheet in the minor direction. minorStartOverhang: The distance from the edge of the sheet to the first wire in the minor direction. spacing: The distance between the wires in the major direction. """ pass def SetMajorLayoutAsFixedNumber(self,overallWidth,minorStartOverhang,minorEndOverhang,numberOfWires): """ SetMajorLayoutAsFixedNumber(self: FabricSheetType,overallWidth: float,minorStartOverhang: float,minorEndOverhang: float,numberOfWires: int) Sets the major layout pattern as FixedNumber,while specifying the needed parameters for this pattern. overallWidth: The entire width of the wire sheet in the minor direction. minorStartOverhang: The distance from the edge of the sheet to the first wire in the minor direction. minorEndOverhang: The distance from the last wire to the edge of the sheet in the minor direction. numberOfWires: The number of the wires to set in the major direction. """ pass def SetMajorLayoutAsMaximumSpacing(self,overallWidth,minorStartOverhang,minorEndOverhang,spacing): """ SetMajorLayoutAsMaximumSpacing(self: FabricSheetType,overallWidth: float,minorStartOverhang: float,minorEndOverhang: float,spacing: float) Sets the major layout pattern as MaximumSpacing,while specifying the needed parameters for this pattern. overallWidth: The entire width of the wire sheet in the minor direction. minorStartOverhang: The distance from the edge of the sheet to the first wire in the minor direction. minorEndOverhang: The distance from the last wire to the edge of the sheet in the minor direction. spacing: The distance between the wires in the major direction. """ pass def SetMajorLayoutAsNumberWithSpacing(self,overallWidth,minorStartOverhang,numberOfWires,spacing): """ SetMajorLayoutAsNumberWithSpacing(self: FabricSheetType,overallWidth: float,minorStartOverhang: float,numberOfWires: int,spacing: float) Sets the major layout pattern as NumberWithSpacing,while specifying the needed parameters for this pattern. overallWidth: The entire width of the wire sheet in the minor direction. minorStartOverhang: The distance from the edge of the sheet to the first wire in the minor direction. numberOfWires: The number of the wires to set in the major direction. spacing: The distance between the wires in the major direction. """ pass def SetMinorLayoutAsActualSpacing(self,overallLength,majorStartOverhang,spacing): """ SetMinorLayoutAsActualSpacing(self: FabricSheetType,overallLength: float,majorStartOverhang: float,spacing: float) Sets the minor layout pattern as ActualSpacing,while specifying the needed parameters for this pattern. overallLength: The entire length of the wire sheet in the major direction. majorStartOverhang: The distance from the edge of the sheet to the first wire in the major direction. spacing: The distance between the wires in the minor direction. """ pass def SetMinorLayoutAsFixedNumber(self,overallLength,majorStartOverhang,majorEndOverhang,numberOfWires): """ SetMinorLayoutAsFixedNumber(self: FabricSheetType,overallLength: float,majorStartOverhang: float,majorEndOverhang: float,numberOfWires: int) Sets the major layout pattern as FixedNumber,while specifying the needed parameters for this pattern. overallLength: The entire length of the wire sheet in the major direction. majorStartOverhang: The distance from the edge of the sheet to the first wire in the major direction. majorEndOverhang: The distance from the last wire to the edge of the sheet in the major direction. numberOfWires: The number of the wires to set in the minor direction. """ pass def SetMinorLayoutAsMaximumSpacing(self,overallLength,majorStartOverhang,majorEndOverhang,spacing): """ SetMinorLayoutAsMaximumSpacing(self: FabricSheetType,overallLength: float,majorStartOverhang: float,majorEndOverhang: float,spacing: float) Sets the major layout pattern as MaximumSpacing,while specifying the needed parameters for this pattern. overallLength: The entire length of the wire sheet in the major direction. majorStartOverhang: The distance from the edge of the sheet to the first wire in the major direction. majorEndOverhang: The distance from the last wire to the edge of the sheet in the major direction. spacing: The distance between the wires in the minor direction. """ pass def SetMinorLayoutAsNumberWithSpacing(self,overallLength,majorStartOverhang,numberOfWires,spacing): """ SetMinorLayoutAsNumberWithSpacing(self: FabricSheetType,overallLength: float,majorStartOverhang: float,numberOfWires: int,spacing: float) Sets the major layout pattern as NumberWithSpacing,while specifying the needed parameters for this pattern. overallLength: The entire length of the wire sheet in the major direction. majorStartOverhang: The distance from the edge of the sheet to the first wire in the major direction. numberOfWires: The number of wires in the minor direction. spacing: The distance between the wires in the minor direction. """ pass def __enter__(self,*args): """ __enter__(self: IDisposable) -> object """ pass def __exit__(self,*args): """ __exit__(self: IDisposable,exc_type: object,exc_value: object,exc_back: object) """ pass def __init__(self,*args): """ x.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signaturex.__init__(...) initializes x; see x.__class__.__doc__ for signature """ pass MajorDirectionWireType=property(lambda self: object(),lambda self,v: None,lambda self: None) """The id of the FabricWireType to be used in the major direction. Get: MajorDirectionWireType(self: FabricSheetType) -> ElementId Set: MajorDirectionWireType(self: FabricSheetType)=value """ MajorEndOverhang=property(lambda self: object(),lambda self,v: None,lambda self: None) """The distance from the edge of the sheet to the last wire (measured in the major direction). Get: MajorEndOverhang(self: FabricSheetType) -> float """ MajorLapSpliceLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """The lap splice length in the major direction. Get: MajorLapSpliceLength(self: FabricSheetType) -> float Set: MajorLapSpliceLength(self: FabricSheetType)=value """ MajorLayoutPattern=property(lambda self: object(),lambda self,v: None,lambda self: None) """The layout pattern in the major direction. Get: MajorLayoutPattern(self: FabricSheetType) -> FabricSheetLayoutPattern """ MajorNumberOfWires=property(lambda self: object(),lambda self,v: None,lambda self: None) """The number of wires used in the major direction (includes the first and last wires). Get: MajorNumberOfWires(self: FabricSheetType) -> int """ MajorReinforcementArea=property(lambda self: object(),lambda self,v: None,lambda self: None) """The area of fabric divided by the spacing of the wire in the major direction. Get: MajorReinforcementArea(self: FabricSheetType) -> float """ MajorSpacing=property(lambda self: object(),lambda self,v: None,lambda self: None) """The spacing between the wires in the major direction (not including the overhangs). Get: MajorSpacing(self: FabricSheetType) -> float """ MajorStartOverhang=property(lambda self: object(),lambda self,v: None,lambda self: None) """The distance from the edge of the sheet to the first wire (measured in the major direction). Get: MajorStartOverhang(self: FabricSheetType) -> float """ Material=property(lambda self: object(),lambda self,v: None,lambda self: None) """The id of the material assigned to wires. Get: Material(self: FabricSheetType) -> ElementId Set: Material(self: FabricSheetType)=value """ MinorDirectionWireType=property(lambda self: object(),lambda self,v: None,lambda self: None) """The id of the FabricWireType to be used in the minor direction. Get: MinorDirectionWireType(self: FabricSheetType) -> ElementId Set: MinorDirectionWireType(self: FabricSheetType)=value """ MinorEndOverhang=property(lambda self: object(),lambda self,v: None,lambda self: None) """The distance from the edge of the sheet to the last wire (measured in the minor direction). Get: MinorEndOverhang(self: FabricSheetType) -> float """ MinorLapSpliceLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """The lap splice length in the minor direction. Get: MinorLapSpliceLength(self: FabricSheetType) -> float Set: MinorLapSpliceLength(self: FabricSheetType)=value """ MinorLayoutPattern=property(lambda self: object(),lambda self,v: None,lambda self: None) """The layout pattern in the minor direction. Get: MinorLayoutPattern(self: FabricSheetType) -> FabricSheetLayoutPattern """ MinorNumberOfWires=property(lambda self: object(),lambda self,v: None,lambda self: None) """The number of wires used in the minor direction (includes the 1st and last wires). Get: MinorNumberOfWires(self: FabricSheetType) -> int """ MinorReinforcementArea=property(lambda self: object(),lambda self,v: None,lambda self: None) """The area of fabric divided by the spacing of the wire in the minor direction. Get: MinorReinforcementArea(self: FabricSheetType) -> float """ MinorSpacing=property(lambda self: object(),lambda self,v: None,lambda self: None) """The spacing between the wires in the minor direction (not including the overhangs). Get: MinorSpacing(self: FabricSheetType) -> float """ MinorStartOverhang=property(lambda self: object(),lambda self,v: None,lambda self: None) """The distance from the edge of the sheet to the first wire (measured in the minor direction). Get: MinorStartOverhang(self: FabricSheetType) -> float """ OverallLength=property(lambda self: object(),lambda self,v: None,lambda self: None) """The length of the wire sheet (including overhangs) in the major direction. Get: OverallLength(self: FabricSheetType) -> float """ OverallWidth=property(lambda self: object(),lambda self,v: None,lambda self: None) """The length of the wire sheet (including overhangs) in the minor direction. Get: OverallWidth(self: FabricSheetType) -> float """ SheetMass=property(lambda self: object(),lambda self,v: None,lambda self: None) """The sheet mass. Get: SheetMass(self: FabricSheetType) -> float Set: SheetMass(self: FabricSheetType)=value """ SheetMassUnit=property(lambda self: object(),lambda self,v: None,lambda self: None) """The sheet mass per area unit. Get: SheetMassUnit(self: FabricSheetType) -> float """
26.237226
246
0.728265
[ "MIT" ]
BCSharp/ironpython-stubs
release/stubs.min/Autodesk/Revit/DB/Structure/__init___parts/FabricSheetType.py
14,378
Python
from __future__ import unicode_literals from xml.dom import minidom from django.contrib.syndication import views from django.core.exceptions import ImproperlyConfigured from django.test import TestCase from django.utils import tzinfo from django.utils.feedgenerator import rfc2822_date, rfc3339_date from .models import Entry class FeedTestCase(TestCase): fixtures = ['feeddata.json'] def assertChildNodes(self, elem, expected): actual = set(n.nodeName for n in elem.childNodes) expected = set(expected) self.assertEqual(actual, expected) def assertChildNodeContent(self, elem, expected): for k, v in expected.items(): self.assertEqual( elem.getElementsByTagName(k)[0].firstChild.wholeText, v) def assertCategories(self, elem, expected): self.assertEqual(set(i.firstChild.wholeText for i in elem.childNodes if i.nodeName == 'category'), set(expected)) ###################################### # Feed view ###################################### class SyndicationFeedTest(FeedTestCase): """ Tests for the high-level syndication feed framework. """ urls = 'syndication.urls' def test_rss2_feed(self): """ Test the structure and content of feeds generated by Rss201rev2Feed. """ response = self.client.get('/syndication/rss2/') doc = minidom.parseString(response.content) # Making sure there's only 1 `rss` element and that the correct # RSS version was specified. feed_elem = doc.getElementsByTagName('rss') self.assertEqual(len(feed_elem), 1) feed = feed_elem[0] self.assertEqual(feed.getAttribute('version'), '2.0') # Making sure there's only one `channel` element w/in the # `rss` element. chan_elem = feed.getElementsByTagName('channel') self.assertEqual(len(chan_elem), 1) chan = chan_elem[0] # Find the last build date d = Entry.objects.latest('published').published ltz = tzinfo.LocalTimezone(d) last_build_date = rfc2822_date(d.replace(tzinfo=ltz)) self.assertChildNodes(chan, ['title', 'link', 'description', 'language', 'lastBuildDate', 'item', 'atom:link', 'ttl', 'copyright', 'category']) self.assertChildNodeContent(chan, { 'title': 'My blog', 'description': 'A more thorough description of my blog.', 'link': 'http://example.com/blog/', 'language': 'en', 'lastBuildDate': last_build_date, #'atom:link': '', 'ttl': '600', 'copyright': 'Copyright (c) 2007, Sally Smith', }) self.assertCategories(chan, ['python', 'django']) # Ensure the content of the channel is correct self.assertChildNodeContent(chan, { 'title': 'My blog', 'link': 'http://example.com/blog/', }) # Check feed_url is passed self.assertEqual( chan.getElementsByTagName('atom:link')[0].getAttribute('href'), 'http://example.com/syndication/rss2/' ) # Find the pubdate of the first feed item d = Entry.objects.get(pk=1).published ltz = tzinfo.LocalTimezone(d) pub_date = rfc2822_date(d.replace(tzinfo=ltz)) items = chan.getElementsByTagName('item') self.assertEqual(len(items), Entry.objects.count()) self.assertChildNodeContent(items[0], { 'title': 'My first entry', 'description': 'Overridden description: My first entry', 'link': 'http://example.com/blog/1/', 'guid': 'http://example.com/blog/1/', 'pubDate': pub_date, 'author': '[email protected] (Sally Smith)', }) self.assertCategories(items[0], ['python', 'testing']) for item in items: self.assertChildNodes(item, ['title', 'link', 'description', 'guid', 'category', 'pubDate', 'author']) # Assert that <guid> does not have any 'isPermaLink' attribute self.assertIsNone(item.getElementsByTagName( 'guid')[0].attributes.get('isPermaLink')) def test_rss2_feed_guid_permalink_false(self): """ Test if the 'isPermaLink' attribute of <guid> element of an item in the RSS feed is 'false'. """ response = self.client.get( '/syndication/rss2/guid_ispermalink_false/') doc = minidom.parseString(response.content) chan = doc.getElementsByTagName( 'rss')[0].getElementsByTagName('channel')[0] items = chan.getElementsByTagName('item') for item in items: self.assertEqual( item.getElementsByTagName('guid')[0].attributes.get( 'isPermaLink').value, "false") def test_rss2_feed_guid_permalink_true(self): """ Test if the 'isPermaLink' attribute of <guid> element of an item in the RSS feed is 'true'. """ response = self.client.get( '/syndication/rss2/guid_ispermalink_true/') doc = minidom.parseString(response.content) chan = doc.getElementsByTagName( 'rss')[0].getElementsByTagName('channel')[0] items = chan.getElementsByTagName('item') for item in items: self.assertEqual( item.getElementsByTagName('guid')[0].attributes.get( 'isPermaLink').value, "true") def test_rss091_feed(self): """ Test the structure and content of feeds generated by RssUserland091Feed. """ response = self.client.get('/syndication/rss091/') doc = minidom.parseString(response.content) # Making sure there's only 1 `rss` element and that the correct # RSS version was specified. feed_elem = doc.getElementsByTagName('rss') self.assertEqual(len(feed_elem), 1) feed = feed_elem[0] self.assertEqual(feed.getAttribute('version'), '0.91') # Making sure there's only one `channel` element w/in the # `rss` element. chan_elem = feed.getElementsByTagName('channel') self.assertEqual(len(chan_elem), 1) chan = chan_elem[0] self.assertChildNodes(chan, ['title', 'link', 'description', 'language', 'lastBuildDate', 'item', 'atom:link', 'ttl', 'copyright', 'category']) # Ensure the content of the channel is correct self.assertChildNodeContent(chan, { 'title': 'My blog', 'link': 'http://example.com/blog/', }) self.assertCategories(chan, ['python', 'django']) # Check feed_url is passed self.assertEqual( chan.getElementsByTagName('atom:link')[0].getAttribute('href'), 'http://example.com/syndication/rss091/' ) items = chan.getElementsByTagName('item') self.assertEqual(len(items), Entry.objects.count()) self.assertChildNodeContent(items[0], { 'title': 'My first entry', 'description': 'Overridden description: My first entry', 'link': 'http://example.com/blog/1/', }) for item in items: self.assertChildNodes(item, ['title', 'link', 'description']) self.assertCategories(item, []) def test_atom_feed(self): """ Test the structure and content of feeds generated by Atom1Feed. """ response = self.client.get('/syndication/atom/') feed = minidom.parseString(response.content).firstChild self.assertEqual(feed.nodeName, 'feed') self.assertEqual(feed.getAttribute('xmlns'), 'http://www.w3.org/2005/Atom') self.assertChildNodes(feed, ['title', 'subtitle', 'link', 'id', 'updated', 'entry', 'rights', 'category', 'author']) for link in feed.getElementsByTagName('link'): if link.getAttribute('rel') == 'self': self.assertEqual(link.getAttribute('href'), 'http://example.com/syndication/atom/') entries = feed.getElementsByTagName('entry') self.assertEqual(len(entries), Entry.objects.count()) for entry in entries: self.assertChildNodes(entry, [ 'title', 'link', 'id', 'summary', 'category', 'updated', 'published', 'rights', 'author', ]) summary = entry.getElementsByTagName('summary')[0] self.assertEqual(summary.getAttribute('type'), 'html') def test_atom_feed_published_and_updated_elements(self): """ Test that the published and updated elements are not the same and now adhere to RFC 4287. """ response = self.client.get('/syndication/atom/') feed = minidom.parseString(response.content).firstChild entries = feed.getElementsByTagName('entry') published = entries[0].getElementsByTagName('published')[0].firstChild.wholeText updated = entries[0].getElementsByTagName('updated')[0].firstChild.wholeText self.assertNotEqual(published, updated) def test_latest_post_date(self): """ Test that both the published and updated dates are considered when determining the latest post date. """ # this feed has a `published` element with the latest date response = self.client.get('/syndication/atom/') feed = minidom.parseString(response.content).firstChild updated = feed.getElementsByTagName('updated')[0].firstChild.wholeText d = Entry.objects.latest('published').published ltz = tzinfo.LocalTimezone(d) latest_published = rfc3339_date(d.replace(tzinfo=ltz)) self.assertEqual(updated, latest_published) # this feed has an `updated` element with the latest date response = self.client.get('/syndication/latest/') feed = minidom.parseString(response.content).firstChild updated = feed.getElementsByTagName('updated')[0].firstChild.wholeText d = Entry.objects.exclude(pk=5).latest('updated').updated ltz = tzinfo.LocalTimezone(d) latest_updated = rfc3339_date(d.replace(tzinfo=ltz)) self.assertEqual(updated, latest_updated) def test_custom_feed_generator(self): response = self.client.get('/syndication/custom/') feed = minidom.parseString(response.content).firstChild self.assertEqual(feed.nodeName, 'feed') self.assertEqual(feed.getAttribute('django'), 'rocks') self.assertChildNodes(feed, ['title', 'subtitle', 'link', 'id', 'updated', 'entry', 'spam', 'rights', 'category', 'author']) entries = feed.getElementsByTagName('entry') self.assertEqual(len(entries), Entry.objects.count()) for entry in entries: self.assertEqual(entry.getAttribute('bacon'), 'yum') self.assertChildNodes(entry, [ 'title', 'link', 'id', 'summary', 'ministry', 'rights', 'author', 'updated', 'published', 'category', ]) summary = entry.getElementsByTagName('summary')[0] self.assertEqual(summary.getAttribute('type'), 'html') def test_title_escaping(self): """ Tests that titles are escaped correctly in RSS feeds. """ response = self.client.get('/syndication/rss2/') doc = minidom.parseString(response.content) for item in doc.getElementsByTagName('item'): link = item.getElementsByTagName('link')[0] if link.firstChild.wholeText == 'http://example.com/blog/4/': title = item.getElementsByTagName('title')[0] self.assertEqual(title.firstChild.wholeText, 'A &amp; B &lt; C &gt; D') def test_naive_datetime_conversion(self): """ Test that datetimes are correctly converted to the local time zone. """ # Naive date times passed in get converted to the local time zone, so # check the recived zone offset against the local offset. response = self.client.get('/syndication/naive-dates/') doc = minidom.parseString(response.content) updated = doc.getElementsByTagName('updated')[0].firstChild.wholeText d = Entry.objects.latest('published').published ltz = tzinfo.LocalTimezone(d) latest = rfc3339_date(d.replace(tzinfo=ltz)) self.assertEqual(updated, latest) def test_aware_datetime_conversion(self): """ Test that datetimes with timezones don't get trodden on. """ response = self.client.get('/syndication/aware-dates/') doc = minidom.parseString(response.content) published = doc.getElementsByTagName('published')[0].firstChild.wholeText self.assertEqual(published[-6:], '+00:42') def test_feed_last_modified_time(self): response = self.client.get('/syndication/naive-dates/') self.assertEqual(response['Last-Modified'], 'Tue, 26 Mar 2013 01:00:00 GMT') # No last-modified when feed has no item_pubdate response = self.client.get('/syndication/no_pubdate/') self.assertFalse(response.has_header('Last-Modified')) def test_feed_url(self): """ Test that the feed_url can be overridden. """ response = self.client.get('/syndication/feedurl/') doc = minidom.parseString(response.content) for link in doc.getElementsByTagName('link'): if link.getAttribute('rel') == 'self': self.assertEqual(link.getAttribute('href'), 'http://example.com/customfeedurl/') def test_secure_urls(self): """ Test URLs are prefixed with https:// when feed is requested over HTTPS. """ response = self.client.get('/syndication/rss2/', **{ 'wsgi.url_scheme': 'https', }) doc = minidom.parseString(response.content) chan = doc.getElementsByTagName('channel')[0] self.assertEqual( chan.getElementsByTagName('link')[0].firstChild.wholeText[0:5], 'https' ) atom_link = chan.getElementsByTagName('atom:link')[0] self.assertEqual(atom_link.getAttribute('href')[0:5], 'https') for link in doc.getElementsByTagName('link'): if link.getAttribute('rel') == 'self': self.assertEqual(link.getAttribute('href')[0:5], 'https') def test_item_link_error(self): """ Test that a ImproperlyConfigured is raised if no link could be found for the item(s). """ self.assertRaises(ImproperlyConfigured, self.client.get, '/syndication/articles/') def test_template_feed(self): """ Test that the item title and description can be overridden with templates. """ response = self.client.get('/syndication/template/') doc = minidom.parseString(response.content) feed = doc.getElementsByTagName('rss')[0] chan = feed.getElementsByTagName('channel')[0] items = chan.getElementsByTagName('item') self.assertChildNodeContent(items[0], { 'title': 'Title in your templates: My first entry', 'description': 'Description in your templates: My first entry', 'link': 'http://example.com/blog/1/', }) def test_template_context_feed(self): """ Test that custom context data can be passed to templates for title and description. """ response = self.client.get('/syndication/template_context/') doc = minidom.parseString(response.content) feed = doc.getElementsByTagName('rss')[0] chan = feed.getElementsByTagName('channel')[0] items = chan.getElementsByTagName('item') self.assertChildNodeContent(items[0], { 'title': 'My first entry (foo is bar)', 'description': 'My first entry (foo is bar)', }) def test_add_domain(self): """ Test add_domain() prefixes domains onto the correct URLs. """ self.assertEqual( views.add_domain('example.com', '/foo/?arg=value'), 'http://example.com/foo/?arg=value' ) self.assertEqual( views.add_domain('example.com', '/foo/?arg=value', True), 'https://example.com/foo/?arg=value' ) self.assertEqual( views.add_domain('example.com', 'http://djangoproject.com/doc/'), 'http://djangoproject.com/doc/' ) self.assertEqual( views.add_domain('example.com', 'https://djangoproject.com/doc/'), 'https://djangoproject.com/doc/' ) self.assertEqual( views.add_domain('example.com', 'mailto:[email protected]'), 'mailto:[email protected]' ) self.assertEqual( views.add_domain('example.com', '//example.com/foo/?arg=value'), 'http://example.com/foo/?arg=value' )
40.006944
151
0.602847
[ "BSD-3-Clause" ]
adambrenecki/django
tests/syndication/tests.py
17,283
Python
# Copyright (c) 2011 The Chromium Embedded Framework Authors. All rights # reserved. Use of this source code is governed by a BSD-style license that # can be found in the LICENSE file. from cef_parser import * def make_function_body_block(cls): impl = ' // ' + cls.get_name() + ' methods.\n' funcs = cls.get_virtual_funcs() for func in funcs: impl += ' ' + func.get_cpp_proto() if cls.is_client_side(): impl += ' override;\n' else: impl += ' OVERRIDE;\n' return impl def make_function_body(header, cls): impl = make_function_body_block(cls) cur_cls = cls while True: parent_name = cur_cls.get_parent_name() if is_base_class(parent_name): break else: parent_cls = header.get_class(parent_name) if parent_cls is None: raise Exception('Class does not exist: ' + parent_name) if len(impl) > 0: impl += '\n' impl += make_function_body_block(parent_cls) cur_cls = header.get_class(parent_name) return impl def make_ctocpp_header(header, clsname): cls = header.get_class(clsname) if cls is None: raise Exception('Class does not exist: ' + clsname) clientside = cls.is_client_side() directory = cls.get_file_directory() defname = '' if not directory is None: defname += directory + '_' defname += get_capi_name(clsname[3:], False) defname = defname.upper() capiname = cls.get_capi_name() result = get_copyright() result += '#ifndef CEF_LIBCEF_DLL_CTOCPP_'+defname+'_CTOCPP_H_\n'+ \ '#define CEF_LIBCEF_DLL_CTOCPP_'+defname+'_CTOCPP_H_\n' + \ '#pragma once\n' if clientside: result += """ #if !defined(BUILDING_CEF_SHARED) #error This file can be included DLL-side only #endif """ else: result += """ #if !defined(WRAPPING_CEF_SHARED) #error This file can be included wrapper-side only #endif """ # build the function body func_body = make_function_body(header, cls) # include standard headers if func_body.find('std::map') > 0 or func_body.find('std::multimap') > 0: result += '\n#include <map>' if func_body.find('std::vector') > 0: result += '\n#include <vector>' # include the headers for this class result += '\n#include "include/'+cls.get_file_name()+'"'+ \ '\n#include "include/capi/'+cls.get_capi_file_name()+'"\n' # include headers for any forward declared classes that are not in the same file declares = cls.get_forward_declares() for declare in declares: dcls = header.get_class(declare) if dcls.get_file_name() != cls.get_file_name(): result += '#include "include/'+dcls.get_file_name()+'"\n' \ '#include "include/capi/'+dcls.get_capi_file_name()+'"\n' base_class_name = header.get_base_class_name(clsname) base_scoped = True if base_class_name == 'CefBaseScoped' else False if base_scoped: template_file = 'ctocpp_scoped.h' template_class = 'CefCToCppScoped' else: template_file = 'ctocpp_ref_counted.h' template_class = 'CefCToCppRefCounted' result += '#include "libcef_dll/ctocpp/' + template_file + '"' result += '\n\n// Wrap a C structure with a C++ class.\n' if clientside: result += '// This class may be instantiated and accessed DLL-side only.\n' else: result += '// This class may be instantiated and accessed wrapper-side only.\n' result += 'class '+clsname+'CToCpp\n'+ \ ' : public ' + template_class + '<'+clsname+'CToCpp, '+clsname+', '+capiname+'> {\n'+ \ ' public:\n'+ \ ' '+clsname+'CToCpp();\n\n' result += func_body result += '};\n\n' result += '#endif // CEF_LIBCEF_DLL_CTOCPP_' + defname + '_CTOCPP_H_' return result def write_ctocpp_header(header, clsname, dir): # give the output file the same directory offset as the input file cls = header.get_class(clsname) dir = os.path.dirname(os.path.join(dir, cls.get_file_name())) file = os.path.join(dir, get_capi_name(clsname[3:], False) + '_ctocpp.h') newcontents = make_ctocpp_header(header, clsname) return (file, newcontents) # test the module if __name__ == "__main__": import sys # verify that the correct number of command-line arguments are provided if len(sys.argv) < 3: sys.stderr.write('Usage: ' + sys.argv[0] + ' <infile> <classname>') sys.exit() # create the header object header = obj_header() header.add_file(sys.argv[1]) # dump the result to stdout sys.stdout.write(make_ctocpp_header(header, sys.argv[2]))
29.444444
104
0.666149
[ "BSD-3-Clause" ]
AkihideHasegawa/cef
tools/make_ctocpp_header.py
4,505
Python
# The MIT License (MIT) # # Copyright (c) 2015, Nicolas Sebrecht & contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import os import sys def testingPath(): return os.path.join( os.path.abspath(sys.modules['imapfw'].__path__[0]), 'testing')
41.419355
79
0.759346
[ "MIT" ]
Deepanshu2017/imapfw
imapfw/testing/libcore.py
1,284
Python
# -*- coding: utf-8 -*- """ Created on Thu Jul 07 14:08:31 2016 @author: Mic """ from __future__ import division from wiselib2.must import * import numpy as np import wiselib2.Rayman as rm Gauss1d = lambda x ,y : None from scipy import interpolate as interpolate from matplotlib import pyplot as plt class PsdFuns: ''' Ensemble of possible Psd Functions. Each element is a callable Psd. Most used are PsdFuns.PowerLaw(x,a,b) PsdFuns.Interp(x, xData, yData) ''' @staticmethod def Flat(x, *args): N = len(x) return np.zeros([1,N]) +1 @staticmethod def PowerLaw(x,a,b): return a*x**b @staticmethod def Gaussian(x,sigma, x0=0): return np.exp(-0.5 * (x-x0)**2/sigma**2) @staticmethod def Interp(x, xData, yData): f = interpolate.interp1d(xData, yData) return f(x) def PsdFun2Noise_1d(N,dx, PsdFun, PsdArgs): ''' Generates a noise pattern based an the Power spectral density returned by PsdFun ''' x = np.arange(0,N//2+1, dx) yHalf = PsdFun(x, *PsdArgs) y = Psd2NoisePattern_1d(yHalf, Semiaxis = True ) return x,y #============================================================================ # FUN: PsdArray2Noise_1d_v2 #============================================================================ def PsdArray2Noise_1d_v2(f_in, Psd_in, L_mm,N): ''' Returns meters ''' from scipy import interpolate log=np.log fft = np.fft.fft fftshift = np.fft.fftshift ff = f_in yy = Psd_in L = L_mm N = int(N) N2 = int(N//2) L =300 # (mm) L_um = L*1e3 L_nm = L*1e6 fMin = 1/L_um ##vecchia riga ##fSpline = (np.array(range(N2))+1)/L_um # um^-1 fSpline = np.arange(N2)/N2 * (max(ff) - min(ff)) + min(ff) fun = interpolate.splrep(log(ff), log(yy), s=2) yPsd_log = interpolate.splev(log(fSpline), fun) ySpline = np.exp(yPsd_log) yPsd = ySpline # tolgo yPsd[fSpline<ff[0]] = 200 n = len(yPsd) plt.plot(fSpline, yPsd,'-') plt.plot(ff, yy,'x') plt.legend(['ySpline','Data']) ax = plt.axes() #ax.set_yscale('log') #ax.set_xscale('log') #% controllo RMS integrando la yPsd import scipy.integrate as integrate RMS = np.sqrt(integrate.trapz(yPsd, fSpline/1000)) #% Modo Manfredda style #yPsdNorm = np.sqrt(yPsd/L_um/1000) #yPsdNorm_reverse = yPsdNorm[::-1] yPsd_reverse = yPsd[::-1] ell= 1/(fSpline[1] - fSpline[0]) if N%2 == 0: yPsd2 = np.hstack((yPsd_reverse ,0,yPsd[0:-1])) else: yPsd2 = np.hstack((yPsd_reverse ,0,yPsd)) ##yPsd2Norm = np.sqrt(yPsd2/ell/1000/2) yPsd2Norm = np.sqrt(yPsd2/ell/1000) n_ = len(yPsd2) print('len(yPsd2) = %0.2d' % len(yPsd2Norm)) phi = 2*np.pi * np.random.rand(n_) r = np.exp(1j*phi) yPsd2Norm_ = fftshift(yPsd2Norm) #yPsd2Norm_[len(yPsd2Norm_)//2] = 0 yRaf = np.fft.fft(r*yPsd2Norm_) yRaf = np.real(yRaf) print('Rms = %0.2e nm' % np.std(yRaf)) plt.plot(yPsd2Norm_) print('max yPsd_ = %d nm' % max(yPsd2)) print('max yPsd2Norm = %0.4f nm' % max(yPsd2Norm)) print('Rms yRaf2 = %0.2e nm' % np.std(yRaf)) return yRaf * 1e-9 #============================================================================ # FUN: Psd2Noise #============================================================================ def PsdArray2Noise_1d(PsdArray, N, Semiaxis = True, Real = True): ''' Generates a noise pattern whose Power Spectral density is given by Psd. Parameters --------------------- Psd : 1d array Contains the numeric Psd (treated as evenly spaced array) Semiaxis : 0 : does nothing 1 : halvens Pds, then replicates the halven part for left frequencies, producing an output as long as Psd 2 : replicates all Pds for lef frequencies as well, producing an output twice as long as Psd Real : boolean If True, the real part of the output is returned (default) Returns: --------------------- An array of the same length of Psd ''' if Semiaxis == True: yHalf = PsdArray PsdArrayNew = np.hstack((yHalf[-1:0:-1], yHalf)) idelta = len(PsdArrayNew) - N if idelta == 1:# piu lungo PsdArrayNew = PsdArrayNew[0:-1] # uguale elif idelta == 0: pass else: print('Error! len(PsdArrayNew) - len(PsdArray) = %0d' % idelta) y = np.fft.fftshift(PsdArrayNew) r = 2*np.pi * np.random.rand(len(PsdArrayNew)) f = np.fft.ifft(y * np.exp(1j*r)) if Real: return np.real(f) else: return f Psd2Noise_1d = PsdArray2Noise_1d #============================================================================ # FUN: NoNoise_1d #============================================================================ def NoNoise_1d(N, *args): return np.zeros([1,N]) #============================================================================ # FUN: GaussianNoise_1d #============================================================================ def GaussianNoise_1d(N,dx, Sigma): ''' PSD(f) = np.exp(-0.5^f/Sigma^2) ''' x = np.linspace( - N//2 *dx, N//2-1 * dx,N) y = np.exp(-0.5*x**2/Sigma**2) return Psd2NoisePattern_1d(y) #============================================================================ # FUN: PowerLawNoise_1d #============================================================================ def PowerLawNoise_1d(N, dx, a, b): ''' PSD(x) = a*x^b ''' x = np.arange(0,N//2+1, dx) yHalf = a * x**b # y = np.hstack((yHalf[-1:0:-1], 0, yHalf[1:-1])) return Psd2NoisePattern_1d(y, Semiaxis = True) #============================================================================ # FUN: CustomNoise_1d #============================================================================ def CustomNoise_1d(N, dx, xPsd, yPsd): xPsd_, yPsd_ = rm.FastResample1d(xPsd, yPsd,N) return Psd2NoisePattern_1d(yPsd_, Semiaxis = True) #============================================================================ # CLASS: NoiseGenerator #============================================================================ class PsdGenerator: NoNoise = staticmethod(NoNoise_1d) Gauss = staticmethod(GaussianNoise_1d) PowerLaw = staticmethod(PowerLawNoise_1d) NumericArray = staticmethod(CustomNoise_1d) #============================================================================ # FUN: FitPowerLaw #============================================================================ def FitPowerLaw(x,y): ''' Fits the input data in the form y = a*x^b returns a,b ''' import scipy.optimize as optimize fFit = lambda p, x: p[0] * x ** p[1] fErr = lambda p, x, y: (y - fFit(p, x)) p0 = [max(y), -1.0] out = optimize.leastsq(fErr, p0, args=(x, y), full_output=1) pOut = out[0] b = pOut[1] a = pOut[0] # indexErr = np.np.sqrt( covar[0][0] ) # ampErr = np.np.sqrt( covar[1][1] ) * amp return a,b #============================================================================== # CLASS: RoughnessMaker #============================================================================== class RoughnessMaker(object): class Options(): FIT_NUMERIC_DATA_WITH_POWER_LAW = True AUTO_ZERO_MEAN_FOR_NUMERIC_DATA = True AUTO_FILL_NUMERIC_DATA_WITH_ZERO = True AUTO_RESET_CUTOFF_ON_PSDTYPE_CHANGE = True def __init__(self): self.PsdType = PsdFuns.PowerLaw self.PsdParams = np.array([1,1]) self._IsNumericPsdInFreq = None self.CutoffLowHigh = [None, None] self.ProfileScaling = 1 return None @property def PsdType(self): return self._PsdType @PsdType.setter def PsdType(self, Val): ''' Note: each time that the Property value is set, self.CutoffLowHigh is reset, is specified by options ''' self. _PsdType = Val if self.Options.AUTO_RESET_CUTOFF_ON_PSDTYPE_CHANGE == True: self.PsdCutoffLowHigh = [None, None] #====================================================================== # FUN: PdfEval #====================================================================== def PsdEval(self, N, df, CutoffLowHigh = [None, None]): ''' Evals the PSD in the range [0 - N*df] It's good custom to have PSD[0] = 0, so that the noise pattern is zero-mean. Parameters: ---------------------- N : int #of samples df : float spacing of spatial frequencies (df=1/TotalLength) CutoffLowHigh : [LowCutoff, HighCutoff] if >0, then Psd(f<Cutoff) is set to 0. if None, then LowCutoff = min() Returns : fAll, yPsdAll ---------------------- fAll : 1d array contains the spatial frequencies yPsd : 1d array contains the Psd ''' ''' The Pdf is evaluated only within LowCutoff and HoghCutoff If the Pdf is PsdFuns.Interp, then LowCutoff and HighCutoff are automatically set to min and max values of the experimental data ''' StrMessage = '' def GetInRange(fAll, LowCutoff, HighCutoff): _tmpa = fAll >= LowCutoff _tmpb = fAll <= HighCutoff fMid_Pos = np.all([_tmpa, _tmpb],0) fMid = fAll[fMid_Pos] return fMid_Pos, fMid LowCutoff, HighCutoff = CutoffLowHigh fMin = 0 fMax = (N-1)*df fAll = np.linspace(0, fMax, N) yPsdAll = fAll* 0 # init LowCutoff = 0 if LowCutoff is None else LowCutoff HighCutoff = N*df if HighCutoff is None else HighCutoff # Numeric PSD # Note: by default returned yPsd is always 0 outside the input data range if self.PsdType == PsdFuns.Interp: # Use Auto-Fit + PowerLaw if self.Options.FIT_NUMERIC_DATA_WITH_POWER_LAW == True: xFreq,y = self.NumericPsdGetXY() p = FitPowerLaw(1/xFreq,y) _PsdParams = p[0], -p[1] LowCutoff = np.amin(self._PsdNumericX) HighCutoff = np.amin(self._PsdNumericX) fMid_Pos, fMid = GetInRange(fAll, LowCutoff, HighCutoff) yPsd = PsdFuns.PowerLaw(fMid, *_PsdParams ) # Use Interpolation else: # check Cutoff LowVal = np.amin(self._PsdNumericX) HighVal = np.amax(self._PsdNumericX) LowCutoff = LowVal if LowCutoff <= LowVal else LowCutoff HighCutoff = HighVal if HighCutoff >= HighVal else HighCutoff # Get the list of good frequency values (fMid) and their positions # (fMid_Pos) fMid_Pos, fMid = GetInRange(fAll, LowCutoff, HighCutoff) ##yPsd = self.PsdType(fMid, *self.PsdParams) ## non funziona, rimpiazzo a mano yPsd = PsdFuns.Interp(fMid, self._PsdNumericX, self._PsdNumericY) # Analytical Psd else: fMid_Pos, fMid = GetInRange(fAll, LowCutoff, HighCutoff) yPsd = self.PsdType(fMid, *self.PsdParams) # copying array subset yPsdAll[fMid_Pos] = yPsd return fAll, yPsdAll #====================================================================== # FUN: _FitNumericPsdWithPowerLaw #====================================================================== # in disusos def _FitNumericPsdWithPowerLaw(self): x,y = self.NumericPsdGetXY() if self._IsNumericPsdInFreq == True: p = FitPowerLaw(1/x,y) self.PsdParams = p[0], -p[1] else: p = FitPowerLaw(x,y) self.PsdParams = p[0], p[1] #====================================================================== # FUN: MakeProfile #====================================================================== def MakeProfile(self, L,N): ''' Evaluates the psd according to .PsdType, .PsdParams and .Options directives Returns an evenly-spaced array. If PsdType = NumericArray, linear interpolation is performed. :PARAM: N: # of samples :PARAM: dx: grid spacing (spatial frequency) returns: 1d arr ''' if self.PsdType == PsdFuns.Interp: # chiama codice ad hoc L_mm = L*1e3 yRoughness = PsdArray2Noise_1d_v2(self._PsdNumericX, self._PsdNumericY, L_mm, N) else: print('Irreversible error. The code was not completed to handle this instance') return yRoughness * self.ProfileScaling # f, yPsd = self.PsdEval(N//2 + 1,df) # Special case # if self.Options.FIT_NUMERIC_DATA_WITH_POWER_LAW == True: # self.PsdParams = list(FitPowerLaw(*self.NumericPsdGetXY())) # yPsd = PsdFuns.PowerLaw(x, *self.PsdParams) # else: # general calse # yPsd = self.PsdType(x, *self.PsdParams) # yRoughness = Psd2Noise_1d(yPsd, N, Semiaxis = True) # x = np.linspace(0, N*dx,N) # # Special case # if self.Options.FIT_NUMERIC_DATA_WITH_POWER_LAW == True: # self.PsdParams = list(FitPowerLaw(*self.NumericPsdGetXY())) # y = PowerLawNoise_1d(N, dx, *self.PsdParams) # else: # general calse # y = self.PsdType(N,dx, *self.PsdParams) # return y Generate = MakeProfile #====================================================================== # FUN: NumericPsdSetXY #====================================================================== def NumericPsdSetXY(self,x,y): self._PsdNumericX = x self._PsdNumericY = y #====================================================================== # FUN: NumericPsdGetXY #====================================================================== def NumericPsdGetXY(self): try: return self._PsdNumericX, self._PsdNumericY except: print('Error in RoughnessMaker.NumericPsdGetXY. Maybe the data file was not properly loaded') #====================================================================== # FUN: NumericPsdLoadXY #====================================================================== def NumericPsdLoadXY(self, FilePath, xScaling = 1, yScaling = 1 , xIsSpatialFreq = True): ''' @TODO: specificare formati e tipi di file Parameters ---------------------------- xIsSpatialFreq : bool true If the first column (Read_x_values) contains spatial frequencies. False if it contains lenghts. Default = True xScaling, yScaling: floats Read_x_values => Read_x_values * xScaling Read_y_values => Read_y_values * yScaling Sometimes, properly setting the x and y scaling values may be confusing (although just matter of high-school considerations). On this purpose, the property .RoughnessMaker.ProfileScaling property can be used also..ProfileScaling is the scale factor that acts on the output of MakeProfile() function only. remarks -------- pippo ''' try: self._IsNumericPsdInFreq = xIsSpatialFreq s = np.loadtxt(FilePath) x = s[:,0] y = s[:,1] x = x * xScaling y = y * yScaling # inversion of x-axis if not spatial frequencies if xIsSpatialFreq == False: f = 1/x else: f = x # array sorting i = np.argsort(f) f = f[i] y = y[i] # I set the Cutoff value of the class according to available data self.PsdCutoffLowHigh = [np.amin, np.amax(f)] # I set class operating variables self.PsdType = PsdFuns.Interp self.PsdParams = [f,y] # Auto-set # fill 0-value (DC Component) # if self.Options.AUTO_FILL_NUMERIC_DATA_WITH_ZERO == True: # if np.amin(x >0): # x = np.insert(x,0,0) # y = np.insert(y,0,0) # 0 in psd => 0-mean value in the noise pattern # sync other class values self.NumericPsdSetXY(f, y) except: pass def Generate(self, N = None, dx = None, CutoffLowHigh = [None, None]): ''' Parameters N: # of output samples dx: step of the x axis Note: generates an evenly spaced array ''' L = dx * N df = 1/L fPsd, yPsd = self.PsdEval(N//2 +1 , df = df, CutoffLowHigh = CutoffLowHigh ) h = Psd2Noise_1d(yPsd, Semiaxis = True) return h #====================================================================== # FUN: NumericPsdCheck #====================================================================== def NumericPsdCheck(self, N, L): df = 1/L # Stored data ff,yy = self.NumericPsdGetXY() # Evaluated data fPsd, yPsd = self.PsdEval(N, df) plt.plot(fPsd, np.log10(yPsd),'x') plt.plot(ff, np.log10(yy),'.r') plt.legend(['Evaluated data', 'Stored data']) plt.suptitle('Usage of stored data (PSD)') fMax = df*(N//2) fMin = df StrMsg = '' _max = np.max(ff) _min = np.min(ff) print('fMax query = %0.1e m^-1' % fMax ) print('fMax data= %0.1e m^-1 = %0.2e um^-1' % (_max, (_max * 1e6) )) print('fMin query= %0.1e m^-1' % fMin ) print('fMin data= %0.1e m^-1 = %0.2e um^-1' % (_min, (_min * 1e6) )) return StrMsg
28.234347
310
0.563138
[ "MIT" ]
WISE-Project/wiselib2
wiselib2/Noise.py
15,783
Python
from collections import defaultdict def list_to_map(Xs, ys): labels_map = defaultdict(list) for x, y in list(zip(Xs, ys)): labels_map[y].append(x) return labels_map
23.25
35
0.682796
[ "Apache-2.0" ]
kareemjano/image-toolbox
dataset_utils/general_utils.py
186
Python
#!/Users/yaroten/Library/Mobile Documents/com~apple~CloudDocs/git/crawling_scraping/crawling_scraping/bin/python3 # $Id: rst2odt_prepstyles.py 5839 2009-01-07 19:09:28Z dkuhlman $ # Author: Dave Kuhlman <[email protected]> # Copyright: This module has been placed in the public domain. """ Fix a word-processor-generated styles.odt for odtwriter use: Drop page size specifications from styles.xml in STYLE_FILE.odt. """ # # Author: Michael Schutte <[email protected]> from lxml import etree import sys import zipfile from tempfile import mkstemp import shutil import os NAMESPACES = { "style": "urn:oasis:names:tc:opendocument:xmlns:style:1.0", "fo": "urn:oasis:names:tc:opendocument:xmlns:xsl-fo-compatible:1.0" } def prepstyle(filename): zin = zipfile.ZipFile(filename) styles = zin.read("styles.xml") root = etree.fromstring(styles) for el in root.xpath("//style:page-layout-properties", namespaces=NAMESPACES): for attr in el.attrib: if attr.startswith("{%s}" % NAMESPACES["fo"]): del el.attrib[attr] tempname = mkstemp() zout = zipfile.ZipFile(os.fdopen(tempname[0], "w"), "w", zipfile.ZIP_DEFLATED) for item in zin.infolist(): if item.filename == "styles.xml": zout.writestr(item, etree.tostring(root)) else: zout.writestr(item, zin.read(item.filename)) zout.close() zin.close() shutil.move(tempname[1], filename) def main(): args = sys.argv[1:] if len(args) != 1: print >> sys.stderr, __doc__ print >> sys.stderr, "Usage: %s STYLE_FILE.odt\n" % sys.argv[0] sys.exit(1) filename = args[0] prepstyle(filename) if __name__ == '__main__': main() # vim:tw=78:sw=4:sts=4:et:
26.367647
113
0.650307
[ "MIT" ]
litteletips/crawling_scraping
crawling_scraping/bin/rst2odt_prepstyles.py
1,793
Python
import pytest from engine.constants import G from pytest import param as p from .orbit_derived_parameters import OrbitalPeriod @pytest.mark.parametrize( ("primary_mass", "secondary_mass", "semimajor_axis", "expected"), [p(10e10, 100, 10, 76.9102, id="arbitrary period")], ) def test_orbital_period(primary_mass, secondary_mass, semimajor_axis, expected): assert OrbitalPeriod( primary_mass, secondary_mass, semimajor_axis, G ).evalf() == pytest.approx(expected, 1e-3)
30.9375
80
0.747475
[ "MIT" ]
RomainEndelin/keplerian_orbits
python/engine/functions/orbit_derived_parameters_test.py
495
Python
# -*- coding: utf-8 -*- __author__ = """Adam Geitgey""" __email__ = '[email protected]' __version__ = '0.1.0' from .api import load_image_file, face_locations, face_landmarks, face_encodings, compare_faces, face_distance
28
110
0.741071
[ "MIT" ]
EmmanuelOwusu/Image_Processing
face_recognition/face_recognition/__init__.py
224
Python
import json import pytest from great_expectations.core import ExpectationConfiguration, ExpectationSuite from .test_expectation_suite import baseline_suite, exp1, exp2, exp3, exp4 @pytest.fixture def empty_suite(): return ExpectationSuite( expectation_suite_name="warning", expectations=[], meta={"notes": "This is an expectation suite."}, ) @pytest.fixture def exp5(): return ExpectationConfiguration( expectation_type="expect_column_values_to_not_be_null", kwargs={"column": "a",}, meta={}, ) def test_append_expectation(empty_suite, exp1, exp2): assert len(empty_suite.expectations) == 0 empty_suite.append_expectation(exp1) assert len(empty_suite.expectations) == 1 # Adding the same expectation again *does* add duplicates. empty_suite.append_expectation(exp1) assert len(empty_suite.expectations) == 2 empty_suite.append_expectation(exp2) assert len(empty_suite.expectations) == 3 # Turn this on once we're ready to enforce strict typing. # with pytest.raises(TypeError): # empty_suite.append_expectation("not an expectation") # Turn this on once we're ready to enforce strict typing. # with pytest.raises(TypeError): # empty_suite.append_expectation(exp1.to_json_dict()) def test_find_expectation_indexes(baseline_suite, exp5): # Passing no parameters "finds" all Expectations assert baseline_suite.find_expectation_indexes() == [0, 1] # Match on single columns assert baseline_suite.find_expectation_indexes(column="a") == [0] assert baseline_suite.find_expectation_indexes(column="b") == [1] # Non-existent column returns no matches assert baseline_suite.find_expectation_indexes(column="z") == [] # It can return multiple expectation_type matches assert baseline_suite.find_expectation_indexes( expectation_type="expect_column_values_to_be_in_set" ) == [0, 1] # It can return multiple column matches baseline_suite.append_expectation(exp5) assert baseline_suite.find_expectation_indexes(column="a") == [0, 2] # It can match a single expectation_type assert baseline_suite.find_expectation_indexes( expectation_type="expect_column_values_to_not_be_null" ) == [2] # expectation_kwargs can match full kwargs assert baseline_suite.find_expectation_indexes( expectation_kwargs={ "column": "b", "value_set": [-1, -2, -3], "result_format": "BASIC", } ) == [1] # expectation_kwargs can match partial kwargs assert baseline_suite.find_expectation_indexes( expectation_kwargs={"column": "a"} ) == [0, 2] # expectation_type and expectation_kwargs work in conjunction assert baseline_suite.find_expectation_indexes( expectation_type="expect_column_values_to_not_be_null", expectation_kwargs={"column": "a"}, ) == [2] # column and expectation_kwargs work in conjunction assert baseline_suite.find_expectation_indexes( column="a", expectation_kwargs={"result_format": "BASIC"} ) == [0] # column and expectation_type work in conjunction assert baseline_suite.find_expectation_indexes( column="a", expectation_type="expect_column_values_to_not_be_null", ) == [2] assert ( baseline_suite.find_expectation_indexes( column="a", expectation_type="expect_column_values_to_be_between", ) == [] ) assert ( baseline_suite.find_expectation_indexes( column="zzz", expectation_type="expect_column_values_to_be_between", ) == [] ) with pytest.raises(ValueError): assert ( baseline_suite.find_expectation_indexes( column="a", expectation_kwargs={"column": "b"} ) == [] ) def test_find_expectation_indexes_on_empty_suite(empty_suite): assert ( empty_suite.find_expectation_indexes( expectation_type="expect_column_values_to_not_be_null" ) == [] ) assert empty_suite.find_expectation_indexes(column="x") == [] assert empty_suite.find_expectation_indexes(expectation_kwargs={}) == [] def test_find_expectations(baseline_suite, exp1, exp2): # Note: most of the logic in this method is based on # find_expectation_indexes and _copy_and_clean_up_expectations_from_indexes # These tests do not thoroughly cover that logic. # Instead, they focus on the behavior of the discard_* methods assert ( baseline_suite.find_expectations( column="a", expectation_type="expect_column_values_to_be_between", ) == [] ) result = baseline_suite.find_expectations( column="a", expectation_type="expect_column_values_to_be_in_set", ) assert len(result) == 1 assert result[0] == ExpectationConfiguration( expectation_type="expect_column_values_to_be_in_set", kwargs={ "column": "a", "value_set": [1, 2, 3], # "result_format": "BASIC" }, meta={"notes": "This is an expectation."}, ) exp_with_all_the_params = ExpectationConfiguration( expectation_type="expect_column_values_to_not_be_null", kwargs={ "column": "a", "result_format": "BASIC", "include_config": True, "catch_exceptions": True, }, meta={}, ) baseline_suite.append_expectation(exp_with_all_the_params) assert baseline_suite.find_expectations( column="a", expectation_type="expect_column_values_to_not_be_null", )[0] == ExpectationConfiguration( expectation_type="expect_column_values_to_not_be_null", kwargs={"column": "a",}, meta={}, ) assert ( baseline_suite.find_expectations( column="a", expectation_type="expect_column_values_to_not_be_null", discard_result_format_kwargs=False, discard_include_config_kwargs=False, discard_catch_exceptions_kwargs=False, )[0] == exp_with_all_the_params ) assert baseline_suite.find_expectations( column="a", expectation_type="expect_column_values_to_not_be_null", discard_result_format_kwargs=False, discard_catch_exceptions_kwargs=False, )[0] == ExpectationConfiguration( expectation_type="expect_column_values_to_not_be_null", kwargs={"column": "a", "result_format": "BASIC", "catch_exceptions": True,}, meta={}, ) def test_remove_expectation(baseline_suite): # ValueError: Multiple expectations matched arguments. No expectations removed. with pytest.raises(ValueError): baseline_suite.remove_expectation() # ValueError: No matching expectation found. with pytest.raises(ValueError): baseline_suite.remove_expectation(column="does_not_exist") # ValueError: Multiple expectations matched arguments. No expectations removed. with pytest.raises(ValueError): baseline_suite.remove_expectation( expectation_type="expect_column_values_to_be_in_set" ) assert len(baseline_suite.expectations) == 2 assert baseline_suite.remove_expectation(column="a") == None assert len(baseline_suite.expectations) == 1 baseline_suite.remove_expectation( expectation_type="expect_column_values_to_be_in_set" ) assert len(baseline_suite.expectations) == 0 # ValueError: No matching expectation found. with pytest.raises(ValueError): baseline_suite.remove_expectation( expectation_type="expect_column_values_to_be_in_set" )
32.224066
84
0.683492
[ "Apache-2.0" ]
lfpll/great_expectations
tests/core/test_expectation_suite_crud_methods.py
7,766
Python
from collections import defaultdict from typing import DefaultDict from .. import utils from .. import data ''' A collection of functions o index faculty data. No function in this class reads data from the data files, just works logic on them. This helps keep the program modular, by separating the data sources from the data indexing ''' ''' Maps faculty to the sections they teach. This function works by taking several arguments: - faculty, from [FacultyReader.get_faculty] - sectionTeachers, from [SectionReader.get_section_faculty_ids] These are kept as parameters instead of calling the functions by itself in order to keep the data and logic layers separate. ''' def get_faculty_sections(faculty,section_teachers): result = defaultdict(set) missing_emails = set() for key, value in section_teachers.items(): section_id = key faculty_id = value #Teaches a class but doesn't have basic faculty data if faculty_id not in faculty: missing_emails.add(faculty_id) continue result[faculty[faculty_id]].add(section_id) if missing_emails: utils.logger.warning(f"Missing emails for {missing_emails}") return result ''' Returns complete [User] objects. This function returns [User] objects with more properties than before. See [User.addSchedule] for which properties are added. This function works by taking several arguments: - faculty_sections from [get_faculty_sections] - section_periods from [student_reader.get_periods] These are kept as parameters instead of calling the functions by itself in order to keep the data and logic layers separate. ''' def get_faculty_with_schedule(faculty_sections, section_periods): # The schedule for each teacher schedules = {} # Sections IDs which are taught but never meet. missing_periods = set() # Faculty missing a homerooms. # # This will be logged at the debug level. missing_homerooms = set() # Loop over teacher sections and get their periods. for key, value in faculty_sections.items(): periods = [] for section_id in value: if section_id in section_periods: periods = list(section_periods[section_id]) elif section_id.startswith("UADV"): key.homeroom = section_id key.homeroom_location = "Unavailable" else: missing_periods.add(section_id) # Still couldn'y find any homeroom if key.homeroom is None: missing_homerooms.add(key) key.homeroom = "SENIOR_HOMEROOM" key.homeroom_location = "Unavailable" schedules[key] = periods # Some logging if not missing_periods: utils.logger.debug("Missing homerooms", missing_homerooms) # Compiles a list of periods into a full schedule result = [] for key, value in schedules.items(): schedule = data.DayDefaultDict() for period in value: schedule[period.day][period.period-1] = period schedule.populate(utils.constants.day_names) key.schedule = schedule result.append(key) return result
27.916667
76
0.733002
[ "MIT" ]
BraydenKO/RamLife
firebase/firestore-py/lib/faculty/logic.py
3,015
Python
import sys import struct from math import sqrt def cross(a, b): return [ a[1] * b[2] - a[2] * b[1], a[2] * b[0] - a[0] * b[2], a[0] * b[1] - a[1] * b[0] ] def dot(a, b): return a[0] * b[0] + a[1] * b[1] + a[2] * b[2] def normalized(a): s = 1 / sqrt(dot(a, a)) return [ a[0] * s, a[1] * s, a[2] * s ] def mul(m, a): return [ dot(m[0], a), dot(m[1], a), dot(m[2], a) ] def opp(a): return [-a[0], -a[1], -a[2]] def lookFrom(p): z = p x = normalized(cross([0,0,1], z)) y = normalized(cross(z, x)) invp = opp(mul([x, y, z], p)) return [ [x[0], x[1], x[2], invp[0]], [y[0], y[1], y[2], invp[1]], [z[0], z[1], z[2], invp[2]], [0, 0, 0, 1], ] def write_view_matrix(inputFilename, outputFilepath): with open(outputFilepath, 'wb') as outFile: for i, line in enumerate(open(inputFilename, 'r')): coords = [float(x) for x in line.split()] if len(coords) != 3: print("Unable to parse line: %s " % line) exit(1) mat = lookFrom(coords) print(mat) column_major_data = tuple(mat[i][j] for j in range(4) for i in range(4)) outFile.write(struct.pack("f"*16, *column_major_data)) if __name__ == "__main__": inputFilename = sys.argv[1] if len(sys.argv) > 1 else "octahedron.xyz" outputFilepath = sys.argv[2] if len(sys.argv) > 2 else "octahedron_camera.bin" write_view_matrix(inputFilename, outputFilepath)
26.87931
84
0.502245
[ "MIT" ]
eliemichel/GrainViewer
share/scripts/augen_octahedron2camera.py
1,559
Python
""" * GTDynamics Copyright 2021, Georgia Tech Research Corporation, * Atlanta, Georgia 30332-0415 * All Rights Reserved * See LICENSE for the license information * * @file test_print.py * @brief Test printing with DynamicsSymbol. * @author Gerry Chen """ import unittest from io import StringIO from unittest.mock import patch import gtdynamics as gtd import gtsam class TestPrint(unittest.TestCase): """Test printing of keys.""" def test_values(self): """Checks that printing Values uses the GTDKeyFormatter instead of gtsam's default""" v = gtd.Values() gtd.InsertJointAngle(v, 0, 1, 2) self.assertTrue('q(0)1' in v.__repr__()) def test_nonlinear_factor_graph(self): """Checks that printing NonlinearFactorGraph uses the GTDKeyFormatter""" fg = gtd.NonlinearFactorGraph() fg.push_back( gtd.MinTorqueFactor( gtd.TorqueKey(0, 0).key(), gtsam.noiseModel.Unit.Create(1))) self.assertTrue('T(0)0' in fg.__repr__()) def test_key_formatter(self): """Tests print method with various key formatters""" torqueKey = gtd.TorqueKey(0, 0).key() factor = gtd.MinTorqueFactor(torqueKey, gtsam.noiseModel.Unit.Create(1)) with patch('sys.stdout', new=StringIO()) as fake_out: factor.print('factor: ', gtd.GTDKeyFormatter) self.assertTrue('factor: min torque factor' in fake_out.getvalue()) self.assertTrue('keys = { T(0)0 }' in fake_out.getvalue()) def myKeyFormatter(key): return 'this is my key formatter {}'.format(key) with patch('sys.stdout', new=StringIO()) as fake_out: factor.print('factor: ', myKeyFormatter) self.assertTrue('factor: min torque factor' in fake_out.getvalue()) self.assertTrue('keys = {{ this is my key formatter {} }}'.format( torqueKey) in fake_out.getvalue()) if __name__ == "__main__": unittest.main()
34.694915
93
0.633122
[ "BSD-2-Clause" ]
borglab/GTDynamics
python/tests/test_print.py
2,047
Python
from flask_migrate import Migrate from os import environ from sys import exit from config import config_dict from app import create_app, db get_config_mode = environ.get('GENTELELLA_CONFIG_MODE', 'Debug') try: config_mode = config_dict[get_config_mode.capitalize()] except KeyError: exit('Error: Invalid GENTELELLA_CONFIG_MODE environment variable entry.') app = create_app(config_mode) Migrate(app, db)
24.470588
77
0.798077
[ "MIT" ]
Allenhorst/hh_test
gentelella.py
416
Python
from typing import Optional, Union, Tuple, Mapping, List from torch import Tensor from torch_geometric.data.storage import recursive_apply from torch_geometric.typing import Adj from torch_sparse import SparseTensor from tsl.ops.connectivity import convert_torch_connectivity from tsl.typing import DataArray, SparseTensArray, ScipySparseMatrix from . import utils class DataParsingMixin: def _parse_data(self, obj: DataArray) -> Tensor: assert obj is not None obj = utils.copy_to_tensor(obj) obj = utils.to_steps_nodes_channels(obj) obj = utils.cast_tensor(obj, self.precision) return obj def _parse_mask(self, mask: Optional[DataArray]) -> Optional[Tensor]: if mask is None: return None mask = utils.copy_to_tensor(mask) mask = utils.to_steps_nodes_channels(mask) self._check_same_dim(mask.size(0), 'n_steps', 'mask') self._check_same_dim(mask.size(1), 'n_nodes', 'mask') if mask.size(-1) > 1: self._check_same_dim(mask.size(-1), 'n_channels', 'mask') mask = utils.cast_tensor(mask) return mask def _parse_exogenous(self, obj: DataArray, name: str, node_level: bool) -> Tensor: obj = utils.copy_to_tensor(obj) if node_level: obj = utils.to_steps_nodes_channels(obj) self._check_same_dim(obj.shape[1], 'n_nodes', name) else: obj = utils.to_steps_channels(obj) self._check_same_dim(obj.shape[0], 'n_steps', name) obj = utils.cast_tensor(obj, self.precision) return obj def _parse_attribute(self, obj: DataArray, name: str, node_level: bool) -> Tensor: obj = utils.copy_to_tensor(obj) if node_level: obj = utils.to_nodes_channels(obj) self._check_same_dim(obj.shape[0], 'n_nodes', name) obj = utils.cast_tensor(obj, self.precision) return obj def _parse_adj(self, connectivity: Union[SparseTensArray, Tuple[DataArray]], target_layout: Optional[str] = None ) -> Tuple[Optional[Adj], Optional[Tensor]]: # format in [sparse, edge_index, None], where None means keep as input if connectivity is None: return None, None # Convert to torch # from np.ndarray, pd.DataFrame or torch.Tensor if isinstance(connectivity, DataArray.__args__): connectivity = utils.copy_to_tensor(connectivity) elif isinstance(connectivity, (list, tuple)): connectivity = recursive_apply(connectivity, utils.copy_to_tensor) # from scipy sparse matrix elif isinstance(connectivity, ScipySparseMatrix): connectivity = SparseTensor.from_scipy(connectivity) elif not isinstance(connectivity, SparseTensor): raise TypeError("`connectivity` must be a dense matrix or in " "COO format (i.e., an `edge_index`).") if target_layout is not None: connectivity = convert_torch_connectivity(connectivity, target_layout, num_nodes=self.n_nodes) if isinstance(connectivity, (list, tuple)): edge_index, edge_weight = connectivity if edge_weight is not None: edge_weight = utils.cast_tensor(edge_weight, self.precision) else: edge_index, edge_weight = connectivity, None self._check_same_dim(edge_index.size(0), 'n_nodes', 'connectivity') return edge_index, edge_weight def _check_same_dim(self, dim: int, attr: str, name: str): dim_data = getattr(self, attr) if dim != dim_data: raise ValueError("Cannot assign {0} with {1}={2}: data has {1}={3}" .format(name, attr, dim, dim_data)) def _check_name(self, name: str): if name.startswith('edge_'): raise ValueError(f"Cannot set attribute with name '{name}' in this " f"way, consider adding edge attributes as " f"{self.name}.{name} = value.") # name cannot be an attribute of self, nor a key in get invalid_names = set(dir(self)).union(self.keys) if name in invalid_names: raise ValueError(f"Cannot set attribute with name '{name}', there " f"is already an attribute named '{name}' in the " "dataset.") def _value_to_kwargs(self, value: Union[DataArray, List, Tuple, Mapping], keys: Optional[Union[List, Tuple]] = None): if isinstance(value, DataArray.__args__): return dict(value=value) if isinstance(value, (list, tuple)): return dict(zip(keys, value)) elif isinstance(value, Mapping): return value else: raise TypeError('Invalid type for value "{}"'.format(type(value))) def _exog_value_to_kwargs(self, value: Union[DataArray, List, Tuple, Mapping]): keys = ['value', 'node_level', 'add_to_input_map', 'synch_mode', 'preprocess'] return self._value_to_kwargs(value, keys) def _attr_value_to_kwargs(self, value: Union[DataArray, List, Tuple, Mapping]): keys = ['value', 'node_level', 'add_to_batch'] return self._value_to_kwargs(value, keys)
43.224806
80
0.603659
[ "MIT" ]
TorchSpatiotemporal/tsl
tsl/data/mixin.py
5,576
Python
""" Write a function that takes in an array of integers and returns a sorted version of that array. Use the QuickSort algorithm to sort the array. """ def quick_sort(array): if len(array) <= 1: return array _rec_helper(array, 0, len(array) - 1) return array def _rec_helper(array, start, end): # base case if start >= end: return pivot = start left = pivot + 1 right = end while left <= right: if array[left] > array[pivot] and array[right] < array[pivot]: _swap(array, left, right) if array[pivot] >= array[left]: left += 1 if array[pivot] <= array[right]: right -= 1 _swap(array, pivot, right) if right - start > end - right: _rec_helper(array, start, right - 1) _rec_helper(array, right + 1, end) else: _rec_helper(array, right + 1, end) _rec_helper(array, start, right - 1) def _swap(array, left, right): array[left], array[right] = array[right], array[left] #test array = [3, 4, 7, 1, 1, 2, 5, 1, 3, 8, 4] assert quick_sort(array) == sorted(array) print('OK')
25.772727
142
0.589947
[ "MIT" ]
Surbeivol/daily-coding-problems
solutions/quick_sort.py
1,134
Python
# -*- coding: utf-8 -*- """Example for a list question type. Run example by typing `python -m examples.list` in your console.""" from pprint import pprint import questionary from examples import custom_style_dope from questionary import Separator, Choice, prompt def ask_pystyle(**kwargs): # create the question object question = questionary.select( 'What do you want to do?', qmark='😃', choices=[ 'Order a pizza', 'Make a reservation', Separator(), 'Ask for opening hours', Choice('Contact support', disabled='Unavailable at this time'), 'Talk to the receptionist'], style=custom_style_dope, **kwargs) # prompt the user for an answer return question.ask() def ask_dictstyle(**kwargs): questions = [ { 'type': 'select', 'name': 'theme', 'message': 'What do you want to do?', 'choices': [ 'Order a pizza', 'Make a reservation', Separator(), 'Ask for opening hours', { 'name': 'Contact support', 'disabled': 'Unavailable at this time' }, 'Talk to the receptionist' ] } ] return prompt(questions, style=custom_style_dope, **kwargs) if __name__ == '__main__': pprint(ask_pystyle())
26.071429
75
0.534247
[ "MIT" ]
fossabot/questionary
examples/select.py
1,463
Python
# -*- coding: utf-8 -*- from zappa_boilerplate.database import db_session from flask_wtf import Form from wtforms import StringField, PasswordField from wtforms.validators import DataRequired, Email, EqualTo, Length from .models import User class RegisterForm(Form): username = StringField('Username', validators=[DataRequired(), Length(min=3, max=25)]) email = StringField('Email', validators=[DataRequired(), Email(), Length(min=6, max=40)]) password = PasswordField('Password', validators=[DataRequired(), Length(min=6, max=40)]) confirm = PasswordField('Verify password', [DataRequired(), EqualTo('password', message='Passwords must match')]) def __init__(self, *args, **kwargs): super(RegisterForm, self).__init__(*args, **kwargs) self.user = None def validate(self): initial_validation = super(RegisterForm, self).validate() if not initial_validation: return False user = db_session.query(User).filter_by(username=self.username.data).first() if user: self.username.errors.append("Username already registered") return False user = User.query.filter_by(email=self.email.data).first() if user: self.email.errors.append("Email already registered") return False return True
40.083333
98
0.630631
[ "MIT" ]
402900550b/dtnewman2
zappa_boilerplate/user/forms.py
1,443
Python
# An old version of OpenAI Gym's multi_discrete.py. (Was getting affected by Gym updates) # (https://github.com/openai/gym/blob/1fb81d4e3fb780ccf77fec731287ba07da35eb84/gym/spaces/multi_discrete.py) import numpy as np import gym class MultiDiscrete(gym.Space): """ - The multi-discrete action space consists of a series of discrete action spaces with different parameters - It can be adapted to both a Discrete action space or a continuous (Box) action space - It is useful to represent game controllers or keyboards where each key can be represented as a discrete action space - It is parametrized by passing an array of arrays containing [min, max] for each discrete action space where the discrete action space can take any integers from `min` to `max` (both inclusive) Note: A value of 0 always need to represent the NOOP action. e.g. Nintendo Game Controller - Can be conceptualized as 3 discrete action spaces: 1) Arrow Keys: Discrete 5 - NOOP[0], UP[1], RIGHT[2], DOWN[3], LEFT[4] - params: min: 0, max: 4 2) Button A: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1 3) Button B: Discrete 2 - NOOP[0], Pressed[1] - params: min: 0, max: 1 - Can be initialized as MultiDiscrete([ [0,4], [0,1], [0,1] ]) """ def __init__(self, array_of_param_array): self.low = np.array([x[0] for x in array_of_param_array]) self.high = np.array([x[1] for x in array_of_param_array]) self.num_discrete_space = self.low.shape[0] def sample(self): """ Returns a array with one sample from each discrete action space """ # For each row: round(random .* (max - min) + min, 0) np_random = np.random.RandomState() random_array = np_random.rand(self.num_discrete_space) return [int(x) for x in np.floor(np.multiply((self.high - self.low + 1.), random_array) + self.low)] def contains(self, x): return len(x) == self.num_discrete_space and (np.array(x) >= self.low).all() and (np.array(x) <= self.high).all() @property def shape(self): return self.num_discrete_space def __repr__(self): return "MultiDiscrete" + str(self.num_discrete_space) def __eq__(self, other): return np.array_equal(self.low, other.low) and np.array_equal(self.high, other.high)
53.522727
122
0.675159
[ "MIT" ]
51N84D/multiagent-particle-envs
multiagent/multi_discrete.py
2,355
Python
# -*- coding: utf-8 -*- # Define your item pipelines here # # Don't forget to add your pipeline to the ITEM_PIPELINES setting # See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html class VmallPipeline(object): def process_item(self, item, spider): return item
23.833333
65
0.70979
[ "MIT" ]
gikoluo/vmall
vmall/pipelines.py
286
Python
""" app.py - Flask-based server. @author Thomas J. Daley, J.D. @version: 0.0.1 Copyright (c) 2019 by Thomas J. Daley, J.D. """ import argparse import random from flask import Flask, render_template, request, flash, redirect, url_for, session, jsonify from wtforms import Form, StringField, TextAreaField, PasswordField, validators from functools import wraps from views.decorators import is_admin_user, is_logged_in, is_case_set from webservice import WebService from util.database import Database from views.admin.admin_routes import admin_routes from views.cases.case_routes import case_routes from views.discovery.discovery_routes import discovery_routes from views.drivers.driver_routes import driver_routes from views.info.info_routes import info_routes from views.login.login import login from views.objections.objection_routes import objection_routes from views.real_property.real_property_routes import rp_routes from views.responses.response_routes import response_routes from views.vehicles.vehicle_routes import vehicle_routes from views.decorators import is_admin_user, is_case_set, is_logged_in WEBSERVICE = None DATABASE = Database() DATABASE.connect() app = Flask(__name__) app.register_blueprint(admin_routes) app.register_blueprint(case_routes) app.register_blueprint(discovery_routes) app.register_blueprint(driver_routes) app.register_blueprint(info_routes) app.register_blueprint(login) app.register_blueprint(objection_routes) app.register_blueprint(rp_routes) app.register_blueprint(response_routes) app.register_blueprint(vehicle_routes) # Helper to create Public Data credentials from session variables def pd_credentials(mysession) -> dict: return { "username": session["pd_username"], "password": session["pd_password"] } @app.route('/', methods=['GET']) def index(): return render_template('home.html') @app.route('/attorney/find/<string:bar_number>', methods=['POST']) @is_logged_in def find_attorney(bar_number: str): attorney = DATABASE.attorney(bar_number) if attorney: attorney['success'] = True return jsonify(attorney) return jsonify( { 'success': False, 'message': "Unable to find attorney having Bar Number {}" .format(bar_number) } ) if __name__ == "__main__": parser = argparse.ArgumentParser(description="Webservice for DiscoveryBot") parser.add_argument( "--debug", help="Run server in debug mode", action='store_true' ) parser.add_argument( "--port", help="TCP port to listen on", type=int, default=5001 ) parser.add_argument( "--zillowid", "-z", help="Zillow API credential from https://www.zillow.com/howto/api/APIOverview.htm" # NOQA ) args = parser.parse_args() WEBSERVICE = WebService(args.zillowid) app.secret_key = "SDFIIUWER*HGjdf8*" app.run(debug=args.debug, port=args.port)
28.769231
98
0.734626
[ "MIT" ]
tjdaley/publicdataws
app/app.py
2,992
Python
from . import auth from . import groups from . import hub from . import proxy from . import services from . import users from .base import * default_handlers = [] for mod in (auth, hub, proxy, users, groups, services): default_handlers.extend(mod.default_handlers)
22.5
55
0.744444
[ "MIT" ]
KarmaScripter/PiggyPy
Lib/site-packages/jupyterhub/apihandlers/__init__.py
270
Python
""" A NumPy sub-namespace that conforms to the Python array API standard. This submodule accompanies NEP 47, which proposes its inclusion in NumPy. It is still considered experimental, and will issue a warning when imported. This is a proof-of-concept namespace that wraps the corresponding NumPy functions to give a conforming implementation of the Python array API standard (https://data-apis.github.io/array-api/latest/). The standard is currently in an RFC phase and comments on it are both welcome and encouraged. Comments should be made either at https://github.com/data-apis/array-api or at https://github.com/data-apis/consortium-feedback/discussions. NumPy already follows the proposed spec for the most part, so this module serves mostly as a thin wrapper around it. However, NumPy also implements a lot of behavior that is not included in the spec, so this serves as a restricted subset of the API. Only those functions that are part of the spec are included in this namespace, and all functions are given with the exact signature given in the spec, including the use of position-only arguments, and omitting any extra keyword arguments implemented by NumPy but not part of the spec. The behavior of some functions is also modified from the NumPy behavior to conform to the standard. Note that the underlying array object itself is wrapped in a wrapper Array() class, but is otherwise unchanged. This submodule is implemented in pure Python with no C extensions. The array API spec is designed as a "minimal API subset" and explicitly allows libraries to include behaviors not specified by it. But users of this module that intend to write portable code should be aware that only those behaviors that are listed in the spec are guaranteed to be implemented across libraries. Consequently, the NumPy implementation was chosen to be both conforming and minimal, so that users can use this implementation of the array API namespace and be sure that behaviors that it defines will be available in conforming namespaces from other libraries. A few notes about the current state of this submodule: - There is a test suite that tests modules against the array API standard at https://github.com/data-apis/array-api-tests. The test suite is still a work in progress, but the existing tests pass on this module, with a few exceptions: - DLPack support (see https://github.com/data-apis/array-api/pull/106) is not included here, as it requires a full implementation in NumPy proper first. The test suite is not yet complete, and even the tests that exist are not guaranteed to give a comprehensive coverage of the spec. Therefore, when reviewing and using this submodule, you should refer to the standard documents themselves. There are some tests in numpy.array_api.tests, but they primarily focus on things that are not tested by the official array API test suite. - There is a custom array object, numpy.array_api.Array, which is returned by all functions in this module. All functions in the array API namespace implicitly assume that they will only receive this object as input. The only way to create instances of this object is to use one of the array creation functions. It does not have a public constructor on the object itself. The object is a small wrapper class around numpy.ndarray. The main purpose of it is to restrict the namespace of the array object to only those dtypes and only those methods that are required by the spec, as well as to limit/change certain behavior that differs in the spec. In particular: - The array API namespace does not have scalar objects, only 0-D arrays. Operations on Array that would create a scalar in NumPy create a 0-D array. - Indexing: Only a subset of indices supported by NumPy are required by the spec. The Array object restricts indexing to only allow those types of indices that are required by the spec. See the docstring of the numpy.array_api.Array._validate_indices helper function for more information. - Type promotion: Some type promotion rules are different in the spec. In particular, the spec does not have any value-based casting. The spec also does not require cross-kind casting, like integer -> floating-point. Only those promotions that are explicitly required by the array API specification are allowed in this module. See NEP 47 for more info. - Functions do not automatically call asarray() on their input, and will not work if the input type is not Array. The exception is array creation functions, and Python operators on the Array object, which accept Python scalars of the same type as the array dtype. - All functions include type annotations, corresponding to those given in the spec (see _typing.py for definitions of some custom types). These do not currently fully pass mypy due to some limitations in mypy. - Dtype objects are just the NumPy dtype objects, e.g., float64 = np.dtype('float64'). The spec does not require any behavior on these dtype objects other than that they be accessible by name and be comparable by equality, but it was considered too much extra complexity to create custom objects to represent dtypes. - All places where the implementations in this submodule are known to deviate from their corresponding functions in NumPy are marked with "# Note:" comments. Still TODO in this module are: - DLPack support for numpy.ndarray is still in progress. See https://github.com/numpy/numpy/pull/19083. - The copy=False keyword argument to asarray() is not yet implemented. This requires support in numpy.asarray() first. - Some functions are not yet fully tested in the array API test suite, and may require updates that are not yet known until the tests are written. - The spec is still in an RFC phase and may still have minor updates, which will need to be reflected here. - The linear algebra extension in the spec will be added in a future pull request. - Complex number support in array API spec is planned but not yet finalized, as are the fft extension and certain linear algebra functions such as eig that require complex dtypes. """ import warnings warnings.warn( "The numpy.array_api submodule is still experimental. See NEP 47.", stacklevel=2 ) __all__ = [] from ._constants import e, inf, nan, pi __all__ += ["e", "inf", "nan", "pi"] from ._creation_functions import ( asarray, arange, empty, empty_like, eye, from_dlpack, full, full_like, linspace, meshgrid, ones, ones_like, zeros, zeros_like, ) __all__ += [ "asarray", "arange", "empty", "empty_like", "eye", "from_dlpack", "full", "full_like", "linspace", "meshgrid", "ones", "ones_like", "zeros", "zeros_like", ] from ._data_type_functions import ( broadcast_arrays, broadcast_to, can_cast, finfo, iinfo, result_type, ) __all__ += [ "broadcast_arrays", "broadcast_to", "can_cast", "finfo", "iinfo", "result_type", ] from ._dtypes import ( int8, int16, int32, int64, uint8, uint16, uint32, uint64, float32, float64, bool, ) __all__ += [ "int8", "int16", "int32", "int64", "uint8", "uint16", "uint32", "uint64", "float32", "float64", "bool", ] from ._elementwise_functions import ( abs, acos, acosh, add, asin, asinh, atan, atan2, atanh, bitwise_and, bitwise_left_shift, bitwise_invert, bitwise_or, bitwise_right_shift, bitwise_xor, ceil, cos, cosh, divide, equal, exp, expm1, floor, floor_divide, greater, greater_equal, isfinite, isinf, isnan, less, less_equal, log, log1p, log2, log10, logaddexp, logical_and, logical_not, logical_or, logical_xor, multiply, negative, not_equal, positive, pow, remainder, round, sign, sin, sinh, square, sqrt, subtract, tan, tanh, trunc, ) __all__ += [ "abs", "acos", "acosh", "add", "asin", "asinh", "atan", "atan2", "atanh", "bitwise_and", "bitwise_left_shift", "bitwise_invert", "bitwise_or", "bitwise_right_shift", "bitwise_xor", "ceil", "cos", "cosh", "divide", "equal", "exp", "expm1", "floor", "floor_divide", "greater", "greater_equal", "isfinite", "isinf", "isnan", "less", "less_equal", "log", "log1p", "log2", "log10", "logaddexp", "logical_and", "logical_not", "logical_or", "logical_xor", "multiply", "negative", "not_equal", "positive", "pow", "remainder", "round", "sign", "sin", "sinh", "square", "sqrt", "subtract", "tan", "tanh", "trunc", ] # einsum is not yet implemented in the array API spec. # from ._linear_algebra_functions import einsum # __all__ += ['einsum'] from ._linear_algebra_functions import matmul, tensordot, transpose, vecdot __all__ += ["matmul", "tensordot", "transpose", "vecdot"] from ._manipulation_functions import ( concat, expand_dims, flip, reshape, roll, squeeze, stack, ) __all__ += ["concat", "expand_dims", "flip", "reshape", "roll", "squeeze", "stack"] from ._searching_functions import argmax, argmin, nonzero, where __all__ += ["argmax", "argmin", "nonzero", "where"] from ._set_functions import unique __all__ += ["unique"] from ._sorting_functions import argsort, sort __all__ += ["argsort", "sort"] from ._statistical_functions import max, mean, min, prod, std, sum, var __all__ += ["max", "mean", "min", "prod", "std", "sum", "var"] from ._utility_functions import all, any __all__ += ["all", "any"]
26.889488
84
0.697775
[ "BSD-3-Clause" ]
ArpitaChatterjee/numpy
numpy/array_api/__init__.py
9,976
Python
# Copyright 2013 IBM Corp. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging from oslo_utils import uuidutils from oslo_utils import versionutils from nova import availability_zones from nova import context as nova_context from nova.db import api as db from nova import exception from nova.notifications.objects import base as notification from nova.notifications.objects import service as service_notification from nova import objects from nova.objects import base from nova.objects import fields LOG = logging.getLogger(__name__) # NOTE(danms): This is the global service version counter SERVICE_VERSION = 35 # NOTE(danms): This is our SERVICE_VERSION history. The idea is that any # time we bump the version, we will put an entry here to record the change, # along with any pertinent data. For things that we can programatically # detect that need a bump, we put something in _collect_things() below to # assemble a dict of things we can check. For example, we pretty much always # want to consider the compute RPC API version a thing that requires a service # bump so that we can drive version pins from it. We could include other # service RPC versions at some point, minimum object versions, etc. # # The TestServiceVersion test will fail if the calculated set of # things differs from the value in the last item of the list below, # indicating that a version bump is needed. # # Also note that there are other reasons we may want to bump this, # which will not be caught by the test. An example of this would be # triggering (or disabling) an online data migration once all services # in the cluster are at the same level. # # If a version bump is required for something mechanical, just document # that generic thing here (like compute RPC version bumps). No need to # replicate the details from compute/rpcapi.py here. However, for more # complex service interactions, extra detail should be provided SERVICE_VERSION_HISTORY = ( # Version 0: Pre-history {'compute_rpc': '4.0'}, # Version 1: Introduction of SERVICE_VERSION {'compute_rpc': '4.4'}, # Version 2: Compute RPC version 4.5 {'compute_rpc': '4.5'}, # Version 3: Compute RPC version 4.6 {'compute_rpc': '4.6'}, # Version 4: Add PciDevice.parent_addr (data migration needed) {'compute_rpc': '4.6'}, # Version 5: Compute RPC version 4.7 {'compute_rpc': '4.7'}, # Version 6: Compute RPC version 4.8 {'compute_rpc': '4.8'}, # Version 7: Compute RPC version 4.9 {'compute_rpc': '4.9'}, # Version 8: Compute RPC version 4.10 {'compute_rpc': '4.10'}, # Version 9: Compute RPC version 4.11 {'compute_rpc': '4.11'}, # Version 10: Compute node conversion to Inventories {'compute_rpc': '4.11'}, # Version 11: Compute RPC version 4.12 {'compute_rpc': '4.12'}, # Version 12: The network APIs and compute manager support a NetworkRequest # object where the network_id value is 'auto' or 'none'. BuildRequest # objects are populated by nova-api during instance boot. {'compute_rpc': '4.12'}, # Version 13: Compute RPC version 4.13 {'compute_rpc': '4.13'}, # Version 14: The compute manager supports setting device tags. {'compute_rpc': '4.13'}, # Version 15: Indicate that nova-conductor will stop a boot if BuildRequest # is deleted before RPC to nova-compute. {'compute_rpc': '4.13'}, # Version 16: Indicate that nova-compute will refuse to start if it doesn't # have a placement section configured. {'compute_rpc': '4.13'}, # Version 17: Add 'reserve_volume' to the boot from volume flow and # remove 'check_attach'. The service version bump is needed to fall back to # the old check in the API as the old computes fail if the volume is moved # to 'attaching' state by reserve. {'compute_rpc': '4.13'}, # Version 18: Compute RPC version 4.14 {'compute_rpc': '4.14'}, # Version 19: Compute RPC version 4.15 {'compute_rpc': '4.15'}, # Version 20: Compute RPC version 4.16 {'compute_rpc': '4.16'}, # Version 21: Compute RPC version 4.17 {'compute_rpc': '4.17'}, # Version 22: A marker for the behaviour change of auto-healing code on the # compute host regarding allocations against an instance {'compute_rpc': '4.17'}, # Version 23: Compute hosts allow pre-creation of the migration object # for cold migration. {'compute_rpc': '4.18'}, # Version 24: Add support for Cinder v3 attach/detach API. {'compute_rpc': '4.18'}, # Version 25: Compute hosts allow migration-based allocations # for live migration. {'compute_rpc': '4.18'}, # Version 26: Adds a 'host_list' parameter to build_and_run_instance() {'compute_rpc': '4.19'}, # Version 27: Compute RPC version 4.20; adds multiattach argument to # reserve_block_device_name(). {'compute_rpc': '4.20'}, # Version 28: Adds a 'host_list' parameter to prep_resize() {'compute_rpc': '4.21'}, # Version 29: Compute RPC version 4.22 {'compute_rpc': '4.22'}, # Version 30: Compute RPC version 5.0 {'compute_rpc': '5.0'}, # Version 31: The compute manager checks if 'trusted_certs' are supported {'compute_rpc': '5.0'}, # Version 32: Add 'file_backed_memory' support. The service version bump is # needed to allow the destination of a live migration to reject the # migration if 'file_backed_memory' is enabled and the source does not # support 'file_backed_memory' {'compute_rpc': '5.0'}, # Version 33: Add support for check on the server group with # 'max_server_per_host' rules {'compute_rpc': '5.0'}, # Version 34: Adds support to abort queued/preparing live migrations. {'compute_rpc': '5.0'}, # Version 35: Indicates that nova-compute supports live migration with # ports bound early on the destination host using VIFMigrateData. {'compute_rpc': '5.0'}, ) # TODO(berrange): Remove NovaObjectDictCompat @base.NovaObjectRegistry.register class Service(base.NovaPersistentObject, base.NovaObject, base.NovaObjectDictCompat): # Version 1.0: Initial version # Version 1.1: Added compute_node nested object # Version 1.2: String attributes updated to support unicode # Version 1.3: ComputeNode version 1.5 # Version 1.4: Added use_slave to get_by_compute_host # Version 1.5: ComputeNode version 1.6 # Version 1.6: ComputeNode version 1.7 # Version 1.7: ComputeNode version 1.8 # Version 1.8: ComputeNode version 1.9 # Version 1.9: ComputeNode version 1.10 # Version 1.10: Changes behaviour of loading compute_node # Version 1.11: Added get_by_host_and_binary # Version 1.12: ComputeNode version 1.11 # Version 1.13: Added last_seen_up # Version 1.14: Added forced_down # Version 1.15: ComputeNode version 1.12 # Version 1.16: Added version # Version 1.17: ComputeNode version 1.13 # Version 1.18: ComputeNode version 1.14 # Version 1.19: Added get_minimum_version() # Version 1.20: Added get_minimum_version_multi() # Version 1.21: Added uuid # Version 1.22: Added get_by_uuid() VERSION = '1.22' fields = { 'id': fields.IntegerField(read_only=True), 'uuid': fields.UUIDField(), 'host': fields.StringField(nullable=True), 'binary': fields.StringField(nullable=True), 'topic': fields.StringField(nullable=True), 'report_count': fields.IntegerField(), 'disabled': fields.BooleanField(), 'disabled_reason': fields.StringField(nullable=True), 'availability_zone': fields.StringField(nullable=True), 'compute_node': fields.ObjectField('ComputeNode'), 'last_seen_up': fields.DateTimeField(nullable=True), 'forced_down': fields.BooleanField(), 'version': fields.IntegerField(), } _MIN_VERSION_CACHE = {} _SERVICE_VERSION_CACHING = False def __init__(self, *args, **kwargs): # NOTE(danms): We're going against the rules here and overriding # init. The reason is that we want to *ensure* that we're always # setting the current service version on our objects, overriding # whatever else might be set in the database, or otherwise (which # is the normal reason not to override init). # # We also need to do this here so that it's set on the client side # all the time, such that create() and save() operations will # include the current service version. if 'version' in kwargs: raise exception.ObjectActionError( action='init', reason='Version field is immutable') super(Service, self).__init__(*args, **kwargs) self.version = SERVICE_VERSION def obj_make_compatible_from_manifest(self, primitive, target_version, version_manifest): super(Service, self).obj_make_compatible_from_manifest( primitive, target_version, version_manifest) _target_version = versionutils.convert_version_to_tuple(target_version) if _target_version < (1, 21) and 'uuid' in primitive: del primitive['uuid'] if _target_version < (1, 16) and 'version' in primitive: del primitive['version'] if _target_version < (1, 14) and 'forced_down' in primitive: del primitive['forced_down'] if _target_version < (1, 13) and 'last_seen_up' in primitive: del primitive['last_seen_up'] if _target_version < (1, 10): # service.compute_node was not lazy-loaded, we need to provide it # when called self._do_compute_node(self._context, primitive, version_manifest) def _do_compute_node(self, context, primitive, version_manifest): try: target_version = version_manifest['ComputeNode'] # NOTE(sbauza): Ironic deployments can have multiple # nodes for the same service, but for keeping same behaviour, # returning only the first elem of the list compute = objects.ComputeNodeList.get_all_by_host( context, primitive['host'])[0] except Exception: return primitive['compute_node'] = compute.obj_to_primitive( target_version=target_version, version_manifest=version_manifest) @staticmethod def _from_db_object(context, service, db_service): allow_missing = ('availability_zone',) for key in service.fields: if key in allow_missing and key not in db_service: continue if key == 'compute_node': # NOTE(sbauza); We want to only lazy-load compute_node continue elif key == 'version': # NOTE(danms): Special handling of the version field, since # it is read_only and set in our init. setattr(service, base.get_attrname(key), db_service[key]) elif key == 'uuid' and not db_service.get(key): # Leave uuid off the object if undefined in the database # so that it will be generated below. continue else: service[key] = db_service[key] service._context = context service.obj_reset_changes() # TODO(dpeschman): Drop this once all services have uuids in database if 'uuid' not in service: service.uuid = uuidutils.generate_uuid() LOG.debug('Generated UUID %(uuid)s for service %(id)i', dict(uuid=service.uuid, id=service.id)) service.save() return service def obj_load_attr(self, attrname): if not self._context: raise exception.OrphanedObjectError(method='obj_load_attr', objtype=self.obj_name()) LOG.debug("Lazy-loading '%(attr)s' on %(name)s id %(id)s", {'attr': attrname, 'name': self.obj_name(), 'id': self.id, }) if attrname != 'compute_node': raise exception.ObjectActionError( action='obj_load_attr', reason='attribute %s not lazy-loadable' % attrname) if self.binary == 'nova-compute': # Only n-cpu services have attached compute_node(s) compute_nodes = objects.ComputeNodeList.get_all_by_host( self._context, self.host) else: # NOTE(sbauza); Previous behaviour was raising a ServiceNotFound, # we keep it for backwards compatibility raise exception.ServiceNotFound(service_id=self.id) # NOTE(sbauza): Ironic deployments can have multiple nodes # for the same service, but for keeping same behaviour, returning only # the first elem of the list self.compute_node = compute_nodes[0] @base.remotable_classmethod def get_by_id(cls, context, service_id): db_service = db.service_get(context, service_id) return cls._from_db_object(context, cls(), db_service) @base.remotable_classmethod def get_by_uuid(cls, context, service_uuid): db_service = db.service_get_by_uuid(context, service_uuid) return cls._from_db_object(context, cls(), db_service) @base.remotable_classmethod def get_by_host_and_topic(cls, context, host, topic): db_service = db.service_get_by_host_and_topic(context, host, topic) return cls._from_db_object(context, cls(), db_service) @base.remotable_classmethod def get_by_host_and_binary(cls, context, host, binary): try: db_service = db.service_get_by_host_and_binary(context, host, binary) except exception.HostBinaryNotFound: return return cls._from_db_object(context, cls(), db_service) @staticmethod @db.select_db_reader_mode def _db_service_get_by_compute_host(context, host, use_slave=False): return db.service_get_by_compute_host(context, host) @base.remotable_classmethod def get_by_compute_host(cls, context, host, use_slave=False): db_service = cls._db_service_get_by_compute_host(context, host, use_slave=use_slave) return cls._from_db_object(context, cls(), db_service) # NOTE(ndipanov): This is deprecated and should be removed on the next # major version bump @base.remotable_classmethod def get_by_args(cls, context, host, binary): db_service = db.service_get_by_host_and_binary(context, host, binary) return cls._from_db_object(context, cls(), db_service) def _check_minimum_version(self): """Enforce that we are not older that the minimum version. This is a loose check to avoid creating or updating our service record if we would do so with a version that is older that the current minimum of all services. This could happen if we were started with older code by accident, either due to a rollback or an old and un-updated node suddenly coming back onto the network. There is technically a race here between the check and the update, but since the minimum version should always roll forward and never backwards, we don't need to worry about doing it atomically. Further, the consequence for getting this wrong is minor, in that we'll just fail to send messages that other services understand. """ if not self.obj_attr_is_set('version'): return if not self.obj_attr_is_set('binary'): return minver = self.get_minimum_version(self._context, self.binary) if minver > self.version: raise exception.ServiceTooOld(thisver=self.version, minver=minver) @base.remotable def create(self): if self.obj_attr_is_set('id'): raise exception.ObjectActionError(action='create', reason='already created') self._check_minimum_version() updates = self.obj_get_changes() if 'uuid' not in updates: updates['uuid'] = uuidutils.generate_uuid() self.uuid = updates['uuid'] db_service = db.service_create(self._context, updates) self._from_db_object(self._context, self, db_service) self._send_notification(fields.NotificationAction.CREATE) @base.remotable def save(self): updates = self.obj_get_changes() updates.pop('id', None) self._check_minimum_version() db_service = db.service_update(self._context, self.id, updates) self._from_db_object(self._context, self, db_service) self._send_status_update_notification(updates) def _send_status_update_notification(self, updates): # Note(gibi): We do not trigger notification on version as that field # is always dirty, which would cause that nova sends notification on # every other field change. See the comment in save() too. if set(updates.keys()).intersection( {'disabled', 'disabled_reason', 'forced_down'}): self._send_notification(fields.NotificationAction.UPDATE) def _send_notification(self, action): payload = service_notification.ServiceStatusPayload(self) service_notification.ServiceStatusNotification( publisher=notification.NotificationPublisher.from_service_obj( self), event_type=notification.EventType( object='service', action=action), priority=fields.NotificationPriority.INFO, payload=payload).emit(self._context) @base.remotable def destroy(self): db.service_destroy(self._context, self.id) self._send_notification(fields.NotificationAction.DELETE) @classmethod def enable_min_version_cache(cls): cls.clear_min_version_cache() cls._SERVICE_VERSION_CACHING = True @classmethod def clear_min_version_cache(cls): cls._MIN_VERSION_CACHE = {} @staticmethod @db.select_db_reader_mode def _db_service_get_minimum_version(context, binaries, use_slave=False): return db.service_get_minimum_version(context, binaries) @base.remotable_classmethod def get_minimum_version_multi(cls, context, binaries, use_slave=False): if not all(binary.startswith('nova-') for binary in binaries): LOG.warning('get_minimum_version called with likely-incorrect ' 'binaries `%s\'', ','.join(binaries)) raise exception.ObjectActionError(action='get_minimum_version', reason='Invalid binary prefix') if (not cls._SERVICE_VERSION_CACHING or any(binary not in cls._MIN_VERSION_CACHE for binary in binaries)): min_versions = cls._db_service_get_minimum_version( context, binaries, use_slave=use_slave) if min_versions: min_versions = {binary: version or 0 for binary, version in min_versions.items()} cls._MIN_VERSION_CACHE.update(min_versions) else: min_versions = {binary: cls._MIN_VERSION_CACHE[binary] for binary in binaries} if min_versions: version = min(min_versions.values()) else: version = 0 # NOTE(danms): Since our return value is not controlled by object # schema, be explicit here. version = int(version) return version @base.remotable_classmethod def get_minimum_version(cls, context, binary, use_slave=False): return cls.get_minimum_version_multi(context, [binary], use_slave=use_slave) def get_minimum_version_all_cells(context, binaries, require_all=False): """Get the minimum service version, checking all cells. This attempts to calculate the minimum service version for a set of binaries across all the cells in the system. If require_all is False, then any cells that fail to report a version will be ignored (assuming they won't be candidates for scheduling and thus excluding them from the minimum version calculation is reasonable). If require_all is True, then a failing cell will cause this to raise exception.CellTimeout, as would be appropriate for gating some data migration until everything is new enough. Note that services that do not report a positive version are excluded from this, as it crosses all cells which will naturally not have all services. """ if not all(binary.startswith('nova-') for binary in binaries): LOG.warning('get_minimum_version_all_cells called with ' 'likely-incorrect binaries `%s\'', ','.join(binaries)) raise exception.ObjectActionError( action='get_minimum_version_all_cells', reason='Invalid binary prefix') # NOTE(danms): Instead of using Service.get_minimum_version_multi(), we # replicate the call directly to the underlying DB method here because # we want to defeat the caching and we need to filter non-present # services differently from the single-cell method. results = nova_context.scatter_gather_all_cells( context, Service._db_service_get_minimum_version, binaries) min_version = None for cell_uuid, result in results.items(): if result is nova_context.did_not_respond_sentinel: LOG.warning('Cell %s did not respond when getting minimum ' 'service version', cell_uuid) if require_all: raise exception.CellTimeout() elif result is nova_context.raised_exception_sentinel: LOG.warning('Failed to get minimum service version for cell %s', cell_uuid) if require_all: # NOTE(danms): Okay, this isn't necessarily a timeout, but # it's functionally the same from the caller's perspective # and we logged the fact that it was actually a failure # for the forensic investigator during the scatter/gather # routine. raise exception.CellTimeout() else: # NOTE(danms): Don't consider a zero or None result as the minimum # since we're crossing cells and will likely not have all the # services being probed. relevant_versions = [version for version in result.values() if version] if relevant_versions: min_version_cell = min(relevant_versions) min_version = (min(min_version, min_version_cell) if min_version else min_version_cell) # NOTE(danms): If we got no matches at all (such as at first startup) # then report that as zero to be consistent with the other such # methods. return min_version or 0 @base.NovaObjectRegistry.register class ServiceList(base.ObjectListBase, base.NovaObject): # Version 1.0: Initial version # Service <= version 1.2 # Version 1.1 Service version 1.3 # Version 1.2: Service version 1.4 # Version 1.3: Service version 1.5 # Version 1.4: Service version 1.6 # Version 1.5: Service version 1.7 # Version 1.6: Service version 1.8 # Version 1.7: Service version 1.9 # Version 1.8: Service version 1.10 # Version 1.9: Added get_by_binary() and Service version 1.11 # Version 1.10: Service version 1.12 # Version 1.11: Service version 1.13 # Version 1.12: Service version 1.14 # Version 1.13: Service version 1.15 # Version 1.14: Service version 1.16 # Version 1.15: Service version 1.17 # Version 1.16: Service version 1.18 # Version 1.17: Service version 1.19 # Version 1.18: Added include_disabled parameter to get_by_binary() # Version 1.19: Added get_all_computes_by_hv_type() VERSION = '1.19' fields = { 'objects': fields.ListOfObjectsField('Service'), } @base.remotable_classmethod def get_by_topic(cls, context, topic): db_services = db.service_get_all_by_topic(context, topic) return base.obj_make_list(context, cls(context), objects.Service, db_services) # NOTE(paul-carlton2): In v2.0 of the object the include_disabled flag # will be removed so both enabled and disabled hosts are returned @base.remotable_classmethod def get_by_binary(cls, context, binary, include_disabled=False): db_services = db.service_get_all_by_binary( context, binary, include_disabled=include_disabled) return base.obj_make_list(context, cls(context), objects.Service, db_services) @base.remotable_classmethod def get_by_host(cls, context, host): db_services = db.service_get_all_by_host(context, host) return base.obj_make_list(context, cls(context), objects.Service, db_services) @base.remotable_classmethod def get_all(cls, context, disabled=None, set_zones=False): db_services = db.service_get_all(context, disabled=disabled) if set_zones: db_services = availability_zones.set_availability_zones( context, db_services) return base.obj_make_list(context, cls(context), objects.Service, db_services) @base.remotable_classmethod def get_all_computes_by_hv_type(cls, context, hv_type): db_services = db.service_get_all_computes_by_hv_type( context, hv_type, include_disabled=False) return base.obj_make_list(context, cls(context), objects.Service, db_services)
43.90671
79
0.65654
[ "Apache-2.0" ]
bopopescu/TestNova
nova/objects/service.py
26,827
Python
# -*- coding: utf-8 -*- # This file is part of beets. # Copyright 2016, Adrian Sampson. # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. """Tests for the album art fetchers.""" from __future__ import (division, absolute_import, print_function, unicode_literals) import os import shutil import responses from mock import patch from test import _common from test._common import unittest from beetsplug import fetchart from beets.autotag import AlbumInfo, AlbumMatch from beets import library from beets import importer from beets import config from beets import logging from beets import util from beets.util.artresizer import ArtResizer, WEBPROXY logger = logging.getLogger('beets.test_art') class UseThePlugin(_common.TestCase): def setUp(self): super(UseThePlugin, self).setUp() self.plugin = fetchart.FetchArtPlugin() class FetchImageTest(UseThePlugin): @responses.activate def run(self, *args, **kwargs): super(FetchImageTest, self).run(*args, **kwargs) def mock_response(self, content_type): responses.add(responses.GET, 'http://example.com', content_type=content_type) def test_invalid_type_returns_none(self): self.mock_response('image/watercolour') artpath = self.plugin._fetch_image('http://example.com') self.assertEqual(artpath, None) def test_jpeg_type_returns_path(self): self.mock_response('image/jpeg') artpath = self.plugin._fetch_image('http://example.com') self.assertNotEqual(artpath, None) class FSArtTest(UseThePlugin): def setUp(self): super(FSArtTest, self).setUp() self.dpath = os.path.join(self.temp_dir, 'arttest') os.mkdir(self.dpath) self.source = fetchart.FileSystem(logger, self.plugin.config) def test_finds_jpg_in_directory(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) fn = self.source.get(self.dpath, ('art',), False) self.assertEqual(fn, os.path.join(self.dpath, 'a.jpg')) def test_appropriately_named_file_takes_precedence(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) _common.touch(os.path.join(self.dpath, 'art.jpg')) fn = self.source.get(self.dpath, ('art',), False) self.assertEqual(fn, os.path.join(self.dpath, 'art.jpg')) def test_non_image_file_not_identified(self): _common.touch(os.path.join(self.dpath, 'a.txt')) fn = self.source.get(self.dpath, ('art',), False) self.assertEqual(fn, None) def test_cautious_skips_fallback(self): _common.touch(os.path.join(self.dpath, 'a.jpg')) fn = self.source.get(self.dpath, ('art',), True) self.assertEqual(fn, None) def test_empty_dir(self): fn = self.source.get(self.dpath, ('art',), True) self.assertEqual(fn, None) def test_precedence_amongst_correct_files(self): _common.touch(os.path.join(self.dpath, 'back.jpg')) _common.touch(os.path.join(self.dpath, 'front.jpg')) _common.touch(os.path.join(self.dpath, 'front-cover.jpg')) fn = self.source.get(self.dpath, ('cover', 'front', 'back'), False) self.assertEqual(fn, os.path.join(self.dpath, 'front-cover.jpg')) class CombinedTest(UseThePlugin): ASIN = 'xxxx' MBID = 'releaseid' AMAZON_URL = 'http://images.amazon.com/images/P/{0}.01.LZZZZZZZ.jpg' \ .format(ASIN) AAO_URL = 'http://www.albumart.org/index_detail.php?asin={0}' \ .format(ASIN) CAA_URL = 'http://coverartarchive.org/release/{0}/front' \ .format(MBID) def setUp(self): super(CombinedTest, self).setUp() self.dpath = os.path.join(self.temp_dir, 'arttest') os.mkdir(self.dpath) @responses.activate def run(self, *args, **kwargs): super(CombinedTest, self).run(*args, **kwargs) def mock_response(self, url, content_type='image/jpeg'): responses.add(responses.GET, url, content_type=content_type) def test_main_interface_returns_amazon_art(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = self.plugin.art_for_album(album, None) self.assertNotEqual(artpath, None) def test_main_interface_returns_none_for_missing_asin_and_path(self): album = _common.Bag() artpath = self.plugin.art_for_album(album, None) self.assertEqual(artpath, None) def test_main_interface_gives_precedence_to_fs_art(self): _common.touch(os.path.join(self.dpath, 'art.jpg')) self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = self.plugin.art_for_album(album, [self.dpath]) self.assertEqual(artpath, os.path.join(self.dpath, 'art.jpg')) def test_main_interface_falls_back_to_amazon(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) artpath = self.plugin.art_for_album(album, [self.dpath]) self.assertNotEqual(artpath, None) self.assertFalse(artpath.startswith(self.dpath)) def test_main_interface_tries_amazon_before_aao(self): self.mock_response(self.AMAZON_URL) album = _common.Bag(asin=self.ASIN) self.plugin.art_for_album(album, [self.dpath]) self.assertEqual(len(responses.calls), 1) self.assertEqual(responses.calls[0].request.url, self.AMAZON_URL) def test_main_interface_falls_back_to_aao(self): self.mock_response(self.AMAZON_URL, content_type='text/html') album = _common.Bag(asin=self.ASIN) self.plugin.art_for_album(album, [self.dpath]) self.assertEqual(responses.calls[-1].request.url, self.AAO_URL) def test_main_interface_uses_caa_when_mbid_available(self): self.mock_response(self.CAA_URL) album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = self.plugin.art_for_album(album, None) self.assertNotEqual(artpath, None) self.assertEqual(len(responses.calls), 1) self.assertEqual(responses.calls[0].request.url, self.CAA_URL) def test_local_only_does_not_access_network(self): album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = self.plugin.art_for_album(album, [self.dpath], local_only=True) self.assertEqual(artpath, None) self.assertEqual(len(responses.calls), 0) def test_local_only_gets_fs_image(self): _common.touch(os.path.join(self.dpath, 'art.jpg')) album = _common.Bag(mb_albumid=self.MBID, asin=self.ASIN) artpath = self.plugin.art_for_album(album, [self.dpath], local_only=True) self.assertEqual(artpath, os.path.join(self.dpath, 'art.jpg')) self.assertEqual(len(responses.calls), 0) class AAOTest(UseThePlugin): ASIN = 'xxxx' AAO_URL = 'http://www.albumart.org/index_detail.php?asin={0}'.format(ASIN) def setUp(self): super(AAOTest, self).setUp() self.source = fetchart.AlbumArtOrg(logger, self.plugin.config) @responses.activate def run(self, *args, **kwargs): super(AAOTest, self).run(*args, **kwargs) def mock_response(self, url, body): responses.add(responses.GET, url, body=body, content_type='text/html', match_querystring=True) def test_aao_scraper_finds_image(self): body = b""" <br /> <a href=\"TARGET_URL\" title=\"View larger image\" class=\"thickbox\" style=\"color: #7E9DA2; text-decoration:none;\"> <img src=\"http://www.albumart.org/images/zoom-icon.jpg\" alt=\"View larger image\" width=\"17\" height=\"15\" border=\"0\"/></a> """ self.mock_response(self.AAO_URL, body) album = _common.Bag(asin=self.ASIN) res = self.source.get(album) self.assertEqual(list(res)[0], 'TARGET_URL') def test_aao_scraper_returns_no_result_when_no_image_present(self): self.mock_response(self.AAO_URL, b'blah blah') album = _common.Bag(asin=self.ASIN) res = self.source.get(album) self.assertEqual(list(res), []) class GoogleImageTest(UseThePlugin): def setUp(self): super(GoogleImageTest, self).setUp() self.source = fetchart.GoogleImages(logger, self.plugin.config) @responses.activate def run(self, *args, **kwargs): super(GoogleImageTest, self).run(*args, **kwargs) def mock_response(self, url, json): responses.add(responses.GET, url, body=json, content_type='application/json') def test_google_art_finds_image(self): album = _common.Bag(albumartist="some artist", album="some album") json = b'{"items": [{"link": "url_to_the_image"}]}' self.mock_response(fetchart.GoogleImages.URL, json) result_url = self.source.get(album) self.assertEqual(list(result_url)[0], 'url_to_the_image') def test_google_art_returns_no_result_when_error_received(self): album = _common.Bag(albumartist="some artist", album="some album") json = b'{"error": {"errors": [{"reason": "some reason"}]}}' self.mock_response(fetchart.GoogleImages.URL, json) result_url = self.source.get(album) self.assertEqual(list(result_url), []) def test_google_art_returns_no_result_with_malformed_response(self): album = _common.Bag(albumartist="some artist", album="some album") json = b"""bla blup""" self.mock_response(fetchart.GoogleImages.URL, json) result_url = self.source.get(album) self.assertEqual(list(result_url), []) @_common.slow_test() class ArtImporterTest(UseThePlugin): def setUp(self): super(ArtImporterTest, self).setUp() # Mock the album art fetcher to always return our test file. self.art_file = os.path.join(self.temp_dir, 'tmpcover.jpg') _common.touch(self.art_file) self.old_afa = self.plugin.art_for_album self.afa_response = self.art_file def art_for_album(i, p, local_only=False): return self.afa_response self.plugin.art_for_album = art_for_album # Test library. self.libpath = os.path.join(self.temp_dir, 'tmplib.blb') self.libdir = os.path.join(self.temp_dir, 'tmplib') os.mkdir(self.libdir) os.mkdir(os.path.join(self.libdir, 'album')) itempath = os.path.join(self.libdir, 'album', 'test.mp3') shutil.copyfile(os.path.join(_common.RSRC, 'full.mp3'), itempath) self.lib = library.Library(self.libpath) self.i = _common.item() self.i.path = itempath self.album = self.lib.add_album([self.i]) self.lib._connection().commit() # The import configuration. self.session = _common.import_session(self.lib) # Import task for the coroutine. self.task = importer.ImportTask(None, None, [self.i]) self.task.is_album = True self.task.album = self.album info = AlbumInfo( album='some album', album_id='albumid', artist='some artist', artist_id='artistid', tracks=[], ) self.task.set_choice(AlbumMatch(0, info, {}, set(), set())) def tearDown(self): self.lib._connection().close() super(ArtImporterTest, self).tearDown() self.plugin.art_for_album = self.old_afa def _fetch_art(self, should_exist): """Execute the fetch_art coroutine for the task and return the album's resulting artpath. ``should_exist`` specifies whether to assert that art path was set (to the correct value) or or that the path was not set. """ # Execute the two relevant parts of the importer. self.plugin.fetch_art(self.session, self.task) self.plugin.assign_art(self.session, self.task) artpath = self.lib.albums()[0].artpath if should_exist: self.assertEqual( artpath, os.path.join(os.path.dirname(self.i.path), 'cover.jpg') ) self.assertExists(artpath) else: self.assertEqual(artpath, None) return artpath def test_fetch_art(self): assert not self.lib.albums()[0].artpath self._fetch_art(True) def test_art_not_found(self): self.afa_response = None self._fetch_art(False) def test_no_art_for_singleton(self): self.task.is_album = False self._fetch_art(False) def test_leave_original_file_in_place(self): self._fetch_art(True) self.assertExists(self.art_file) def test_delete_original_file(self): config['import']['delete'] = True self._fetch_art(True) self.assertNotExists(self.art_file) def test_move_original_file(self): config['import']['move'] = True self._fetch_art(True) self.assertNotExists(self.art_file) def test_do_not_delete_original_if_already_in_place(self): artdest = os.path.join(os.path.dirname(self.i.path), 'cover.jpg') shutil.copyfile(self.art_file, artdest) self.afa_response = artdest self._fetch_art(True) def test_fetch_art_if_imported_file_deleted(self): # See #1126. Test the following scenario: # - Album art imported, `album.artpath` set. # - Imported album art file subsequently deleted (by user or other # program). # `fetchart` should import album art again instead of printing the # message "<album> has album art". self._fetch_art(True) util.remove(self.album.artpath) self.plugin.batch_fetch_art(self.lib, self.lib.albums(), force=False) self.assertExists(self.album.artpath) class ArtForAlbumTest(UseThePlugin): """ Tests that fetchart.art_for_album respects the size configuration (e.g., minwidth, enforce_ratio) """ IMG_225x225 = os.path.join(_common.RSRC, 'abbey.jpg') IMG_348x348 = os.path.join(_common.RSRC, 'abbey-different.jpg') IMG_500x490 = os.path.join(_common.RSRC, 'abbey-similar.jpg') def setUp(self): super(ArtForAlbumTest, self).setUp() self.old_fs_source_get = self.plugin.fs_source.get self.old_fetch_img = self.plugin._fetch_image self.old_source_urls = self.plugin._source_urls def fs_source_get(*_): return self.image_file def source_urls(_): return [''] def fetch_img(_): return self.image_file self.plugin.fs_source.get = fs_source_get self.plugin._source_urls = source_urls self.plugin._fetch_image = fetch_img def tearDown(self): self.plugin.fs_source.get = self.old_fs_source_get self.plugin._source_urls = self.old_source_urls self.plugin._fetch_image = self.old_fetch_img super(ArtForAlbumTest, self).tearDown() def _assertImageIsValidArt(self, image_file, should_exist): self.assertExists(image_file) self.image_file = image_file local_artpath = self.plugin.art_for_album(None, [''], True) remote_artpath = self.plugin.art_for_album(None, [], False) self.assertEqual(local_artpath, remote_artpath) if should_exist: self.assertEqual(local_artpath, self.image_file) self.assertExists(local_artpath) return local_artpath else: self.assertIsNone(local_artpath) def _assertImageResized(self, image_file, should_resize): self.image_file = image_file with patch.object(ArtResizer.shared, 'resize') as mock_resize: self.plugin.art_for_album(None, [''], True) self.assertEqual(mock_resize.called, should_resize) def _require_backend(self): """Skip the test if the art resizer doesn't have ImageMagick or PIL (so comparisons and measurements are unavailable). """ if ArtResizer.shared.method[0] == WEBPROXY: self.skipTest("ArtResizer has no local imaging backend available") def test_respect_minwidth(self): self._require_backend() self.plugin.minwidth = 300 self._assertImageIsValidArt(self.IMG_225x225, False) self._assertImageIsValidArt(self.IMG_348x348, True) def test_respect_enforce_ratio_yes(self): self._require_backend() self.plugin.enforce_ratio = True self._assertImageIsValidArt(self.IMG_500x490, False) self._assertImageIsValidArt(self.IMG_225x225, True) def test_respect_enforce_ratio_no(self): self.plugin.enforce_ratio = False self._assertImageIsValidArt(self.IMG_500x490, True) def test_resize_if_necessary(self): self._require_backend() self.plugin.maxwidth = 300 self._assertImageResized(self.IMG_225x225, False) self._assertImageResized(self.IMG_348x348, True) def suite(): return unittest.TestLoader().loadTestsFromName(__name__) if __name__ == b'__main__': unittest.main(defaultTest='suite')
37.574153
79
0.66287
[ "MIT" ]
parapente/beets
test/test_art.py
17,735
Python
# # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # pytype: skip-file from __future__ import absolute_import from __future__ import division import json import logging import math import os import tempfile import unittest from builtins import range from typing import List import sys # patches unittest.TestCase to be python3 compatible import future.tests.base # pylint: disable=unused-import import hamcrest as hc import avro import avro.datafile from avro.datafile import DataFileWriter from avro.io import DatumWriter from fastavro.schema import parse_schema from fastavro import writer # pylint: disable=wrong-import-order, wrong-import-position, ungrouped-imports try: from avro.schema import Parse # avro-python3 library for python3 except ImportError: from avro.schema import parse as Parse # avro library for python2 # pylint: enable=wrong-import-order, wrong-import-position, ungrouped-imports import apache_beam as beam from apache_beam import Create from apache_beam.io import avroio from apache_beam.io import filebasedsource from apache_beam.io import iobase from apache_beam.io import source_test_utils from apache_beam.io.avroio import _create_avro_sink # For testing from apache_beam.io.avroio import _create_avro_source # For testing from apache_beam.testing.test_pipeline import TestPipeline from apache_beam.testing.util import assert_that from apache_beam.testing.util import equal_to from apache_beam.transforms.display import DisplayData from apache_beam.transforms.display_test import DisplayDataItemMatcher # Import snappy optionally; some tests will be skipped when import fails. try: import snappy # pylint: disable=import-error except ImportError: snappy = None # pylint: disable=invalid-name logging.warning('python-snappy is not installed; some tests will be skipped.') RECORDS = [{ 'name': 'Thomas', 'favorite_number': 1, 'favorite_color': 'blue' }, { 'name': 'Henry', 'favorite_number': 3, 'favorite_color': 'green' }, { 'name': 'Toby', 'favorite_number': 7, 'favorite_color': 'brown' }, { 'name': 'Gordon', 'favorite_number': 4, 'favorite_color': 'blue' }, { 'name': 'Emily', 'favorite_number': -1, 'favorite_color': 'Red' }, { 'name': 'Percy', 'favorite_number': 6, 'favorite_color': 'Green' }] class AvroBase(object): _temp_files = [] # type: List[str] def __init__(self, methodName='runTest'): super(AvroBase, self).__init__(methodName) self.RECORDS = RECORDS self.SCHEMA_STRING = ''' {"namespace": "example.avro", "type": "record", "name": "User", "fields": [ {"name": "name", "type": "string"}, {"name": "favorite_number", "type": ["int", "null"]}, {"name": "favorite_color", "type": ["string", "null"]} ] } ''' @classmethod def setUpClass(cls): # Method has been renamed in Python 3 if sys.version_info[0] < 3: cls.assertCountEqual = cls.assertItemsEqual def setUp(self): # Reducing the size of thread pools. Without this test execution may fail in # environments with limited amount of resources. filebasedsource.MAX_NUM_THREADS_FOR_SIZE_ESTIMATION = 2 def tearDown(self): for path in self._temp_files: if os.path.exists(path): os.remove(path) self._temp_files = [] def _write_data(self, directory, prefix, codec, count, sync_interval): raise NotImplementedError def _write_pattern(self, num_files): assert num_files > 0 temp_dir = tempfile.mkdtemp() file_name = None for _ in range(num_files): file_name = self._write_data(directory=temp_dir, prefix='mytemp') assert file_name file_name_prefix = file_name[:file_name.rfind(os.path.sep)] return file_name_prefix + os.path.sep + 'mytemp*' def _run_avro_test( self, pattern, desired_bundle_size, perform_splitting, expected_result): source = _create_avro_source(pattern, use_fastavro=self.use_fastavro) if perform_splitting: assert desired_bundle_size splits = [ split for split in source.split(desired_bundle_size=desired_bundle_size) ] if len(splits) < 2: raise ValueError( 'Test is trivial. Please adjust it so that at least ' 'two splits get generated') sources_info = [(split.source, split.start_position, split.stop_position) for split in splits] source_test_utils.assert_sources_equal_reference_source( (source, None, None), sources_info) else: read_records = source_test_utils.read_from_source(source, None, None) self.assertCountEqual(expected_result, read_records) def test_read_without_splitting(self): file_name = self._write_data() expected_result = self.RECORDS self._run_avro_test(file_name, None, False, expected_result) def test_read_with_splitting(self): file_name = self._write_data() expected_result = self.RECORDS self._run_avro_test(file_name, 100, True, expected_result) def test_source_display_data(self): file_name = 'some_avro_source' source = \ _create_avro_source( file_name, validate=False, use_fastavro=self.use_fastavro ) dd = DisplayData.create_from(source) # No extra avro parameters for AvroSource. expected_items = [ DisplayDataItemMatcher('compression', 'auto'), DisplayDataItemMatcher('file_pattern', file_name) ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_read_display_data(self): file_name = 'some_avro_source' read = \ avroio.ReadFromAvro( file_name, validate=False, use_fastavro=self.use_fastavro) dd = DisplayData.create_from(read) # No extra avro parameters for AvroSource. expected_items = [ DisplayDataItemMatcher('compression', 'auto'), DisplayDataItemMatcher('file_pattern', file_name) ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_sink_display_data(self): file_name = 'some_avro_sink' sink = _create_avro_sink( file_name, self.SCHEMA, 'null', '.end', 0, None, 'application/x-avro', use_fastavro=self.use_fastavro) dd = DisplayData.create_from(sink) expected_items = [ DisplayDataItemMatcher('schema', str(self.SCHEMA)), DisplayDataItemMatcher( 'file_pattern', 'some_avro_sink-%(shard_num)05d-of-%(num_shards)05d.end'), DisplayDataItemMatcher('codec', 'null'), DisplayDataItemMatcher('compression', 'uncompressed') ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_write_display_data(self): file_name = 'some_avro_sink' write = avroio.WriteToAvro( file_name, self.SCHEMA, use_fastavro=self.use_fastavro) dd = DisplayData.create_from(write) expected_items = [ DisplayDataItemMatcher('schema', str(self.SCHEMA)), DisplayDataItemMatcher( 'file_pattern', 'some_avro_sink-%(shard_num)05d-of-%(num_shards)05d'), DisplayDataItemMatcher('codec', 'deflate'), DisplayDataItemMatcher('compression', 'uncompressed') ] hc.assert_that(dd.items, hc.contains_inanyorder(*expected_items)) def test_read_reentrant_without_splitting(self): file_name = self._write_data() source = _create_avro_source(file_name, use_fastavro=self.use_fastavro) source_test_utils.assert_reentrant_reads_succeed((source, None, None)) def test_read_reantrant_with_splitting(self): file_name = self._write_data() source = _create_avro_source(file_name, use_fastavro=self.use_fastavro) splits = [split for split in source.split(desired_bundle_size=100000)] assert len(splits) == 1 source_test_utils.assert_reentrant_reads_succeed( (splits[0].source, splits[0].start_position, splits[0].stop_position)) def test_read_without_splitting_multiple_blocks(self): file_name = self._write_data(count=12000) expected_result = self.RECORDS * 2000 self._run_avro_test(file_name, None, False, expected_result) def test_read_with_splitting_multiple_blocks(self): file_name = self._write_data(count=12000) expected_result = self.RECORDS * 2000 self._run_avro_test(file_name, 10000, True, expected_result) def test_split_points(self): num_records = 12000 sync_interval = 16000 file_name = self._write_data(count=num_records, sync_interval=sync_interval) source = _create_avro_source(file_name, use_fastavro=self.use_fastavro) splits = [split for split in source.split(desired_bundle_size=float('inf'))] assert len(splits) == 1 range_tracker = splits[0].source.get_range_tracker( splits[0].start_position, splits[0].stop_position) split_points_report = [] for _ in splits[0].source.read(range_tracker): split_points_report.append(range_tracker.split_points()) # There will be a total of num_blocks in the generated test file, # proportional to number of records in the file divided by syncronization # interval used by avro during write. Each block has more than 10 records. num_blocks = int(math.ceil(14.5 * num_records / sync_interval)) assert num_blocks > 1 # When reading records of the first block, range_tracker.split_points() # should return (0, iobase.RangeTracker.SPLIT_POINTS_UNKNOWN) self.assertEqual( split_points_report[:10], [(0, iobase.RangeTracker.SPLIT_POINTS_UNKNOWN)] * 10) # When reading records of last block, range_tracker.split_points() should # return (num_blocks - 1, 1) self.assertEqual(split_points_report[-10:], [(num_blocks - 1, 1)] * 10) def test_read_without_splitting_compressed_deflate(self): file_name = self._write_data(codec='deflate') expected_result = self.RECORDS self._run_avro_test(file_name, None, False, expected_result) def test_read_with_splitting_compressed_deflate(self): file_name = self._write_data(codec='deflate') expected_result = self.RECORDS self._run_avro_test(file_name, 100, True, expected_result) @unittest.skipIf(snappy is None, 'python-snappy not installed.') def test_read_without_splitting_compressed_snappy(self): file_name = self._write_data(codec='snappy') expected_result = self.RECORDS self._run_avro_test(file_name, None, False, expected_result) @unittest.skipIf(snappy is None, 'python-snappy not installed.') def test_read_with_splitting_compressed_snappy(self): file_name = self._write_data(codec='snappy') expected_result = self.RECORDS self._run_avro_test(file_name, 100, True, expected_result) def test_read_without_splitting_pattern(self): pattern = self._write_pattern(3) expected_result = self.RECORDS * 3 self._run_avro_test(pattern, None, False, expected_result) def test_read_with_splitting_pattern(self): pattern = self._write_pattern(3) expected_result = self.RECORDS * 3 self._run_avro_test(pattern, 100, True, expected_result) def test_dynamic_work_rebalancing_exhaustive(self): def compare_split_points(file_name): source = _create_avro_source(file_name, use_fastavro=self.use_fastavro) splits = [ split for split in source.split(desired_bundle_size=float('inf')) ] assert len(splits) == 1 source_test_utils.assert_split_at_fraction_exhaustive(splits[0].source) # Adjusting block size so that we can perform a exhaustive dynamic # work rebalancing test that completes within an acceptable amount of time. file_name = self._write_data(count=5, sync_interval=2) compare_split_points(file_name) def test_corrupted_file(self): file_name = self._write_data() with open(file_name, 'rb') as f: data = f.read() # Corrupt the last character of the file which is also the last character of # the last sync_marker. # https://avro.apache.org/docs/current/spec.html#Object+Container+Files corrupted_data = bytearray(data) corrupted_data[-1] = (corrupted_data[-1] + 1) % 256 with tempfile.NamedTemporaryFile(delete=False, prefix=tempfile.template) as f: f.write(corrupted_data) corrupted_file_name = f.name source = _create_avro_source( corrupted_file_name, use_fastavro=self.use_fastavro) with self.assertRaisesRegex(ValueError, r'expected sync marker'): source_test_utils.read_from_source(source, None, None) def test_read_from_avro(self): path = self._write_data() with TestPipeline() as p: assert_that( p | avroio.ReadFromAvro(path, use_fastavro=self.use_fastavro), equal_to(self.RECORDS)) def test_read_all_from_avro_single_file(self): path = self._write_data() with TestPipeline() as p: assert_that( p \ | Create([path]) \ | avroio.ReadAllFromAvro(use_fastavro=self.use_fastavro), equal_to(self.RECORDS)) def test_read_all_from_avro_many_single_files(self): path1 = self._write_data() path2 = self._write_data() path3 = self._write_data() with TestPipeline() as p: assert_that( p \ | Create([path1, path2, path3]) \ | avroio.ReadAllFromAvro(use_fastavro=self.use_fastavro), equal_to(self.RECORDS * 3)) def test_read_all_from_avro_file_pattern(self): file_pattern = self._write_pattern(5) with TestPipeline() as p: assert_that( p \ | Create([file_pattern]) \ | avroio.ReadAllFromAvro(use_fastavro=self.use_fastavro), equal_to(self.RECORDS * 5)) def test_read_all_from_avro_many_file_patterns(self): file_pattern1 = self._write_pattern(5) file_pattern2 = self._write_pattern(2) file_pattern3 = self._write_pattern(3) with TestPipeline() as p: assert_that( p \ | Create([file_pattern1, file_pattern2, file_pattern3]) \ | avroio.ReadAllFromAvro(use_fastavro=self.use_fastavro), equal_to(self.RECORDS * 10)) def test_sink_transform(self): with tempfile.NamedTemporaryFile() as dst: path = dst.name with TestPipeline() as p: # pylint: disable=expression-not-assigned p \ | beam.Create(self.RECORDS) \ | avroio.WriteToAvro(path, self.SCHEMA, use_fastavro=self.use_fastavro) with TestPipeline() as p: # json used for stable sortability readback = \ p \ | avroio.ReadFromAvro(path + '*', use_fastavro=self.use_fastavro) \ | beam.Map(json.dumps) assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS])) @unittest.skipIf(snappy is None, 'python-snappy not installed.') def test_sink_transform_snappy(self): with tempfile.NamedTemporaryFile() as dst: path = dst.name with TestPipeline() as p: # pylint: disable=expression-not-assigned p \ | beam.Create(self.RECORDS) \ | avroio.WriteToAvro( path, self.SCHEMA, codec='snappy', use_fastavro=self.use_fastavro) with TestPipeline() as p: # json used for stable sortability readback = \ p \ | avroio.ReadFromAvro(path + '*', use_fastavro=self.use_fastavro) \ | beam.Map(json.dumps) assert_that(readback, equal_to([json.dumps(r) for r in self.RECORDS])) @unittest.skipIf( sys.version_info[0] == 3 and os.environ.get('RUN_SKIPPED_PY3_TESTS') != '1', 'This test still needs to be fixed on Python 3. ' 'TODO: BEAM-6522.') class TestAvro(AvroBase, unittest.TestCase): def __init__(self, methodName='runTest'): super(TestAvro, self).__init__(methodName) self.use_fastavro = False self.SCHEMA = Parse(self.SCHEMA_STRING) def _write_data( self, directory=None, prefix=tempfile.template, codec='null', count=len(RECORDS), sync_interval=avro.datafile.SYNC_INTERVAL): old_sync_interval = avro.datafile.SYNC_INTERVAL try: avro.datafile.SYNC_INTERVAL = sync_interval with tempfile.NamedTemporaryFile(delete=False, dir=directory, prefix=prefix) as f: writer = DataFileWriter(f, DatumWriter(), self.SCHEMA, codec=codec) len_records = len(self.RECORDS) for i in range(count): writer.append(self.RECORDS[i % len_records]) writer.close() self._temp_files.append(f.name) return f.name finally: avro.datafile.SYNC_INTERVAL = old_sync_interval class TestFastAvro(AvroBase, unittest.TestCase): def __init__(self, methodName='runTest'): super(TestFastAvro, self).__init__(methodName) self.use_fastavro = True self.SCHEMA = parse_schema(json.loads(self.SCHEMA_STRING)) def _write_data( self, directory=None, prefix=tempfile.template, codec='null', count=len(RECORDS), **kwargs): all_records = self.RECORDS * \ (count // len(self.RECORDS)) + self.RECORDS[:(count % len(self.RECORDS))] with tempfile.NamedTemporaryFile(delete=False, dir=directory, prefix=prefix, mode='w+b') as f: writer(f, self.SCHEMA, all_records, codec=codec, **kwargs) self._temp_files.append(f.name) return f.name if __name__ == '__main__': logging.getLogger().setLevel(logging.INFO) unittest.main()
36.247544
80
0.692466
[ "Apache-2.0" ]
AhnLab-OSS/beam
sdks/python/apache_beam/io/avroio_test.py
18,450
Python
import os from hisim import hisim_main from hisim.simulationparameters import SimulationParameters import shutil import random from hisim import log from hisim.utils import PostProcessingOptions import matplotlib.pyplot as plt from hisim import utils @utils.measure_execution_time def test_basic_household(): # if os.path.isdir("../hisim/inputs/cache"): # shutil.rmtree("../hisim/inputs/cache") path = "../examples/basic_household.py" func = "basic_household_explicit" mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) hisim_main.main(path, func,mysimpar ) log.information(os.getcwd()) @utils.measure_execution_time def test_basic_household_with_default_connections(): # if os.path.isdir("../hisim/inputs/cache"): # shutil.rmtree("../hisim/inputs/cache") path = "../examples/basic_household.py" func = "basic_household_with_default_connections" mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) hisim_main.main(path, func,mysimpar ) log.information(os.getcwd()) @utils.measure_execution_time def test_basic_household_with_all_resultfiles(): # if os.path.isdir("../hisim/inputs/cache"): # shutil.rmtree("../hisim/inputs/cache") path = "../examples/basic_household.py" func = "basic_household_explicit" mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) for option in PostProcessingOptions: mysimpar.post_processing_options.append(option) hisim_main.main(path, func,mysimpar ) log.information(os.getcwd()) # # def test_basic_household_with_all_resultfiles_full_year(): # if os.path.isdir("../hisim/inputs/cache"): # shutil.rmtree("../hisim/inputs/cache") # path = "../examples/basic_household.py" # func = "basic_household_explicit" # mysimpar = SimulationParameters.full_year(year=2019, seconds_per_timestep=60) # for option in PostProcessingOptions: # mysimpar.post_processing_options.append(option) # log.information(option) # hisim_main.main(path, func,mysimpar) # log.information(os.getcwd()) # def test_basic_household_boiler(): # path = "../examples/basic_household_boiler.py" # func = "basic_household_boiler_explicit" # mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) # hisim_main.main(path, func, mysimpar) # def test_basic_household_districtheating(): # path = "../examples/basic_household_Districtheating.py" # func = "basic_household_Districtheating_explicit" # mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) # hisim_main.main(path, func, mysimpar) # def test_basic_household_oilheater(): # path = "../examples/basic_household_Oilheater.py" # func = "basic_household_Oilheater_explicit" # mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) # hisim_main.main(path, func, mysimpar) @utils.measure_execution_time def test_modular_household_configurations( ): path = "../examples/modular_household.py" func = "modular_household_explicit" mysimpar = SimulationParameters.one_day_only( year = 2019, seconds_per_timestep = 60 ) # for pv_included in [ True, False ]: # for smart_devices_included in [ True, False ]: # for boiler_included in [ 'electricity', 'hydrogen', None ]: # for heating_device_included in [ 'heat_pump', 'oil_heater', 'district_heating' ]: predictive = True pv_included = random.choice( [ True, False ] ) smart_devices_included = random.choice( [ True, False ] ) boiler_included = random.choice( [ 'electricity', 'hydrogen', None ] ) heating_device_included = random.choice( [ 'heat_pump', 'oil_heater', 'district_heating' ] ) mysimpar.reset_system_config( predictive = predictive, pv_included = pv_included, smart_devices_included = smart_devices_included, boiler_included = boiler_included, heating_device_included = heating_device_included ) hisim_main.main( path, func, mysimpar ) @utils.measure_execution_time def test_first_example(): path = "../examples/examples.py" func = "first_example" mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) hisim_main.main(path, func, mysimpar) @utils.measure_execution_time def test_second_example(): path = "../examples/examples.py" func = "second_example" mysimpar = SimulationParameters.one_day_only(year=2019, seconds_per_timestep=60) hisim_main.main(path, func, mysimpar)
44.575472
99
0.720212
[ "MIT" ]
MF-Zerai/HiSim
tests/test_examples.py
4,725
Python
''' RenameBot This file is a part of mrvishal2k2 rename repo Dont kang !!! © Mrvishal2k2 ''' import pyrogram from pyrogram import Client, filters from pyrogram.types import InlineKeyboardButton, InlineKeyboardMarkup import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s') log = logging.getLogger(__name__) @Client.on_message(filters.document | filters.video | filters.audio | filters.voice | filters.video_note | filters.animation) async def rename_filter(c,m): media = m.document or m.video or m.audio or m.voice or m.video_note or m.animation ## couldn't add photo bcoz i want all photos to use as thumb.. text = "" button = [] try: filename = media.file_name text += f"FileName:\n{filename}\n" except: # some files dont gib name .. filename = None text += "Select the desired Option" button.append([InlineKeyboardButton("Rename as File", callback_data="rename_file")]) # Thanks to albert for mime_type suggestion if media.mime_type.startswith("video/"): ## how the f the other formats can be uploaded as video button.append([InlineKeyboardButton("Rename as Video",callback_data="rename_video")]) button.append([InlineKeyboardButton("Convert as File",callback_data="convert_file")]) button.append([InlineKeyboardButton("Convert as Video",callback_data="convert_video")]) button.append([InlineKeyboardButton("Cancel ❌",callback_data="cancel")]) markup = InlineKeyboardMarkup(button) try: await c.send_chat_action(m.chat.id, "typing") await m.reply_text(text,quote=True,reply_markup=markup,parse_mode="markdown",disable_web_page_preview=True) except Exception as e: log.info(str(e))
38.977778
126
0.72805
[ "MIT" ]
KoshikKumar17/TG-RenameBot
root/plugins/main_filter.py
1,757
Python
import digi import digi.on as on @on.control def h0(c): for k, v in c.items(): v["status"] = v.get("intent", v.get("status", "undef")) if __name__ == '__main__': digi.run()
15.785714
53
0.502262
[ "Apache-2.0" ]
NetSys/dspace
mocks/colorlamp/driver/handler.py
221
Python
""" builtin_bracket.py """ from __future__ import print_function from _devbuild.gen.id_kind_asdl import Id from _devbuild.gen.runtime_asdl import value from _devbuild.gen.syntax_asdl import ( word, word_e, word_t, word__String, bool_expr, ) from _devbuild.gen.types_asdl import lex_mode_e from asdl import runtime from core import error from core.pyerror import e_usage, p_die, log from core import vm from frontend import match from osh import sh_expr_eval from osh import bool_parse from osh import word_parse from osh import word_eval _ = log from typing import cast, TYPE_CHECKING if TYPE_CHECKING: from _devbuild.gen.runtime_asdl import cmd_value__Argv, value__Str from _devbuild.gen.syntax_asdl import word__String, bool_expr_t from _devbuild.gen.types_asdl import lex_mode_t from core.ui import ErrorFormatter from core import optview from core import state class _StringWordEmitter(word_parse.WordEmitter): """For test/[, we need a word parser that returns String. The BoolParser calls word_.BoolId(w), and deals with Kind.BoolUnary, Kind.BoolBinary, etc. This is instead of Compound/Token (as in the [[ case. """ def __init__(self, cmd_val): # type: (cmd_value__Argv) -> None self.cmd_val = cmd_val self.i = 0 self.n = len(cmd_val.argv) def ReadWord(self, unused_lex_mode): # type: (lex_mode_t) -> word__String """Interface for bool_parse.py. TODO: This should probably be word_t """ if self.i == self.n: # Does it make sense to define Eof_Argv or something? # TODO: Add a way to show this location. Show 1 char past the right-most # spid of the last word? But we only have the left-most spid. w = word.String(Id.Eof_Real, '', runtime.NO_SPID) return w #log('ARGV %s i %d', self.argv, self.i) s = self.cmd_val.argv[self.i] left_spid = self.cmd_val.arg_spids[self.i] self.i += 1 # default is an operand word id_ = match.BracketUnary(s) if id_ == Id.Undefined_Tok: id_ = match.BracketBinary(s) if id_ == Id.Undefined_Tok: id_ = match.BracketOther(s) if id_ == Id.Undefined_Tok: id_ = Id.Word_Compound # NOTE: We only have the left spid now. It might be useful to add the # right one. w = word.String(id_, s, left_spid) return w def Read(self): # type: () -> word__String """Interface used for special cases below.""" return self.ReadWord(lex_mode_e.ShCommand) def Peek(self, offset): # type: (int) -> str """For special cases.""" return self.cmd_val.argv[self.i + offset] def Rewind(self, offset): # type: (int) -> None """For special cases.""" self.i -= offset class _WordEvaluator(word_eval.StringWordEvaluator): def __init__(self): # type: () -> None word_eval.StringWordEvaluator.__init__(self) def EvalWordToString(self, w, eval_flags=0): # type: (word_t, int) -> value__Str # do_fnmatch: for the [[ == ]] semantics which we don't have! # I think I need another type of node # Maybe it should be BuiltinEqual and BuiltinDEqual? Parse it into a # different tree. assert w.tag_() == word_e.String string_word = cast(word__String, w) return value.Str(string_word.s) def _TwoArgs(w_parser): # type: (_StringWordEmitter) -> bool_expr_t """Returns an expression tree to be evaluated.""" w0 = w_parser.Read() w1 = w_parser.Read() s0 = w0.s if s0 == '!': return bool_expr.LogicalNot(bool_expr.WordTest(w1)) unary_id = Id.Undefined_Tok # Oil's preferred long flags if w0.s.startswith('--'): if s0 == '--dir': unary_id = Id.BoolUnary_d elif s0 == '--exists': unary_id = Id.BoolUnary_e elif s0 == '--file': unary_id = Id.BoolUnary_f elif s0 == '--symlink': unary_id = Id.BoolUnary_L if unary_id == Id.Undefined_Tok: unary_id = match.BracketUnary(w0.s) if unary_id == Id.Undefined_Tok: p_die('Expected unary operator, got %r (2 args)', w0.s, word=w0) return bool_expr.Unary(unary_id, w1) def _ThreeArgs(w_parser): # type: (_StringWordEmitter) -> bool_expr_t """Returns an expression tree to be evaluated.""" w0 = w_parser.Read() w1 = w_parser.Read() w2 = w_parser.Read() # NOTE: Order is important here. binary_id = match.BracketBinary(w1.s) if binary_id != Id.Undefined_Tok: return bool_expr.Binary(binary_id, w0, w2) if w1.s == '-a': return bool_expr.LogicalAnd(bool_expr.WordTest(w0), bool_expr.WordTest(w2)) if w1.s == '-o': return bool_expr.LogicalOr(bool_expr.WordTest(w0), bool_expr.WordTest(w2)) if w0.s == '!': w_parser.Rewind(2) child = _TwoArgs(w_parser) return bool_expr.LogicalNot(child) if w0.s == '(' and w2.s == ')': return bool_expr.WordTest(w1) p_die('Expected binary operator, got %r (3 args)', w1.s, word=w1) class Test(vm._Builtin): def __init__(self, need_right_bracket, exec_opts, mem, errfmt): # type: (bool, optview.Exec, state.Mem, ErrorFormatter) -> None self.need_right_bracket = need_right_bracket self.exec_opts = exec_opts self.mem = mem self.errfmt = errfmt def Run(self, cmd_val): # type: (cmd_value__Argv) -> int """The test/[ builtin. The only difference between test and [ is that [ needs a matching ]. """ if self.need_right_bracket: # Preprocess right bracket if self.exec_opts.simple_test_builtin(): e_usage("should be invoked as 'test' (simple_test_builtin)") strs = cmd_val.argv if not strs or strs[-1] != ']': self.errfmt.Print_('missing closing ]', span_id=cmd_val.arg_spids[0]) return 2 # Remove the right bracket cmd_val.argv.pop() cmd_val.arg_spids.pop() w_parser = _StringWordEmitter(cmd_val) w_parser.Read() # dummy: advance past argv[0] b_parser = bool_parse.BoolParser(w_parser) # There is a fundamental ambiguity due to poor language design, in cases like: # [ -z ] # [ -z -a ] # [ -z -a ] ] # # See posixtest() in bash's test.c: # "This is an implementation of a Posix.2 proposal by David Korn." # It dispatches on expressions of length 0, 1, 2, 3, 4, and N args. We do # the same here. # # Another ambiguity: # -a is both a unary prefix operator and an infix operator. How to fix this # ambiguity? bool_node = None # type: bool_expr_t n = len(cmd_val.argv) - 1 if self.exec_opts.simple_test_builtin() and n > 3: e_usage("should only have 3 arguments or fewer (simple_test_builtin)") try: if n == 0: return 1 # [ ] is False elif n == 1: w = w_parser.Read() bool_node = bool_expr.WordTest(w) elif n == 2: bool_node = _TwoArgs(w_parser) elif n == 3: bool_node = _ThreeArgs(w_parser) if n == 4: a0 = w_parser.Peek(0) if a0 == '!': w_parser.Read() # skip ! child = _ThreeArgs(w_parser) bool_node = bool_expr.LogicalNot(child) elif a0 == '(' and w_parser.Peek(3) == ')': w_parser.Read() # skip ')' bool_node = _TwoArgs(w_parser) else: pass # fallthrough if bool_node is None: bool_node = b_parser.ParseForBuiltin() except error.Parse as e: self.errfmt.PrettyPrintError(e, prefix='(test) ') return 2 # We technically don't need mem because we don't support BASH_REMATCH here. word_ev = _WordEvaluator() bool_ev = sh_expr_eval.BoolEvaluator(self.mem, self.exec_opts, None, self.errfmt) # We want [ a -eq a ] to always be an error, unlike [[ a -eq a ]]. This is a # weird case of [[ being less strict. bool_ev.Init_AlwaysStrict() bool_ev.word_ev = word_ev bool_ev.CheckCircularDeps() try: b = bool_ev.EvalB(bool_node) except error._ErrorWithLocation as e: # We want to catch e_die() and e_strict(). Those are both FatalRuntime # errors now, but it might not make sense later. # NOTE: This doesn't seem to happen. We have location info for all # errors that arise out of [. #if not e.HasLocation(): # raise self.errfmt.PrettyPrintError(e, prefix='(test) ') return 2 # 1 means 'false', and this usage error is like a parse error. status = 0 if b else 1 return status
29.850534
82
0.651884
[ "Apache-2.0" ]
Schweinepriester/oil
osh/builtin_bracket.py
8,388
Python
import glob import shutil import subprocess import os import sys import argparse # Read and save metadata from file def exiftool_metadata(path): metadata = {} exifToolPath = 'exifTool.exe' ''' use Exif tool to get the metadata ''' process = subprocess.Popen( [ exifToolPath, path ], stdout=subprocess.PIPE, stderr=subprocess.STDOUT, universal_newlines=True ) ''' get the tags in dict ''' for tag in process.stdout: tag = tag.strip() key = tag[:tag.find(':')].strip() value = tag[tag.find(':') + 1:].strip() metadata[key] = value return metadata class File: def __init__(self, path): self.metadata = exiftool_metadata(path) def _get_file_metadata(self, key, no=''): if key in self.metadata: return self.metadata[key] else: return no def copyCore(self, source, dst_dir: str, copy_duplicate=False): logs = [] # if value of metadata not exists - folder name no_metadata = 'none' date = File._get_file_metadata(self, 'Date/Time Original') if date == '': date = File._get_file_metadata(self, 'Create Date', no_metadata) mime_type = File._get_file_metadata(self, 'MIME Type', no_metadata) dst_dir += f'''/{mime_type[:mime_type.find('/')]}/{date[:4]}/{date[5:7]}''' filename = File._get_file_metadata(self, 'File Name') f_name = filename dst = dst_dir + '/' + filename # File with the same name exists in dst. If source and dst have same size then determines 'copy_exists' if os.path.isfile(dst): i = 0 f_pth = File(dst) if_same_size: bool = f_pth._get_file_metadata("File Size") == File._get_file_metadata(self, 'File Size') if (not if_same_size) or copy_duplicate: while os.path.isfile(dst): filename = f'''{f_name[:f_name.find('.')]}_D{str(i)}.{File._get_file_metadata(self, 'File Type Extension')}''' dst = f'''{dst_dir}/{filename}''' i = i + 1 if if_same_size: logs.append(f"Warning: file already exists but I must copy all files" f" [copy_duplicate={copy_duplicate}], so I try do it ...") else: logs.append(f"Warning: file already exists but have other size, so I try copy it ...") else: logs.append(f"Warning: file already duplicate [copy_exists={copy_duplicate}]." f"\nCopy aboard: {source} -> {dst}") return logs try: if not os.path.isdir(dst_dir): os.makedirs(dst_dir) logs.append(f"New directory created: {dst_dir}") shutil.copy(source, dst) logs.append(f'''Copy done: {source} -> {dst}''') except Exception as e: logs.append(f'''Copy error [{e}]: {source} -> {dst}''') return logs def main(): # Arguments from console parser = argparse.ArgumentParser() parser.add_argument('-s', help="Obligatory: source directory path") parser.add_argument('-d', help="Obligatory: destination folder path") parser.add_argument('-e', help="Obligatory: copy duplicate files (T/True/F/False)") args = parser.parse_args(sys.argv[1:]) # Setup variable source_dir = args.s dst_dir = args.d df = { "T": True, "TRUE": True, "F": False, "FALSE": False } try: copy_duplicate = df.get(args.e.upper(), False) except AttributeError: copy_duplicate = False print(f"app.py: error: unrecognized arguments. Use -h or --help to see options") exit(1) # Number of log l_lpm = 0 # source_dir = 'C:/Users' # dst_dir = 'C:/Users' # copy_duplicate = False for f_inx, source in enumerate(glob.glob(source_dir + '/**/*.*', recursive=True)): try: f = File(source) print("----------") for log in f.copyCore(source, dst_dir, copy_duplicate): l_lpm = l_lpm + 1 print(f'''{str(l_lpm)}.{f_inx + 1}) {log}''') except Exception as e: print(f'Copy error [{e}]: {source}') if __name__ == '__main__': main()
32.755556
130
0.556083
[ "MIT" ]
skrzypak/Soaf
app.py
4,422
Python
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ReplicationStatus(Model): """This is the replication status of the gallery Image Version. Variables are only populated by the server, and will be ignored when sending a request. :ivar aggregated_state: This is the aggregated replication status based on all the regional replication status flags. Possible values include: 'Unknown', 'InProgress', 'Completed', 'Failed' :vartype aggregated_state: str or ~azure.mgmt.compute.v2018_06_01.models.AggregatedReplicationState :ivar summary: This is a summary of replication status for each region. :vartype summary: list[~azure.mgmt.compute.v2018_06_01.models.RegionalReplicationStatus] """ _validation = { 'aggregated_state': {'readonly': True}, 'summary': {'readonly': True}, } _attribute_map = { 'aggregated_state': {'key': 'aggregatedState', 'type': 'str'}, 'summary': {'key': 'summary', 'type': '[RegionalReplicationStatus]'}, } def __init__(self, **kwargs) -> None: super(ReplicationStatus, self).__init__(**kwargs) self.aggregated_state = None self.summary = None
37.044444
78
0.637672
[ "MIT" ]
JonathanGailliez/azure-sdk-for-python
azure-mgmt-compute/azure/mgmt/compute/v2018_06_01/models/replication_status_py3.py
1,667
Python
#!/usr/bin/env python import SimpleHTTPServer import SocketServer import sys import urllib import logging from optparse import OptionParser class ResultsProvider(object): '''Base class used to fetch data from server for forwarding''' import requests import socket import time def __init__(self, **kwargs): '''Constructor with sensible requests defaults''' self.session = self.requests.Session() self.wait = kwargs.get('wait', 2.0) self.session.verify = kwargs.get('verify', False) self.session.timeout = kwargs.get('timeout', 5) self.session.stream = kwargs.get('stream', False) self.session.proxies = kwargs.get('proxies', {}) self.session.headers = kwargs.get('headers', {}) self.session.allow_redirects = kwargs.get('allow_redirects', True) self.session.cookies = self.requests.utils.cookiejar_from_dict(kwargs.get('cookies', {})) self.url = kwargs.get('url', None) def doRequest(self, verb, url, **kwargs): '''Makes web request with timeoout support using requests session''' while 1: try: body = kwargs.pop('body') if kwargs.has_key('body') else None rargs = {} for a in ['data', 'json', 'params', 'headers']: if kwargs.has_key(a): rargs[a] = kwargs.pop(a) req = self.requests.Request(verb, url, **rargs) # data, headers, params, json prepped = req.prepare() if body: prepped.body = body response = self.session.send(prepped, **kwargs) # other params here break except (self.socket.error, self.requests.exceptions.RequestException): logging.exception('Retrying request in %.2f seconds...', self.wait) self.time.sleep(self.wait) continue return response def nextResult(self): '''Redefine me to make the request and return the response.text''' #return self.doRequest(url='http://site/whatever/' + str(calculated_value)).text raise NotImplementedError class ResultsProviderImpl(ResultsProvider): '''Implementation for forwarding arbitrary requests to another server''' def __init__(self, **kwargs): super(ResultsProviderImpl, self).__init__(**kwargs) self.hostname=kwargs.get('hostname') self.protocol=kwargs.get('protocol', 'http') self.port=kwargs.get('port') def nextResult(self, verb, path, **kwargs): r = self.doRequest(verb, '%s://%s:%s%s' %(self.protocol, self.hostname, self.port, path), **kwargs) return r class ThreadedTCPServer(SocketServer.ThreadingTCPServer): '''Simple Threaded TCP server''' pass class ServerHandler(SimpleHTTPServer.SimpleHTTPRequestHandler): '''Simple http server request handler''' import datetime counter=0 skip_headers = ['content-length', 'transfer-encoding', 'content-encoding', 'connection'] def print_debug(self, title, data): sep = '=' * 40 + '\n' dt = self.datetime.datetime.now() dts = dt.strftime('%d/%m/%Y %H:%M:%S') self.counter+=1 print sep + title + ' - ' + str(self.counter) + ' - ' + dts + '\n' + sep + data + '\n' def send_response(self, code, message=None): '''Redefine from original to get rid of extra headers''' self.log_request(code) if message is None: if code in self.responses: message = self.responses[code][0] else: message = '' if self.request_version != 'HTTP/0.9': self.wfile.write("%s %d %s\r\n" % (self.protocol_version, code, message)) # print (self.protocol_version, code, message) #self.send_header('Server', self.version_string()) #self.send_header('Date', self.date_time_string()) def do(self, verb, data=None): args = {'headers' : self.headers.dict} if data: args['data'] = data response = self.server.resultsProvider.nextResult(verb, self.path, **args) if self.server.debug: self.print_debug('HTTP Request Received', self.raw_requestline + str(self.headers) + '\r\n' + (data if data else '')) self.send_response(response.status_code, response.reason) for header in response.headers.iteritems(): if header[0].lower() not in self.skip_headers: #self.print_debug('Header Sent', ' :'.join([header[0], header[1]])) self.send_header(header[0], header[1]) self.send_header('Content-Length', int(len(response.content))) self.send_header('Connection', 'close') self.wfile.write('\r\n') self.wfile.write(response.content) if self.server.debug: http_version = '.'.join([a for a in str(response.raw.version)]) version_line = 'HTTP/%s %s %s' %(http_version, response.status_code, response.reason) headers = '\r\n'.join([ '%s : %s' %(a[0],a[1]) for a in response.headers.items()]) self.print_debug('HTTP Response Received', '\r\n'.join([version_line, headers, '\r\n' + response.content])) #self.print_debug('Length of response', str(int(len(response.content)))) self.wfile.flush() self.wfile.close() def do_GET(self): self.do('GET') def do_HEAD(self): self.do('HEAD') def do_POST(self): data = self.rfile.read(int(self.headers['Content-Length'])) if \ self.headers.has_key('Content-Length') else '' self.do('POST', data=data) def match_url(input): return ((input.startswith('http://') or input.startswith('https://')) and \ input.endswith('/') and len(input.split('/')[2]) > 4 and len(input.split('/')) == 4) if __name__ == '__main__': parser = OptionParser(usage='%prog -u [url] [options]') parser.add_option('-d', '--debug', dest='debug', action='store_true', help='show debugging messages') parser.add_option('-u', '--url', dest='remoteurl', type='string', help='remote base url') parser.add_option('-p', '--port', dest='port', type='int', default=8000, help='local listen port') parser.add_option('-a', '--address', dest='address', type='string', default='0.0.0.0', help='local listen address') parser.add_option('-x', '--proxy', dest='proxy', type='string', help='optional proxy to use in format http://address:port/') opts, args = parser.parse_args() if opts.remoteurl == None: print 'Please provide a remote url using the -u --url option' sys.exit() elif not match_url(opts.remoteurl): print 'Please enter remote url in format protocol://host[:port]/' sys.exit() try: [protocol, _, host_port, _] = opts.remoteurl.split('/') protocol = protocol.rstrip(':') hostparts = host_port.split(':') hostname = hostparts[0] rport = int(hostparts[1]) if len(hostparts) > 1 else {'http' : 80, 'https' : 443}[protocol] except: print 'Please enter remote url in format protocol://host[:port]/' sys.exit() if opts.proxy: if not match_url(opts.proxy) and not opts.proxy.startswith('https'): print 'Please enter proxy in format http://host:port/' sys.exit() if opts.debug: print 'Using proxy ' + opts.proxy proxies = {protocol : opts.proxy} else: proxies = {} httpd = ThreadedTCPServer((opts.address, opts.port), ServerHandler) httpd.debug = opts.debug or False # add the custom resultsprovider implementation httpd.resultsProvider = ResultsProviderImpl(hostname=hostname, protocol=protocol, port=rport, proxies=proxies) print "Serving at: http://%s:%s/, forwarding requests to %s" % (opts.address, str(opts.port), opts.remoteurl) httpd.serve_forever()
37.605634
129
0.607241
[ "BSD-3-Clause" ]
stephenbradshaw/pentesting_stuff
helper_servers/http_forwarder.py
8,010
Python
import spacy from spacy.tokens import Doc, Span, Token import urllib import xml.etree.ElementTree as ET import re from SpacyHu.BaseSpacyHuComponent import BaseSpacyHuComponent class HuLemmaMorph(BaseSpacyHuComponent): def __init__(self, nlp, label='Morph', url='http://hlt.bme.hu/chatbot/gate/process?run='): necessary_modules = ['QT', 'HFSTLemm'] super().__init__(nlp, label, url, necessary_modules) Token.set_extension('morph', default='') Token.set_extension('lemma', default='') def get_word_from_annotation(self, annotation): for feature in annotation.getchildren(): if feature.find('Name').text == 'string': return feature.find('Value').text def get_token_by_idx(self, idx, doc): for token in doc: if token.idx == idx: return token def get_lemma_from_morph(self, morph): return set(re.findall(r'(?<=lemma=).*?(?=\})', morph)) def __call__(self, doc): text = urllib.parse.quote_plus(doc.text) result = urllib.request.urlopen(self.url + text).read() annotationset = ET.fromstring(result).find('AnnotationSet') for annotation in annotationset.getchildren(): if annotation.get('Type') != 'Token': continue word_index = int(annotation.get('StartNode')) word = self.get_word_from_annotation(annotation) for feature in annotation.getchildren(): if feature.find('Name').text == 'anas': token = self.get_token_by_idx(word_index, doc) anas = (feature.find('Value').text if feature.find('Value').text is not None else '') token._.morph = set(anas.split(';')) token._.lemma = self.get_lemma_from_morph(anas) break return doc if __name__ == "__main__": from Tokenizer import HuTokenizer debug_text = 'Jó, hogy ez az alma piros, mert az olyan almákat szeretem.' # debug_text = 'megszentségteleníthetetlenségeitekért meghalnak' remote_url = 'http://hlt.bme.hu/chatbot/gate/process?run=' nlp = spacy.blank("en") nlp.tokenizer = HuTokenizer(nlp.vocab, url=remote_url) morph_analyzer = HuLemmaMorph(nlp, url=remote_url) nlp.add_pipe(morph_analyzer, last=True) doc = nlp(debug_text) for token in doc: print('Token is: ' + token.text) print(token._.lemma) print(token._.morph) print()
36.305556
77
0.602142
[ "MIT" ]
Prodinal/GateSpacyWrapping
SpacyHu/SpacyHu/LemmatizerMorphAnalyzer.py
2,620
Python
def gen_mutants(): import tensorflow as tf import pandas import numpy as np DATAFILE_TRAIN = 'mock_kaggle_edit_train.csv' DATAFILE_VALIDATE = 'mock_kaggle_edit_validate.csv' TRAINED_MODEL_PATH = 'savedModel' TIME_STEPS = 10 NUMBER_OF_DAYS_TO_FORECAST = 1 BATCH_SIZE = 100 NUM_EPOCHS = 100 LSTM_UNITS = 250 TENSORBOARD_LOGDIR = 'tensorboard_log' data_train = pandas.read_csv(DATAFILE_TRAIN) data_validate = pandas.read_csv(DATAFILE_VALIDATE) data_train.head() numTrainingData = len(data_train) numValidationData = len(data_validate) trainingData_date = data_train['date'][0:numTrainingData] trainingData_sales = data_train['sales'][0:numTrainingData] trainindData_price = data_train['price'][0:numTrainingData] validationData_date = data_validate['date'][0:numValidationData] validationData_sales = data_validate['sales'][0:numValidationData] validationData_price = data_validate['price'][0:numValidationData] trainingData_sales.head() print(len(trainingData_sales)) print(len(validationData_sales)) trainingData_sales_min = min(trainingData_sales) trainingData_sales_max = max(trainingData_sales) trainingData_sales_range = trainingData_sales_max - trainingData_sales_min trainingData_sales_normalised = [(i - trainingData_sales_min) / trainingData_sales_range for i in trainingData_sales] validationData_sales_normalised = [(i - trainingData_sales_min) / trainingData_sales_range for i in validationData_sales] print('Min:', trainingData_sales_min) print('Range:', trainingData_sales_max - trainingData_sales_min) trainingDataSequence_sales = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) targetDataSequence_sales = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) start = 0 for i in range(TIME_STEPS, (len(trainingData_sales) - NUMBER_OF_DAYS_TO_FORECAST) + 1): trainingDataSequence_sales[start,:,0] = trainingData_sales_normalised[start:i] targetDataSequence_sales[start] = trainingData_sales_normalised[i:] start = start + 1 [trainingDataSequence_sales[i,:,0] for i in range(3)] [targetDataSequence_sales[i] for i in range(3)] a = np.arange(len(targetDataSequence_sales)) np.random.shuffle(a) trainingDataSequence_sales_shuffle = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) targetDataSequence_sales_shuffle = np.zeros(shape=(((len(trainingData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) loc = 0 for i in a: trainingDataSequence_sales_shuffle[loc] = trainingDataSequence_sales[i] targetDataSequence_sales_shuffle[loc] = targetDataSequence_sales[i] loc += 1 trainingDataSequence_sales = trainingDataSequence_sales_shuffle targetDataSequence_sales = targetDataSequence_sales_shuffle validationDataSequence_sales = np.zeros(shape=(((len(validationData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, TIME_STEPS, 1)) validationDataSequence_sales_target = np.zeros(shape=(((len(validationData_sales) - TIME_STEPS) - NUMBER_OF_DAYS_TO_FORECAST) + 1, NUMBER_OF_DAYS_TO_FORECAST)) start = 0 for i in range(TIME_STEPS, (len(validationData_sales) - NUMBER_OF_DAYS_TO_FORECAST) + 1): validationDataSequence_sales[start,:,0] = validationData_sales_normalised[start:i] validationDataSequence_sales_target[start] = validationData_sales_normalised[i:i + NUMBER_OF_DAYS_TO_FORECAST] start += 1 tf.reset_default_graph() inputSequencePlaceholder = tf.placeholder(dtype=tf.float32, shape=(None, TIME_STEPS, 1), name='inputSequencePlaceholder') targetPlaceholder = tf.placeholder(dtype=tf.float32, shape=(None, NUMBER_OF_DAYS_TO_FORECAST), name='targetPlaceholder') cell = tf.nn.rnn_cell.LSTMCell(num_units=LSTM_UNITS, name='LSTM_cell') (output, state) = tf.nn.dynamic_rnn(cell=cell, inputs=inputSequencePlaceholder, dtype=tf.float32) lastCellOutput = output[:,-1,:] print('output:', output) print('state:', state) print('lastCellOutput:', lastCellOutput) weights = tf.Variable(initial_value=tf.truncated_normal(shape=(LSTM_UNITS, NUMBER_OF_DAYS_TO_FORECAST))) bias = tf.Variable(initial_value=tf.ones(shape=NUMBER_OF_DAYS_TO_FORECAST)) forecast = tf.add(x=tf.matmul(a=lastCellOutput, b=weights), y=bias, name='forecast_normalised_scale') forecast_originalScale = tf.add(x=forecast * trainingData_sales_range, y=trainingData_sales_min, name='forecast_original_scale') print(forecast) print(forecast_originalScale) loss = tf.reduce_mean(tf.squared_difference(x=forecast, y=targetPlaceholder), name='loss_comp') tf.summary.scalar(tensor=loss, name='loss') optimizer = tf.train.AdamOptimizer(learning_rate=0.1) minimize_step = optimizer.minimize(loss) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) sess.run(tf.local_variables_initializer()) tensorboard_writer = tf.summary.FileWriter(TENSORBOARD_LOGDIR, sess.graph) all_summary_ops = tf.summary.merge_all() numSteps = 0 for e in range(NUM_EPOCHS): print('starting training for epoch:', e + 1) startLocation = 0 iteration = 0 for iteration in range(int(len(targetDataSequence_sales) / BATCH_SIZE)): print('epoch:', e + 1, ' iteration:', iteration + 1) trainingBatchInput = trainingDataSequence_sales[startLocation:startLocation + BATCH_SIZE,:,:] trainingBatchTarget = targetDataSequence_sales[startLocation:startLocation + BATCH_SIZE] (_, lsBatch, forecastBatch, forecastBatch_originalScale, summary_values) = sess.run([minimize_step, loss, forecast, forecast_originalScale, all_summary_ops], feed_dict={inputSequencePlaceholder: trainingBatchInput, \ targetPlaceholder: trainingBatchTarget}) tensorboard_writer.add_summary(summary_values, numSteps) numSteps += 1 if (iteration + 1) % 1 == 0: print('got a loss of:', lsBatch) print('the forecast of first 5 normalised are:', forecastBatch[0:5]) print('while the actuals were normalised :', trainingBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', forecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (trainingBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) startLocation += BATCH_SIZE if len(targetDataSequence_sales) > startLocation: print('epoch:', e + 1, ' iteration:', iteration + 1) trainingBatchInput = trainingDataSequence_sales[startLocation:len(targetDataSequence_sales),:,:] trainingBatchTarget = targetDataSequence_sales[startLocation:len(targetDataSequence_sales)] (_, lsBatch, forecastBatch, forecastBatch_originalScale) = sess.run([minimize_step, loss, forecast, forecast_originalScale], feed_dict={inputSequencePlaceholder: trainingBatchInput, \ targetPlaceholder: trainingBatchTarget}) print('got a loss of:', lsBatch) print('the forecast of first 5 normalised are:', forecastBatch[0:5]) print('while the actuals were normalised :', trainingBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', forecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (trainingBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) totalValidationLoss = 0 startLocation = 0 print('starting validation') for iter in range(len(validationDataSequence_sales) // BATCH_SIZE): validationBatchInput = validationDataSequence_sales[startLocation:startLocation + BATCH_SIZE,:,:] validationBatchTarget = validationDataSequence_sales_target[startLocation:startLocation + BATCH_SIZE] (validationLsBatch, validationForecastBatch, validationForecastBatch_originalScale) = sess.run([loss, forecast, forecast_originalScale], feed_dict={inputSequencePlaceholder: validationBatchInput, \ targetPlaceholder: validationBatchTarget}) startLocation += BATCH_SIZE totalValidationLoss += validationLsBatch print('first five predictions:', validationForecastBatch[0:5]) print('first five actuals :', validationBatchTarget[0:5]) print('the forecast of first 5 orignal scale are:', validationForecastBatch_originalScale[0:5]) print('while the actuals were original scale :', (validationBatchTarget[0:5] * trainingData_sales_range) + trainingData_sales_min) if startLocation < len(validationDataSequence_sales): validationBatchInput = validationDataSequence_sales[startLocation:len(validationDataSequence_sales)] validationBatchTarget = validationDataSequence_sales_target[startLocation:len(validationDataSequence_sales)] (validationLsBatch, validationForecastBatch) = sess.run([loss, forecast], feed_dict={inputSequencePlaceholder: validationBatchInput, \ targetPlaceholder: validationBatchTarget}) totalValidationLoss += validationLsBatch print('Validation completed after epoch:', e + 1, '. Total validation loss:', totalValidationLoss) print('----------- Saving Model') tf.saved_model.simple_save(sess, export_dir=TRAINED_MODEL_PATH, inputs=\ {'inputSequencePlaceholder': inputSequencePlaceholder, 'targetPlaceholder': targetPlaceholder}, outputs=\ {'loss': loss, 'forecast_originalScale': forecast_originalScale}) print('saved model to:', TRAINED_MODEL_PATH) print('----------- Finis')
31.150134
232
0.62897
[ "Apache-2.0" ]
anuragbms/Sales-forecasting-with-RNNs
MetamorphicTests/all_mutants/sales_forecasting_file/273.py
11,619
Python
__version__ = '0.3.3' import os import sys import logging import argparse from .core import WebCrawler from .helpers import color_logging def main(): """ parse command line options and run commands. """ parser = argparse.ArgumentParser( description='A web crawler for testing website links validation.') parser.add_argument( '-V', '--version', dest='version', action='store_true', help="show version") parser.add_argument( '--log-level', default='INFO', help="Specify logging level, default is INFO.") parser.add_argument( '--config-file', help="Specify config file path.") parser.add_argument( '--seeds', default='http://debugtalk.com', help="Specify crawl seed url(s), several urls can be specified with pipe; \ if auth needed, seeds can be specified like user1:pwd1@url1|user2:pwd2@url2") parser.add_argument( '--include-hosts', help="Specify extra hosts to be crawled.") parser.add_argument( '--cookies', help="Specify cookies, several cookies can be joined by '|'. \ e.g. 'lang:en,country:us|lang:zh,country:cn'") parser.add_argument( '--crawl-mode', default='BFS', help="Specify crawl mode, BFS or DFS.") parser.add_argument( '--max-depth', default=5, type=int, help="Specify max crawl depth.") parser.add_argument( '--concurrency', help="Specify concurrent workers number.") parser.add_argument( '--save-results', default='NO', help="Specify if save results, default is NO.") parser.add_argument("--grey-user-agent", help="Specify grey environment header User-Agent.") parser.add_argument("--grey-traceid", help="Specify grey environment cookie traceid.") parser.add_argument("--grey-view-grey", help="Specify grey environment cookie view_gray.") try: from jenkins_mail_py import MailgunHelper mailer = MailgunHelper(parser) except ImportError: mailer = None args = parser.parse_args() if args.version: print("WebCrawler version: {}".format(__version__)) exit(0) log_level = getattr(logging, args.log_level.upper()) logging.basicConfig(level=log_level) color_logging("args: %s" % args) main_crawler(args, mailer) def main_crawler(args, mailer=None): include_hosts = args.include_hosts.split(',') if args.include_hosts else [] cookies_list = args.cookies.split('|') if args.cookies else [''] jenkins_build_number = args.jenkins_build_number logs_folder = os.path.join(os.getcwd(), "logs", '{}'.format(jenkins_build_number)) web_crawler = WebCrawler(args.seeds, include_hosts, logs_folder, args.config_file) # set grey environment if args.grey_user_agent and args.grey_traceid and args.grey_view_grey: web_crawler.set_grey_env(args.grey_user_agent, args.grey_traceid, args.grey_view_grey) canceled = False try: for cookies_str in cookies_list: cookies_str_list = cookies_str.split(',') cookies = {} for cookie_str in cookies_str_list: if ':' not in cookie_str: continue key, value = cookie_str.split(':') cookies[key.strip()] = value.strip() web_crawler.start( cookies, args.crawl_mode, args.max_depth, args.concurrency ) if mailer and mailer.config_ready: subject = "%s" % args.seeds mail_content_ordered_dict, flag_code = web_crawler.get_mail_content_ordered_dict() mailer.send_mail(subject, mail_content_ordered_dict, flag_code) except KeyboardInterrupt: canceled = True color_logging("Canceling...", color='red') finally: save_results = False if args.save_results.upper() == "NO" else True web_crawler.print_result(canceled, save_results)
37.388889
94
0.63794
[ "MIT" ]
debugtalk/WebCrawler
webcrawler/__init__.py
4,038
Python
#!/usr/bin/env python import bottle import os, json from .utils import distance, neighbours, direction from .defensive import find_my_tail, trouble, find_enemy_tail, eat_food, find_my_tail_emergency from .snake import Snake from .gameboard import GameBoard SAFTEY = 0 SNAKE = 1 FOOD = 3 DANGER = 5 def move_response(move): assert move in ['up', 'down', 'left', 'right'], \ "Move must be one of [up, down, left, right]" return bottle.HTTPResponse( status=200, headers={ "Content-Type": "application/json" }, body=json.dumps({ "move": move }) ) def init(data): """ Initialize grid and update cell values\n @param data -> Json response from bottle\n @return game_id -> Game id for debuggin purposes when displaying grid\n @return grid -> Grid with updated cell values\n @return food -> Sorted array of food by closest to charlie\n @return charlie -> My snake\n @return enemies -> Array of all enemy snakes\n @return check_food -> Secondary grid to look ahead when eating food """ food = [] enemies = [] grid = GameBoard(data['board']['height'], data['board']['width']) check_food = GameBoard(data['board']['height'], data['board']['width']) charlie = Snake(data['you']) for i in data['board']['food']: food.append([i['x'], i['y']]) grid.set_cell([i['x'], i['y']], FOOD) check_food.set_cell([i['x'], i['y']], FOOD) for snake in data['board']['snakes']: snake = Snake(snake) for coord in snake.coords: grid.set_cell(coord, SNAKE) check_food.set_cell(coord, SNAKE) if snake.health < 100 and snake.length > 2 and data['turn'] >= 3: grid.set_cell(snake.tail, SAFTEY) check_food.set_cell(snake.tail, SAFTEY) if snake.id != charlie.id: for neighbour in neighbours(snake.head, grid, 0, snake.coords, [1]): if snake.length >= charlie.length: grid.set_cell(neighbour, DANGER) check_food.set_cell(neighbour, DANGER) enemies.append(snake) food = sorted(food, key = lambda p: distance(p, charlie.head)) game_id = data['game']['id'] # print("turn is {}".format(data['turn'])) return game_id, grid, food, charlie, enemies, check_food @bottle.post('/ping') def ping(): return bottle.HTTPResponse( status=200, headers={ "Content-Type": "application/json" }, body=json.dumps({}) ) @bottle.post('/start') def start(): return bottle.HTTPResponse( status=200, headers={ "Content-Type": "application/json" }, body=json.dumps({ "color": '#002080', 'headType': 'pixel', 'tailType': 'pixel' }) ) @bottle.post('/move') def move(): data = bottle.request.json game_id, grid, food, charlie, enemies, check_food = init(data) # grid.display_game(game_id) if len(enemies) > 2 or charlie.length <= 25 or charlie.health <= 60: path = eat_food(charlie, grid, food, check_food) if path: # print('eat path {}'.format(path)) return move_response(direction(path[0], path[1])) if charlie.length >= 3: path = find_my_tail(charlie, grid) if path: # print('find my tail path {}'.format(path)) return move_response(direction(path[0], path[1])) if not path: path = find_enemy_tail(charlie, enemies, grid) if path: # print('find enemy tail path {}'.format(path)) return move_response(direction(path[0], path[1])) # # if our length is greater than threshold and no other path was available if charlie.length >= 3: path = find_my_tail_emergency(charlie, grid) if path: # print('find my tail emergency path {}'.format(path)) return move_response(direction(path[0], path[1])) # Choose a random free space if no available enemy tail if not path: path = trouble(charlie, grid) if path: # print('trouble path {}'.format(path)) return move_response(direction(path[0], path[1])) @bottle.post('/end') def end(): return bottle.HTTPResponse( status=200, headers={ "Content-Type": "application/json" }, body=json.dumps({}) ) application = bottle.default_app() if __name__ == '__main__': bottle.run(application, host=os.getenv('IP', '0.0.0.0'), port=os.getenv('PORT', '8080'), quiet = True)
29.506329
103
0.586015
[ "MIT" ]
ntmk/battlesnake-2019-pixelated
app/main.py
4,662
Python
#!/usr/bin/python3 # -*- coding: utf8 -*- # Copyright (c) 2020 Baidu, Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Procedure Params """ class ProcedureParams: """ The procedure params dict """ def __init__(self): """ The constructor of the ProcedureParams class """ self.paramsDict = {} # the inner data for procedure params dict def __getitem__(self, index): """ Get the procedure params according to the index. Create the register when it does not exist. :param index: :return: ProcedureParamStorage """ value = self.paramsDict.get(index) if value is not None: return value value = ProcedureParamStorage(index) self.paramsDict[index] = value return value class ProcedureParamStorage: """ The storage for procedure param """ def __init__(self, index): """ The quantum param object needs to know its index. :param index: the quantum register index """ self.index = index
25.375
74
0.647783
[ "Apache-2.0" ]
rickyHong/Qcompute-repl
QCompute/QuantumPlatform/ProcedureParams.py
1,624
Python
class TopicDTO: name = str description = str popularity = int def __init__(self, name="", popularity=0, description = ""): self.name=name self.popularity=popularity self.description = description
26.666667
64
0.625
[ "MIT" ]
AngelStoyanov33/Flask-Forum
DTOs/TopicDTO.py
240
Python
import os from quick2wire.gpio import pins, In, Out, PullDown, gpio_admin import pytest @pytest.mark.gpio @pytest.mark.loopback class TestGPIO: def test_pin_must_be_opened_before_use_and_is_unusable_after_being_closed(self): pin = pins.pin(0) with pytest.raises(IOError): pin.value pin.open() try: pin.value finally: pin.close() with pytest.raises(IOError): pin.value def test_opens_and_closes_itself_when_used_as_a_context_manager(self): pin = pins.pin(0) with pin: pin.value with pytest.raises(IOError): pin.value def test_exports_gpio_device_to_userspace_when_opened_and_unexports_when_closed(self): with pins.pin(0) as pin: assert os.path.exists('/sys/class/gpio/gpio17/value') assert not os.path.exists('/sys/class/gpio/gpio17/value') def test_can_set_and_query_direction_of_pin_when_open(self): with pins.pin(0) as pin: pin.direction = Out assert pin.direction == Out assert content_of("/sys/class/gpio/gpio17/direction") == "out\n" pin.direction = In assert pin.direction == In assert content_of("/sys/class/gpio/gpio17/direction") == "in\n" def test_can_set_direction_on_construction(self): pin = pins.pin(0, Out) assert pin.direction == Out assert not os.path.exists("/sys/class/gpio/gpio17/direction") with pin: assert content_of("/sys/class/gpio/gpio17/direction") == "out\n" assert pin.direction == Out def test_setting_value_of_output_pin_writes_to_device_file(self): with pins.pin(0) as pin: pin.direction = Out pin.value = 1 assert pin.value == 1 assert content_of('/sys/class/gpio/gpio17/value') == '1\n' pin.value = 0 assert pin.value == 0 assert content_of('/sys/class/gpio/gpio17/value') == '0\n' def test_direction_and_value_of_pin_is_reset_when_closed(self): with pins.pin(0, Out) as pin: pin.value = 1 gpio_admin("export", 17, PullDown) try: assert content_of('/sys/class/gpio/gpio17/value') == '0\n' assert content_of('/sys/class/gpio/gpio17/direction') == 'in\n' finally: gpio_admin("unexport", 17) def test_cannot_get_a_pin_with_an_invalid_index(self): with pytest.raises(IndexError): pins.pin(-1) with pytest.raises(IndexError): pins.pin(len(pins)) def content_of(filename): with open(filename, 'r') as f: return f.read()
28.563107
90
0.569001
[ "MIT" ]
pietersartain/ipseity
usr/share/quick2wire/test_gpio.py
2,942
Python
#!/usr/bin/env python # coding=utf-8 class PyPIPackageProject: pass
10.571429
25
0.702703
[ "MIT" ]
hansnow/asgi-webdav
asgi_webdav/core.py
74
Python
import FWCore.ParameterSet.Config as cms hltEgammaHcalPFClusterIsoUnseeded = cms.EDProducer("EgammaHLTHcalPFClusterIsolationProducer", absEtaLowEdges = cms.vdouble(0.0, 1.479), doRhoCorrection = cms.bool(False), drMax = cms.double(0.3), drVetoBarrel = cms.double(0.0), drVetoEndcap = cms.double(0.0), effectiveAreas = cms.vdouble(0.2, 0.25), energyBarrel = cms.double(0.0), energyEndcap = cms.double(0.0), etaStripBarrel = cms.double(0.0), etaStripEndcap = cms.double(0.0), pfClusterProducerHCAL = cms.InputTag("hltParticleFlowClusterHCALForEgamma"), pfClusterProducerHFEM = cms.InputTag(""), pfClusterProducerHFHAD = cms.InputTag(""), recoEcalCandidateProducer = cms.InputTag("hltEgammaCandidatesUnseeded"), rhoMax = cms.double(99999999.0), rhoProducer = cms.InputTag("hltFixedGridRhoFastjetAllCaloForEGamma"), rhoScale = cms.double(1.0), useEt = cms.bool(True), useHF = cms.bool(False) )
40.291667
93
0.718718
[ "Apache-2.0" ]
PKUfudawei/cmssw
HLTrigger/Configuration/python/HLT_75e33/modules/hltEgammaHcalPFClusterIsoUnseeded_cfi.py
967
Python
#!/usr/bin/env python # encoding: utf-8 """ @Author: yangwenhao @Contact: [email protected] @Software: PyCharm @File: Cosine.py @Time: 19-6-26 下午9:43 @Overview: Implement Cosine Score for speaker identification! Enrollment set files will be in the 'Data/enroll_set.npy' and the classes-to-index file is 'Data/enroll_classes.npy' Test set files are in the 'Data/test_set.npy' and the utterances-to-index file is 'Data/test_classes.npy' """ import numpy as np import torch.nn as nn ENROLL_FILE = "Data/xvector/enroll/extract_adagrad-lr0.1-wd0.0-embed512-alpha10.npy" ENROLL_CLASS = "Data/enroll_classes.npy" TEST_FILE = "Data/xvector/test/extract_adagrad-lr0.1-wd0.0-embed512-alpha10.npy" TEST_CLASS = "Data/test_classes.npy" # test_vec = np.array([1,2,3,4]) # refe_vec = np.array([8,3,3,4]) def normalize(narray, order=2, axis=1): norm = np.linalg.norm(narray, ord=order, axis=axis, keepdims=True) return(narray/norm + np.finfo(np.float32).eps) def cos_dis(test_vec, refe_vec): vec1 = normalize(test_vec, axis=0) vec2 = normalize(refe_vec, axis=0) dis = np.matmul(vec1, vec2.T) return(dis) enroll_features = np.load(ENROLL_FILE, allow_pickle=True) enroll_classes = np.load(ENROLL_CLASS, allow_pickle=True).item() test_features = np.load(TEST_FILE, allow_pickle=True) test_classes = np.load(TEST_CLASS, allow_pickle=True) enroll_dict = dict() for item in enroll_classes: num=0 feat = np.zeros([512], dtype=float) for (label, feature) in enroll_features: if label==enroll_classes[item]: feat += feature.detach().numpy() num += 1 enroll_dict[item] = feat/num similarity = {} for (label, feature) in test_features: utt = {} for item in enroll_dict: utt[item] = np.linalg.norm(feature.detach().numpy()-enroll_dict[item]) for utterance in test_classes: if int(utterance[1])==label.item(): test_id = utterance[0] similarity[test_id]=utt print(similarity) # cos_dis(test_vec, refe_vec)
31.777778
116
0.708791
[ "MIT" ]
Wenhao-Yang/DeepSpeaker-pytorch
Score/Cosine_Score.py
2,006
Python
""" Copyright 2013 The Trustees of Princeton University Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import google from google.appengine.ext import ndb import google.appengine.api.memcache as google_memcache import google.appengine.ext.deferred as google_deferred from google.appengine.datastore.datastore_query import Cursor as GoogleCursor def raise_(ex): raise ex class FutureWrapper( ndb.Future ): state = ndb.Future.FINISHING _done = True def __init__( self, result ): self.result = result def get_result( self ): return self.result def done( self ): return True def wait( self ): pass def check_success( self ): return None def get_exception( self ): return None def get_traceback( self ): return None # TODO: wrap query for one item into a future class FutureQueryWrapper( object ): def __init__(self, query_fut): self.query_fut = query_fut def get_result( self ): res = self.query_fut.get_result() if res != None and len(res) > 0: return res[0] else: return None def done( self ): return self.query_fut.done() def wait( self): return self.query_fut.wait() def check_success( self ): return self.query_fut.check_success() def get_exception( self ): return self.query_fut.get_exception() def get_traceback( self ): return self.query_fut.get_traceback() # aliases for types Model = ndb.Model Integer = ndb.IntegerProperty Float = ndb.FloatProperty String = ndb.StringProperty Text = ndb.TextProperty Key = ndb.KeyProperty Boolean = ndb.BooleanProperty Json = ndb.JsonProperty Blob = ndb.BlobProperty Computed = ndb.ComputedProperty Pickled = ndb.PickleProperty Cursor = GoogleCursor # aliases for keys make_key = ndb.Key def wait_futures( future_list ): """ Wait for all of a list of futures to finish. Works with FutureWrapper. """ # see if any of these are NOT futures...then just wrap them into a future object # that implements a get_result() ret = [] futs = [] for f in future_list: if f is None: continue if not isinstance( f, ndb.Future ) and not isinstance( f, FutureWrapper ): # definitely not a future ret.append( FutureWrapper( f ) ) else: # a future or something compatible futs.append( f ) ndb.Future.wait_all( futs ) return futs + ret deferred = google_deferred concurrent = ndb.tasklet concurrent_return = (lambda x: (raise_(ndb.Return( x )))) # asynchronous operations get_multi_async = ndb.get_multi_async put_multi_async = ndb.put_multi_async # synchronous operations get_multi = ndb.get_multi put_multi = ndb.put_multi delete_multi = ndb.delete_multi # aliases for memcache memcache = google_memcache # aliases for transaction transaction = ndb.transaction transaction_async = ndb.transaction_async transactional = ndb.transactional # alises for query predicates opAND = ndb.AND opOR = ndb.OR # aliases for top-level asynchronous loop toplevel = ndb.toplevel # aliases for common exceptions RequestDeadlineExceededError = google.appengine.runtime.DeadlineExceededError APIRequestDeadlineExceededError = google.appengine.runtime.apiproxy_errors.DeadlineExceededError URLRequestDeadlineExceededError = google.appengine.api.urlfetch_errors.DeadlineExceededError TransactionFailedError = google.appengine.ext.db.TransactionFailedError
25.694268
96
0.715419
[ "Apache-2.0" ]
jcnelson/syndicate
ms/storage/backends/google_appengine.py
4,034
Python
import sys import os import math import imageio from moviepy.editor import * import time def read_video(video_name): # Read video from file video_name_input = 'testset/' + video_name video = VideoFileClip(video_name_input) return video def video2frame(video_name): video = read_video(video_name) video_frame_number = int(video.duration * video.fps) ## duration: second / fps: frame per second video_frame_ciphers = math.ceil(math.log(video_frame_number, 10)) ## ex. 720 -> 3 if not os.path.exists('testset/' + video_name): os.makedirs('testset/' + video_name) for i in range(0, video_frame_number): video.save_frame('testset/' + video_name + '/frame_' + str(i).zfill(video_frame_ciphers) + '.jpg', i/video.fps) def video2poseframe(video_name): import numpy as np sys.path.append(os.path.dirname(__file__) + "/../") from scipy.misc import imread, imsave from config import load_config from dataset.factory import create as create_dataset from nnet import predict from util import visualize from dataset.pose_dataset import data_to_input from multiperson.detections import extract_detections from multiperson.predict import SpatialModel, eval_graph, get_person_conf_multicut from multiperson.visualize import PersonDraw, visualize_detections import matplotlib.pyplot as plt from PIL import Image, ImageDraw import random cfg = load_config("demo/pose_cfg_multi.yaml") dataset = create_dataset(cfg) sm = SpatialModel(cfg) sm.load() # Load and setup CNN part detector sess, inputs, outputs = predict.setup_pose_prediction(cfg) ################ video = read_video(video_name) video_frame_number = int(video.duration * video.fps) ## duration: second / fps: frame per second video_frame_ciphers = math.ceil(math.log(video_frame_number, 10)) ## ex. 720 -> 3 if not os.path.exists('testset/' + video_name): os.makedirs('testset/' + video_name) for i in range(0, video_frame_number): image = video.get_frame(i/video.fps) ###################### image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) scmap, locref, pairwise_diff = predict.extract_cnn_output(outputs_np, cfg, dataset.pairwise_stats) detections = extract_detections(cfg, scmap, locref, pairwise_diff) unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(sm, detections) person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array) print('person_conf_multi: ') print(type(person_conf_multi)) print(person_conf_multi) # Add library to save image image_img = Image.fromarray(image) # Save image with points of pose draw = ImageDraw.Draw(image_img) people_num = 0 point_num = 17 print('person_conf_multi.size: ') print(person_conf_multi.size) people_num = person_conf_multi.size / (point_num * 2) people_num = int(people_num) print('people_num: ') print(people_num) point_i = 0 # index of points point_r = 5 # radius of points people_real_num = 0 for people_i in range(0, people_num): point_color_r = random.randrange(0, 256) point_color_g = random.randrange(0, 256) point_color_b = random.randrange(0, 256) point_color = (point_color_r, point_color_g, point_color_b, 255) point_count = 0 for point_i in range(0, point_num): if person_conf_multi[people_i][point_i][0] + person_conf_multi[people_i][point_i][1] != 0: # If coordinates of point is (0, 0) == meaningless data point_count = point_count + 1 if point_count > 5: # If there are more than 5 point in person, we define he/she is REAL PERSON people_real_num = people_real_num + 1 for point_i in range(0, point_num): draw.ellipse((person_conf_multi[people_i][point_i][0] - point_r, person_conf_multi[people_i][point_i][1] - point_r, person_conf_multi[people_i][point_i][0] + point_r, person_conf_multi[people_i][point_i][1] + point_r), fill=point_color) print('people_real_num: ') print(people_real_num) video_name_result = 'testset/' + video_name + '/frame_pose_' + str(i).zfill(video_frame_ciphers) + '.jpg' image_img.save(video_name_result, "JPG") def video2posevideo(video_name): time_start = time.clock() import numpy as np sys.path.append(os.path.dirname(__file__) + "/../") from scipy.misc import imread, imsave from config import load_config from dataset.factory import create as create_dataset from nnet import predict from util import visualize from dataset.pose_dataset import data_to_input from multiperson.detections import extract_detections from multiperson.predict import SpatialModel, eval_graph, get_person_conf_multicut from multiperson.visualize import PersonDraw, visualize_detections import matplotlib.pyplot as plt from PIL import Image, ImageDraw, ImageFont font = ImageFont.truetype("./font/NotoSans-Bold.ttf", 24) import random cfg = load_config("demo/pose_cfg_multi.yaml") dataset = create_dataset(cfg) sm = SpatialModel(cfg) sm.load() draw_multi = PersonDraw() # Load and setup CNN part detector sess, inputs, outputs = predict.setup_pose_prediction(cfg) ################ video = read_video(video_name) video_frame_number = int(video.duration * video.fps) ## duration: second / fps: frame per second video_frame_ciphers = math.ceil(math.log(video_frame_number, 10)) ## ex. 720 -> 3 pose_frame_list = [] point_r = 3 # radius of points point_min = 10 # threshold of points - If there are more than point_min points in person, we define he/she is REAL PERSON part_min = 3 # threshold of parts - If there are more than part_min parts in person, we define he/she is REAL PERSON / part means head, arm and leg point_num = 17 # There are 17 points in 1 person def ellipse_set(person_conf_multi, people_i, point_i): return (person_conf_multi[people_i][point_i][0] - point_r, person_conf_multi[people_i][point_i][1] - point_r, person_conf_multi[people_i][point_i][0] + point_r, person_conf_multi[people_i][point_i][1] + point_r) def line_set(person_conf_multi, people_i, point_i, point_j): return (person_conf_multi[people_i][point_i][0], person_conf_multi[people_i][point_i][1], person_conf_multi[people_i][point_j][0], person_conf_multi[people_i][point_j][1]) def draw_ellipse_and_line(draw, person_conf_multi, people_i, a, b, c, point_color): draw.ellipse(ellipse_set(person_conf_multi, people_i, a), fill=point_color) draw.ellipse(ellipse_set(person_conf_multi, people_i, b), fill=point_color) draw.ellipse(ellipse_set(person_conf_multi, people_i, c), fill=point_color) draw.line(line_set(person_conf_multi, people_i, a, b), fill=point_color, width=5) draw.line(line_set(person_conf_multi, people_i, b, c), fill=point_color, width=5) for i in range(0, video_frame_number): image = video.get_frame(i/video.fps) ###################### image_batch = data_to_input(image) # Compute prediction with the CNN outputs_np = sess.run(outputs, feed_dict={inputs: image_batch}) scmap, locref, pairwise_diff = predict.extract_cnn_output(outputs_np, cfg, dataset.pairwise_stats) detections = extract_detections(cfg, scmap, locref, pairwise_diff) unLab, pos_array, unary_array, pwidx_array, pw_array = eval_graph(sm, detections) person_conf_multi = get_person_conf_multicut(sm, unLab, unary_array, pos_array) # print('person_conf_multi: ') # print(type(person_conf_multi)) # print(person_conf_multi) # Add library to save image image_img = Image.fromarray(image) # Save image with points of pose draw = ImageDraw.Draw(image_img) people_num = 0 people_real_num = 0 people_part_num = 0 people_num = person_conf_multi.size / (point_num * 2) people_num = int(people_num) print('people_num: ' + str(people_num)) for people_i in range(0, people_num): point_color_r = random.randrange(0, 256) point_color_g = random.randrange(0, 256) point_color_b = random.randrange(0, 256) point_color = (point_color_r, point_color_g, point_color_b, 255) point_list = [] point_count = 0 point_i = 0 # index of points part_count = 0 # count of parts in THAT person # To find rectangle which include that people - list of points x, y coordinates people_x = [] people_y = [] for point_i in range(0, point_num): if person_conf_multi[people_i][point_i][0] + person_conf_multi[people_i][point_i][1] != 0: # If coordinates of point is (0, 0) == meaningless data point_count = point_count + 1 point_list.append(point_i) # Draw each parts if (5 in point_list) and (7 in point_list) and (9 in point_list): # Draw left arm draw_ellipse_and_line(draw, person_conf_multi, people_i, 5, 7, 9, point_color) part_count = part_count + 1 if (6 in point_list) and (8 in point_list) and (10 in point_list): # Draw right arm draw_ellipse_and_line(draw, person_conf_multi, people_i, 6, 8, 10, point_color) part_count = part_count + 1 if (11 in point_list) and (13 in point_list) and (15 in point_list): # Draw left leg draw_ellipse_and_line(draw, person_conf_multi, people_i, 11, 13, 15, point_color) part_count = part_count + 1 if (12 in point_list) and (14 in point_list) and (16 in point_list): # Draw right leg draw_ellipse_and_line(draw, person_conf_multi, people_i, 12, 14, 16, point_color) part_count = part_count + 1 if point_count >= point_min: people_real_num = people_real_num + 1 for point_i in range(0, point_num): if person_conf_multi[people_i][point_i][0] + person_conf_multi[people_i][point_i][1] != 0: # If coordinates of point is (0, 0) == meaningless data draw.ellipse(ellipse_set(person_conf_multi, people_i, point_i), fill=point_color) people_x.append(person_conf_multi[people_i][point_i][0]) people_y.append(person_conf_multi[people_i][point_i][1]) # Draw rectangle which include that people draw.rectangle([min(people_x), min(people_y), max(people_x), max(people_y)], fill=point_color, outline=5) if part_count >= part_min: people_part_num = people_part_num + 1 draw.text((0, 0), 'People(by point): ' + str(people_real_num) + ' (threshold = ' + str(point_min) + ')', (0,0,0), font=font) draw.text((0, 32), 'People(by line): ' + str(people_part_num) + ' (threshold = ' + str(part_min) + ')', (0,0,0), font=font) draw.text((0, 64), 'Frame: ' + str(i) + '/' + str(video_frame_number), (0,0,0), font=font) draw.text((0, 96), 'Total time required: ' + str(round(time.clock() - time_start, 1)) + 'sec', (0,0,0)) print('people_real_num: ' + str(people_real_num)) print('people_part_num: ' + str(people_part_num)) print('frame: ' + str(i)) image_img_numpy = np.asarray(image_img) pose_frame_list.append(image_img_numpy) video_pose = ImageSequenceClip(pose_frame_list, fps=video.fps) video_pose.write_videofile("testset/" + video_name + "_pose.mp4", fps=video.fps) print("Time(s): " + str(time.clock() - time_start))
41.554795
256
0.659469
[ "Apache-2.0" ]
PJunhyuk/people-counting-classification
video_pose_ed.py
12,134
Python
from rest_framework import fields, serializers from db.models.repos import Repo class RepoSerializer(serializers.ModelSerializer): project = fields.SerializerMethodField() class Meta: model = Repo fields = ('project', 'created_at', 'updated_at', 'is_public', ) def get_user(self, obj): return obj.user.username def get_project(self, obj): return obj.project.name
23.166667
71
0.688249
[ "MPL-2.0" ]
AntonFriberg/polyaxon
polyaxon/api/repos/serializers.py
417
Python
# coding=utf-8 from pub.tables.resources import * from pub.tables.user import * import pub.client.login as login from pub.permission.user import is_logged,is_owner def is_valid_key(key, r_type): try: resource_type.objects.get(key=key) return False except: pass try: resource_info.objects.get(key=key) return False except: pass if (r_type == -1): return True try: if(r_type==s.RESOURCE_TYPE_CUSTOMED): resource_customed.objects.get(key=key) return False elif(r_type == s.RESOURCE_TYPE_TEMPLATED): resource_templated.objects.get(key=key) return False elif(r_type == s.RESOURCE_TYPE_RESTFUL_API): resource_restful.objects.get(key=key) return False elif(r_type == s.RESOURCE_TYPE_IFRAME): resource_iframe.objects.get(key=key) return False elif(r_type == s.RESOURCE_TYPE_SHORT_LINK): resource_link.objects.get(key=key) return False else: return False except: return True def set_permission(key,readable,writeable,modifiable,token=''): try: res = resource_permission.objects.get(key=key) res.delete() raise Exception() except: resource_permission.objects.create(key=key,readable=readable,writeable=writeable,modifiable=modifiable,token=token) def can_read(request,key,token=''): try: readable,_,_,verify_token =__get_resource_permission(key) return __accessibility_verfy(readable,request,key,token,verify_token) except: return False def can_write(request,key,token=''): try: _,writeable,_,verify_token = __get_resource_permission(key) return __accessibility_verfy(writeable,request,key,token,verify_token) except: return False def can_modify(request,key,token=''): try: _,_,modifiable,verify_token = __get_resource_permission(key) return __accessibility_verfy(modifiable,request,key,token,verify_token) except: return False def can_create(request, r_type): if not is_logged(request): return False return True # # try: # user = login.get_user_by_session(request,request.session.get(s.SESSION_LOGIN)) # except: # return False # # p = user_permission.objects.get(user_id=user, type=r_type).volume # # if p>0: # return True # # return False def did_create(request,r_type): if is_logged(request): user = login.get_user_by_session(request,request.session.get(s.SESSION_LOGIN)) p = user_permission.objects.get(user_id=user, type=r_type) p.volume = p.volume - 1 p.save() def __get_resource_permission(key): p = resource_permission.objects.get(key=key) readable = p.readable writeable = p.writeable modifiable = p.modifiable token = p.token return readable, writeable, modifiable, token def __accessibility_verfy(accessibility, request, key, token, verify_token): if accessibility == s.ACCESSIBILITY_PUBLIC: return True elif accessibility == s.ACCESSIBILITY_LOGIN or accessibility == s.ACCESSIBILITY_LOGIN_OR_TOKEN: if is_logged(request): return True else: if token != '': if token == verify_token: return True elif accessibility == s.ACCESSIBILITY_PRIVATE: if is_logged(request): if is_owner(request, key): return True return False elif accessibility == s.ACCESSIBILITY_TOKEN: if token != '': if token == verify_token: return True
26.384615
123
0.640074
[ "MIT" ]
DASTUDIO/MyVHost
pub/permission/resource.py
3,773
Python
import urllib2 from zope.interface import implements from plone.portlets.interfaces import IPortletDataProvider from plone.app.portlets.portlets import base from Products.CMFCore.utils import getToolByName from zope import schema from zope.formlib import form from Products.Five.browser.pagetemplatefile import ViewPageTemplateFile from wad.blog.utils import find_portlet_assignment_context from wad.blog.blogentry import IBlogEntry from wad.blog import MessageFactory as _ class IBlogCategoriesPortlet(IPortletDataProvider): """A portlet It inherits from IPortletDataProvider because for this portlet, the data that is being rendered and the portlet assignment itself are the same. """ archive_view = schema.TextLine( title=_(u"Archive view"), description=_(u"The name of the archive view"), default=u'blog-view', required=True ) class Assignment(base.Assignment): """Portlet assignment. This is what is actually managed through the portlets UI and associated with columns. """ implements(IBlogCategoriesPortlet) def __init__(self, archive_view=u'blog-view'): self.archive_view = archive_view @property def title(self): """This property is used to give the title of the portlet in the "manage portlets" screen. """ return _("Categories") class Renderer(base.Renderer): """Portlet renderer. This is registered in configure.zcml. The referenced page template is rendered, and the implicit variable 'view' will refer to an instance of this class. Other methods can be added and referenced in the template. """ render = ViewPageTemplateFile('categories.pt') def keywords(self): catalog = getToolByName(self.context, 'portal_catalog') keywords = catalog.uniqueValuesFor('Subject') keywords = [unicode(k, 'utf-8') for k in keywords] return keywords def archive_url(self, subject): # Get the path of where the portlet is created. That's the blog. assignment_context = find_portlet_assignment_context(self.data, self.context) if assignment_context is None: assignment_context = self.context self.folder_url = assignment_context.absolute_url() sub = urllib2.quote(subject.encode('utf-8')) url = '%s/%s?category=%s' % (self.folder_url, self.data.archive_view, sub) return url def blog_url(self): assignment_context = find_portlet_assignment_context(self.data, self.context) if assignment_context is None: assignment_context = self.context return assignment_context.absolute_url() def count_entries(self, subject): catalog = getToolByName(self.context, 'portal_catalog') brains = catalog(object_provides=IBlogEntry.__identifier__, Subject=subject.encode('utf-8')) return len(brains) def count_all_entries(self): catalog = getToolByName(self.context, 'portal_catalog') brains = catalog(object_provides=IBlogEntry.__identifier__) return len(brains) class AddForm(base.AddForm): """Portlet add form. This is registered in configure.zcml. The form_fields variable tells zope.formlib which fields to display. The create() method actually constructs the assignment that is being added. """ form_fields = form.Fields(IBlogCategoriesPortlet) def create(self, data): return Assignment(**data) class EditForm(base.EditForm): """Portlet edit form. This is registered with configure.zcml. The form_fields variable tells zope.formlib which fields to display. """ form_fields = form.Fields(IBlogCategoriesPortlet)
32.694215
77
0.671638
[ "MIT" ]
potzenheimer/buildout.wad
src/wad.blog/wad/blog/portlets/categories.py
3,956
Python
from configparser import ConfigParser import feedparser import re import requests import tweepy def get_id(xkcd_link: str) -> int: """ Exctract comic id from xkcd link """ match = re.search(r"\d+", xkcd_link) if match: return int(match.group()) else: return 0 def get_xkcd_rss_entries(url: str): """ Load latest XKCD RSS feed and extract latest entry """ # get latest rss feed feed = feedparser.parse(url) return feed.get("entries") def get_latest_rss_entry(entries: list): """ Extract latest entry from XKCD RSS feed and parse the ID """ entry = entries[0] id_ = get_id(xkcd_link=entry.get("id")) return id_, entry def downdload_comic(entry: dict, filename: str) -> None: """ Download latest image and store it in current working directory """ match = re.search(r'src="(.*png)"', entry["summary"]) if match: img_url = match.groups()[0] r = requests.get(img_url) r.raise_for_status() with open(filename, "wb") as f: f.write(r.content) return None def initialize_twitter_api(config: ConfigParser): """ Do authentication and return read-to-use twitter api object """ twitter_config = config["twitter"] auth = tweepy.OAuthHandler( twitter_config.get("consumer_key"), twitter_config.get("consumer_secret") ) auth.set_access_token( twitter_config.get("access_token"), twitter_config.get("access_secret") ) api = tweepy.API(auth) return api def send_twitter_post(entry: dict, api: tweepy.API, img_fname: str) -> None: """ Post tweet on twitter """ match = re.search("title=(.*)/>", entry["summary"]) if match: msg = match.groups()[0] msg += f"\n {entry['link']}" else: msg = "-- No Title --" api.update_with_media(status=msg, filename=img_fname) return None
22.170455
81
0.621732
[ "MIT" ]
lwittchen/twitter-bots
xkcd_feed/src/utils.py
1,951
Python
from django.urls import path from el_galleria import views urlpatterns = [ path('', views.index, name="home"), path('category/<str:selected_category>/', views.category, name="category"), path('search/<str:search_str>/', views.search, name="search") ]
26.5
79
0.69434
[ "MIT" ]
kennjr/mi-galleria
el_galleria/urls.py
265
Python
"""api_gw_test""" # Remove warnings when using pytest fixtures # pylint: disable=redefined-outer-name import json from test.conftest import ENDPOINT_URL # warning disabled, this is used as a pylint fixture from test.elasticsearch_test import ( # pylint: disable=unused-import es_client, populate_es_test_case_1, ) from urllib.parse import urlencode import boto3 import pytest import requests def to_localstack_url(api_id: str, url: str): """ Converts a API GW url to localstack """ return url.replace("4566", f"4566/restapis/{api_id}").replace( "dev", "dev/_user_request_" ) def api_gw_lambda_integrate_deploy( api_client, api: dict, api_resource: dict, lambda_func: dict, http_method: str = "GET", ) -> str: """ Integrate lambda with api gw method and deploy api. Return the invokation URL """ lambda_integration_arn = ( "arn:aws:apigateway:us-east-1:lambda:path/2015-03-31/functions/" f"{lambda_func['FunctionArn']}/invocations" ) api_client.put_integration( restApiId=api["id"], resourceId=api_resource["id"], httpMethod=http_method, type="AWS", integrationHttpMethod="POST", uri=lambda_integration_arn, ) api_client.create_deployment( restApiId=api["id"], stageName="dev", ) return f"http://localhost:4566/restapis/{api['id']}/dev/_user_request_{api_resource['path']}" @pytest.fixture def api_gw_method(request): """api gw for testing""" marker = request.node.get_closest_marker("api_gw_method_args") put_method_args = marker.args[0]["put_method_args"] put_method_response_args = marker.args[0]["put_method_response_args"] api = None def fin(): """fixture finalizer""" if api: api_client.delete_rest_api(restApiId=api["id"]) # Hook teardown (finalizer) code request.addfinalizer(fin) api_client = boto3.client("apigateway", endpoint_url=ENDPOINT_URL) api = api_client.create_rest_api(name="testapi") root_resource_id = api_client.get_resources(restApiId=api["id"])["items"][0]["id"] api_resource = api_client.create_resource( restApiId=api["id"], parentId=root_resource_id, pathPart="test" ) api_client.put_method( restApiId=api["id"], resourceId=api_resource["id"], authorizationType="NONE", **put_method_args, ) api_client.put_method_response( restApiId=api["id"], resourceId=api_resource["id"], statusCode="200", **put_method_response_args, ) return api_client, api, api_resource @pytest.mark.api_gw_method_args( { "put_method_args": {"httpMethod": "GET",}, "put_method_response_args": {"httpMethod": "GET",}, } ) @pytest.mark.lambda_function_args( { "name": "stac_endpoint", "handler": "code.handler", "environment": {"CBERS_STAC_BUCKET": "bucket",}, "timeout": 30, "layers": ( { "output_dir": "./test", "layer_dir": "./cbers2stac/layers/common", "tag": "common", }, ), } ) def test_root(api_gw_method, lambda_function): """ test_root_endpoint """ # Based on # https://stackoverflow.com/questions/58859917/creating-aws-lambda-integrated-api-gateway-resource-with-boto3 api_client, api, api_resource = api_gw_method lambda_client, lambda_func = lambda_function # pylint: disable=unused-variable url = api_gw_lambda_integrate_deploy(api_client, api, api_resource, lambda_func) req = requests.get(url) assert req.status_code == 200 @pytest.mark.api_gw_method_args( { "put_method_args": {"httpMethod": "GET",}, "put_method_response_args": {"httpMethod": "GET",}, } ) @pytest.mark.lambda_function_args( { "name": "elasticsearch", "handler": "es.stac_search_endpoint_handler", "environment": {}, "timeout": 30, "layers": ( { "output_dir": "./test", "layer_dir": "./cbers2stac/layers/common", "tag": "common", }, ), } ) def test_item_search_get( api_gw_method, lambda_function, es_client ): # pylint: disable=too-many-locals,too-many-statements """ test_item_search_get """ api_client, api, api_resource = api_gw_method lambda_client, lambda_func = lambda_function # pylint: disable=unused-variable # ES_ENDPOINT is set by lambda_function lambda_client.update_function_configuration( FunctionName=lambda_func["FunctionName"], Environment={"Variables": {"ES_PORT": "4571", "ES_SSL": "NO",}}, ) populate_es_test_case_1(es_client) # Empty GET, return all 2 items original_url = api_gw_lambda_integrate_deploy( api_client, api, api_resource, lambda_func ) req = requests.get(original_url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 2 # Single collection, return single item url = f"{original_url}?collections=CBERS4-MUX" req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 1 assert fcol["features"][0]["collection"] == "CBERS4-MUX" # Two collections, return all items url = f"{original_url}?collections=CBERS4-MUX,CBERS4-AWFI" req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 2 # Paging, no next case url = f"{original_url}" req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" not in fcol.keys() # Paging, next page url = f"{original_url}?limit=1" req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" in fcol.keys() assert len(fcol["links"]) == 1 next_href = to_localstack_url(api["id"], fcol["links"][0]["href"]) req = requests.get(next_href) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" not in fcol.keys() assert fcol["features"][0]["id"] == "CBERS_4_MUX_20170528_090_084_L2" # ids url = f"{original_url}?ids=CBERS_4_MUX_20170528_090_084_L2" req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 1 assert fcol["features"][0]["id"] == "CBERS_4_MUX_20170528_090_084_L2" # query extension url = f"{original_url}?" url += urlencode({"query": '{"cbers:data_type": {"eq":"L4"}}'}) req = requests.get(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 1 assert fcol["features"][0]["id"] == "CBERS_4_AWFI_20170409_167_123_L4" @pytest.mark.api_gw_method_args( { "put_method_args": {"httpMethod": "POST",}, "put_method_response_args": {"httpMethod": "POST",}, } ) @pytest.mark.lambda_function_args( { "name": "elasticsearch", "handler": "es.stac_search_endpoint_handler", "environment": {}, "timeout": 30, "layers": ( { "output_dir": "./test", "layer_dir": "./cbers2stac/layers/common", "tag": "common", }, ), } ) def test_item_search_post( api_gw_method, lambda_function, es_client ): # pylint: disable=too-many-locals """ test_item_search_post """ api_client, api, api_resource = api_gw_method lambda_client, lambda_func = lambda_function # pylint: disable=unused-variable # ES_ENDPOINT is set by lambda_function lambda_client.update_function_configuration( FunctionName=lambda_func["FunctionName"], Environment={"Variables": {"ES_PORT": "4571", "ES_SSL": "NO",}}, ) populate_es_test_case_1(es_client) url = api_gw_lambda_integrate_deploy( api_client, api, api_resource, lambda_func, http_method="POST" ) # POST with invalid bbox order, check error status code and message req = requests.post( url, data=json.dumps( { "collections": ["mycollection"], "bbox": [160.6, -55.95, -170, -25.89], "limit": 100, "datetime": "2019-01-01T00:00:00Z/2019-01-01T23:59:59Z", } ), ) assert req.status_code == 400, req.text assert "First lon corner is not western" in req.text # Same as above with fixed bbox req = requests.post( url, data=json.dumps( { "collections": ["mycollection"], "bbox": [-170, -25.89, 160.6, -55.95], "limit": 100, "datetime": "2019-01-01T00:00:00Z/2019-01-01T23:59:59Z", } ), ) assert req.status_code == 200, req.text # Paging, no next case req = requests.post(url) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" not in fcol.keys() # Paging, next page body = {"limit": 1} req = requests.post(url, data=json.dumps(body)) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" in fcol.keys() assert len(fcol["links"]) == 1 next_href = to_localstack_url(api["id"], fcol["links"][0]["href"]) req = requests.post( next_href, data=json.dumps({**body, **fcol["links"][0]["body"]}) ) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert "links" not in fcol.keys() assert fcol["features"][0]["id"] == "CBERS_4_MUX_20170528_090_084_L2" # ids body = {"ids": ["CBERS_4_MUX_20170528_090_084_L2"]} req = requests.post(url, data=json.dumps(body)) assert req.status_code == 200, req.text fcol = json.loads(req.text) assert len(fcol["features"]) == 1 assert fcol["features"][0]["id"] == "CBERS_4_MUX_20170528_090_084_L2"
30.376119
113
0.622445
[ "Apache-2.0" ]
fredliporace/cbers-2-stac
test/api_gw_test.py
10,176
Python
_base_ = [ '../_base_/datasets/ffhq_flip.py', '../_base_/models/stylegan/stylegan2_base.py', '../_base_/default_runtime.py' ] model = dict( type='MSPIEStyleGAN2', generator=dict( type='MSStyleGANv2Generator', head_pos_encoding=dict(type='CSG'), deconv2conv=True, up_after_conv=True, head_pos_size=(4, 4), up_config=dict(scale_factor=2, mode='bilinear', align_corners=True), out_size=256), discriminator=dict( type='MSStyleGAN2Discriminator', in_size=256, with_adaptive_pool=True)) train_cfg = dict( num_upblocks=6, multi_input_scales=[0, 2, 4], multi_scale_probability=[0.5, 0.25, 0.25]) data = dict( samples_per_gpu=3, train=dict(dataset=dict(imgs_root='./data/ffhq/ffhq_imgs/ffhq_512'))) ema_half_life = 10. custom_hooks = [ dict( type='VisualizeUnconditionalSamples', output_dir='training_samples', interval=5000), dict( type='ExponentialMovingAverageHook', module_keys=('generator_ema', ), interval=1, interp_cfg=dict(momentum=0.5**(32. / (ema_half_life * 1000.))), priority='VERY_HIGH') ] checkpoint_config = dict(interval=10000, by_epoch=False, max_keep_ckpts=40) lr_config = None log_config = dict( interval=100, hooks=[ dict(type='TextLoggerHook'), # dict(type='TensorboardLoggerHook'), ]) cudnn_benchmark = False total_iters = 1100002 metrics = dict( fid50k=dict( type='FID', num_images=50000, inception_pkl='work_dirs/inception_pkl/ffhq-256-50k-rgb.pkl', bgr2rgb=True), pr10k3=dict(type='PR', num_images=10000, k=3))
26.714286
79
0.649436
[ "Apache-2.0" ]
DequanWang/actnn-mmgen
configs/positional_encoding_in_gans/mspie-stylegan2_c2_config-d_ffhq_256-512_b3x8_1100k.py
1,683
Python
from jsonrpc import ServiceProxy import sys import string # ===== BEGIN USER SETTINGS ===== # if you do not set these you will be prompted for a password for every command rpcuser = "" rpcpass = "" # ====== END USER SETTINGS ====== if rpcpass == "": access = ServiceProxy("http://127.0.0.1:25176") else: access = ServiceProxy("http://"+rpcuser+":"+rpcpass+"@127.0.0.1:25176") cmd = sys.argv[1].lower() if cmd == "backupwallet": try: path = raw_input("Enter destination path/filename: ") print access.backupwallet(path) except: print "\n---An error occurred---\n" elif cmd == "getaccount": try: addr = raw_input("Enter a Bitmea address: ") print access.getaccount(addr) except: print "\n---An error occurred---\n" elif cmd == "getaccountaddress": try: acct = raw_input("Enter an account name: ") print access.getaccountaddress(acct) except: print "\n---An error occurred---\n" elif cmd == "getaddressesbyaccount": try: acct = raw_input("Enter an account name: ") print access.getaddressesbyaccount(acct) except: print "\n---An error occurred---\n" elif cmd == "getbalance": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getbalance(acct, mc) except: print access.getbalance() except: print "\n---An error occurred---\n" elif cmd == "getblockbycount": try: height = raw_input("Height: ") print access.getblockbycount(height) except: print "\n---An error occurred---\n" elif cmd == "getblockcount": try: print access.getblockcount() except: print "\n---An error occurred---\n" elif cmd == "getblocknumber": try: print access.getblocknumber() except: print "\n---An error occurred---\n" elif cmd == "getconnectioncount": try: print access.getconnectioncount() except: print "\n---An error occurred---\n" elif cmd == "getdifficulty": try: print access.getdifficulty() except: print "\n---An error occurred---\n" elif cmd == "getgenerate": try: print access.getgenerate() except: print "\n---An error occurred---\n" elif cmd == "gethashespersec": try: print access.gethashespersec() except: print "\n---An error occurred---\n" elif cmd == "getinfo": try: print access.getinfo() except: print "\n---An error occurred---\n" elif cmd == "getnewaddress": try: acct = raw_input("Enter an account name: ") try: print access.getnewaddress(acct) except: print access.getnewaddress() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaccount": try: acct = raw_input("Enter an account (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaccount(acct, mc) except: print access.getreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "getreceivedbyaddress": try: addr = raw_input("Enter a Bitmea address (optional): ") mc = raw_input("Minimum confirmations (optional): ") try: print access.getreceivedbyaddress(addr, mc) except: print access.getreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "gettransaction": try: txid = raw_input("Enter a transaction ID: ") print access.gettransaction(txid) except: print "\n---An error occurred---\n" elif cmd == "getwork": try: data = raw_input("Data (optional): ") try: print access.gettransaction(data) except: print access.gettransaction() except: print "\n---An error occurred---\n" elif cmd == "help": try: cmd = raw_input("Command (optional): ") try: print access.help(cmd) except: print access.help() except: print "\n---An error occurred---\n" elif cmd == "listaccounts": try: mc = raw_input("Minimum confirmations (optional): ") try: print access.listaccounts(mc) except: print access.listaccounts() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaccount": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaccount(mc, incemp) except: print access.listreceivedbyaccount() except: print "\n---An error occurred---\n" elif cmd == "listreceivedbyaddress": try: mc = raw_input("Minimum confirmations (optional): ") incemp = raw_input("Include empty? (true/false, optional): ") try: print access.listreceivedbyaddress(mc, incemp) except: print access.listreceivedbyaddress() except: print "\n---An error occurred---\n" elif cmd == "listtransactions": try: acct = raw_input("Account (optional): ") count = raw_input("Number of transactions (optional): ") frm = raw_input("Skip (optional):") try: print access.listtransactions(acct, count, frm) except: print access.listtransactions() except: print "\n---An error occurred---\n" elif cmd == "move": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.move(frm, to, amt, mc, comment) except: print access.move(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendfrom": try: frm = raw_input("From: ") to = raw_input("To: ") amt = raw_input("Amount:") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendfrom(frm, to, amt, mc, comment, commentto) except: print access.sendfrom(frm, to, amt) except: print "\n---An error occurred---\n" elif cmd == "sendmany": try: frm = raw_input("From: ") to = raw_input("To (in format address1:amount1,address2:amount2,...): ") mc = raw_input("Minimum confirmations (optional): ") comment = raw_input("Comment (optional): ") try: print access.sendmany(frm,to,mc,comment) except: print access.sendmany(frm,to) except: print "\n---An error occurred---\n" elif cmd == "sendtoaddress": try: to = raw_input("To (in format address1:amount1,address2:amount2,...): ") amt = raw_input("Amount:") comment = raw_input("Comment (optional): ") commentto = raw_input("Comment-to (optional): ") try: print access.sendtoaddress(to,amt,comment,commentto) except: print access.sendtoaddress(to,amt) except: print "\n---An error occurred---\n" elif cmd == "setaccount": try: addr = raw_input("Address: ") acct = raw_input("Account:") print access.setaccount(addr,acct) except: print "\n---An error occurred---\n" elif cmd == "setgenerate": try: gen= raw_input("Generate? (true/false): ") cpus = raw_input("Max processors/cores (-1 for unlimited, optional):") try: print access.setgenerate(gen, cpus) except: print access.setgenerate(gen) except: print "\n---An error occurred---\n" elif cmd == "settxfee": try: amt = raw_input("Amount:") print access.settxfee(amt) except: print "\n---An error occurred---\n" elif cmd == "stop": try: print access.stop() except: print "\n---An error occurred---\n" elif cmd == "validateaddress": try: addr = raw_input("Address: ") print access.validateaddress(addr) except: print "\n---An error occurred---\n" elif cmd == "walletpassphrase": try: pwd = raw_input("Enter wallet passphrase: ") access.walletpassphrase(pwd, 60) print "\n---Wallet unlocked---\n" except: print "\n---An error occurred---\n" elif cmd == "walletpassphrasechange": try: pwd = raw_input("Enter old wallet passphrase: ") pwd2 = raw_input("Enter new wallet passphrase: ") access.walletpassphrasechange(pwd, pwd2) print print "\n---Passphrase changed---\n" except: print print "\n---An error occurred---\n" print else: print "Command not found or not supported"
24.110769
79
0.668198
[ "MIT" ]
bitmea-project/bitmea
contrib/bitrpc/bitrpc.py
7,836
Python
#!/usr/bin/env python3 # # MIT License # # Copyright (c) 2020 EntySec # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # import sys import tty import termios from Head.d3crypt import ghost class typer: def __init__(self): self.d3crypt = d3crypt() def get_char(self): fd = sys.stdin.fileno() old = termios.tcgetattr(fd) try: tty.setraw(fd) return sys.stdin.read(1) finally: termios.tcsetattr(fd, termios.TCSADRAIN, old) def send_char(self, char): self.ghost.send_command("shell", "input text " + char, False, False)
33.854167
80
0.720615
[ "MIT" ]
D3crypT0r/D3crypt
Head/typer.py
1,625
Python
""" DeepChEmbed (DCE) Models """ from dimreducer import DeepAutoEncoder from cluster import KMeansLayer from cluster import KMeans from keras import Model from keras import optimizers from keras.utils import normalize import numpy as np class DCE(): """ The class to build a deep chemical embedding model. Attributes: autoencoder_dims: a list of dimensions for encoder, the first element as input dimension, and the last one as hidden layer dimension. n_clusters: int, number of clusters for clustering layer. alpha: float, parameters for soft label assigning. update_interval: int, indicating every number of epoches, the harhened labels will be upadated and/or convergence cretia will be examed. max_iteration: int, maximum iteration for the combined training clustering_tol: float, convergence cretia for clustering layer model: keras Model variable HARDENING_FUNCS: smoothsetp hardening functions for unsupervised DCE training, up to 9th order """ HARDENING_FUNCS = { 1: lambda x: x, 3: lambda x: (-2*x + 3) * x**2, 5: lambda x: ((6*x - 15)*x + 10) * x**3, 7: lambda x: (((-20*x + 70)*x - 84)*x + 35) * x**4, 9: lambda x: ((((70*x - 315)*x + 540)*x -420)*x + 126) * x**5} def __init__(self, autoencoder_dims, n_clusters, update_interval=50, max_iteration=1e4, clustering_tol=1e-4, alpha=1.0): """Construtor of DCE. """ self.autoencoder_dims = autoencoder_dims self.n_clusters = n_clusters self.alpha = alpha self.update_interval = update_interval self.max_iteration = max_iteration self.clustering_tol = clustering_tol self.model = None return def build_model(self, norm=True, act='relu'): """Build DCE using the initialized attributes Args: norm: boolean, wheher to add a normalization layer at the begining of the autoencoder act: string, keras activation function name for autoencoder """ autoencoder = DeepAutoEncoder(self.autoencoder_dims, act) autoencoder.build_model(norm=norm) embeding = autoencoder.model.get_layer(name='embedding_layer').output clustering = KMeansLayer(self.n_clusters, alpha=self.alpha, name='clustering')(embeding) self.model = Model(inputs=autoencoder.model.input, outputs=[clustering,autoencoder.model.output]) return def train_model(self, data_train, labels_train=None, data_test=None, labels_test=None, verbose=1, compiled=False, clustering_loss='kld', decoder_loss='mse',clustering_loss_weight=0.5, hardening_order=1, hardening_strength=2.0, compiled=False, optimizer='adam', lr=0.001, decay=0.0): """Train DCE Model: If labels_train are not present, train DCE model in a unsupervised learning process; otherwise, train DCE model in a supervised learning process. Args: data_train: input training data labels_train: true labels of traning data data_test: input test data labels_test: true lables of testing data verbose: 0, turn off the screen prints clustering_loss: string, clustering layer loss function decoder_loss:, string, decoder loss function clustering_loss_weight: float in [0,1], w_c, harderning_order: odd int, the order of hardening function harderning_strength: float >=1.0, the streng of the harderning compiled: boolean, indicating if the model is compiled or not optmizer: string, keras optimizers lr: learning rate dacay: learning rate dacay Returns: train_loss: training loss test_loss: only if data_test and labels_test are not None in supervised learning process """ if (not compiled): assert clustering_loss_weight <= 1 and clustering_loss_weight >= 0 if optimizer == 'adam': dce_optimizer = optimizers.Adam(lr=lr,decay=decay) elif optimizer == 'sgd': dce_optimizer = optimizers.sgd(lr=lr,decay=decay) else: raise Exception('Input optimizer was not found') self.model.compile(loss={'clustering': clustering_loss, 'decoder_output': decoder_loss}, loss_weights=[clustering_loss_weight, 1 - clustering_loss_weight], optimizer=dce_optimizer) if (labels_train is not None): supervised_learning = True if verbose >= 1: print('Starting supervised learning') else: supervised_learning = False if verbose >= 1: print('Starting unsupervised learning') # initializing model by using sklean-Kmeans as guess kmeans_init = KMeans(n_clusters=self.n_clusters) kmeans_init.build_model() encoder = Model(inputs=self.model.input, outputs=self.model.get_layer(\ name='embedding_layer').output) kmeans_init.model.fit(encoder.predict(data_train)) y_pred_last = kmeans_init.model.labels_ self.model.get_layer(name='clustering').\ set_weights([kmeans_init.model.cluster_centers_]) # Prepare training: p disctribution methods if not supervised_learning: # Unsupervised Learning assert hardening_order in DCE.HARDENING_FUNCS.keys() assert hardening_strength >= 1.0 h_func = DCE.HARDENING_FUNCS[hardening_order] else: # Supervised Learning assert len(labels_train) == len(data_train) assert len(np.unique(labels_train)) == self.n_clusters p = np.zeros(shape=(len(labels_train), self.n_clusters)) for i in range(len(labels_train)): p[i][labels_train[i]] = 1.0 if data_test is not None: assert len(labels_test) == len(data_test) assert len(np.unique(labels_test)) == self.n_clusters p_test = np.zeros(shape=(len(labels_test), self.n_clusters)) for i in range(len(labels_test)): p_test[i][labels_test[i]] = 1.0 validation_loss = [] # training start: loss = [] for iteration in range(int(self.max_iteration)): if iteration % self.update_interval == 0: # updating p for unsupervised learning process q, _ = self.model.predict(data_train) if not supervised_learning: p = DCE.hardening(q, h_func, hardening_strength) # get label change i y_pred = q.argmax(1) delta_label_i = np.sum(y_pred != y_pred_last).\ astype(np.float32) / y_pred.shape[0] y_pred_last = y_pred # exam convergence if iteration > 0 and delta_label_i < self.clustering_tol: print(str(delta_label_i) +' < ' + str(self.clustering_tol)) print('Reached tolerance threshold. Stopping training.') break loss.append(self.model.train_on_batch(x=data_train, y=[p,data_train])) if supervised_learning and data_test is not None: validation_loss.append(self.model.test_on_batch( x=data_test, y=[p_test,data_test])) if verbose > 0 and iteration % self.update_interval == 0: print('Epoch: ' + str(iteration)) if verbose == 1: print(' Total_loss = ' + str(loss[iteration][0]) + ';Delta_label = ' + str(delta_label_i)) print(' Clustering_loss = ' + str(loss[iteration][1]) + '; Decoder_loss = ' + str(loss[iteration][2])) if iteration == self.max_iteration - 1: print('Reached maximum iteration. Stopping training.') if data_test is None: return np.array(loss).T else: return [np.array(loss).T, np.array(validation_loss).T] @staticmethod def hardening(q, h_func, stength): """hardening distribution P and return Q Args: q: input distributions. h_func: input harderning function. strength: hardening strength. returns: p: hardened and normatlized distributions. """ q = h_func(q) weight = q ** stength / q.sum(0) return (weight.T / weight.sum(1)).T
41.430493
79
0.573763
[ "MIT" ]
chembed/DeepChEmbed
deepchembed/dce.py
9,241
Python
import datetime from . import status from .errors import InvalidAuthRequest, ProtocolVersionUnsupported, NoMutualAuthType from .signing import Key from .response import AuthResponse class AuthPrincipal: def __init__(self, userid, auth_methods, ptags=None, session_expiry=None): self.userid = userid self.auth_methods = auth_methods if ptags is None: ptags = [] self.ptags = ptags self.session_expiry = session_expiry class LoginService: """High-level interface to implement a web login service (WLS). This class provides a convenient interface for implementing a WLS with any authentication backend. It is intended to be instantiated with a single private key, which is used to sign the responses it generates. Mechanisms deemed useful for WLS implementation are provided: - storing the list of supported authentication methods, and checking whether the WLS and a WAA's request have an method in common - checking whether the protocol version specified in the WAA request is supported by `ucam_wls` These mechanisms can optionally be turned off. Attributes: key (ucam_wls.signing.Key): a private key to be used to sign responses auth_methods (list): a list of supported authentication methods """ def __init__(self, key, auth_methods): if not isinstance(key, Key): raise TypeError("key must be a ucam_wls.signing.Key instance") self.key = key self.auth_methods = auth_methods def have_mutual_auth_type(self, request): if request.aauth and any(request.aauth): return set(request.aauth) & set(self.auth_methods) != set() else: return True def _pre_response(self, request, skip_handling_check, check_auth_types=True): if not skip_handling_check: if not request.data_valid: raise InvalidAuthRequest if check_auth_types and not self.have_mutual_auth_type(request): raise NoMutualAuthType( "WLS supports %s; WAA wants one of %s" % ( self.auth_methods, request.aauth ) ) if not request.version_supported: raise ProtocolVersionUnsupported(request.ver) def _finish_response(self, response, sign=True, force_signature=False): if sign or response.requires_signature: if not response.is_signed or force_signature: self.key.sign(response) return response def authenticate_active(self, request, principal, auth, life=None, sign=True, skip_handling_check=False, *args, **kwargs): """Generate a WLS 'success' response based on interaction with the user This function creates a WLS response specifying that the principal was authenticated based on 'fresh' interaction with the user (e.g. input of a username and password). Args: request (AuthRequest): the original WAA request principal (AuthPrincipal): the principal authenticated by the WLS auth (str): the authentication method used by the principal. life (int): if specified, the validity (in seconds) of the principal's session with the WLS. sign (bool): whether to sign the response or not. Recommended to leave this at the default value of `True` (see warning below). *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Warning: Responses indicating successful authentication *MUST* be signed by the WLS. It is recommended that you leave `sign` set to `True`, or make sure to sign the response manually afterwards. """ self._pre_response(request, skip_handling_check) if request.iact == False: raise ValueError("WAA demanded passive authentication (iact == 'no')") if life is None and principal.session_expiry is not None: life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) response = AuthResponse.respond_to_request( request=request, code=status.SUCCESS, principal=principal.userid, auth=auth, ptags=principal.ptags, life=life, *args, **kwargs ) return self._finish_response(response=response, sign=sign) def authenticate_passive(self, request, principal, sso=[], sign=True, skip_handling_check=False, *args, **kwargs): """Generate a WLS 'success' response based on a pre-existing identity This function creates a WLS response specifying that the principal was authenticated based on previous successful authentication (e.g. an existing WLS session cookie). Args: request (AuthRequest): the original WAA request principal (AuthPrincipal): the principal authenticated by the WLS sso (list): a list of strings indicating the authentication methods previously used for authentication by the principal. If an empty list is passed, `principal.auth_methods` will be used. sign (bool): whether to sign the response or not. Recommended to leave this at the default value of `True` (see warning below). *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Warning: Responses indicating successful authentication *MUST* be signed by the WLS. It is recommended that you leave `sign` set to `True`, or make sure to sign the response manually afterwards. """ self._pre_response(request, skip_handling_check) if request.iact == True: raise ValueError("WAA demanded active authentication (iact == 'yes')") if len(sso) == 0: sso = principal.auth_methods if len(sso) == 0: raise ValueError("no authentication methods specified for `sso`") if principal.session_expiry is not None: life = int((principal.session_expiry - datetime.datetime.utcnow()).total_seconds()) else: life = None response = AuthResponse.respond_to_request( request=request, code=status.SUCCESS, principal=principal.userid, sso=sso, ptags=principal.ptags, life=life, *args, **kwargs ) return self._finish_response(response=response, sign=sign) def generate_failure(self, code, request, msg='', sign=True, skip_handling_check=False, *args, **kwargs): """Generate a response indicating failure. This is to be used in all cases where the outcome of user interaction is not success. This function will refuse to handle a request where the 'fail' parameter is 'yes' (in which case the WLS must not redirect back to the WAA). Args: code (int): the response status code. Values specified in the protocol are available as constants under `ucam_wls.status`. request (AuthRequest): the original WAA request msg (str): an optional message that could be shown to the end user by the WAA sign (bool): whether to sign the response or not. *args: passed to `AuthResponse.respond_to_request` **kwargs: passed to `AuthResponse.respond_to_request` Returns: An `AuthResponse` instance matching the given arguments. Note: Signatures on WLS responses indicating a non-success can optionally be signed. In the interests of security, the default in this function is to go ahead and sign anyway, but this can be turned off if really desired. """ self._pre_response(request, skip_handling_check, check_auth_types=False) if request.fail: raise ValueError("WAA specified that WLS must not redirect " "back to it on failure") if code == status.SUCCESS: raise ValueError("Failure responses must not have success status") response = AuthResponse.respond_to_request( request=request, code=code, *args, **kwargs ) return self._finish_response(response=response, sign=sign)
43.346535
95
0.646071
[ "MIT" ]
edwinbalani/ucam-wls
ucam_wls/context.py
8,756
Python
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'TableMagneticStoreWriteProperties', 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation', 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration', 'TableRetentionProperties', ] @pulumi.output_type class TableMagneticStoreWriteProperties(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "enableMagneticStoreWrites": suggest = "enable_magnetic_store_writes" elif key == "magneticStoreRejectedDataLocation": suggest = "magnetic_store_rejected_data_location" if suggest: pulumi.log.warn(f"Key '{key}' not found in TableMagneticStoreWriteProperties. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TableMagneticStoreWriteProperties.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TableMagneticStoreWriteProperties.__key_warning(key) return super().get(key, default) def __init__(__self__, *, enable_magnetic_store_writes: Optional[bool] = None, magnetic_store_rejected_data_location: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation'] = None): """ :param bool enable_magnetic_store_writes: A flag to enable magnetic store writes. :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationArgs' magnetic_store_rejected_data_location: The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details. """ if enable_magnetic_store_writes is not None: pulumi.set(__self__, "enable_magnetic_store_writes", enable_magnetic_store_writes) if magnetic_store_rejected_data_location is not None: pulumi.set(__self__, "magnetic_store_rejected_data_location", magnetic_store_rejected_data_location) @property @pulumi.getter(name="enableMagneticStoreWrites") def enable_magnetic_store_writes(self) -> Optional[bool]: """ A flag to enable magnetic store writes. """ return pulumi.get(self, "enable_magnetic_store_writes") @property @pulumi.getter(name="magneticStoreRejectedDataLocation") def magnetic_store_rejected_data_location(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation']: """ The location to write error reports for records rejected asynchronously during magnetic store writes. See Magnetic Store Rejected Data Location below for more details. """ return pulumi.get(self, "magnetic_store_rejected_data_location") @pulumi.output_type class TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "s3Configuration": suggest = "s3_configuration" if suggest: pulumi.log.warn(f"Key '{key}' not found in TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocation.__key_warning(key) return super().get(key, default) def __init__(__self__, *, s3_configuration: Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration'] = None): """ :param 'TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3ConfigurationArgs' s3_configuration: Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details. """ if s3_configuration is not None: pulumi.set(__self__, "s3_configuration", s3_configuration) @property @pulumi.getter(name="s3Configuration") def s3_configuration(self) -> Optional['outputs.TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration']: """ Configuration of an S3 location to write error reports for records rejected, asynchronously, during magnetic store writes. See S3 Configuration below for more details. """ return pulumi.get(self, "s3_configuration") @pulumi.output_type class TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "bucketName": suggest = "bucket_name" elif key == "encryptionOption": suggest = "encryption_option" elif key == "kmsKeyId": suggest = "kms_key_id" elif key == "objectKeyPrefix": suggest = "object_key_prefix" if suggest: pulumi.log.warn(f"Key '{key}' not found in TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TableMagneticStoreWritePropertiesMagneticStoreRejectedDataLocationS3Configuration.__key_warning(key) return super().get(key, default) def __init__(__self__, *, bucket_name: Optional[str] = None, encryption_option: Optional[str] = None, kms_key_id: Optional[str] = None, object_key_prefix: Optional[str] = None): """ :param str bucket_name: Bucket name of the customer S3 bucket. :param str encryption_option: Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`. :param str kms_key_id: KMS key arn for the customer s3 location when encrypting with a KMS managed key. :param str object_key_prefix: Object key prefix for the customer S3 location. """ if bucket_name is not None: pulumi.set(__self__, "bucket_name", bucket_name) if encryption_option is not None: pulumi.set(__self__, "encryption_option", encryption_option) if kms_key_id is not None: pulumi.set(__self__, "kms_key_id", kms_key_id) if object_key_prefix is not None: pulumi.set(__self__, "object_key_prefix", object_key_prefix) @property @pulumi.getter(name="bucketName") def bucket_name(self) -> Optional[str]: """ Bucket name of the customer S3 bucket. """ return pulumi.get(self, "bucket_name") @property @pulumi.getter(name="encryptionOption") def encryption_option(self) -> Optional[str]: """ Encryption option for the customer s3 location. Options are S3 server side encryption with an S3-managed key or KMS managed key. Valid values are `SSE_KMS` and `SSE_S3`. """ return pulumi.get(self, "encryption_option") @property @pulumi.getter(name="kmsKeyId") def kms_key_id(self) -> Optional[str]: """ KMS key arn for the customer s3 location when encrypting with a KMS managed key. """ return pulumi.get(self, "kms_key_id") @property @pulumi.getter(name="objectKeyPrefix") def object_key_prefix(self) -> Optional[str]: """ Object key prefix for the customer S3 location. """ return pulumi.get(self, "object_key_prefix") @pulumi.output_type class TableRetentionProperties(dict): @staticmethod def __key_warning(key: str): suggest = None if key == "magneticStoreRetentionPeriodInDays": suggest = "magnetic_store_retention_period_in_days" elif key == "memoryStoreRetentionPeriodInHours": suggest = "memory_store_retention_period_in_hours" if suggest: pulumi.log.warn(f"Key '{key}' not found in TableRetentionProperties. Access the value via the '{suggest}' property getter instead.") def __getitem__(self, key: str) -> Any: TableRetentionProperties.__key_warning(key) return super().__getitem__(key) def get(self, key: str, default = None) -> Any: TableRetentionProperties.__key_warning(key) return super().get(key, default) def __init__(__self__, *, magnetic_store_retention_period_in_days: int, memory_store_retention_period_in_hours: int): """ :param int magnetic_store_retention_period_in_days: The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000. :param int memory_store_retention_period_in_hours: The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766. """ pulumi.set(__self__, "magnetic_store_retention_period_in_days", magnetic_store_retention_period_in_days) pulumi.set(__self__, "memory_store_retention_period_in_hours", memory_store_retention_period_in_hours) @property @pulumi.getter(name="magneticStoreRetentionPeriodInDays") def magnetic_store_retention_period_in_days(self) -> int: """ The duration for which data must be stored in the magnetic store. Minimum value of 1. Maximum value of 73000. """ return pulumi.get(self, "magnetic_store_retention_period_in_days") @property @pulumi.getter(name="memoryStoreRetentionPeriodInHours") def memory_store_retention_period_in_hours(self) -> int: """ The duration for which data must be stored in the memory store. Minimum value of 1. Maximum value of 8766. """ return pulumi.get(self, "memory_store_retention_period_in_hours")
46.277056
294
0.710196
[ "ECL-2.0", "Apache-2.0" ]
chivandikwa/pulumi-aws
sdk/python/pulumi_aws/timestreamwrite/outputs.py
10,690
Python
# # PySNMP MIB module Nortel-MsCarrier-MscPassport-ExtensionsMIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/Nortel-MsCarrier-MscPassport-ExtensionsMIB # Produced by pysmi-0.3.4 at Wed May 1 14:29:54 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsIntersection, SingleValueConstraint, ValueRangeConstraint, ConstraintsUnion = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsIntersection", "SingleValueConstraint", "ValueRangeConstraint", "ConstraintsUnion") ifIndex, = mibBuilder.importSymbols("IF-MIB", "ifIndex") RowPointer, = mibBuilder.importSymbols("Nortel-MsCarrier-MscPassport-StandardTextualConventionsMIB", "RowPointer") mscPassportMIBs, mscComponents = mibBuilder.importSymbols("Nortel-MsCarrier-MscPassport-UsefulDefinitionsMIB", "mscPassportMIBs", "mscComponents") NotificationGroup, ModuleCompliance = mibBuilder.importSymbols("SNMPv2-CONF", "NotificationGroup", "ModuleCompliance") Unsigned32, MibIdentifier, iso, ObjectIdentity, MibScalar, MibTable, MibTableRow, MibTableColumn, ModuleIdentity, NotificationType, Counter32, Bits, Gauge32, IpAddress, TimeTicks, Integer32, Counter64 = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "MibIdentifier", "iso", "ObjectIdentity", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "ModuleIdentity", "NotificationType", "Counter32", "Bits", "Gauge32", "IpAddress", "TimeTicks", "Integer32", "Counter64") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") extensionsMIB = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5)) mscExtensions = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 1, 4)) mscExtensionIfTable = MibTable((1, 3, 6, 1, 4, 1, 562, 36, 2, 1, 4, 1), ) if mibBuilder.loadTexts: mscExtensionIfTable.setStatus('mandatory') if mibBuilder.loadTexts: mscExtensionIfTable.setDescription('A table which provides enterprise extensions to the standard ifTable.') mscExtensionIfEntry = MibTableRow((1, 3, 6, 1, 4, 1, 562, 36, 2, 1, 4, 1, 1), ).setIndexNames((0, "IF-MIB", "ifIndex")) if mibBuilder.loadTexts: mscExtensionIfEntry.setStatus('mandatory') if mibBuilder.loadTexts: mscExtensionIfEntry.setDescription(' An entry containing enterprise extensions to the standard ifEntry.') mscIfRowPointer = MibTableColumn((1, 3, 6, 1, 4, 1, 562, 36, 2, 1, 4, 1, 1, 1), RowPointer()).setMaxAccess("readonly") if mibBuilder.loadTexts: mscIfRowPointer.setStatus('mandatory') if mibBuilder.loadTexts: mscIfRowPointer.setDescription('A pointer to the RowStatus variable for the component represented by the ifTable entry.') extensionsGroup = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 1)) extensionsGroupCA = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 1, 1)) extensionsGroupCA01 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 1, 1, 2)) extensionsGroupCA01A = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 1, 1, 2, 2)) extensionsCapabilities = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 3)) extensionsCapabilitiesCA = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 3, 1)) extensionsCapabilitiesCA01 = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 3, 1, 2)) extensionsCapabilitiesCA01A = MibIdentifier((1, 3, 6, 1, 4, 1, 562, 36, 2, 2, 5, 3, 1, 2, 2)) mibBuilder.exportSymbols("Nortel-MsCarrier-MscPassport-ExtensionsMIB", extensionsGroup=extensionsGroup, extensionsGroupCA01=extensionsGroupCA01, extensionsCapabilitiesCA=extensionsCapabilitiesCA, extensionsGroupCA=extensionsGroupCA, extensionsMIB=extensionsMIB, mscIfRowPointer=mscIfRowPointer, extensionsCapabilitiesCA01A=extensionsCapabilitiesCA01A, extensionsGroupCA01A=extensionsGroupCA01A, extensionsCapabilities=extensionsCapabilities, extensionsCapabilitiesCA01=extensionsCapabilitiesCA01, mscExtensions=mscExtensions, mscExtensionIfTable=mscExtensionIfTable, mscExtensionIfEntry=mscExtensionIfEntry)
114.243243
607
0.772652
[ "Apache-2.0" ]
agustinhenze/mibs.snmplabs.com
pysnmp-with-texts/Nortel-MsCarrier-MscPassport-ExtensionsMIB.py
4,227
Python
# Copyright 2020 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Simple check list from AllenNLP repo: https://github.com/allenai/allennlp/blob/master/setup.py To create the package for pypi. 1. Change the version in __init__.py, setup.py as well as docs/source/conf.py. Remove the master from the links in the new models of the README: (https://huggingface.co/transformers/master/model_doc/ -> https://huggingface.co/transformers/model_doc/) then run `make fix-copies` to fix the index of the documentation. 2. Unpin specific versions from setup.py that use a git install. 2. Commit these changes with the message: "Release: VERSION" 3. Add a tag in git to mark the release: "git tag VERSION -m 'Adds tag VERSION for pypi' " Push the tag to git: git push --tags origin master 4. Build both the sources and the wheel. Do not change anything in setup.py between creating the wheel and the source distribution (obviously). For the wheel, run: "python setup.py bdist_wheel" in the top level directory. (this will build a wheel for the python version you use to build it). For the sources, run: "python setup.py sdist" You should now have a /dist directory with both .whl and .tar.gz source versions. 5. Check that everything looks correct by uploading the package to the pypi test server: twine upload dist/* -r pypitest (pypi suggest using twine as other methods upload files via plaintext.) You may have to specify the repository url, use the following command then: twine upload dist/* -r pypitest --repository-url=https://test.pypi.org/legacy/ Check that you can install it in a virtualenv by running: pip install -i https://testpypi.python.org/pypi transformers 6. Upload the final version to actual pypi: twine upload dist/* -r pypi 7. Copy the release notes from RELEASE.md to the tag in github once everything is looking hunky-dory. 8. Add the release version to docs/source/_static/js/custom.js and .circleci/deploy.sh 9. Update README.md to redirect to correct documentation. 10. Update the version in __init__.py, setup.py to the new version "-dev" and push to master. """ import os import re import shutil from distutils.core import Command from pathlib import Path from setuptools import find_packages, setup # Remove stale transformers.egg-info directory to avoid https://github.com/pypa/pip/issues/5466 stale_egg_info = Path(__file__).parent / "transformers.egg-info" if stale_egg_info.exists(): print( ( "Warning: {} exists.\n\n" "If you recently updated transformers to 3.0 or later, this is expected,\n" "but it may prevent transformers from installing in editable mode.\n\n" "This directory is automatically generated by Python's packaging tools.\n" "I will remove it now.\n\n" "See https://github.com/pypa/pip/issues/5466 for details.\n" ).format(stale_egg_info) ) shutil.rmtree(stale_egg_info) # IMPORTANT: # 1. all dependencies should be listed here with their version requirements if any # 2. once modified, run: `make deps_table_update` to update src/transformers/dependency_versions_table.py _deps = [ "black>=20.8b1", "cookiecutter==1.7.2", "dataclasses", "datasets", "faiss-cpu", "fastapi", "filelock", "flake8>=3.8.3", "flax>=0.2.2", "fugashi>=1.0", "importlib_metadata", "ipadic>=1.0.0,<2.0", "isort>=5.5.4", "jax>=0.2.8", "jaxlib>=0.1.59", "keras2onnx", "numpy>=1.17", "onnxconverter-common", "onnxruntime-tools>=1.4.2", "onnxruntime>=1.4.0", "packaging", "parameterized", "protobuf", "psutil", "pydantic", "pytest", "pytest-xdist", "python>=3.6.0", "recommonmark", "regex!=2019.12.17", "requests", "sacremoses", "scikit-learn", "sentencepiece==0.1.91", "soundfile", "sphinx-copybutton", "sphinx-markdown-tables", "sphinx-rtd-theme==0.4.3", # sphinx-rtd-theme==0.5.0 introduced big changes in the style. "sphinx==3.2.1", "starlette", "tensorflow-cpu>=2.3", "tensorflow>=2.3", "timeout-decorator", "tokenizers>=0.10.1,<0.11", "torch>=1.0", "torchaudio", "tqdm>=4.27", "unidic>=1.0.2", "unidic_lite>=1.0.7", "uvicorn", ] # this is a lookup table with items like: # # tokenizers: "tokenizers==0.9.4" # packaging: "packaging" # # some of the values are versioned whereas others aren't. deps = {b: a for a, b in (re.findall(r"^(([^!=<>]+)(?:[!=<>].*)?$)", x)[0] for x in _deps)} # since we save this data in src/transformers/dependency_versions_table.py it can be easily accessed from # anywhere. If you need to quickly access the data from this table in a shell, you can do so easily with: # # python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets # # Just pass the desired package names to that script as it's shown with 2 packages above. # # If transformers is not yet installed and the work is done from the cloned repo remember to add `PYTHONPATH=src` to the script above # # You can then feed this for example to `pip`: # # pip install -U $(python -c 'import sys; from transformers.dependency_versions_table import deps; \ # print(" ".join([ deps[x] for x in sys.argv[1:]]))' tokenizers datasets) # def deps_list(*pkgs): return [deps[pkg] for pkg in pkgs] class DepsTableUpdateCommand(Command): """ A custom distutils command that updates the dependency table. usage: python setup.py deps_table_update """ description = "build runtime dependency table" user_options = [ # format: (long option, short option, description). ("dep-table-update", None, "updates src/transformers/dependency_versions_table.py"), ] def initialize_options(self): pass def finalize_options(self): pass def run(self): entries = "\n".join([f' "{k}": "{v}",' for k, v in deps.items()]) content = [ "# THIS FILE HAS BEEN AUTOGENERATED. To update:", "# 1. modify the `_deps` dict in setup.py", "# 2. run `make deps_table_update``", "deps = {", entries, "}", "", ] target = "src/transformers/dependency_versions_table.py" print(f"updating {target}") with open(target, "w", encoding="utf-8", newline="\n") as f: f.write("\n".join(content)) extras = {} extras["ja"] = deps_list("fugashi", "ipadic", "unidic_lite", "unidic") extras["sklearn"] = deps_list("scikit-learn") extras["tf"] = deps_list("tensorflow", "onnxconverter-common", "keras2onnx") extras["tf-cpu"] = deps_list("tensorflow-cpu", "onnxconverter-common", "keras2onnx") extras["torch"] = deps_list("torch") if os.name == "nt": # windows extras["retrieval"] = deps_list("datasets") # faiss is not supported on windows extras["flax"] = [] # jax is not supported on windows else: extras["retrieval"] = deps_list("faiss-cpu", "datasets") extras["flax"] = deps_list("jax", "jaxlib", "flax") extras["tokenizers"] = deps_list("tokenizers") extras["onnxruntime"] = deps_list("onnxruntime", "onnxruntime-tools") extras["modelcreation"] = deps_list("cookiecutter") extras["serving"] = deps_list("pydantic", "uvicorn", "fastapi", "starlette") extras["speech"] = deps_list("soundfile", "torchaudio") extras["sentencepiece"] = deps_list("sentencepiece", "protobuf") extras["testing"] = ( deps_list("pytest", "pytest-xdist", "timeout-decorator", "parameterized", "psutil", "datasets") + extras["retrieval"] + extras["modelcreation"] ) extras["docs"] = deps_list("recommonmark", "sphinx", "sphinx-markdown-tables", "sphinx-rtd-theme", "sphinx-copybutton") extras["quality"] = deps_list("black", "isort", "flake8") extras["all"] = extras["tf"] + extras["torch"] + extras["flax"] + extras["sentencepiece"] + extras["tokenizers"] extras["dev"] = ( extras["all"] + extras["testing"] + extras["quality"] + extras["ja"] + extras["docs"] + extras["sklearn"] + extras["modelcreation"] ) extras["torchhub"] = deps_list( "filelock", "importlib_metadata", "numpy", "packaging", "protobuf", "regex", "requests", "sacremoses", "sentencepiece", "torch", "tokenizers", "tqdm", ) # when modifying the following list, make sure to update src/transformers/dependency_versions_check.py install_requires = [ deps["dataclasses"] + ";python_version<'3.7'", # dataclasses for Python versions that don't have it deps["importlib_metadata"] + ";python_version<'3.8'", # importlib_metadata for Python versions that don't have it deps["filelock"], # filesystem locks, e.g., to prevent parallel downloads deps["numpy"], deps["packaging"], # utilities from PyPA to e.g., compare versions deps["regex"], # for OpenAI GPT deps["requests"], # for downloading models over HTTPS deps["sacremoses"], # for XLM deps["tokenizers"], deps["tqdm"], # progress bars in model download and training scripts ] setup( name="transformers", version="4.4.0.dev0", # expected format is one of x.y.z.dev0, or x.y.z.rc1 or x.y.z (no to dashes, yes to dots) author="Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Sam Shleifer, Patrick von Platen, Sylvain Gugger, Google AI Language Team Authors, Open AI team Authors, Facebook AI Authors, Carnegie Mellon University Authors", author_email="[email protected]", description="State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch", long_description=open("README.md", "r", encoding="utf-8").read(), long_description_content_type="text/markdown", keywords="NLP deep learning transformer pytorch tensorflow BERT GPT GPT-2 google openai CMU", license="Apache", url="https://github.com/huggingface/transformers", package_dir={"": "src"}, packages=find_packages("src"), extras_require=extras, entry_points={"console_scripts": ["transformers-cli=transformers.commands.transformers_cli:main"]}, python_requires=">=3.6.0", install_requires=install_requires, classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "Intended Audience :: Education", "Intended Audience :: Science/Research", "License :: OSI Approved :: Apache Software License", "Operating System :: OS Independent", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Topic :: Scientific/Engineering :: Artificial Intelligence", ], cmdclass={"deps_table_update": DepsTableUpdateCommand}, )
36.33121
233
0.673562
[ "Apache-2.0" ]
Ki6an/transformers
setup.py
11,408
Python
from django.db import models # Create your models here. class BaseView(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title class port1View(models.Model): def __unicode__(self): return self.title class port2View(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title class port3View(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title class port4View(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title class port5View(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title class port6View(models.Model): title = models.CharField(max_length=256) def __unicode__(self): return self.title
18.456522
41
0.762073
[ "MIT" ]
nandosarracino/mymainsite
mainsite/models.py
849
Python
with open('/home/pi/kown_hosts') as kown_f,open('/home/pi/cache_hosts') as cache_f: kown_hosts = kown_f.readlines() cache_hosts = set(cache_f.readlines()) kown_hosts = [host.split() for host in kown_hosts] with open('/etc/ansible/hosts','w') as wf: wf.writelines([x.split()[1]+"\n" for x in cache_hosts])
35.444444
83
0.689655
[ "Apache-2.0" ]
yujmo/python
rewrite_multi_pis_ansilbe_hosts.py
319
Python
# import the necessary packages import sys import cv2 import numpy as np import pandas as pd from tensorflow.keras.preprocessing.image import ImageDataGenerator from sklearn.preprocessing import LabelBinarizer from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split from tensorflow.keras.layers import BatchNormalization from tensorflow.keras.layers import Conv2D from tensorflow.keras.layers import Conv2DTranspose from tensorflow.keras.layers import LeakyReLU from tensorflow.keras.layers import Activation from tensorflow.keras.layers import Flatten from tensorflow.keras.layers import Dense from tensorflow.keras.layers import Reshape from tensorflow.keras.optimizers import Adam from tensorflow.keras import Input from tensorflow.keras import Model from tensorflow.keras import backend as K from tensorflow.keras.models import load_model from tensorflow.keras.callbacks import ModelCheckpoint, EarlyStopping class CNNProcessData: def __init__(self): pass def get_imagedatagenerator(self): datagen = ImageDataGenerator( featurewise_center=True, featurewise_std_normalization=True, #rotation_range=20, #width_shift_range=0.05, #height_shift_range=0.05, #horizontal_flip=True, # vertical_flip=True, #brightness_range=[0.8,1.2] ) return datagen def generate_croppings(self, testX, testY, image_size, number): if number != 11: raise Exception("Only implemented for number = 11 right now") augmented_testX_1 = [] augmented_testX_2 = [] augmented_testX_3 = [] augmented_testX_4 = [] augmented_testX_5 = [] augmented_testX_6 = [] augmented_testX_7 = [] augmented_testX_8 = [] augmented_testX_9 = [] augmented_testX_10 = [] augmented_testX_11 = [] mid_image_size = int(round(image_size/2)) for img in testX: height = img.shape[0] small_height = int(round(height*0.1)) mid_height = int(round(height/2)) width = img.shape[1] mid_width = int(round(width/2)) crop_img1 = img[height-image_size:height, 0:image_size] crop_img2 = img[height-image_size:height, width-image_size:width] crop_img3 = img[0:image_size, width-image_size:width] crop_img4 = img[0:image_size, 0:image_size] crop_img5 = img[mid_height-mid_image_size:mid_height+mid_image_size, mid_width-mid_image_size:mid_width+mid_image_size] crop_img6 = img[mid_height-mid_image_size:mid_height+mid_image_size, 0:image_size] crop_img7 = img[mid_height-mid_image_size:mid_height+mid_image_size, width-image_size:width] crop_img8 = img[mid_height+small_height-mid_image_size:mid_height+small_height+mid_image_size, 0:image_size] crop_img9 = img[mid_height+small_height-mid_image_size:mid_height+small_height+mid_image_size, width-image_size:width] crop_img10 = img[mid_height-small_height-mid_image_size:mid_height-small_height+mid_image_size, 0:image_size] crop_img11 = img[mid_height-small_height-mid_image_size:mid_height-small_height+mid_image_size, width-image_size:width] augmented_testX_1.append(crop_img1) augmented_testX_2.append(crop_img2) augmented_testX_3.append(crop_img3) augmented_testX_4.append(crop_img4) augmented_testX_5.append(crop_img5) augmented_testX_6.append(crop_img6) augmented_testX_7.append(crop_img7) augmented_testX_8.append(crop_img8) augmented_testX_9.append(crop_img9) augmented_testX_10.append(crop_img10) augmented_testX_11.append(crop_img11) augmented_testX_1 = np.array(augmented_testX_1) augmented_testX_2 = np.array(augmented_testX_2) augmented_testX_3 = np.array(augmented_testX_3) augmented_testX_4 = np.array(augmented_testX_4) augmented_testX_5 = np.array(augmented_testX_5) augmented_testX_6 = np.array(augmented_testX_6) augmented_testX_7 = np.array(augmented_testX_7) augmented_testX_8 = np.array(augmented_testX_8) augmented_testX_9 = np.array(augmented_testX_9) augmented_testX_10 = np.array(augmented_testX_10) augmented_testX_11 = np.array(augmented_testX_11) testX = np.concatenate((augmented_testX_1, augmented_testX_2, augmented_testX_3, augmented_testX_4, augmented_testX_5, augmented_testX_6, augmented_testX_7, augmented_testX_8, augmented_testX_9, augmented_testX_10, augmented_testX_11)) # testXflipped = [] # for img in testX: # horizontal_flip = cv2.flip( img, 0 ) # testXflipped.append(horizontal_flip) # testXflipped = np.array(testXflipped) # testX = np.concatenate((testX, testXflipped)) testY = np.repeat(testY, number) return (testX, testY) def create_montages(self, images, montage_image_number, image_size, full_montage_image_size): output = [] if montage_image_number == 4: data = images.reshape(int(len(images)/montage_image_number), montage_image_number, image_size, image_size, 3) for iter in range(len(data)): img_set = data[iter] outputImage = np.zeros((full_montage_image_size, full_montage_image_size, 3)) outputImage[0:image_size, 0:image_size, :] = img_set[0] outputImage[0:image_size, image_size:2*image_size, :] = img_set[1] outputImage[image_size:2*image_size, 0:image_size, :] = img_set[2] outputImage[image_size:2*image_size, image_size:2*image_size, :] = img_set[3] # cv2.imshow("Result", outputImage) # cv2.waitKey(0) # raise Exception('Exit') output.append(outputImage) else: raise Exception('Only implemented to montage 4 images into one image') return np.array(output) def process_cnn_data(self, images, aux_data, num_unique_stock_ids, num_unique_image_types, num_unique_time_days, image_size, keras_model_type, data_augmentation, data_augmentation_test, montage_image_number, full_montage_image_size, output_autoencoder_model_file_path, log_file_path): if log_file_path is not None: sys.stderr = open(log_file_path, 'a') def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) trainX = [] testX = [] trainY = [] testY = [] datagen = self.get_imagedatagenerator() datagen.fit(images) images = datagen.standardize(images) aux_data["value"] = aux_data["value"].astype(float) output_image_file = aux_data["output_image_file"].tolist() # LSTM models group images by time, but are still ties to a single label e.g. X, Y = [img_t1, img_t2, img_t3], y1. if keras_model_type == 'densenet121_lstm_imagenet': images = images.reshape(num_unique_stock_ids * num_unique_image_types, num_unique_time_days, input_image_size, input_image_size, 3) (train_aux_data, test_aux_data, train_images, test_images) = train_test_split(aux_data, images, test_size=0.2) trainX_length = len(train_images) testX_length = len(test_images) train_images = train_images.reshape(trainX_length * num_unique_time_days, input_image_size, input_image_size, 3) test_images = test_images.reshape(testX_length * num_unique_time_days, input_image_size, input_image_size, 3) trainX_length_flat = len(train_images) test_images = datagen.standardize(test_images) # (testX, testY) = self.generate_croppings(testX, testY, image_size, data_augmentation_test) testX_resized = [] for img in test_images: testX_resized.append(cv2.resize(img, (image_size, image_size))) test_images = np.array(testX_resized) test_images = test_images.reshape(data_augmentation_test * testX_length, num_unique_time_days, image_size, image_size, 3) # trainX_aug = [] # trainY_aug = [] # augmented = datagen.flow(train_images, train_aux_data, batch_size=trainX_length_flat) # for i in range(0, data_augmentation): # X, y = augmented.next() # if len(trainX_aug) == 0: # trainX_aug = X # trainY_aug = y # else: # trainX_aug = np.concatenate((trainX_aug, X)) # trainY_aug = np.concatenate((trainY_aug, y)) # # trainX = trainX_aug # trainY = trainY_aug trainX_resized = [] for img in train_images: trainX_resized.append(cv2.resize(img, (image_size, image_size))) train_images = np.array(trainX_resized) train_images = train_images.reshape(data_augmentation * trainX_length, num_unique_time_days, image_size, image_size, 3) else: images = self.create_montages(images, montage_image_number, image_size, full_montage_image_size) (encoder, decoder, autoencoder) = self.build_autoencoder(full_montage_image_size, full_montage_image_size, 3) opt = Adam(lr=1e-3) autoencoder.compile(loss="mse", optimizer=opt) (train_aux_data, test_aux_data, train_images, test_images) = train_test_split(aux_data, images, test_size=0.2) checkpoint = ModelCheckpoint(filepath=output_autoencoder_model_file_path, monitor='loss', verbose=1, save_best_only=True, mode='min', save_frequency=1, save_weights_only=False) callbacks_list = [checkpoint] # train the convolutional autoencoder H = autoencoder.fit( train_images, train_images, validation_data=(test_images, test_images), epochs=25, batch_size=32, callbacks=callbacks_list ) decoded = autoencoder.predict(images) output_image_counter = 0 for image in decoded: cv2.imwrite(output_image_file[output_image_counter], image*255) output_image_counter += 1 (train_aux_data, test_aux_data, train_images, test_images) = train_test_split(aux_data, decoded, test_size=0.2) # testY_length = len(testY) # (testX, testY) = self.generate_croppings(testX, testY, image_size, data_augmentation_test) # testY = testY.reshape(data_augmentation_test * testY_length, 1) # augmented = datagen.flow(trainX, trainY, batch_size=len(trainX)) # for i in range(0, data_augmentation): # X, y = augmented.next() stock_id_binarizer = LabelBinarizer().fit(aux_data["stock_id"]) train_stock_id_categorical = stock_id_binarizer.transform(train_aux_data["stock_id"]) test_stock_id_categorical = stock_id_binarizer.transform(test_aux_data["stock_id"]) accession_id_binarizer = LabelBinarizer().fit(aux_data["accession_id"]) train_accession_id_categorical = accession_id_binarizer.transform(train_aux_data["accession_id"]) test_accession_id_categorical = accession_id_binarizer.transform(test_aux_data["accession_id"]) female_id_binarizer = LabelBinarizer().fit(aux_data["female_id"]) train_female_id_categorical = female_id_binarizer.transform(train_aux_data["female_id"]) test_female_id_categorical = female_id_binarizer.transform(test_aux_data["female_id"]) male_id_binarizer = LabelBinarizer().fit(aux_data["male_id"]) train_male_id_categorical = male_id_binarizer.transform(train_aux_data["male_id"]) test_male_id_categorical = male_id_binarizer.transform(test_aux_data["male_id"]) continuous = [col for col in aux_data.columns if 'aux_trait_' in col] cs = MinMaxScaler() if len(continuous) > 0: trainContinuous = cs.fit_transform(train_aux_data[continuous]) testContinuous = cs.transform(test_aux_data[continuous]) #trainX = np.hstack((train_stock_id_categorical, train_accession_id_categorical, train_female_id_categorical, train_male_id_categorical, trainContinuous)) #testX = np.hstack((test_stock_id_categorical, test_accession_id_categorical, test_female_id_categorical, test_male_id_categorical, testContinuous)) trainX = trainContinuous testX = testContinuous else: trainX = [] testX = [] trainx = np.array(trainX) testx = np.array(testX) max_label = aux_data["value"].max() trainY = train_aux_data["value"]/max_label testY = test_aux_data["value"]/max_label train_genotype_files = train_aux_data["genotype_file"].tolist() test_genotype_files = test_aux_data["genotype_file"].tolist() train_genotype_data = [] for f in train_genotype_files: if log_file_path is not None: eprint(f) else: print(f) if pd.isna(f) is False: geno_data = pd.read_csv(f, sep="\t", header=None, na_values="NA") train_genotype_data.append(np.array(geno_data.iloc[:,0])) test_genotype_data = [] for f in test_genotype_files: if log_file_path is not None: eprint(f) else: print(f) if pd.isna(f) is False: geno_data = pd.read_csv(f, sep="\t", header=None, na_values="NA") test_genotype_data.append(np.array(geno_data.iloc[:,0])) train_genotype_data = np.array(train_genotype_data) test_genotype_data = np.array(test_genotype_data) eprint(train_genotype_data) eprint(testX) eprint(trainX) return (test_images, np.array(testX), testY.to_numpy(), test_genotype_data, train_images, np.array(trainX), trainY.to_numpy(), train_genotype_data) def process_cnn_data_predictions(self, data, aux_data, num_unique_stock_ids, num_unique_image_types, num_unique_time_days, image_size, keras_model_type, input_autoencoder_model_file_path, training_data, data_augmentation_test, montage_image_number, full_montage_image_size): trainX = [] testX = [] trainY = [] testY = [] datagen = self.get_imagedatagenerator() datagen.fit(training_data) data = datagen.standardize(data) output_image_file = aux_data["output_image_file"].tolist() data = self.create_montages(data, montage_image_number, image_size, full_montage_image_size) autoencoder_model = load_model(input_autoencoder_model_file_path) data = autoencoder_model.predict(data) #ret = self.generate_croppings(data, None, image_size, data_augmentation_test) #augmented_data = ret[0] # LSTM models group images by time, but are still ties to a single label e.g. X, Y = [img_t1, img_t2, img_t3], y1. if keras_model_type == 'KerasCNNLSTMDenseNet121ImageNetWeights': data = data.reshape(data_augmentation_test * num_unique_stock_ids * num_unique_image_types, num_unique_time_days, image_size, image_size, 3) output_image_counter = 0 for image in data: cv2.imwrite(output_image_file[output_image_counter], image*255) output_image_counter += 1 stock_id_binarizer = LabelBinarizer().fit(aux_data["stock_id"]) stock_id_categorical = stock_id_binarizer.transform(aux_data["stock_id"]) accession_id_binarizer = LabelBinarizer().fit(aux_data["accession_id"]) accession_id_categorical = accession_id_binarizer.transform(aux_data["accession_id"]) female_id_binarizer = LabelBinarizer().fit(aux_data["female_id"]) female_id_categorical = female_id_binarizer.transform(aux_data["female_id"]) male_id_binarizer = LabelBinarizer().fit(aux_data["male_id"]) male_id_categorical = male_id_binarizer.transform(aux_data["male_id"]) continuous = [col for col in aux_data.columns if 'aux_trait_' in col] cs = MinMaxScaler() if len(continuous) > 0: fitContinuous = cs.fit_transform(aux_data[continuous]) # fitX = np.hstack([stock_id_categorical, accession_id_categorical, female_id_categorical, male_id_categorical, fitContinuous]) fitX = fitContinuous else: # fitX = np.hstack([stock_id_categorical, accession_id_categorical, female_id_categorical, male_id_categorical]) fitX = [] fitX = np.array(fitX) max_label = aux_data["value"].max() fitY = aux_data["value"]/max_label genotype_files = aux_data["genotype_file"].tolist() genotype_data = [] for f in genotype_files: if pd.isna(f) is False: geno_data = pd.read_csv(f, sep="\t", header=None, na_values="NA") genotype_data.append(np.array(geno_data.iloc[:,0])) genotype_data = np.array(genotype_data) return (data, fitX, genotype_data, fitY.to_numpy()) def build_autoencoder(self, width, height, depth, filters=(32, 64), latentDim=16): inputShape = (height, width, depth) chanDim = -1 # define the input to the encoder inputs = Input(shape=inputShape) x = inputs # loop over the number of filters for f in filters: # apply a CONV => RELU => BN operation x = Conv2D(f, (3, 3), strides=2, padding="same")(x) x = LeakyReLU(alpha=0.2)(x) x = BatchNormalization(axis=chanDim)(x) # flatten the network and then construct our latent vector volumeSize = K.int_shape(x) x = Flatten()(x) latent = Dense(latentDim)(x) # build the encoder model encoder = Model(inputs, latent, name="encoder") # start building the decoder model which will accept the # output of the encoder as its inputs latentInputs = Input(shape=(latentDim,)) x = Dense(np.prod(volumeSize[1:]))(latentInputs) x = Reshape((volumeSize[1], volumeSize[2], volumeSize[3]))(x) # loop over our number of filters again, but this time in # reverse order for f in filters[::-1]: # apply a CONV_TRANSPOSE => RELU => BN operation x = Conv2DTranspose(f, (3, 3), strides=2, padding="same")(x) x = LeakyReLU(alpha=0.2)(x) x = BatchNormalization(axis=chanDim)(x) # apply a single CONV_TRANSPOSE layer used to recover the # original depth of the image x = Conv2DTranspose(depth, (3, 3), padding="same")(x) outputs = Activation("sigmoid")(x) # build the decoder model decoder = Model(latentInputs, outputs, name="decoder") # our autoencoder is the encoder + decoder autoencoder = Model(inputs, decoder(encoder(inputs)), name="autoencoder") # return a 3-tuple of the encoder, decoder, and autoencoder return (encoder, decoder, autoencoder)
46.939467
288
0.666254
[ "MIT" ]
solgenomics/DroneImageScripts
CNN/CNNProcessData.py
19,386
Python
from numbers import Number import yaml from .color_tools import hex2rgb def __default_grid__(ax): """This is a temporary function""" ax.grid(b=True, which='major', color='#000000', alpha=0.2, linestyle='-', linewidth=0.5) ax.grid(b=True, which='minor', color='#000000', alpha=0.1, linestyle='-', linewidth=0.25) ax.minorticks_on() # Enables minor ticks without text, only the ticks. class FigStyle: def __init__(self, config_file): self.__width = None self.__ratio = None self.__hspace = None self.__colors = [None] self.__linestyles = [None] self.__markers = [None] self.__grid = __default_grid__ self.__main_color = None self.read_config_file(config_file) # This is what actually initializes the values. @property def colors(self): return self.__colors @property def width(self): return self.__width @property def ratio(self): return self.__ratio @property def hspace(self): return self.__hspace @property def grid(self): return self.__grid @property def linestyles(self): return self.__linestyles @property def markers(self): return self.__markers @property def main_color(self): return self.__main_color def read_config_file(self, filename): if not isinstance(filename, str): raise ValueError('"file_name" must be a string') with open(filename, 'r') as stream: try: data = yaml.load(stream) except yaml.YAMLError as exc: print(exc) if 'width' not in data: raise ValueError('The "figstyle" file must have a "width" field') self.__width = float(data['width']) if 'ratio' not in data: raise ValueError('The "figstyle" file must have a "ratio" field') if isinstance(data['ratio'], list) and len(data['ratio']) == 2 and isinstance(data['ratio'][0], Number) and isinstance(data['ratio'][1], Number): self.__ratio = data['ratio'] else: raise ValueError('Error reading "' + filename + '": ratio must be a list of two numbers [x_ratio, y_ratio]') if 'hspace' not in data: raise ValueError('The "figstyle" file must have a "hspace" field') self.__hspace = float(data['hspace']) if isinstance(data['colors'], list): self.__colors = [None]*len(data['colors']) for k in range(len(data['colors'])): self.__colors[k] = hex2rgb(data['colors'][k]) if 'linestyles' in data: if isinstance(data['linestyles'], list): self.__linestyles = data['linestyles'] if 'markers' in data: if isinstance(data['markers'], list): self.__markers = data['markers'] if 'main_color' in data: if isinstance(data['main_color'], str): self.__main_color = hex2rgb(data['main_color'])
29.460674
147
0.691838
[ "MIT" ]
SengerM/nicenquickplotlib
nicenquickplotlib/config_types.py
2,622
Python
from machine import Pin, Map, PWM # include Pin, Map and PWM functions from machine module import time # include time module # create PWM on WIO BUZZER with 2000Hz frequency and 250 duty cycle BUZZER = PWM(Pin(Map.WIO_BUZZER), freq=1000, duty=250)
37
92
0.741313
[ "MIT" ]
lakshanthad/Wio_Terminal_Classroom_Ardupy
Classroom 4/Buzzer_PWM.py
259
Python
import sys from . import pghoard sys.exit(pghoard.main())
10
24
0.733333
[ "Apache-2.0" ]
Adnuntius/pghoard
pghoard/__main__.py
60
Python
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import models, migrations class Migration(migrations.Migration): dependencies = [ ('cms', '__first__'), ] operations = [ migrations.CreateModel( name='GoogleMap', fields=[ ('cmsplugin_ptr', models.OneToOneField(serialize=False, parent_link=True, auto_created=True, to='cms.CMSPlugin', primary_key=True)), ('title', models.CharField(verbose_name='map title', blank=True, null=True, max_length=100)), ('address', models.CharField(verbose_name='address', max_length=150)), ('zipcode', models.CharField(verbose_name='zip code', max_length=30)), ('city', models.CharField(verbose_name='city', max_length=100)), ('content', models.CharField(help_text='Displayed under address in the bubble.', blank=True, max_length=255, verbose_name='additional content')), ('zoom', models.PositiveSmallIntegerField(verbose_name='zoom level', default=13, choices=[(0, '0'), (1, '1'), (2, '2'), (3, '3'), (4, '4'), (5, '5'), (6, '6'), (7, '7'), (8, '8'), (9, '9'), (10, '10'), (11, '11'), (12, '12'), (13, '13'), (14, '14'), (15, '15'), (16, '16'), (17, '17'), (18, '18'), (19, '19'), (20, '20'), (21, '21')])), ('lat', models.DecimalField(help_text='Use latitude & longitude to fine tune the map position.', blank=True, max_digits=10, verbose_name='latitude', null=True, decimal_places=6)), ('lng', models.DecimalField(max_digits=10, verbose_name='longitude', blank=True, null=True, decimal_places=6)), ('route_planer_title', models.CharField(verbose_name='route planer title', blank=True, null=True, max_length=150, default='Calculate your fastest way to here')), ('route_planer', models.BooleanField(verbose_name='route planer', default=False)), ('width', models.CharField(help_text='Plugin width (in pixels or percent).', default='100%', max_length=6, verbose_name='width')), ('height', models.CharField(help_text='Plugin height (in pixels).', default='400px', max_length=6, verbose_name='height')), ('info_window', models.BooleanField(help_text='Show textbox over marker', default=True, verbose_name='info window')), ('scrollwheel', models.BooleanField(help_text='Enable scrollwheel zooming on the map', default=True, verbose_name='scrollwheel')), ('double_click_zoom', models.BooleanField(verbose_name='double click zoom', default=True)), ('draggable', models.BooleanField(verbose_name='draggable', default=True)), ('keyboard_shortcuts', models.BooleanField(verbose_name='keyboard shortcuts', default=True)), ('pan_control', models.BooleanField(verbose_name='Pan control', default=True)), ('zoom_control', models.BooleanField(verbose_name='zoom control', default=True)), ('street_view_control', models.BooleanField(verbose_name='Street View control', default=True)), ], options={ 'abstract': False, }, bases=('cms.cmsplugin',), ), ]
72.533333
352
0.61826
[ "Apache-2.0" ]
Glasgow2015/team-10
env/lib/python2.7/site-packages/djangocms_googlemap/migrations_django/0001_initial.py
3,264
Python
import os.path import IMLearn.learners.regressors.linear_regression from IMLearn.learners.regressors import PolynomialFitting from IMLearn.utils import split_train_test import numpy as np import pandas as pd import plotly.express as px import plotly.io as pio pio.templates.default = "simple_white" from IMLearn.metrics.loss_functions import mean_square_error CITY_TEMPERATURE_DATA_PATH = os.path.join(os.path.curdir, "..", "datasets", "City_Temperature.csv") def load_data(filename: str) -> pd.DataFrame: """ Load city daily temperature dataset and preprocess data. Parameters ---------- filename: str Path to house prices dataset Returns ------- Design matrix and response vector (Temp) """ data = pd.read_csv(filename, parse_dates=["Date"]).drop_duplicates() data = data.drop(data[data["Temp"] < -70].index) # invalid Temp data["DayOfYear"] = data['Date'].dt.dayofyear return data def question_2(data): """ Exploring data specifically in Israel """ data = data.copy() data = data[data["Country"] == "Israel"] data["Year"] = data["Year"].astype(str) fig = px.scatter(data, x="DayOfYear", y="Temp", color="Year", width=1500, height=700, labels={"DayOfYear": "Day of Year", "Temp": "Temperature"}, title="Q2(1) The relation between the day in the year and the temperature in Israel") fig.update_xaxes(range=[0, 365], tick0=0, dtick=20) fig.show() std_by_month = data.groupby("Month").std().reset_index() fig = px.bar(std_by_month, x="Month", y="Temp", width=1500, height=700, labels={"Temp": "Std of the daily temperatures"}, title="Q2(2) The Standard Deviation of the Daily Temperatures Per Month in Israel") fig.data[-1].text = np.round(std_by_month["Temp"], 3) fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition='outside') fig.show() def question_3(data): """ Exploring differences between countries""" agg_data_mean = data.groupby(["Country", "Month"]).mean().reset_index() agg_data_std = data.groupby(["Country", "Month"]).std().reset_index() fig = px.line(agg_data_mean, x="Month", y="Temp", color="Country", error_y=agg_data_std["Temp"], width=1500, height=700, labels={"Temp": "Averaged Temperature"}, title="Q3 The Average Monthly Temperatures in Different Countries") fig.update_xaxes(tick0=1, dtick=1) fig.show() def question_4(data): """ Fitting model for different values of `k` """ data = data[data["Country"] == "Israel"] train_X, train_y, test_X, test_y = split_train_test(data["DayOfYear"], data["Temp"]) losses = np.array([]) for k in range(1, 11): poly_fit = PolynomialFitting(k) poly_fit.fit(train_X.to_numpy(), train_y.to_numpy()) loss = poly_fit.loss(test_X.to_numpy(), test_y.to_numpy()) losses = np.append(losses, round(loss, 2)) print(k, loss) fig = px.bar(x=range(1, 11), y=losses, width=1500, height=700, labels={"x": "Polynomials Degrees (k)", "y": "Test Error (MSE)"}, title="Q4 Test Errors for Different Polynomials Degrees (k)") fig.data[-1].text = losses fig.update_xaxes(tick0=1, dtick=1) fig.update_traces(textposition="outside") fig.show() def question_5(data): """ Evaluating fitted model on different countries """ data_israel = data[data["Country"] == "Israel"] poly_fit = PolynomialFitting(k=5) poly_fit.fit(data_israel["DayOfYear"], data_israel["Temp"]) other_countries = ["Jordan", "South Africa", "The Netherlands"] losses = np.array([]) for country in other_countries: country_data = data[data["Country"] == country] loss = poly_fit.loss(country_data["DayOfYear"], country_data["Temp"]) losses = np.append(losses, loss) fig = px.bar(x=np.array(other_countries), y=losses, width=700, height=700, labels={"x": "Country", "y": "Losses (MSE)"}, title="Q5 Losses (MSE) per Country With k=5") fig.data[-1].text = np.round(losses, 3) fig.update_traces(textposition="outside") fig.show() if __name__ == '__main__': np.random.seed(0) # Question 1 - Load and preprocessing of city temperature dataset data = load_data(CITY_TEMPERATURE_DATA_PATH) # Question 2 - Exploring data for specific country question_2(data) # Question 3 - Exploring differences between countries question_3(data) # Question 4 - Fitting model for different values of `k` question_4(data) # Question 5 - Evaluating fitted model on different countries question_5(data)
35.179104
108
0.65507
[ "MIT" ]
noamwino/IML.HUJI
exercises/city_temperature_prediction.py
4,714
Python
x = int(input()) m = int(input()) if x < 10: if x <= m: print(1) else: print(0) else: xarr = [] while x: xarr = [x % 10] + xarr x //= 10 n = len(xarr) l = max(xarr) + 1 def check(base, xarr): ans = xarr[0] * (base ** (n - 1)) if ans > m: return False return True def check1(base, xarr): ans = 0 for i in range(n): ans += xarr[i] * base ** (n - 1 - i) if ans > m: return False return True r = 1 while check(2 * r, xarr): r *= 2 r *= 2 ll, rr = l, r while ll < rr: mid = ll + (rr - ll) // 2 if check1(mid, xarr): ll = mid + 1 else: rr = mid if ll - 1 < l: print(0) else: print(ll - l)
18.977778
48
0.375878
[ "MIT" ]
ApocalypseMac/CP
atcoder/ABC 192/D.py
854
Python
def giving() i01.moveHead(44,82) i01.moveArm("left",15,55,68,10) i01.moveArm("right",13,40,74,13) i01.moveHand("left",61,0,14,0,0,180) i01.moveHand("right",0,24,24,19,21,25) i01.moveTorso(90,90,90)
25.5
39
0.681373
[ "Apache-2.0" ]
Alexinator40/pyrobotlab
home/hairygael/GESTURES/giving.py
204
Python
from tests.testmodels import Event, IntFields, MinRelation, Node, Reporter, Team, Tournament, Tree from tortoise import Tortoise from tortoise.contrib import test from tortoise.exceptions import ( DoesNotExist, FieldError, IntegrityError, MultipleObjectsReturned, ParamsError, ) from tortoise.expressions import F, RawSQL, Subquery # TODO: Test the many exceptions in QuerySet # TODO: .filter(intnum_null=None) does not work as expected class TestQueryset(test.TestCase): async def asyncSetUp(self): await super().asyncSetUp() # Build large dataset self.intfields = [await IntFields.create(intnum=val) for val in range(10, 100, 3)] self.db = Tortoise.get_connection("models") async def test_all_count(self): self.assertEqual(await IntFields.all().count(), 30) self.assertEqual(await IntFields.filter(intnum_null=80).count(), 0) async def test_exists(self): ret = await IntFields.filter(intnum=0).exists() self.assertFalse(ret) ret = await IntFields.filter(intnum=10).exists() self.assertTrue(ret) ret = await IntFields.filter(intnum__gt=10).exists() self.assertTrue(ret) ret = await IntFields.filter(intnum__lt=10).exists() self.assertFalse(ret) async def test_limit_count(self): self.assertEqual(await IntFields.all().limit(10).count(), 10) async def test_limit_negative(self): with self.assertRaisesRegex(ParamsError, "Limit should be non-negative number"): await IntFields.all().limit(-10) async def test_offset_count(self): self.assertEqual(await IntFields.all().offset(10).count(), 20) async def test_offset_negative(self): with self.assertRaisesRegex(ParamsError, "Offset should be non-negative number"): await IntFields.all().offset(-10) async def test_join_count(self): tour = await Tournament.create(name="moo") await MinRelation.create(tournament=tour) self.assertEqual(await MinRelation.all().count(), 1) self.assertEqual(await MinRelation.filter(tournament__id=tour.id).count(), 1) async def test_modify_dataset(self): # Modify dataset rows_affected = await IntFields.filter(intnum__gte=70).update(intnum_null=80) self.assertEqual(rows_affected, 10) self.assertEqual(await IntFields.filter(intnum_null=80).count(), 10) self.assertEqual(await IntFields.filter(intnum_null__isnull=True).count(), 20) await IntFields.filter(intnum_null__isnull=True).update(intnum_null=-1) self.assertEqual(await IntFields.filter(intnum_null=None).count(), 0) self.assertEqual(await IntFields.filter(intnum_null=-1).count(), 20) async def test_distinct(self): # Test distinct await IntFields.filter(intnum__gte=70).update(intnum_null=80) await IntFields.filter(intnum_null__isnull=True).update(intnum_null=-1) self.assertEqual( await IntFields.all() .order_by("intnum_null") .distinct() .values_list("intnum_null", flat=True), [-1, 80], ) self.assertEqual( await IntFields.all().order_by("intnum_null").distinct().values("intnum_null"), [{"intnum_null": -1}, {"intnum_null": 80}], ) async def test_limit_offset_values_list(self): # Test limit/offset/ordering values_list self.assertEqual( await IntFields.all().order_by("intnum").limit(10).values_list("intnum", flat=True), [10, 13, 16, 19, 22, 25, 28, 31, 34, 37], ) self.assertEqual( await IntFields.all() .order_by("intnum") .limit(10) .offset(10) .values_list("intnum", flat=True), [40, 43, 46, 49, 52, 55, 58, 61, 64, 67], ) self.assertEqual( await IntFields.all() .order_by("intnum") .limit(10) .offset(20) .values_list("intnum", flat=True), [70, 73, 76, 79, 82, 85, 88, 91, 94, 97], ) self.assertEqual( await IntFields.all() .order_by("intnum") .limit(10) .offset(30) .values_list("intnum", flat=True), [], ) self.assertEqual( await IntFields.all().order_by("-intnum").limit(10).values_list("intnum", flat=True), [97, 94, 91, 88, 85, 82, 79, 76, 73, 70], ) self.assertEqual( await IntFields.all() .order_by("intnum") .limit(10) .filter(intnum__gte=40) .values_list("intnum", flat=True), [40, 43, 46, 49, 52, 55, 58, 61, 64, 67], ) async def test_limit_offset_values(self): # Test limit/offset/ordering values self.assertEqual( await IntFields.all().order_by("intnum").limit(5).values("intnum"), [{"intnum": 10}, {"intnum": 13}, {"intnum": 16}, {"intnum": 19}, {"intnum": 22}], ) self.assertEqual( await IntFields.all().order_by("intnum").limit(5).offset(10).values("intnum"), [{"intnum": 40}, {"intnum": 43}, {"intnum": 46}, {"intnum": 49}, {"intnum": 52}], ) self.assertEqual( await IntFields.all().order_by("intnum").limit(5).offset(30).values("intnum"), [] ) self.assertEqual( await IntFields.all().order_by("-intnum").limit(5).values("intnum"), [{"intnum": 97}, {"intnum": 94}, {"intnum": 91}, {"intnum": 88}, {"intnum": 85}], ) self.assertEqual( await IntFields.all() .order_by("intnum") .limit(5) .filter(intnum__gte=40) .values("intnum"), [{"intnum": 40}, {"intnum": 43}, {"intnum": 46}, {"intnum": 49}, {"intnum": 52}], ) async def test_in_bulk(self): id_list = [item.pk for item in await IntFields.all().only("id").limit(2)] ret = await IntFields.in_bulk(id_list=id_list) self.assertEqual(list(ret.keys()), id_list) async def test_first(self): # Test first self.assertEqual( (await IntFields.all().order_by("intnum").filter(intnum__gte=40).first()).intnum, 40 ) self.assertEqual( (await IntFields.all().order_by("intnum").filter(intnum__gte=40).first().values())[ "intnum" ], 40, ) self.assertEqual( (await IntFields.all().order_by("intnum").filter(intnum__gte=40).first().values_list())[ 1 ], 40, ) self.assertEqual( await IntFields.all().order_by("intnum").filter(intnum__gte=400).first(), None ) self.assertEqual( await IntFields.all().order_by("intnum").filter(intnum__gte=400).first().values(), None ) self.assertEqual( await IntFields.all().order_by("intnum").filter(intnum__gte=400).first().values_list(), None, ) async def test_get_or_none(self): self.assertEqual((await IntFields.all().get_or_none(intnum=40)).intnum, 40) self.assertEqual((await IntFields.all().get_or_none(intnum=40).values())["intnum"], 40) self.assertEqual((await IntFields.all().get_or_none(intnum=40).values_list())[1], 40) self.assertEqual( await IntFields.all().order_by("intnum").get_or_none(intnum__gte=400), None ) self.assertEqual( await IntFields.all().order_by("intnum").get_or_none(intnum__gte=400).values(), None ) self.assertEqual( await IntFields.all().order_by("intnum").get_or_none(intnum__gte=400).values_list(), None, ) with self.assertRaises(MultipleObjectsReturned): await IntFields.all().order_by("intnum").get_or_none(intnum__gte=40) with self.assertRaises(MultipleObjectsReturned): await IntFields.all().order_by("intnum").get_or_none(intnum__gte=40).values() with self.assertRaises(MultipleObjectsReturned): await IntFields.all().order_by("intnum").get_or_none(intnum__gte=40).values_list() async def test_get(self): await IntFields.filter(intnum__gte=70).update(intnum_null=80) # Test get self.assertEqual((await IntFields.all().get(intnum=40)).intnum, 40) self.assertEqual((await IntFields.all().get(intnum=40).values())["intnum"], 40) self.assertEqual((await IntFields.all().get(intnum=40).values_list())[1], 40) self.assertEqual((await IntFields.all().all().all().all().all().get(intnum=40)).intnum, 40) self.assertEqual( (await IntFields.all().all().all().all().all().get(intnum=40).values())["intnum"], 40 ) self.assertEqual( (await IntFields.all().all().all().all().all().get(intnum=40).values_list())[1], 40 ) self.assertEqual((await IntFields.get(intnum=40)).intnum, 40) self.assertEqual((await IntFields.get(intnum=40).values())["intnum"], 40) self.assertEqual((await IntFields.get(intnum=40).values_list())[1], 40) with self.assertRaises(DoesNotExist): await IntFields.all().get(intnum=41) with self.assertRaises(DoesNotExist): await IntFields.all().get(intnum=41).values() with self.assertRaises(DoesNotExist): await IntFields.all().get(intnum=41).values_list() with self.assertRaises(DoesNotExist): await IntFields.get(intnum=41) with self.assertRaises(DoesNotExist): await IntFields.get(intnum=41).values() with self.assertRaises(DoesNotExist): await IntFields.get(intnum=41).values_list() with self.assertRaises(MultipleObjectsReturned): await IntFields.all().get(intnum_null=80) with self.assertRaises(MultipleObjectsReturned): await IntFields.all().get(intnum_null=80).values() with self.assertRaises(MultipleObjectsReturned): await IntFields.all().get(intnum_null=80).values_list() with self.assertRaises(MultipleObjectsReturned): await IntFields.get(intnum_null=80) with self.assertRaises(MultipleObjectsReturned): await IntFields.get(intnum_null=80).values() with self.assertRaises(MultipleObjectsReturned): await IntFields.get(intnum_null=80).values_list() async def test_delete(self): # Test delete await (await IntFields.get(intnum=40)).delete() with self.assertRaises(DoesNotExist): await IntFields.get(intnum=40) self.assertEqual(await IntFields.all().count(), 29) rows_affected = ( await IntFields.all().order_by("intnum").limit(10).filter(intnum__gte=70).delete() ) self.assertEqual(rows_affected, 10) self.assertEqual(await IntFields.all().count(), 19) @test.requireCapability(support_update_limit_order_by=True) async def test_delete_limit(self): await IntFields.all().limit(1).delete() self.assertEqual(await IntFields.all().count(), 29) @test.requireCapability(support_update_limit_order_by=True) async def test_delete_limit_order_by(self): await IntFields.all().limit(1).order_by("-id").delete() self.assertEqual(await IntFields.all().count(), 29) with self.assertRaises(DoesNotExist): await IntFields.get(intnum=97) async def test_async_iter(self): counter = 0 async for _ in IntFields.all(): counter += 1 self.assertEqual(await IntFields.all().count(), counter) async def test_update_basic(self): obj0 = await IntFields.create(intnum=2147483647) await IntFields.filter(id=obj0.id).update(intnum=2147483646) obj = await IntFields.get(id=obj0.id) self.assertEqual(obj.intnum, 2147483646) self.assertEqual(obj.intnum_null, None) async def test_update_f_expression(self): obj0 = await IntFields.create(intnum=2147483647) await IntFields.filter(id=obj0.id).update(intnum=F("intnum") - 1) obj = await IntFields.get(id=obj0.id) self.assertEqual(obj.intnum, 2147483646) async def test_update_badparam(self): obj0 = await IntFields.create(intnum=2147483647) with self.assertRaisesRegex(FieldError, "Unknown keyword argument"): await IntFields.filter(id=obj0.id).update(badparam=1) async def test_update_pk(self): obj0 = await IntFields.create(intnum=2147483647) with self.assertRaisesRegex(IntegrityError, "is PK and can not be updated"): await IntFields.filter(id=obj0.id).update(id=1) async def test_update_virtual(self): tour = await Tournament.create(name="moo") obj0 = await MinRelation.create(tournament=tour) with self.assertRaisesRegex(FieldError, "is virtual and can not be updated"): await MinRelation.filter(id=obj0.id).update(participants=[]) async def test_bad_ordering(self): with self.assertRaisesRegex(FieldError, "Unknown field moo1fip for model IntFields"): await IntFields.all().order_by("moo1fip") async def test_duplicate_values(self): with self.assertRaisesRegex(FieldError, "Duplicate key intnum"): await IntFields.all().values("intnum", "intnum") async def test_duplicate_values_list(self): await IntFields.all().values_list("intnum", "intnum") async def test_duplicate_values_kw(self): with self.assertRaisesRegex(FieldError, "Duplicate key intnum"): await IntFields.all().values("intnum", intnum="intnum_null") async def test_duplicate_values_kw_badmap(self): with self.assertRaisesRegex(FieldError, 'Unknown field "intnum2" for model "IntFields"'): await IntFields.all().values(intnum="intnum2") async def test_bad_values(self): with self.assertRaisesRegex(FieldError, 'Unknown field "int2num" for model "IntFields"'): await IntFields.all().values("int2num") async def test_bad_values_list(self): with self.assertRaisesRegex(FieldError, 'Unknown field "int2num" for model "IntFields"'): await IntFields.all().values_list("int2num") async def test_many_flat_values_list(self): with self.assertRaisesRegex( TypeError, "You can flat value_list only if contains one field" ): await IntFields.all().values_list("intnum", "intnum_null", flat=True) async def test_all_flat_values_list(self): with self.assertRaisesRegex( TypeError, "You can flat value_list only if contains one field" ): await IntFields.all().values_list(flat=True) async def test_all_values_list(self): data = await IntFields.all().order_by("id").values_list() self.assertEqual(data[2], (self.intfields[2].id, 16, None)) async def test_all_values(self): data = await IntFields.all().order_by("id").values() self.assertEqual(data[2], {"id": self.intfields[2].id, "intnum": 16, "intnum_null": None}) async def test_order_by_bad_value(self): with self.assertRaisesRegex(FieldError, "Unknown field badid for model IntFields"): await IntFields.all().order_by("badid").values_list() async def test_annotate_order_expression(self): data = ( await IntFields.annotate(idp=F("id") + 1) .order_by("-idp") .first() .values_list("id", "idp") ) self.assertEqual(data[0] + 1, data[1]) async def test_annotate_expression_filter(self): count = await IntFields.annotate(intnum=F("intnum") + 1).filter(intnum__gt=30).count() self.assertEqual(count, 23) async def test_get_raw_sql(self): sql = IntFields.all().sql() self.assertRegex(sql, r"^SELECT.+FROM.+") @test.requireCapability(support_index_hint=True) async def test_force_index(self): sql = IntFields.filter(pk=1).only("id").force_index("index_name").sql() self.assertEqual( sql, "SELECT `id` `id` FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1", ) sql_again = IntFields.filter(pk=1).only("id").force_index("index_name").sql() self.assertEqual( sql_again, "SELECT `id` `id` FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1", ) @test.requireCapability(support_index_hint=True) async def test_force_index_avaiable_in_more_query(self): sql_ValuesQuery = IntFields.filter(pk=1).force_index("index_name").values("id").sql() self.assertEqual( sql_ValuesQuery, "SELECT `id` `id` FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1", ) sql_ValuesListQuery = ( IntFields.filter(pk=1).force_index("index_name").values_list("id").sql() ) self.assertEqual( sql_ValuesListQuery, "SELECT `id` `0` FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1", ) sql_CountQuery = IntFields.filter(pk=1).force_index("index_name").count().sql() self.assertEqual( sql_CountQuery, "SELECT COUNT(*) FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1", ) sql_ExistsQuery = IntFields.filter(pk=1).force_index("index_name").exists().sql() self.assertEqual( sql_ExistsQuery, "SELECT 1 FROM `intfields` FORCE INDEX (`index_name`) WHERE `id`=1 LIMIT 1", ) @test.requireCapability(support_index_hint=True) async def test_use_index(self): sql = IntFields.filter(pk=1).only("id").use_index("index_name").sql() self.assertEqual( sql, "SELECT `id` `id` FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1", ) sql_again = IntFields.filter(pk=1).only("id").use_index("index_name").sql() self.assertEqual( sql_again, "SELECT `id` `id` FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1", ) @test.requireCapability(support_index_hint=True) async def test_use_index_avaiable_in_more_query(self): sql_ValuesQuery = IntFields.filter(pk=1).use_index("index_name").values("id").sql() self.assertEqual( sql_ValuesQuery, "SELECT `id` `id` FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1", ) sql_ValuesListQuery = IntFields.filter(pk=1).use_index("index_name").values_list("id").sql() self.assertEqual( sql_ValuesListQuery, "SELECT `id` `0` FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1", ) sql_CountQuery = IntFields.filter(pk=1).use_index("index_name").count().sql() self.assertEqual( sql_CountQuery, "SELECT COUNT(*) FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1", ) sql_ExistsQuery = IntFields.filter(pk=1).use_index("index_name").exists().sql() self.assertEqual( sql_ExistsQuery, "SELECT 1 FROM `intfields` USE INDEX (`index_name`) WHERE `id`=1 LIMIT 1", ) @test.requireCapability(support_for_update=True) async def test_select_for_update(self): sql1 = IntFields.filter(pk=1).only("id").select_for_update().sql() sql2 = IntFields.filter(pk=1).only("id").select_for_update(nowait=True).sql() sql3 = IntFields.filter(pk=1).only("id").select_for_update(skip_locked=True).sql() sql4 = IntFields.filter(pk=1).only("id").select_for_update(of=("intfields",)).sql() dialect = self.db.schema_generator.DIALECT if dialect == "postgres": self.assertEqual( sql1, 'SELECT "id" "id" FROM "intfields" WHERE "id"=1 FOR UPDATE', ) self.assertEqual( sql2, 'SELECT "id" "id" FROM "intfields" WHERE "id"=1 FOR UPDATE NOWAIT', ) self.assertEqual( sql3, 'SELECT "id" "id" FROM "intfields" WHERE "id"=1 FOR UPDATE SKIP LOCKED', ) self.assertEqual( sql4, 'SELECT "id" "id" FROM "intfields" WHERE "id"=1 FOR UPDATE OF "intfields"', ) elif dialect == "mysql": self.assertEqual( sql1, "SELECT `id` `id` FROM `intfields` WHERE `id`=1 FOR UPDATE", ) self.assertEqual( sql2, "SELECT `id` `id` FROM `intfields` WHERE `id`=1 FOR UPDATE NOWAIT", ) self.assertEqual( sql3, "SELECT `id` `id` FROM `intfields` WHERE `id`=1 FOR UPDATE SKIP LOCKED", ) self.assertEqual( sql4, "SELECT `id` `id` FROM `intfields` WHERE `id`=1 FOR UPDATE OF `intfields`", ) async def test_select_related(self): tournament = await Tournament.create(name="1") reporter = await Reporter.create(name="Reporter") event = await Event.create(name="1", tournament=tournament, reporter=reporter) event = await Event.all().select_related("tournament", "reporter").get(pk=event.pk) self.assertEqual(event.tournament.pk, tournament.pk) self.assertEqual(event.reporter.pk, reporter.pk) async def test_select_related_with_two_same_models(self): parent_node = await Node.create(name="1") child_node = await Node.create(name="2") tree = await Tree.create(parent=parent_node, child=child_node) tree = await Tree.all().select_related("parent", "child").get(pk=tree.pk) self.assertEqual(tree.parent.pk, parent_node.pk) self.assertEqual(tree.parent.name, parent_node.name) self.assertEqual(tree.child.pk, child_node.pk) self.assertEqual(tree.child.name, child_node.name) @test.requireCapability(dialect="postgres") async def test_postgres_search(self): name = "hello world" await Tournament.create(name=name) ret = await Tournament.filter(name__search="hello").first() self.assertEqual(ret.name, name) async def test_subquery_select(self): t1 = await Tournament.create(name="1") ret = ( await Tournament.filter(pk=t1.pk) .annotate(ids=Subquery(Tournament.filter(pk=t1.pk).values("id"))) .values("ids", "id") ) self.assertEqual(ret, [{"id": t1.pk, "ids": t1.pk}]) async def test_subquery_access(self): """This test ensures that accessing a query does not modify it (#780)""" tournament_1 = await Tournament.create(name="1") event_1 = await Event.create(event_id=1, name="event 1", tournament=tournament_1) event_2 = await Event.create(event_id=2, name="event 2", tournament=tournament_1) team_1 = await Team.create(id=1, name="team 1") team_2 = await Team.create(id=2, name="team 2") await event_1.participants.add(team_1) await event_2.participants.add(team_1, team_2) self.assertEqual(await event_1.participants.all(), [team_1]) self.assertEqual(await event_2.participants.all(), [team_1, team_2]) sub_query_team_1 = Subquery(Event.filter(participants__id=1).values("event_id")) sub_query_team_2 = Subquery(Event.filter(participants__id=2).values("event_id")) query = Event.filter(pk__in=sub_query_team_1) # should select event 1 and event 2 query = query.filter(pk__in=sub_query_team_2) # should select only event 2 self.assertEqual(query.sql(), query.sql()) self.assertEqual(await query.count(), await query.count()) self.assertEqual(await query.count(), 1) self.assertEqual(await query.all(), [event_2]) async def test_subquery_filter(self): t1 = await Tournament.create(name="1") ret = await Tournament.filter(pk=Subquery(Tournament.filter(pk=t1.pk).values("id"))).first() self.assertEqual(ret, t1) async def test_raw_sql_count(self): t1 = await Tournament.create(name="1") ret = await Tournament.filter(pk=t1.pk).annotate(count=RawSQL("count(*)")).values("count") self.assertEqual(ret, [{"count": 1}]) async def test_raw_sql_select(self): t1 = await Tournament.create(id=1, name="1") ret = ( await Tournament.filter(pk=t1.pk) .annotate(idp=RawSQL("id + 1")) .filter(idp=2) .values("idp") ) self.assertEqual(ret, [{"idp": 2}]) async def test_raw_sql_filter(self): ret = await Tournament.filter(pk=RawSQL("id + 1")) self.assertEqual(ret, []) async def test_annotation_field_priorior_to_model_field(self): # Sometimes, field name in annotates also exist in model field sets # and may need lift the former's priority in select query construction. t1 = await Tournament.create(name="1") ret = await Tournament.filter(pk=t1.pk).annotate(id=RawSQL("id + 1")).values("id") self.assertEqual(ret, [{"id": t1.pk + 1}])
40.353968
100
0.619911
[ "Apache-2.0" ]
spacemanspiff2007/tortoise-orm
tests/test_queryset.py
25,423
Python
from data_importers.github_importer import BaseGitHubImporter class Command(BaseGitHubImporter): srid = 27700 districts_srid = 27700 council_id = "EPS" elections = ["2021-05-06"] scraper_name = "wdiv-scrapers/DC-PollingStations-EpsomAndEwell" geom_type = "gml" seen = set() def district_record_to_dict(self, record): poly = self.extract_geometry(record, self.geom_type, self.get_srid("districts")) if record["id"] in [ "pollingdistricts.33", "pollingdistricts.38", "pollingdistricts.50", ]: return None return { "internal_council_id": record["district"], "name": record["district"], "area": poly, } def station_record_to_dict(self, record): postcode = " ".join(record["address"].split(" ")[-2:]) point = self.extract_geometry(record, self.geom_type, self.get_srid()) if (record["district"], postcode) in self.seen: return None else: self.seen.add((record["district"], postcode)) return { "internal_council_id": record["psnumber"], "polling_district_id": record["district"], "address": record["address"], "postcode": postcode, "location": point, }
30.590909
88
0.581724
[ "BSD-3-Clause" ]
DemocracyClub/UK-Polling-Stations
polling_stations/apps/data_importers/management/commands/import_epsom_and_ewell.py
1,346
Python
""" Output demo ^^^^^^^^^^^^^^ Demonstrate various output usage supported by PyWebIO :demo_host:`Demo </?pywebio_api=output_usage>` `Source code <https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py>`_ """ from pywebio import start_server from pywebio.output import * from pywebio.session import hold, get_info from functools import partial def t(eng, chinese): """return English or Chinese text according to the user's browser language""" return chinese if 'zh' in get_info().user_language else eng def code_block(code, strip_indent=4): if strip_indent: lines = ( i[strip_indent:] if (i[:strip_indent] == ' ' * strip_indent) else i for i in code.splitlines() ) code = '\n'.join(lines) code = code.strip('\n') def run_code(code, scope): with use_scope(scope): exec(code, globals()) with use_scope() as scope: put_code(code, 'python') put_buttons([{'label': t('Run', '运行'), 'value': '', 'color': 'success'}], onclick=[partial(run_code, code=code, scope=scope)], small=True) async def main(): """PyWebIO Output demo Demonstrate various output usage supported by PyWebIO. 演示PyWebIO输出模块的使用 """ put_markdown(t("""# PyWebIO Output demo You can get the source code of this demo in [here](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py) This demo only introduces part of the functions of the PyWebIO output module. For the complete features, please refer to the [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html). The output functions are all defined in the `pywebio.output` module and can be imported using `from pywebio.output import *`. """, """# PyWebIO 输出演示 在[这里](https://github.com/wang0618/PyWebIO/blob/dev/demos/output_usage.py)可以获取本Demo的源码。 本Demo仅提供了PyWebIO输出模块的部分功能的演示,完整特性请参阅[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)。 PyWebIO的输出函数都定义在 `pywebio.output` 模块中,可以使用 `from pywebio.output import *` 引入。 ### 基本输出 PyWebIO提供了一些便捷函数来输出表格、链接等格式: """), strip_indent=4) code_block(t(r""" # Text Output put_text("Hello world!") # Table Output put_table([ ['Commodity', 'Price'], ['Apple', '5.5'], ['Banana', '7'], ]) # Markdown Output put_markdown('~~Strikethrough~~') # File Output put_file('hello_word.txt', b'hello word!') """, r""" # 文本输出 put_text("Hello world!") # 表格输出 put_table([ ['商品', '价格'], ['苹果', '5.5'], ['香蕉', '7'], ]) # Markdown输出 put_markdown('~~删除线~~') # 文件输出 put_file('hello_word.txt', b'hello word!') """)) put_markdown(t(r"""For all output functions provided by PyWebIO, please refer to the document. ### Combined Output The output functions whose name starts with put_ can be combined with some output functions as part of the final output: You can pass `put_xxx()` calls to `put_table()` as cell content: """, r"""PyWebIO提供的全部输出函数请参考PyWebIO文档 ### 组合输出 函数名以 `put_` 开始的输出函数,可以与一些输出函数组合使用,作为最终输出的一部分。 比如`put_table()`支持以`put_xxx()`调用作为单元格内容: """), strip_indent=4) code_block(r""" put_table([ ['Type', 'Content'], ['html', put_html('X<sup>2</sup>')], ['text', '<hr/>'], # equal to ['text', put_text('<hr/>')] ['buttons', put_buttons(['A', 'B'], onclick=toast)], ['markdown', put_markdown('`Awesome PyWebIO!`')], ['file', put_file('hello.text', b'hello world')], ['table', put_table([['A', 'B'], ['C', 'D']])] ]) """) put_markdown(t(r"Similarly, you can pass `put_xxx()` calls to `popup()` as the popup content:", r"类似地,`popup()`也可以将`put_xxx()`调用作为弹窗内容:"), strip_indent=4) code_block(r""" popup('Popup title', [ put_html('<h3>Popup Content</h3>'), 'plain html: <br/>', # equal to put_text('plain html: <br/>') put_table([['A', 'B'], ['C', 'D']]), put_buttons(['close_popup()'], onclick=lambda _: close_popup()) ]) """) put_markdown(t(r"For more output functions that accept `put_xxx()` calls as parameters, please refer to corresponding function documentation.", r"更多接受`put_xxx()`作为参数的输出函数请参考函数文档。")) put_markdown(t(r"""### Callback PyWebIO allows you to output some buttons, and the provided callback function will be executed when the button is clicked. This is an example:%s The call to `put_table()` will not block. When user clicks a button, the corresponding callback function will be invoked: """, r"""### 事件回调 PyWebIO允许你输出一些控件,当控件被点击时执行提供的回调函数,就像编写GUI程序一样。 下面是一个例子:%s `put_table()`的调用不会阻塞。当用户点击了某行中的按钮时,PyWebIO会自动调用相应的回调函数: """) % """ ```python from functools import partial def edit_row(choice, row): put_markdown("> You click`%s` button ar row `%s`" % (choice, row)) put_table([ ['Idx', 'Actions'], [1, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=1))], [2, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=2))], [3, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=3))], ]) ``` """, strip_indent=4) from functools import partial @use_scope('table-callback') def edit_row(choice, row): put_markdown("> You click `%s` button ar row `%s`" % (choice, row)) put_table([ ['Idx', 'Actions'], [1, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=1))], [2, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=2))], [3, put_buttons(['edit', 'delete'], onclick=partial(edit_row, row=3))], ]) set_scope('table-callback') put_markdown(t("Of course, PyWebIO also supports outputting individual button:", "当然,PyWebIO还支持单独的按钮控件:")+r""" ```python def btn_click(btn_val): put_markdown("> You click `%s` button" % btn_val) put_buttons(['A', 'B', 'C'], onclick=btn_click) ``` """, strip_indent=4) @use_scope('button-callback') def btn_click(btn_val): put_markdown("> You click `%s` button" % btn_val) put_buttons(['A', 'B', 'C'], onclick=btn_click) set_scope('button-callback') put_markdown(t(r"""### Output Scope PyWebIO uses the scope model to give more control to the location of content output. The output area of PyWebIO can be divided into different output domains. The output domain is called Scope in PyWebIO. The output domain is a container of output content, and each output domain is arranged vertically, and the output domains can also be nested. Each output function (function name like `put_xxx()`) will output its content to a scope, the default is "current scope". "current scope" is determined by the runtime context. The output function can also manually specify the scope to output. The scope name is unique within the session. You can use `use_scope()` to open and enter a new output scope, or enter an existing output scope: %s The above code will generate the following Scope layout: """, r"""### 输出域Scope PyWebIO使用Scope模型来对内容输出的位置进行灵活地控制,PyWebIO的内容输出区可以划分出不同的输出域,PyWebIO将输出域称作`Scope`。 输出域为输出内容的容器,各个输出域之间上下排列,输出域也可以进行嵌套。 每个输出函数(函数名形如 `put_xxx()` )都会将内容输出到一个Scope,默认为”当前Scope”,”当前Scope”由运行时上下文确定,输出函数也可以手动指定输出到的Scope。Scope名在会话内唯一。 可以使用 `use_scope()` 开启并进入一个新的输出域,或进入一个已经存在的输出域: %s 以上代码将会产生如下Scope布局: """) % """ ```python with use_scope('A'): put_text('Text in scope A') with use_scope('B'): put_text('Text in scope B') with use_scope('C'): put_text('Text in scope C') ``` """, strip_indent=4) with use_scope('A'): put_text('Text in scope A') with use_scope('B'): put_text('Text in scope B') with use_scope('C'): put_text('Text in scope C') put_html("""<style> #pywebio-scope-A {border: 1px solid red;} #pywebio-scope-B {border: 1px solid blue;margin:2px} #pywebio-scope-C {border: 1px solid green;margin-top:2px} </style><br/>""") put_markdown(t(r"""The output function (function name like `put_xxx()`) will output the content to the "current scope" by default, and the "current scope" of the runtime context can be set by `use_scope()`. In addition, you can use the `scope` parameter of the output function to specify the destination scope to output: """, r""" 输出函数(函数名形如 `put_xxx()` )在默认情况下,会将内容输出到”当前Scope”,可以通过 `use_scope()` 设置运行时上下文的”当前Scope”。 此外,也可以通过输出函数的 scope 参数指定输出的目的Scope: """), strip_indent=4) put_grid([ [put_code("put_text('A', scope='A')", 'python'), None, put_buttons([t('Run', '运行')], [lambda: put_text('A', scope='A')])], [put_code("put_text('B', scope='B')", 'python'), None, put_buttons([t('Run', '运行')], [lambda: put_text('B', scope='B')])], [put_code("put_text('C', scope='C')", 'python'), None, put_buttons([t('Run', '运行')], [lambda: put_text('C', scope='C')])], ], cell_widths='1fr 10px auto') put_markdown(t("The output content can be inserted into any positions of the target scope by using the `position` parameter of the output function.", "输出函数可以使用`position`参数指定内容在Scope中输出的位置") + """ ```python put_text(now(), scope='A', position=...) ``` """, strip_indent=4) import datetime put_buttons([('position=%s' % i, i) for i in [1, 2, 3, -1, -2, -3]], lambda i: put_text(datetime.datetime.now(), position=i, scope='A'), small=True) put_markdown(t(r"In addition to `use_scope()`, PyWebIO also provides the following scope control functions:", r"除了 `use_scope()` , PyWebIO同样提供了以下scope控制函数: ")) put_grid([ [put_code("clear('B') # Clear content of Scope B", 'python'), None, put_buttons(['运行'], [lambda: clear('B')])], [put_code("remove('C') # Remove Scope C", 'python'), None, put_buttons(['运行'], [lambda: remove('C')])], [put_code("scroll_to('A') # Scroll the page to position of Scope A", 'python'), None, put_buttons(['运行'], [lambda: scroll_to('A')])], ], cell_widths='1fr 10px auto') put_markdown(t(r"""### Layout In general, using the various output functions introduced above is enough to output what you want, but these outputs are arranged vertically. If you want to make a more complex layout (such as displaying a code block on the left side of the page and an image on the right), you need to use layout functions. The `pywebio.output` module provides 3 layout functions, and you can create complex layouts by combining them: - `put_row()` : Use row layout to output content. The content is arranged horizontally - `put_column()` : Use column layout to output content. The content is arranged vertically - `put_grid()` : Output content using grid layout Here is an example by combining `put_row()` and `put_column()`: """, r"""### 布局 一般情况下,使用上文介绍的各种输出函数足以完成各种内容的展示,但直接调用输出函数产生的输出之间都是竖直排列的,如果想实现更复杂的布局(比如在页 面左侧显示一个代码块,在右侧显示一个图像),就需要借助布局函数。 `pywebio.output` 模块提供了3个布局函数,通过对他们进行组合可以完成各种复杂的布局: - `put_row()` : 使用行布局输出内容. 内容在水平方向上排列 - `put_column()` : 使用列布局输出内容. 内容在竖直方向上排列 - `put_grid()` : 使用网格布局输出内容 比如,通过通过组合 `put_row()` 和 `put_column()` 实现的布局: """), strip_indent=4) code_block(r""" put_row([ put_column([ put_code('A'), put_row([ put_code('B1'), None, # %s put_code('B2'), None, put_code('B3'), ]), put_code('C'), ]), None, put_code('D'), None, put_code('E') ]) """ % t('None represents the space between the output', 'None 表示输出之间的空白')) put_markdown(t(r"""### Style If you are familiar with CSS styles, you can use the `style()` function to set a custom style for the output. You can set the CSS style for a single `put_xxx()` output: """, r"""### 样式 如果你熟悉 CSS样式 ,你还可以使用 `style()` 函数给输出设定自定义样式。 可以给单个的 `put_xxx()` 输出设定CSS样式,也可以配合组合输出使用: """), strip_indent=4) code_block(r""" style(put_text('Red'), 'color: red') put_table([ ['A', 'B'], ['C', style(put_text('Red'), 'color: red')], ]) """, strip_indent=4) put_markdown(t(r"`style()` also accepts a list of output calls:", r"`style()` 也接受列表作为输入:")) code_block(r""" style([ put_text('Red'), put_markdown('~~del~~') ], 'color: red') put_collapse('title', style([ put_text('text'), put_markdown('~~del~~'), ], 'margin-left: 20px')) """, strip_indent=4) put_markdown(t("""---- For more information about output of PyWebIO, please visit PyWebIO [User Guide](https://pywebio.readthedocs.io/zh_CN/latest/guide.html) and [output module documentation](https://pywebio.readthedocs.io/zh_CN/latest/output.html). ""","""---- PyWebIO的输出演示到这里就结束了,更多内容请访问PyWebIO[用户指南](https://pywebio.readthedocs.io/zh_CN/latest/guide.html)和[output模块文档](https://pywebio.readthedocs.io/zh_CN/latest/output.html)。 """), lstrip=True) await hold() if __name__ == '__main__': start_server(main, debug=True, port=8080, cdn=False)
37.19337
311
0.621064
[ "MIT" ]
songshanyuwu/PyWebIO
demos/output_usage.py
15,342
Python
# -*- coding: utf-8 -*- # Generated by Django 1.9.4 on 2016-12-30 03:21 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('core', '0001_initial'), ] operations = [ migrations.DeleteModel( name='Subcategory', ), migrations.AddField( model_name='category', name='parent_category', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='core.Category'), ), migrations.AlterField( model_name='salepost', name='poster', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL), ), migrations.DeleteModel( name='User', ), ]
27.735294
124
0.61824
[ "MIT" ]
dishad/ADD
core/migrations/0002_auto_20161229_2221.py
943
Python
# Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import flash from flash.core.data.utils import download_data from flash.image import ObjectDetectionData, ObjectDetector # 1. Create the DataModule # Dataset Credit: https://www.kaggle.com/ultralytics/coco128 download_data("https://github.com/zhiqwang/yolov5-rt-stack/releases/download/v0.3.0/coco128.zip", "data/") datamodule = ObjectDetectionData.from_coco( train_folder="data/coco128/images/train2017/", train_ann_file="data/coco128/annotations/instances_train2017.json", val_split=0.1, batch_size=2, ) # 2. Build the task model = ObjectDetector(model="retinanet", num_classes=datamodule.num_classes) # 3. Create the trainer and finetune the model trainer = flash.Trainer(max_epochs=3, gpus=torch.cuda.device_count()) trainer.finetune(model, datamodule=datamodule) # 4. Detect objects in a few images! predictions = model.predict( [ "data/coco128/images/train2017/000000000625.jpg", "data/coco128/images/train2017/000000000626.jpg", "data/coco128/images/train2017/000000000629.jpg", ] ) print(predictions) # 5. Save the model! trainer.save_checkpoint("object_detection_model.pt")
34.74
106
0.763961
[ "Apache-2.0" ]
tszumowski/lightning-flash
flash_examples/object_detection.py
1,737
Python
# Copyright 2020 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Keras initializers for TF 2. """ # pylint: disable=g-classes-have-attributes from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf from keras import backend from tensorflow.python.ops import init_ops_v2 from tensorflow.python.util.tf_export import keras_export @keras_export('keras.initializers.Initializer') class Initializer(object): """Initializer base class: all Keras initializers inherit from this class. Initializers should implement a `__call__` method with the following signature: ```python def __call__(self, shape, dtype=None, **kwargs): # returns a tensor of shape `shape` and dtype `dtype` # containing values drawn from a distribution of your choice. ``` Optionally, you an also implement the method `get_config` and the class method `from_config` in order to support serialization -- just like with any Keras object. Here's a simple example: a random normal initializer. ```python import tensorflow as tf class ExampleRandomNormal(tf.keras.initializers.Initializer): def __init__(self, mean, stddev): self.mean = mean self.stddev = stddev def __call__(self, shape, dtype=None, **kwargs): return tf.random.normal( shape, mean=self.mean, stddev=self.stddev, dtype=dtype) def get_config(self): # To support serialization return {"mean": self.mean, "stddev": self.stddev} ``` Note that we don't have to implement `from_config` in the example above since the constructor arguments of the class the keys in the config returned by `get_config` are the same. In this case, the default `from_config` works fine. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. **kwargs: Additional keyword arguments. """ raise NotImplementedError def get_config(self): """Returns the configuration of the initializer as a JSON-serializable dict. Returns: A JSON-serializable Python dict. """ return {} @classmethod def from_config(cls, config): """Instantiates an initializer from a configuration dictionary. Example: ```python initializer = RandomUniform(-1, 1) config = initializer.get_config() initializer = RandomUniform.from_config(config) ``` Args: config: A Python dictionary, the output of `get_config`. Returns: A `tf.keras.initializers.Initializer` instance. """ config.pop('dtype', None) return cls(**config) @keras_export('keras.initializers.Zeros', 'keras.initializers.zeros', v1=[]) class Zeros(tf.zeros_initializer, Initializer): """Initializer that generates tensors initialized to 0. Also available via the shortcut function `tf.keras.initializers.zeros`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Zeros() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Zeros() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ return super(Zeros, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.Ones', 'keras.initializers.ones', v1=[]) class Ones(tf.ones_initializer, Initializer): """Initializer that generates tensors initialized to 1. Also available via the shortcut function `tf.keras.initializers.ones`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Ones() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Ones() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ return super(Ones, self).__call__(shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.Constant', 'keras.initializers.constant', v1=[]) class Constant(Initializer): """Initializer that generates tensors with constant values. Also available via the shortcut function `tf.keras.initializers.constant`. Only scalar values are allowed. The constant value provided must be convertible to the dtype requested when calling the initializer. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Constant(3.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Constant(3.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: value: A Python scalar. """ def __init__(self, value=0): self.value = value def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to `self.value`. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ del kwargs return tf.constant( self.value, dtype=_get_dtype(dtype), shape=shape) def get_config(self): return {'value': self.value} @keras_export('keras.initializers.RandomUniform', 'keras.initializers.random_uniform', v1=[]) class RandomUniform(tf.random_uniform_initializer, Initializer): """Initializer that generates tensors with a uniform distribution. Also available via the shortcut function `tf.keras.initializers.random_uniform`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.RandomUniform(minval=0., maxval=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: minval: A python scalar or a scalar tensor. Lower bound of the range of random values to generate (inclusive). maxval: A python scalar or a scalar tensor. Upper bound of the range of random values to generate (exclusive). seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point and integer types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`). **kwargs: Additional keyword arguments. """ return super(RandomUniform, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.RandomNormal', 'keras.initializers.random_normal', v1=[]) class RandomNormal(tf.random_normal_initializer, Initializer): """Initializer that generates tensors with a normal distribution. Also available via the shortcut function `tf.keras.initializers.random_normal`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.RandomNormal(mean=0., stddev=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to random normal values. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ return super(RandomNormal, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.TruncatedNormal', 'keras.initializers.truncated_normal', v1=[]) class TruncatedNormal(init_ops_v2.TruncatedNormal, Initializer): """Initializer that generates a truncated normal distribution. Also available via the shortcut function `tf.keras.initializers.truncated_normal`. The values generated are similar to values from a `tf.keras.initializers.RandomNormal` initializer except that values more than two standard deviations from the mean are discarded and re-drawn. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.TruncatedNormal(mean=0., stddev=1.) >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: mean: a python scalar or a scalar tensor. Mean of the random values to generate. stddev: a python scalar or a scalar tensor. Standard deviation of the random values to generate. seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to random normal values (truncated). Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ return super(TruncatedNormal, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.VarianceScaling', 'keras.initializers.variance_scaling', v1=[]) class VarianceScaling(init_ops_v2.VarianceScaling, Initializer): """Initializer capable of adapting its scale to the shape of weights tensors. Also available via the shortcut function `tf.keras.initializers.variance_scaling`. With `distribution="truncated_normal" or "untruncated_normal"`, samples are drawn from a truncated/untruncated normal distribution with a mean of zero and a standard deviation (after truncation, if used) `stddev = sqrt(scale / n)`, where `n` is: - number of input units in the weight tensor, if `mode="fan_in"` - number of output units, if `mode="fan_out"` - average of the numbers of input and output units, if `mode="fan_avg"` With `distribution="uniform"`, samples are drawn from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 * scale / n)`. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.VarianceScaling( ... scale=0.1, mode='fan_in', distribution='uniform') >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.VarianceScaling( ... scale=0.1, mode='fan_in', distribution='uniform') >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: scale: Scaling factor (positive float). mode: One of "fan_in", "fan_out", "fan_avg". distribution: Random distribution to use. One of "truncated_normal", "untruncated_normal" and "uniform". seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized as specified by the initializer. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ return super(VarianceScaling, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.Orthogonal', 'keras.initializers.orthogonal', v1=[]) class Orthogonal(init_ops_v2.Orthogonal, Initializer): """Initializer that generates an orthogonal matrix. Also available via the shortcut function `tf.keras.initializers.orthogonal`. If the shape of the tensor to initialize is two-dimensional, it is initialized with an orthogonal matrix obtained from the QR decomposition of a matrix of random numbers drawn from a normal distribution. If the matrix has fewer rows than columns then the output will have orthogonal rows. Otherwise, the output will have orthogonal columns. If the shape of the tensor to initialize is more than two-dimensional, a matrix of shape `(shape[0] * ... * shape[n - 2], shape[n - 1])` is initialized, where `n` is the length of the shape vector. The matrix is subsequently reshaped to give a tensor of the desired shape. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Orthogonal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Orthogonal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: gain: multiplicative factor to apply to the orthogonal matrix seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Saxe et al., 2014](https://openreview.net/forum?id=_wzZwKpTDF_9C) ([pdf](https://arxiv.org/pdf/1312.6120.pdf)) """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to an orthogonal matrix. Args: shape: Shape of the tensor. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ return super(Orthogonal, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.Identity', 'keras.initializers.identity', v1=[]) class Identity(init_ops_v2.Identity, Initializer): """Initializer that generates the identity matrix. Also available via the shortcut function `tf.keras.initializers.identity`. Only usable for generating 2D matrices. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.Identity() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.Identity() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: gain: Multiplicative factor to apply to the identity matrix. """ def __call__(self, shape, dtype=None, **kwargs): """Returns a tensor object initialized to a 2D identity matrix. Args: shape: Shape of the tensor. It should have exactly rank 2. dtype: Optional dtype of the tensor. Only floating point types are supported. If not specified, `tf.keras.backend.floatx()` is used, which default to `float32` unless you configured it otherwise (via `tf.keras.backend.set_floatx(float_dtype)`) **kwargs: Additional keyword arguments. """ return super(Identity, self).__call__( shape, dtype=_get_dtype(dtype), **kwargs) @keras_export('keras.initializers.GlorotUniform', 'keras.initializers.glorot_uniform', v1=[]) class GlorotUniform(VarianceScaling): """The Glorot uniform initializer, also called Xavier uniform initializer. Also available via the shortcut function `tf.keras.initializers.glorot_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / (fan_in + fan_out))` (`fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.GlorotUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.GlorotUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotUniform, self).__init__( scale=1.0, mode='fan_avg', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.GlorotNormal', 'keras.initializers.glorot_normal', v1=[]) class GlorotNormal(VarianceScaling): """The Glorot normal initializer, also called Xavier normal initializer. Also available via the shortcut function `tf.keras.initializers.glorot_normal`. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / (fan_in + fan_out))` where `fan_in` is the number of input units in the weight tensor and `fan_out` is the number of output units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.GlorotNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.GlorotNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Args: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [Glorot et al., 2010](http://proceedings.mlr.press/v9/glorot10a.html) ([pdf](http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf)) """ def __init__(self, seed=None): super(GlorotNormal, self).__init__( scale=1.0, mode='fan_avg', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.LecunNormal', 'keras.initializers.lecun_normal', v1=[]) class LecunNormal(VarianceScaling): """Lecun normal initializer. Also available via the shortcut function `tf.keras.initializers.lecun_normal`. Initializers allow you to pre-specify an initialization strategy, encoded in the Initializer object, without knowing the shape and dtype of the variable being initialized. Draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(1 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.LecunNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.LecunNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Arguments: seed: A Python integer. Used to seed the random generator. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) ([pdf] (https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ def __init__(self, seed=None): super(LecunNormal, self).__init__( scale=1., mode='fan_in', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.LecunUniform', 'keras.initializers.lecun_uniform', v1=[]) class LecunUniform(VarianceScaling): """Lecun uniform initializer. Also available via the shortcut function `tf.keras.initializers.lecun_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(3 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.LecunUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.LecunUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Arguments: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: - Self-Normalizing Neural Networks, [Klambauer et al., 2017](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks) # pylint: disable=line-too-long ([pdf](https://papers.nips.cc/paper/6698-self-normalizing-neural-networks.pdf)) - Efficient Backprop, [Lecun et al., 1998](http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf) """ def __init__(self, seed=None): super(LecunUniform, self).__init__( scale=1., mode='fan_in', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.HeNormal', 'keras.initializers.he_normal', v1=[]) class HeNormal(VarianceScaling): """He normal initializer. Also available via the shortcut function `tf.keras.initializers.he_normal`. It draws samples from a truncated normal distribution centered on 0 with `stddev = sqrt(2 / fan_in)` where `fan_in` is the number of input units in the weight tensor. Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.HeNormal() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.HeNormal() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Arguments: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ def __init__(self, seed=None): super(HeNormal, self).__init__( scale=2., mode='fan_in', distribution='truncated_normal', seed=seed) def get_config(self): return {'seed': self.seed} @keras_export('keras.initializers.HeUniform', 'keras.initializers.he_uniform', v1=[]) class HeUniform(VarianceScaling): """He uniform variance scaling initializer. Also available via the shortcut function `tf.keras.initializers.he_uniform`. Draws samples from a uniform distribution within `[-limit, limit]`, where `limit = sqrt(6 / fan_in)` (`fan_in` is the number of input units in the weight tensor). Examples: >>> # Standalone usage: >>> initializer = tf.keras.initializers.HeUniform() >>> values = initializer(shape=(2, 2)) >>> # Usage in a Keras layer: >>> initializer = tf.keras.initializers.HeUniform() >>> layer = tf.keras.layers.Dense(3, kernel_initializer=initializer) Arguments: seed: A Python integer. An initializer created with a given seed will always produce the same random tensor for a given shape and dtype. References: [He et al., 2015](https://www.cv-foundation.org/openaccess/content_iccv_2015/html/He_Delving_Deep_into_ICCV_2015_paper.html) # pylint: disable=line-too-long ([pdf](https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf)) """ def __init__(self, seed=None): super(HeUniform, self).__init__( scale=2., mode='fan_in', distribution='uniform', seed=seed) def get_config(self): return {'seed': self.seed} def _get_dtype(dtype): if dtype is None: dtype = backend.floatx() return tf.as_dtype(dtype)
35.041721
162
0.699111
[ "Apache-2.0" ]
StanislavParovoy/Keras
keras/initializers/initializers_v2.py
26,877
Python
from operator import attrgetter import pyangbind.lib.xpathhelper as xpathhelper from pyangbind.lib.yangtypes import RestrictedPrecisionDecimalType, RestrictedClassType, TypedListType from pyangbind.lib.yangtypes import YANGBool, YANGListType, YANGDynClass, ReferenceType from pyangbind.lib.base import PybindBase from decimal import Decimal from bitarray import bitarray import __builtin__ import vlan class access(PybindBase): """ This class was auto-generated by the PythonClass plugin for PYANG from YANG module brocade-interface - based on the path /interface/hundredgigabitethernet/switchport/access-mac-group-rspan-vlan-classification/access. Each member element of the container is represented as a class variable - with a specific YANG type. YANG Description: The access layer characteristics of this interface. """ __slots__ = ('_pybind_generated_by', '_path_helper', '_yang_name', '_rest_name', '_extmethods', '__vlan',) _yang_name = 'access' _rest_name = 'access' _pybind_generated_by = 'container' def __init__(self, *args, **kwargs): path_helper_ = kwargs.pop("path_helper", None) if path_helper_ is False: self._path_helper = False elif path_helper_ is not None and isinstance(path_helper_, xpathhelper.YANGPathHelper): self._path_helper = path_helper_ elif hasattr(self, "_parent"): path_helper_ = getattr(self._parent, "_path_helper", False) self._path_helper = path_helper_ else: self._path_helper = False extmethods = kwargs.pop("extmethods", None) if extmethods is False: self._extmethods = False elif extmethods is not None and isinstance(extmethods, dict): self._extmethods = extmethods elif hasattr(self, "_parent"): extmethods = getattr(self._parent, "_extmethods", None) self._extmethods = extmethods else: self._extmethods = False self.__vlan = YANGDynClass(base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True) load = kwargs.pop("load", None) if args: if len(args) > 1: raise TypeError("cannot create a YANG container with >1 argument") all_attr = True for e in self._pyangbind_elements: if not hasattr(args[0], e): all_attr = False break if not all_attr: raise ValueError("Supplied object did not have the correct attributes") for e in self._pyangbind_elements: nobj = getattr(args[0], e) if nobj._changed() is False: continue setmethod = getattr(self, "_set_%s" % e) if load is None: setmethod(getattr(args[0], e)) else: setmethod(getattr(args[0], e), load=load) def _path(self): if hasattr(self, "_parent"): return self._parent._path()+[self._yang_name] else: return [u'interface', u'hundredgigabitethernet', u'switchport', u'access-mac-group-rspan-vlan-classification', u'access'] def _rest_path(self): if hasattr(self, "_parent"): if self._rest_name: return self._parent._rest_path()+[self._rest_name] else: return self._parent._rest_path() else: return [u'interface', u'HundredGigabitEthernet', u'switchport', u'access'] def _get_vlan(self): """ Getter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list) """ return self.__vlan def _set_vlan(self, v, load=False): """ Setter method for vlan, mapped from YANG variable /interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/vlan (list) If this variable is read-only (config: false) in the source YANG file, then _set_vlan is considered as a private method. Backends looking to populate this variable should do so via calling thisObj._set_vlan() directly. """ if hasattr(v, "_utype"): v = v._utype(v) try: t = YANGDynClass(v,base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True) except (TypeError, ValueError): raise ValueError({ 'error-string': """vlan must be of a type compatible with list""", 'defined-type': "list", 'generated-type': """YANGDynClass(base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True)""", }) self.__vlan = t if hasattr(self, '_set'): self._set() def _unset_vlan(self): self.__vlan = YANGDynClass(base=YANGListType("access_vlan_id access_mac_group",vlan.vlan, yang_name="vlan", rest_name="rspan-vlan", parent=self, is_container='list', user_ordered=False, path_helper=self._path_helper, yang_keys='access-vlan-id access-mac-group', extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}), is_container='list', yang_name="vlan", rest_name="rspan-vlan", parent=self, path_helper=self._path_helper, extmethods=self._extmethods, register_paths=True, extensions={u'tailf-common': {u'callpoint': u'rspan-mac-group-vlan-classification-config-phy', u'cli-suppress-list-no': None, u'cli-no-key-completion': None, u'cli-suppress-mode': None, u'alt-name': u'rspan-vlan'}}, namespace='urn:brocade.com:mgmt:brocade-interface', defining_module='brocade-interface', yang_type='list', is_config=True) vlan = __builtin__.property(_get_vlan, _set_vlan) _pyangbind_elements = {'vlan': vlan, }
64.825397
995
0.727473
[ "Apache-2.0" ]
extremenetworks/pybind
pybind/nos/v6_0_2f/interface/hundredgigabitethernet/switchport/access_mac_group_rspan_vlan_classification/access/__init__.py
8,168
Python
# Generated by Django 2.0.5 on 2018-06-07 10:31 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('it_purchase_app', '0030_auto_20180607_1020'), ] operations = [ migrations.AlterField( model_name='purchase', name='manager_approval', field=models.CharField(blank=True, choices=[('Not Decided', 'Not Decided'), ('Yes', 'Yes'), ('No', 'No')], max_length=500, null=True), ), ]
26.421053
146
0.609562
[ "MIT" ]
gokhankaraboga/test
it_purchase_project/it_purchase_app/migrations/0031_auto_20180607_1031.py
502
Python
#!/usr/bin/env python # encoding: utf-8 from django.db import models from django.contrib.auth.models import User from django.utils.translation import ugettext_lazy as _ from django_extensions.db.fields import AutoSlugField from v1.recipe.models import Recipe class GroceryList(models.Model): """ The GroceryList is the core of list app. It offers a home to many GroceryItems. title = The name of the GroceryList. slug = The HTML safe name of the GroceryList. author = The User who created the GroceryList. pub_date = The date that the GroceryList was created on. """ title = models.CharField(_("grocery list title"), max_length=250) slug = AutoSlugField(_('slug'), populate_from='title') author = models.ForeignKey(User, on_delete=models.CASCADE) pub_date = models.DateTimeField(auto_now_add=True) class Meta: ordering = ['pub_date'] def __str__(self): return '%s' % self.title def item_count(self): """get the number of items in the list""" return GroceryItem.objects.filter(list=self).count() class GroceryItem(models.Model): """ The GroceryItem is an item on a GroceryList. list = The GroceryList that owns the GroceryItem. title = The name of the GroceryItem. completed = Whether or not the GroceryItem has been purchased or added to the users shopping cart in the supermarket. order = The order of the item in the GroceryList. """ list = models.ForeignKey(GroceryList, on_delete=models.CASCADE, related_name='items') title = models.CharField(_("title"), max_length=550) completed = models.BooleanField(_("completed"), default=False) order = models.IntegerField(_("order"), default=0) class Meta: ordering = ['list_id', 'order', 'pk'] def __str__(self): return '%s' % self.title class GroceryShared(models.Model): """ Determines whether or not a GroceryList is shared to another user. Shared lists allow other uses to add/delete/edit the GroceryList. list = The GroceryList to be shared. shared_by = The User that shared the List. shared_to = The User that is given access to a GroceryList. """ list = models.ForeignKey(GroceryList, on_delete=models.CASCADE) shared_by = models.ForeignKey(User, on_delete=models.CASCADE, related_name="shared_by") shared_to = models.ForeignKey(User, on_delete=models.CASCADE, related_name="shared_to") def __str__(self): return '%s' % self.list.title
34.671233
91
0.699723
[ "MIT" ]
BitFis/openeats-api
v1/list/models.py
2,531
Python
#!/usr/bin/python import hashlib import sys v = sys.argv[1] index = 0 pw = '' i = 0 while True: suffix = str(i) h = hashlib.md5(v+suffix).hexdigest() if h.startswith("00000"): pw += h[5] print(v+suffix,h,pw) if len(pw) == 8: break i += 1 print(pw)
13.818182
41
0.519737
[ "MIT" ]
CheyenneWills/adventofcode
2016/day5/p1.py
304
Python
from pandas import read_csv from IPython.display import display import numpy as np import sys import math ############################### ####Maria Eugenia Lopez ##### ############################### def fully_grown_depuration(number_to_remove=0.50): return plants.loc[plants.height_m > number_to_remove] def convert_GPS_lat_long(df): for index, row in df.iterrows(): lat_viejo = row["GPS_lat"] latVal = (40008000*row["GPS_lat"])/360 #res= div*0.001#to convert to Klm df.loc[index,"GPS_lat"] = latVal lat_radians = math.radians(lat_viejo) lonVal = (40075160*row["GPS_lon"])/360 lonVal = lonVal*math.cos(lat_radians) #res = res*0.001 df.loc[index,"GPS_lon"] = lonVal ##---------------------------------------- ##Part A Assembling a Data Set ##---------------------------------------- ##---------------------------------------- ##Input and Output: Data Frames plants = read_csv('environmental_survey/plants2017.csv', index_col=0) plants.reset_index(level=0,inplace=True) plants.drop(plants.index[plants.Plant == 'tree'], inplace=True) #display(plants.head(n=50)) plants.reset_index(drop=True,inplace=True) ##---------------------------------------- ##Functions convert_GPS_lat_long( plants) plants.rename(columns={'GPS_lon':'Meters_lon', 'GPS_lat':'Meters_lat'}, inplace=True) ##---------------------------------------- ##Functions and Data Structures: Boolean Indexing heiht_set_by_user = float(input("Set the height that you want: ") or "0.5") plants = fully_grown_depuration(float(heiht_set_by_user)) #reseting the index after the depuration plants.reset_index(drop=True,inplace=True) display(plants)
27.04918
75
0.621212
[ "MIT" ]
Maruja/MariaLopez
Assignment/Environmental_Project/part_A.py
1,650
Python
# # PySNMP MIB module EdgeSwitch-IPV6-TUNNEL-MIB (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/EdgeSwitch-IPV6-TUNNEL-MIB # Produced by pysmi-0.3.4 at Mon Apr 29 18:56:15 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # Integer, ObjectIdentifier, OctetString = mibBuilder.importSymbols("ASN1", "Integer", "ObjectIdentifier", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ValueSizeConstraint, ConstraintsUnion, ValueRangeConstraint, SingleValueConstraint, ConstraintsIntersection = mibBuilder.importSymbols("ASN1-REFINEMENT", "ValueSizeConstraint", "ConstraintsUnion", "ValueRangeConstraint", "SingleValueConstraint", "ConstraintsIntersection") fastPath, = mibBuilder.importSymbols("EdgeSwitch-REF-MIB", "fastPath") InetAddressPrefixLength, InetAddressIPv4 = mibBuilder.importSymbols("INET-ADDRESS-MIB", "InetAddressPrefixLength", "InetAddressIPv4") Ipv6Address, Ipv6IfIndex, Ipv6AddressPrefix = mibBuilder.importSymbols("IPV6-TC", "Ipv6Address", "Ipv6IfIndex", "Ipv6AddressPrefix") ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "ModuleCompliance", "NotificationGroup") Unsigned32, ModuleIdentity, Bits, Gauge32, Integer32, NotificationType, ObjectIdentity, MibIdentifier, MibScalar, MibTable, MibTableRow, MibTableColumn, IpAddress, iso, Counter64, Counter32, TimeTicks = mibBuilder.importSymbols("SNMPv2-SMI", "Unsigned32", "ModuleIdentity", "Bits", "Gauge32", "Integer32", "NotificationType", "ObjectIdentity", "MibIdentifier", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "IpAddress", "iso", "Counter64", "Counter32", "TimeTicks") RowStatus, DisplayString, TextualConvention = mibBuilder.importSymbols("SNMPv2-TC", "RowStatus", "DisplayString", "TextualConvention") fastPathIpv6Tunnel = ModuleIdentity((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27)) fastPathIpv6Tunnel.setRevisions(('2011-01-26 00:00', '2007-05-23 00:00',)) if mibBuilder.loadTexts: fastPathIpv6Tunnel.setLastUpdated('201101260000Z') if mibBuilder.loadTexts: fastPathIpv6Tunnel.setOrganization('Broadcom Inc') agentTunnelIPV6Group = MibIdentifier((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1)) agentTunnelIPV6Table = MibTable((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1), ) if mibBuilder.loadTexts: agentTunnelIPV6Table.setStatus('current') agentTunnelIPV6Entry = MibTableRow((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1), ).setIndexNames((0, "EdgeSwitch-IPV6-TUNNEL-MIB", "agentTunnelID")) if mibBuilder.loadTexts: agentTunnelIPV6Entry.setStatus('current') agentTunnelID = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 1), Integer32().subtype(subtypeSpec=ValueRangeConstraint(0, 2147483647))) if mibBuilder.loadTexts: agentTunnelID.setStatus('current') agentTunnelIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 2), Integer32()).setMaxAccess("readonly") if mibBuilder.loadTexts: agentTunnelIfIndex.setStatus('current') agentTunnelMode = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 3), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2, 3))).clone(namedValues=NamedValues(("undefined", 1), ("ip6over4", 2), ("ip6to4", 3))).clone('undefined')).setMaxAccess("readcreate") if mibBuilder.loadTexts: agentTunnelMode.setStatus('current') agentTunnelLocalIP4Addr = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 4), InetAddressIPv4()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentTunnelLocalIP4Addr.setStatus('current') agentTunnelRemoteIP4Addr = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 5), InetAddressIPv4()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentTunnelRemoteIP4Addr.setStatus('current') agentTunnelLocalIfIndex = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 6), Integer32()).setMaxAccess("readwrite") if mibBuilder.loadTexts: agentTunnelLocalIfIndex.setStatus('current') agentTunnelStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 7), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: agentTunnelStatus.setStatus('current') agentTunnelIcmpUnreachableMode = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 1, 1, 8), Integer32().subtype(subtypeSpec=ConstraintsUnion(SingleValueConstraint(1, 2))).clone(namedValues=NamedValues(("enable", 1), ("disable", 2)))).setMaxAccess("readcreate") if mibBuilder.loadTexts: agentTunnelIcmpUnreachableMode.setStatus('current') agentTunnelIPV6PrefixTable = MibTable((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 2), ) if mibBuilder.loadTexts: agentTunnelIPV6PrefixTable.setStatus('current') agentTunnelIPV6PrefixEntry = MibTableRow((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 2, 1), ).setIndexNames((0, "EdgeSwitch-IPV6-TUNNEL-MIB", "agentTunnelID"), (0, "EdgeSwitch-IPV6-TUNNEL-MIB", "agentTunnelIPV6PrefixPrefix"), (0, "EdgeSwitch-IPV6-TUNNEL-MIB", "agentTunnelIPV6PrefixPrefixLen")) if mibBuilder.loadTexts: agentTunnelIPV6PrefixEntry.setStatus('current') agentTunnelIPV6PrefixPrefix = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 2, 1, 1), Ipv6AddressPrefix()) if mibBuilder.loadTexts: agentTunnelIPV6PrefixPrefix.setStatus('current') agentTunnelIPV6PrefixPrefixLen = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 2, 1, 2), InetAddressPrefixLength()) if mibBuilder.loadTexts: agentTunnelIPV6PrefixPrefixLen.setStatus('current') agentTunnelIPV6PrefixStatus = MibTableColumn((1, 3, 6, 1, 4, 1, 4413, 1, 1, 27, 1, 2, 1, 3), RowStatus()).setMaxAccess("readcreate") if mibBuilder.loadTexts: agentTunnelIPV6PrefixStatus.setStatus('current') mibBuilder.exportSymbols("EdgeSwitch-IPV6-TUNNEL-MIB", agentTunnelIPV6PrefixStatus=agentTunnelIPV6PrefixStatus, agentTunnelIPV6Entry=agentTunnelIPV6Entry, agentTunnelIPV6Table=agentTunnelIPV6Table, agentTunnelIPV6PrefixEntry=agentTunnelIPV6PrefixEntry, agentTunnelLocalIP4Addr=agentTunnelLocalIP4Addr, fastPathIpv6Tunnel=fastPathIpv6Tunnel, agentTunnelID=agentTunnelID, agentTunnelIPV6PrefixPrefix=agentTunnelIPV6PrefixPrefix, agentTunnelIPV6PrefixPrefixLen=agentTunnelIPV6PrefixPrefixLen, agentTunnelIPV6PrefixTable=agentTunnelIPV6PrefixTable, agentTunnelStatus=agentTunnelStatus, agentTunnelIPV6Group=agentTunnelIPV6Group, agentTunnelRemoteIP4Addr=agentTunnelRemoteIP4Addr, agentTunnelLocalIfIndex=agentTunnelLocalIfIndex, agentTunnelMode=agentTunnelMode, PYSNMP_MODULE_ID=fastPathIpv6Tunnel, agentTunnelIcmpUnreachableMode=agentTunnelIcmpUnreachableMode, agentTunnelIfIndex=agentTunnelIfIndex)
123.169811
896
0.780331
[ "Apache-2.0" ]
agustinhenze/mibs.snmplabs.com
pysnmp/EdgeSwitch-IPV6-TUNNEL-MIB.py
6,528
Python
"""Test cases for the pypfilt.io module.""" import datetime import numpy as np import os from pypfilt.io import read_table, date_column def test_read_datetime(): # Test data: sequential dates with Fibonacci sequence. content = """ date count 2020-01-01 1 2020-01-02 1 2020-01-03 2 2020-01-04 3 2020-01-05 5 2020-01-06 8 2020-01-07 13 2020-01-08 21 2020-01-09 34 """ expect_rows = 9 expect_count = [1, 1] for i in range(expect_rows - 2): expect_count.append(expect_count[i] + expect_count[i + 1]) # Save this data to a temporary data file. path = "test_read_datetime.ssv" with open(path, encoding='utf-8', mode='w') as f: f.write(content) # Read the data and then remove the data file. columns = [ date_column('date'), ('count', np.int_), ] df = read_table(path, columns) os.remove(path) # Check that we received the expected number of rows. assert len(df) == expect_rows # Check that each row has the expected content. for ix, row in enumerate(df): assert isinstance(row['date'], datetime.datetime) assert row['date'].year == 2020 assert row['date'].month == 1 assert row['date'].day == ix + 1 assert row['count'] == expect_count[ix]
25.5
66
0.617647
[ "BSD-3-Clause" ]
ruarai/epifx.covid
local_pypfilt/tests/test_io.py
1,326
Python
#coding:utf8 #authors : yqq import logging import json from utils import decimal_default,get_linenumber from base_handler import BaseHandler from .proxy import AuthServiceProxy from cashaddress import convert import traceback #设置精度 from decimal import Decimal from decimal import getcontext getcontext().prec = 8 from constants import BSV_RPC_URL as RPC_URL STR_ADDRESS_TABLE = "t_btc_address" class BTC_ListAccounts(BaseHandler): @staticmethod def addresses(): from sql import run accounts = run("""select * from {};""".format(STR_ADDRESS_TABLE)) #TODO:后期数据量大的时候, 使用redis进行缓存地址 return [account['address'] for account in accounts] def get(self): try: data = BTC_ListAccounts.addresses() self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_ListAccounts error:{0} in {1}".format(e,get_linenumber())) g_exUserAddrs = BTC_ListAccounts.addresses() #使用全局变量保存交易所用户BTC地址 2019-06-01 class BTC_GetAccount(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: commands = [["getaccount",self.get_argument("address")]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetAccount error:{0} in {1}".format(e,get_linenumber())) class BTC_GetAccountAddress(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: commands = [["getaccountaddress",self.get_argument("account")]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetAccoutAddress error:{0} in {1}".format(e,get_linenumber())) class BTC_GetAccountBalance(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: account = self.get_argument("account").decode("utf-8") if account is None or len(account) == 0: self.write(json.dumps(BaseHandler.error_ret())) return commands = [["getbalance", account]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetAccountBalance error:{0} in {1}".format(e,get_linenumber())) class BTC_GetBalance(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: addr = self.get_argument("address") data = BTC_ListUTXO.utxo(btc_rpc_connection, addr) if not data: self.write(json.dumps(BaseHandler.error_ret_with_data("0"))) return from utils import accumulate self.write(json.dumps(BaseHandler.success_ret_with_data('%.8f' % accumulate(data)), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetBalance error:{0} in {1}".format(e,get_linenumber())) class BTC_ListUTXO(BaseHandler): @staticmethod def utxo(rpcconn, addrs, minconf=1, maxconf=9999999, opt=None): argAddrs = addrs if isinstance(addrs, list) else [addrs] if opt == None: commands = [["listunspent", minconf, maxconf, argAddrs, True]] else: commands = [["listunspent", minconf, maxconf, argAddrs, True, opt]] utxos = rpcconn.batch_(commands)[0] #要进行地址格式的转换 for i in range(len(utxos)): cashAddr = utxos[i]['address'] legacyAddr = convert.to_legacy_address(cashAddr) utxos[i]['address'] = legacyAddr utxos[i]['cashaddress'] = cashAddr return utxos def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) data = None try: minconf = int(self.get_argument("minconf")) if not self.get_argument("minconf") == "" else 1 maxconf = int(self.get_argument("maxconf")) if not self.get_argument("maxconf") == "" else 9999999 addr = self.get_argument("address") data = BTC_ListUTXO.utxo(btc_rpc_connection,addr,minconf,maxconf) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetUTXO error:{0} in {1}".format(e,get_linenumber())) class BTC_EstimateSmartFee(BaseHandler): @staticmethod def process(rpcconn, nConfTarget=2, strEstimateMode='ECONOMICAL'): # commands = [["estimatesmartfee", nConfTarget, strEstimateMode ]] # commands = [["estimatefee", nConfTarget]] # bsv 需要根据前面的区块来计算, 和 bch, btc , ltc 不一样 # data = rpcconn.batch_(commands) # nFeeRate = data[0] if len(data) > 0 else Decimal(0.00001) # return nFeeRate * 100000000 / 1000 # satoshi/Byte 即 in satoshis per byte # if len(data) > 0: # return data[0]['feerate'] * 100000000 / 1000 # satoshi/Byte 即 in satoshis per byte return 20 @staticmethod def calcFee(rpcconn, nIn=1, nOut = 2): from decimal import Decimal from decimal import getcontext getcontext().prec = 8 rate = BTC_EstimateSmartFee.process(rpcconn) rate = "%.8f" % (rate / Decimal(100000000.0)) return Decimal(str((148 * nIn + 34 * nOut + 10))) * Decimal(rate) def get(self): try: rpcconn = AuthServiceProxy(RPC_URL) data = BTC_EstimateSmartFee.calcFee(rpcconn) data = '%.8f' % data self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s" % e))) logging.error("BTC_EstimateSmartFee error:{0} in {1}".format(e, get_linenumber())) pass class BTC_CreateRawTransaction(BaseHandler): @staticmethod def process(rpcconn,from_addr,to_addr,amount): #utxos utxos = BTC_ListUTXO.utxo(rpcconn, from_addr) #print(utxos) def UtxoFilter(utxos, amount): selected = [] from decimal import Decimal nSum = Decimal('0') #最小输入utxo金额 : 148 * rate 其中rate是 1000字节 所需的btc数量 nFee = Decimal('0.0') for utxo in [item for item in utxos if int(item["confirmations"]) >= 1 and float(item["amount"]) > 0.0003 ]: selected.append(utxo) nSum += Decimal(str((utxo["amount"]))) if nSum > Decimal(str(amount)): nFee = BTC_EstimateSmartFee.calcFee(rpcconn, len(selected), 2) if nSum > nFee + amount: break return selected, nSum, nFee selected, nSum , fee = UtxoFilter(utxos, amount) # check if enough # from utils import calcFee if not isinstance(amount, Decimal): amount = Decimal(str(amount)) # fee = BTC_EstimateSmartFee.calcFee(rpcconn, len(selected), 2) if nSum < fee + amount: return False,"budget not enough" #return False,0 #需测试!!! from utils import filtered param_in = [filtered(item,["txid","vout"]) for item in selected] param_out = {to_addr:amount, from_addr: nSum - amount - fee} #print("--------------param_out-------------") #print("fee" + str(fee)) #print(param_in) #print(param_out) #print("--------------param_out-------------") # create raw transaction commands = [["createrawtransaction",param_in,param_out]] return True, {"hex":rpcconn.batch_(commands), "utxos":selected, "txout":param_out} def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: from_addr = self.get_argument("from") to_addr = self.get_argument("to") #amount = float(self.get_argument("amount")) from decimal import Decimal amount = Decimal(str(self.get_argument("amount"))) ret, rsp = BTC_CreateRawTransaction.process(btc_rpc_connection,from_addr,to_addr,amount) if not ret: self.write(json.dumps(BaseHandler.error_ret_with_data(rsp))) return self.write(json.dumps(BaseHandler.success_ret_with_data(rsp), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_CreatRawTransaction error:{0} in {1}".format(e,get_linenumber())) class BTC_SendRawTransaction(BaseHandler): def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: rawdata = self.get_argument("rawdata") if not rawdata: return commands = [["sendrawtransaction",rawdata]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_SendRawTransaction error:{0} in {1}".format(e,get_linenumber())) class BTC_CreateRawTransactionEx(BaseHandler): @staticmethod def genearateInParam(rpcconn, src, dest): utxos,gross,amount = [],Decimal('0'),sum(dest.values()) redundant = 0 for addr in src: # utxos all = BTC_ListUTXO.utxo(rpcconn,addr) # recommend from utils import recommended selected,aggregate = recommended(all,amount) # process utxos += selected gross += aggregate # check if enough redundant = gross - BTC_EstimateSmartFee.calcFee(rpcconn, len(utxos), len(dest.keys())+1) - amount if redundant > 0: return True,utxos,redundant return False,utxos,redundant @staticmethod def generateOutParam(dest): param_out = {} for key,value in dest.items(): param_out[key] = Decimal(value) if isinstance(value, str) else Decimal(str(value)) return param_out @staticmethod def process(rpcconn, src, dest ): # preprocess param_out = BTC_CreateRawTransactionEx.generateOutParam(dest) ret,utxos,redundant = BTC_CreateRawTransactionEx.genearateInParam(rpcconn,src,param_out) if not ret: return False, "budget not enough" # param_out refinement param_out[src[0]] = redundant if src[0] not in param_out.keys() else param_out[src[0]] + redundant #print(param_out) # param_in refinement from utils import filtered param_in = [filtered(item,["txid","vout"]) for item in utxos] #print(param_in) return True, {"hex":rpcconn.batch_([["createrawtransaction",param_in,param_out]]),"utxos":utxos, "txout":param_out} def get_argument_ex(self, str): from utils import json2dict str2dict = json2dict(self.request.body) return str2dict[str] if str in str2dict.keys() else False def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: src = self.get_argument_ex("src") dest = self.get_argument_ex("dest") if not isinstance(src, list): self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s" % ("src must be json list")))) return if not isinstance(dest, dict): self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s" % ("dest must be json object")))) return ret, rsp = BTC_CreateRawTransactionEx.process(btc_rpc_connection, src, dest) if not ret: self.write(json.dumps(BaseHandler.error_ret_with_data(rsp))) return self.write(json.dumps(BaseHandler.success_ret_with_data(rsp), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_CreateRawTransactionEx error:{0} in {1}".format(e,get_linenumber())) class BTC_CreateRawTransactionEx_Collection(BaseHandler): @staticmethod def makeParams( rpcconn, lstSrc, lstDest): if len(lstSrc) == 1 and lstSrc[0].strip() == "*": lstSrcAddrs = g_exUserAddrs else: lstSrcAddrs = lstSrc utxos, nSum = [], Decimal('0') txAmount, fTxFee = 0, 0 #for addr in lstSrc: if isinstance(lstSrc, list): # bitcoin-cli -conf=/root/.bitcoin/bitcoin-test.conf listunspent 0 9999999 '[]' true '{ "minimumAmount": 0.005 }' # commands = [["listunspent", 0, 99999999, [], True, {'minimumAmount':0.0003}]] # lstUtxos = rpcconn.batch_(commands)[0] # BSV 不支持 option操作 # opt = {'minimumAmount':0.0003} lstUtxos = BTC_ListUTXO.utxo(rpcconn, [ ], 1, 9999999) # print(len(lstUtxos)) for utxo in lstUtxos: if Decimal(utxo['amount']) < 0.0003: continue if utxo['address'].strip() in lstSrcAddrs: utxos.append(utxo) nSum += Decimal(str((utxo["amount"]))) fTxFee = BTC_EstimateSmartFee.calcFee(rpcconn, len(utxos), len(lstDest)) txAmount = nSum - fTxFee #实际转账金额 if txAmount <= 0.0003: #实际转账金额太小 return False, None, 0, 0 return True, utxos, txAmount , fTxFee @staticmethod def process(rpcconn, lstSrc, lstDest): #lstSrcAddrs = [] bRet, utxos, txAmount, fTxFee = BTC_CreateRawTransactionEx_Collection.makeParams(rpcconn, lstSrc, lstDest) if not bRet: return False, "collection amount is too small!" strDst = lstDest[0] vout = {strDst : txAmount} from utils import filtered vin = [filtered(item,["txid","vout"]) for item in utxos] strHex = rpcconn.batch_([["createrawtransaction", vin, vout]]) return True, {"hex": strHex, "utxos":utxos, "txout":vout, "txFee":fTxFee} def get_argument_ex(self, str): from utils import json2dict str2dict = json2dict(self.request.body) return str2dict[str] if str in str2dict.keys() else False def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: src = self.get_argument_ex("src") dest = self.get_argument_ex("dest") if not isinstance(src, list): self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s" % ("src must be json list")))) return if not isinstance(dest, list): self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s" % ("dest must be json list")))) return ret, rsp = BTC_CreateRawTransactionEx_Collection.process(btc_rpc_connection, src, dest) if not ret: self.write(json.dumps(BaseHandler.error_ret_with_data(rsp))) return self.write(json.dumps(BaseHandler.success_ret_with_data(rsp), default=decimal_default)) except Exception as e: # traceback.print_exc() self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_CreateRawTransactionEx error:{0} in {1}".format(e,get_linenumber())) #查询需要归集的地址余额 class BTC_CollectionQuery(BaseHandler): def get(self): rpcconn = AuthServiceProxy(RPC_URL) try: # commands = [["listunspent", 0, 99999999, [], True, {'minimumAmount':0.0003}]] # lstUtxos = rpcconn.batch_(commands)[0] # opt = {'minimumAmount': 0.0003} lstUtxos = BTC_ListUTXO.utxo(rpcconn, [], 1, 9999999) mapRet = {} for utxo in lstUtxos: strAddr = utxo['address'].strip() if Decimal(utxo['amount']) < 0.0003: continue if strAddr not in g_exUserAddrs : continue if strAddr not in mapRet: mapRet[strAddr] = Decimal("0.0") nAmount = utxo['amount'] mapRet[strAddr] = str( nAmount + Decimal( mapRet[strAddr]) ) self.write(json.dumps(BaseHandler.success_ret_with_data(mapRet), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_CollectionQuery error:{0} in {1}".format(e, get_linenumber())) class BTC_ListTransactions(BaseHandler): @staticmethod def blktimes(rpc_connection,account="*",tx_counts=10): commands = [["listtransactions",account,tx_counts]] data = rpc_connection.batch_(commands) if len(data) == 0: return [] #fix bug:only return those txs which be writen into blockchain @yqq 2019-03-21 return [item['blocktime'] for item in data[0] if "blocktime" in item][::-1] #add 'include_watchonly' to include those address's transactions # which not import private key into the wallet. #yqq 2019-03-26 @staticmethod def process(rpc_connection,account="*",tx_counts=10,skips=0,include_watchonly=True): commands = [["listtransactions",account,tx_counts,skips, include_watchonly]] data = rpc_connection.batch_(commands) if len(data) == 0: return [] #fix bug:only return those txs which be writen into blockchain @yqq 2019-03-21 txs = [item for item in data[0] if "blocktime" in item and item["category"] == "receive"] from utils import filtered return [filtered(item,["address","category","amount","confirmations","txid","blocktime"]) for item in txs][::-1] def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: account = self.get_argument("account") if self.get_argument("account") else "*" tx_counts = int(self.get_argument("count")) if self.get_argument("count") else 10 skips = int(self.get_argument("skips")) if self.get_argument("skips") else 0 data = BTC_ListTransactions.process(btc_rpc_connection,account,tx_counts,skips) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_ListTransActions error:{0} in {1}".format(e,get_linenumber())) class BTC_CrawlTxData(BaseHandler): @staticmethod def process(rpc_connection, nblktime): if len(g_exUserAddrs) == 0: return [] txs = BTC_ListTransactions.process(rpc_connection, '*', 100000000) retTxs = [] for tx in txs: strLegacyAddr = convert.to_legacy_address(tx["address"].strip()) tx["address"] = strLegacyAddr.strip() # print(tx) if int(str(tx['blocktime'])) >= nblktime and tx["address"].strip() in g_exUserAddrs: retTxs.append(tx) return retTxs def post(self): rpc_connection = AuthServiceProxy(RPC_URL) try: lastscannedblktime = int(str(self.get_argument("blocktime"))) data = BTC_CrawlTxData.process(rpc_connection,lastscannedblktime) for i in range(len(data)): data[i]["amount"] = str(data[i]["amount"]) #convert to str to avoid bug self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_CrawlTxData error:{0} in {1}".format(e,get_linenumber())) class BTC_GetBlockCount(BaseHandler): @staticmethod def process(rpcconn): commands = [["getblockcount"]] return int(rpcconn.batch_(commands)) def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: blknumber = BTC_GetBlockCount.process(btc_rpc_connection) self.write(json.dumps(BaseHandler.success_ret_with_data(blknumber), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetBlockCount error:{0} in {1}".format(e,get_linenumber())) class BTC_GetBlockHash(BaseHandler): @staticmethod def process(rpcconn,blknumber): commands = [["getblockhash",blknumber]] return rpcconn.batch_(commands) def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: blknumber = self.get_argument("blknumber") if self.get_argument("blknumber") else BTC_GetBlockCount.process(btc_rpc_connection) data = BTC_GetBlockHash.process(btc_rpc_connection,blknumber) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetBlockHash error:{0} in {1}".format(e,get_linenumber())) class BTC_DecodeRawTransaction(BaseHandler): def post(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: commands = [["decoderawtransaction",self.get_argument("rawdata")]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetTransaction error:{0} in {1}".format(e,get_linenumber())) class BTC_GetRawTransaction(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: commands = [["getrawtransaction",self.get_argument("txid"),True]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetTransaction error:{0} in {1}".format(e,get_linenumber())) class BTC_GetBlock(BaseHandler): def get(self): btc_rpc_connection = AuthServiceProxy(RPC_URL) try: blkhash = self.get_argument("blkhash") if self.get_argument("blkhash") else BTC_GetBlockCount.process(btc_rpc_connection) commands = [["getblock"]] data = btc_rpc_connection.batch_(commands) self.write(json.dumps(BaseHandler.success_ret_with_data(data), default=decimal_default)) except Exception as e: self.write(json.dumps(BaseHandler.error_ret_with_data("error: %s"%e))) logging.error("BTC_GetBlockHash error:{0} in {1}".format(e,get_linenumber()))
43.808743
139
0.627541
[ "MIT" ]
songning4/QBlockChainNotes
Python3/Tornado/apps/ExchangeWalletApi/ExWallet/bsv/handler.py
24,277
Python
from __future__ import absolute_import from __future__ import division from __future__ import print_function from abc import ABC import torch import torch.nn as nn import torch.nn.functional as F from lib.loss.loss_helper import FSAuxCELoss, FSAuxRMILoss from lib.utils.tools.logger import Logger as Log class PixelContrastLoss(nn.Module, ABC): def __init__(self, configer): super(PixelContrastLoss, self).__init__() self.configer = configer self.temperature = self.configer.get('contrast', 'temperature') self.base_temperature = self.configer.get('contrast', 'base_temperature') self.ignore_label = -1 if self.configer.exists('loss', 'params') and 'ce_ignore_index' in self.configer.get('loss', 'params'): self.ignore_label = self.configer.get('loss', 'params')['ce_ignore_index'] self.max_samples = self.configer.get('contrast', 'max_samples') self.max_views = self.configer.get('contrast', 'max_views') def _hard_anchor_sampling(self, X, y_hat, y): batch_size, feat_dim = X.shape[0], X.shape[-1] classes = [] total_classes = 0 for ii in range(batch_size): this_y = y_hat[ii] this_classes = torch.unique(this_y) this_classes = [x for x in this_classes if x > 0 and x != self.ignore_label] this_classes = [x for x in this_classes if (this_y == x).nonzero().shape[0] > self.max_views] classes.append(this_classes) total_classes += len(this_classes) if total_classes == 0: return None, None n_view = self.max_samples // total_classes n_view = min(n_view, self.max_views) X_ = torch.zeros((total_classes, n_view, feat_dim), dtype=torch.float).cuda() y_ = torch.zeros(total_classes, dtype=torch.float).cuda() X_ptr = 0 for ii in range(batch_size): this_y_hat = y_hat[ii] this_y = y[ii] this_classes = classes[ii] for cls_id in this_classes: hard_indices = ((this_y_hat == cls_id) & (this_y != cls_id)).nonzero() easy_indices = ((this_y_hat == cls_id) & (this_y == cls_id)).nonzero() num_hard = hard_indices.shape[0] num_easy = easy_indices.shape[0] if num_hard >= n_view / 2 and num_easy >= n_view / 2: num_hard_keep = n_view // 2 num_easy_keep = n_view - num_hard_keep elif num_hard >= n_view / 2: num_easy_keep = num_easy num_hard_keep = n_view - num_easy_keep elif num_easy >= n_view / 2: num_hard_keep = num_hard num_easy_keep = n_view - num_hard_keep else: Log.info('this shoud be never touched! {} {} {}'.format(num_hard, num_easy, n_view)) raise Exception perm = torch.randperm(num_hard) hard_indices = hard_indices[perm[:num_hard_keep]] perm = torch.randperm(num_easy) easy_indices = easy_indices[perm[:num_easy_keep]] indices = torch.cat((hard_indices, easy_indices), dim=0) X_[X_ptr, :, :] = X[ii, indices, :].squeeze(1) y_[X_ptr] = cls_id X_ptr += 1 return X_, y_ def _contrastive(self, feats_, labels_): anchor_num, n_view = feats_.shape[0], feats_.shape[1] labels_ = labels_.contiguous().view(-1, 1) mask = torch.eq(labels_, torch.transpose(labels_, 0, 1)).float().cuda() contrast_count = n_view contrast_feature = torch.cat(torch.unbind(feats_, dim=1), dim=0) anchor_feature = contrast_feature anchor_count = contrast_count anchor_dot_contrast = torch.div(torch.matmul(anchor_feature, torch.transpose(contrast_feature, 0, 1)), self.temperature) logits_max, _ = torch.max(anchor_dot_contrast, dim=1, keepdim=True) logits = anchor_dot_contrast - logits_max.detach() mask = mask.repeat(anchor_count, contrast_count) neg_mask = 1 - mask logits_mask = torch.ones_like(mask).scatter_(1, torch.arange(anchor_num * anchor_count).view(-1, 1).cuda(), 0) mask = mask * logits_mask neg_logits = torch.exp(logits) * neg_mask neg_logits = neg_logits.sum(1, keepdim=True) exp_logits = torch.exp(logits) log_prob = logits - torch.log(exp_logits + neg_logits) mean_log_prob_pos = (mask * log_prob).sum(1) / mask.sum(1) loss = - (self.temperature / self.base_temperature) * mean_log_prob_pos loss = loss.mean() return loss def forward(self, feats, labels=None, predict=None): labels = labels.unsqueeze(1).float().clone() labels = torch.nn.functional.interpolate(labels, (feats.shape[2], feats.shape[3]), mode='nearest') labels = labels.squeeze(1).long() assert labels.shape[-1] == feats.shape[-1], '{} {}'.format(labels.shape, feats.shape) batch_size = feats.shape[0] labels = labels.contiguous().view(batch_size, -1) predict = predict.contiguous().view(batch_size, -1) feats = feats.permute(0, 2, 3, 1) feats = feats.contiguous().view(feats.shape[0], -1, feats.shape[-1]) feats_, labels_ = self._hard_anchor_sampling(feats, labels, predict) loss = self._contrastive(feats_, labels_) return loss class ContrastAuxCELoss(nn.Module, ABC): def __init__(self, configer=None): super(ContrastAuxCELoss, self).__init__() self.configer = configer ignore_index = -1 if self.configer.exists('loss', 'params') and 'ce_ignore_index' in self.configer.get('loss', 'params'): ignore_index = self.configer.get('loss', 'params')['ce_ignore_index'] Log.info('ignore_index: {}'.format(ignore_index)) self.loss_weight = self.configer.get('contrast', 'loss_weight') self.use_rmi = self.configer.get('contrast', 'use_rmi') if self.use_rmi: self.seg_criterion = FSAuxRMILoss(configer=configer) else: self.seg_criterion = FSAuxCELoss(configer=configer) self.contrast_criterion = PixelContrastLoss(configer=configer) def forward(self, preds, target): h, w = target.size(1), target.size(2) assert "seg" in preds assert "seg_aux" in preds seg = preds['seg'] seg_aux = preds['seg_aux'] embedding = preds['embedding'] if 'embedding' in preds else None pred = F.interpolate(input=seg, size=(h, w), mode='bilinear', align_corners=True) pred_aux = F.interpolate(input=seg_aux, size=(h, w), mode='bilinear', align_corners=True) loss = self.seg_criterion([pred_aux, pred], target) if embedding is not None: _, predict = torch.max(seg, 1) loss_contrast = self.contrast_criterion(embedding, target, predict) return loss + self.loss_weight * loss_contrast return loss
37.783505
112
0.600136
[ "MIT" ]
NNNNAI/ContrastiveSeg
lib/loss/loss_contrast.py
7,330
Python
# File: gsgmail_process_email.py # Copyright (c) 2017-2021 Splunk Inc. # # Licensed under Apache 2.0 (https://www.apache.org/licenses/LICENSE-2.0.txt) import email import tempfile from collections import OrderedDict import os import re from bs4 import BeautifulSoup, UnicodeDammit import phantom.app as phantom import phantom.utils as ph_utils import mimetypes import socket from email.header import decode_header, make_header import shutil import hashlib import json import magic import random import string import phantom.rules as phantom_rules from gsgmail_consts import * import sys from requests.structures import CaseInsensitiveDict _container_common = { "run_automation": False # Don't run any playbooks, when this artifact is added } _artifact_common = { "run_automation": False # Don't run any playbooks, when this artifact is added } FILE_EXTENSIONS = { '.vmsn': ['os memory dump', 'vm snapshot file'], '.vmss': ['os memory dump', 'vm suspend file'], '.js': ['javascript'], '.doc': ['doc'], '.docx': ['doc'], '.xls': ['xls'], '.xlsx': ['xls'], } MAGIC_FORMATS = [ (re.compile('^PE.* Windows'), ['pe file', 'hash']), (re.compile('^MS-DOS executable'), ['pe file', 'hash']), (re.compile('^PDF '), ['pdf']), (re.compile('^MDMP crash'), ['process dump']), (re.compile('^Macromedia Flash'), ['flash']), ] EWS_DEFAULT_ARTIFACT_COUNT = 100 EWS_DEFAULT_CONTAINER_COUNT = 100 HASH_FIXED_PHANTOM_VERSION = "2.0.201" OFFICE365_APP_ID = "a73f6d32-c9d5-4fec-b024-43876700daa6" EXCHANGE_ONPREM_APP_ID = "badc5252-4a82-4a6d-bc53-d1e503857124" IMAP_APP_ID = "9f2e9f72-b0e5-45d6-92a7-09ef820476c1" uri_regexc = re.compile(URI_REGEX) email_regexc = re.compile(EMAIL_REGEX, re.IGNORECASE) email_regexc2 = re.compile(EMAIL_REGEX2, re.IGNORECASE) hash_regexc = re.compile(HASH_REGEX) ip_regexc = re.compile(IP_REGEX) ipv6_regexc = re.compile(IPV6_REGEX) class ProcessMail: def __init__(self, base_connector, config): self._base_connector = base_connector self._config = config self._email_id_contains = list() self._container = dict() self._artifacts = list() self._attachments = list() self._python_version = None try: self._python_version = int(sys.version_info[0]) except Exception: raise Exception("Error occurred while getting the Phantom server's Python major version.") def _get_file_contains(self, file_path): contains = [] ext = os.path.splitext(file_path)[1] contains.extend(FILE_EXTENSIONS.get(ext, [])) magic_str = magic.from_file(file_path) for regex, cur_contains in MAGIC_FORMATS: if regex.match(magic_str): contains.extend(cur_contains) return contains def _is_ip(self, input_ip): if ph_utils.is_ip(input_ip): return True if self.is_ipv6(input_ip): return True return False def is_ipv6(self, input_ip): try: socket.inet_pton(socket.AF_INET6, input_ip) except Exception: return False return True def _clean_url(self, url): url = url.strip('>),.]\r\n') # Check before splicing, find returns -1 if not found # _and_ you will end up splicing on -1 (incorrectly) if '<' in url: url = url[:url.find('<')] elif '>' in url: url = url[:url.find('>')] return url def _extract_urls_domains(self, file_data, urls, domains): if not self._config[PROC_EMAIL_JSON_EXTRACT_DOMAINS] and not self._config[PROC_EMAIL_JSON_EXTRACT_URLS]: return # try to load the email try: soup = BeautifulSoup(file_data, "html.parser") except Exception as e: self._base_connector.debug_print(e) return uris = [] # get all tags that have hrefs links = soup.find_all(href=True) if links: # it's html, so get all the urls uris = [x['href'] for x in links if (not x['href'].startswith('mailto:'))] # work on the text part of the link, they might be http links different from the href # and were either missed by the uri_regexc while parsing text or there was no text counterpart # in the email uri_text = [self._clean_url(x.get_text()) for x in links] if uri_text: uri_text = [x for x in uri_text if x.startswith('http')] if uri_text: uris.extend(uri_text) else: # Parse it as a text file uris = re.findall(uri_regexc, file_data) if uris: uris = [self._clean_url(x) for x in uris] if self._config[PROC_EMAIL_JSON_EXTRACT_URLS]: # add the uris to the urls urls |= set(uris) if self._config[PROC_EMAIL_JSON_EXTRACT_DOMAINS]: for uri in uris: domain = phantom.get_host_from_url(uri) if domain and not self._is_ip(domain): domains.add(domain) # work on any mailto urls if present if links: mailtos = [x['href'] for x in links if (x['href'].startswith('mailto:'))] for curr_email in mailtos: domain = curr_email[curr_email.find('@') + 1:] if domain and not self._is_ip(domain): domains.add(domain) return def _get_ips(self, file_data, ips): # First extract what looks like an IP from the file, this is a faster operation ips_in_mail = re.findall(ip_regexc, file_data) ip6_in_mail = re.findall(ipv6_regexc, file_data) if ip6_in_mail: for ip6_tuple in ip6_in_mail: ip6s = [x for x in ip6_tuple if x] ips_in_mail.extend(ip6s) # Now validate them if ips_in_mail: ips_in_mail = set(ips_in_mail) ips_in_mail = [x for x in ips_in_mail if self._is_ip(x)] if ips_in_mail: ips |= set(ips_in_mail) def _handle_body(self, body, parsed_mail, email_id): local_file_path = body['file_path'] ips = parsed_mail[PROC_EMAIL_JSON_IPS] hashes = parsed_mail[PROC_EMAIL_JSON_HASHES] urls = parsed_mail[PROC_EMAIL_JSON_URLS] domains = parsed_mail[PROC_EMAIL_JSON_DOMAINS] file_data = None try: with open(local_file_path, 'r') as f: file_data = f.read() except Exception: with open(local_file_path, 'rb') as f: file_data = f.read() self._base_connector.debug_print("Reading file data using binary mode") if (file_data is None) or (len(file_data) == 0): return phantom.APP_ERROR file_data = UnicodeDammit(file_data).unicode_markup.encode('utf-8').decode('utf-8') self._parse_email_headers_as_inline(file_data, parsed_mail, email_id) if self._config[PROC_EMAIL_JSON_EXTRACT_DOMAINS]: emails = [] emails.extend(re.findall(email_regexc, file_data)) emails.extend(re.findall(email_regexc2, file_data)) for curr_email in emails: domain = curr_email[curr_email.rfind('@') + 1:] if domain and (not ph_utils.is_ip(domain)): domains.add(domain) self._extract_urls_domains(file_data, urls, domains) if self._config[PROC_EMAIL_JSON_EXTRACT_IPS]: self._get_ips(file_data, ips) if self._config[PROC_EMAIL_JSON_EXTRACT_HASHES]: hashs_in_mail = re.findall(hash_regexc, file_data) if hashs_in_mail: hashes |= set(hashs_in_mail) return phantom.APP_SUCCESS def _add_artifacts(self, cef_key, input_set, artifact_name, start_index, artifacts): added_artifacts = 0 for entry in input_set: # ignore empty entries if not entry: continue artifact = {} artifact.update(_artifact_common) artifact['source_data_identifier'] = start_index + added_artifacts artifact['cef'] = {cef_key: entry} artifact['name'] = artifact_name self._base_connector.debug_print('Artifact:', artifact) artifacts.append(artifact) added_artifacts += 1 return added_artifacts def _parse_email_headers_as_inline(self, file_data, parsed_mail, email_id): # remove the 'Forwarded Message' from the email text and parse it p = re.compile(r'(?<=\r\n).*Forwarded Message.*\r\n', re.IGNORECASE) email_text = p.sub('', file_data.strip()) mail = email.message_from_string(email_text) self._parse_email_headers(parsed_mail, mail, add_email_id=email_id) return phantom.APP_SUCCESS def _add_email_header_artifacts(self, email_header_artifacts, start_index, artifacts): added_artifacts = 0 for artifact in email_header_artifacts: artifact['source_data_identifier'] = start_index + added_artifacts artifacts.append(artifact) added_artifacts += 1 return added_artifacts def _create_artifacts(self, parsed_mail): # get all the artifact data in their own list objects ips = parsed_mail[PROC_EMAIL_JSON_IPS] hashes = parsed_mail[PROC_EMAIL_JSON_HASHES] urls = parsed_mail[PROC_EMAIL_JSON_URLS] domains = parsed_mail[PROC_EMAIL_JSON_DOMAINS] email_headers = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] # set the default artifact dict artifact_id = 0 # add artifacts added_artifacts = self._add_artifacts('sourceAddress', ips, 'IP Artifact', artifact_id, self._artifacts) artifact_id += added_artifacts added_artifacts = self._add_artifacts('fileHash', hashes, 'Hash Artifact', artifact_id, self._artifacts) artifact_id += added_artifacts added_artifacts = self._add_artifacts('requestURL', urls, 'URL Artifact', artifact_id, self._artifacts) artifact_id += added_artifacts added_artifacts = self._add_artifacts('destinationDnsDomain', domains, 'Domain Artifact', artifact_id, self._artifacts) artifact_id += added_artifacts added_artifacts = self._add_email_header_artifacts(email_headers, artifact_id, self._artifacts) artifact_id += added_artifacts return phantom.APP_SUCCESS def _decode_uni_string(self, input_str, def_name): # try to find all the decoded strings, we could have multiple decoded strings # or a single decoded string between two normal strings separated by \r\n # YEAH...it could get that messy encoded_strings = re.findall(r'=\?.*?\?=', input_str, re.I) # return input_str as is, no need to do any conversion if not encoded_strings: return input_str # get the decoded strings try: decoded_strings = [decode_header(x)[0] for x in encoded_strings] decoded_strings = [{'value': x[0], 'encoding': x[1]} for x in decoded_strings] except Exception as e: error_code, error_msg = self._get_error_message_from_exception(e) self._base_connector.debug_print("Decoding: {0}. Error code: {1}. Error message: {2}".format(encoded_strings, error_code, error_msg)) return def_name # convert to dict for safe access, if it's an empty list, the dict will be empty decoded_strings = dict(enumerate(decoded_strings)) new_str = '' new_str_create_count = 0 for i, encoded_string in enumerate(encoded_strings): decoded_string = decoded_strings.get(i) if not decoded_string: # nothing to replace with continue value = decoded_string.get('value') encoding = decoded_string.get('encoding') if not encoding or not value: # nothing to replace with continue try: if encoding != 'utf-8': value = str(value, encoding) except Exception: pass try: # commenting the existing approach due to a new approach being deployed below # substitute the encoded string with the decoded one # input_str = input_str.replace(encoded_string, value) # make new string insted of replacing in the input string because issue find in PAPP-9531 if value: new_str += UnicodeDammit(value).unicode_markup new_str_create_count += 1 except Exception: pass # replace input string with new string because issue find in PAPP-9531 if new_str and new_str_create_count == len(encoded_strings): self._base_connector.debug_print("Creating a new string entirely from the encoded_strings and assiging into input_str") input_str = new_str return input_str def _get_container_name(self, parsed_mail, email_id): # Create the default name def_cont_name = "Email ID: {0}".format(email_id) # get the subject from the parsed mail subject = parsed_mail.get(PROC_EMAIL_JSON_SUBJECT) # if no subject then return the default if not subject: return def_cont_name try: return str(make_header(decode_header(subject))) except Exception: return self._decode_uni_string(subject, def_cont_name) def _handle_if_body(self, content_disp, content_type, part, bodies, file_path, parsed_mail): process_as_body = False # if content disposition is None then assume that it is if content_disp is None: process_as_body = True # if content disposition is inline elif content_disp.lower().strip() == 'inline': if ('text/html' in content_type) or ('text/plain' in content_type): process_as_body = True if not process_as_body: return phantom.APP_SUCCESS, True part_payload = part.get_payload(decode=True) if not part_payload: return phantom.APP_SUCCESS, False charset = part.get_content_charset() with open(file_path, 'wb') as f: # noqa f.write(part_payload) bodies.append({'file_path': file_path, 'charset': part.get_content_charset()}) self._add_body_in_email_headers(parsed_mail, file_path, charset, content_type) return phantom.APP_SUCCESS, False def _handle_part(self, part, part_index, tmp_dir, extract_attach, parsed_mail): bodies = parsed_mail[PROC_EMAIL_JSON_BODIES] files = parsed_mail[PROC_EMAIL_JSON_FILES] # get the file_name file_name = part.get_filename() content_disp = part.get('Content-Disposition') content_type = part.get('Content-Type') content_id = part.get('Content-ID') if file_name is None: # init name and extension to default values name = "part_{0}".format(part_index) extension = ".{0}".format(part_index) # Try to create an extension from the content type if possible if content_type is not None: extension = mimetypes.guess_extension(re.sub(';.*', '', content_type)) # Try to create a name from the content id if possible if content_id is not None: name = content_id file_name = "{0}{1}".format(name, extension) else: try: file_name = str(make_header(decode_header(file_name))) except Exception: file_name = self._decode_uni_string(file_name, file_name) # Remove any chars that we don't want in the name file_path = "{0}/{1}_{2}".format(tmp_dir, part_index, file_name.translate(str.maketrans("", "", ''.join(['<', '>', ' '])))) self._base_connector.debug_print("file_path: {0}".format(file_path)) # is the part representing the body of the email status, process_further = self._handle_if_body(content_disp, content_type, part, bodies, file_path, parsed_mail) if not process_further: return phantom.APP_SUCCESS # is this another email as an attachment if (content_type is not None) and (content_type.find(PROC_EMAIL_CONTENT_TYPE_MESSAGE) != -1): return phantom.APP_SUCCESS # This is an attachment, first check if it is another email or not if extract_attach: _, file_extension = os.path.splitext(file_name) part_payload = part.get_payload(decode=True) if not part_payload: return phantom.APP_SUCCESS try: with open(file_path, 'wb') as f: # noqa f.write(part_payload) files.append({'file_name': file_name, 'file_path': file_path}) except IOError as e: error_msg = str(e) if "File name too long" in error_msg: self.write_with_new_filename(tmp_dir, part_payload, file_extension, files, as_byte=False) else: self._base_connector.debug_print('Failed to write file: {}'.format(e)) return phantom.APP_SUCCESS def _get_file_name(self, input_str): try: return str(make_header(decode_header(input_str))) except Exception: return self._decode_uni_string(input_str, input_str) def _parse_email_headers(self, parsed_mail, part, charset=None, add_email_id=None): email_header_artifacts = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] email_headers = part.items() if not email_headers: return 0 # Parse email keys first headers = self._get_email_headers_from_part(part, charset) cef_artifact = {} cef_types = {} if headers.get('From'): emails = headers['From'] if emails: cef_artifact.update({'fromEmail': emails}) if headers.get('To'): emails = headers['To'] if emails: cef_artifact.update({'toEmail': emails}) message_id = headers.get('Message-ID') # if the header did not contain any email addresses and message ID then ignore this artifact if not cef_artifact and not message_id: return 0 cef_types.update({'fromEmail': ['email'], 'toEmail': ['email']}) if headers: cef_artifact['emailHeaders'] = headers # Adding the email id as a cef artifact crashes the UI when trying to show the action dialog box # so not adding this right now. All the other code to process the emailId is there, but the refraining # from adding the emailId # add_email_id = False if add_email_id: cef_artifact['emailId'] = add_email_id if self._email_id_contains: cef_types.update({'emailId': self._email_id_contains}) artifact = {} artifact.update(_artifact_common) artifact['name'] = 'Email Artifact' artifact['cef'] = cef_artifact artifact['cef_types'] = cef_types email_header_artifacts.append(artifact) return len(email_header_artifacts) def _get_email_headers_from_part(self, part, charset=None): email_headers = list(part.items()) # TODO: the next 2 ifs can be condensed to use 'or' if charset is None: charset = part.get_content_charset() if charset is None: charset = 'utf8' if not email_headers: return {} # Convert the header tuple into a dictionary headers = CaseInsensitiveDict() try: [headers.update({x[0]: self._get_string(x[1], charset)}) for x in email_headers] except Exception as e: error_code, error_msg = self._get_error_message_from_exception(e) err = "Error occurred while converting the header tuple into a dictionary" self._base_connector.debug_print("{}. {}. {}".format(err, error_code, error_msg)) # Handle received separately try: received_headers = [self._get_string(x[1], charset) for x in email_headers if x[0].lower() == 'received'] except Exception as e: error_code, error_msg = self._get_error_message_from_exception(e) err = "Error occurred while handling the received header tuple separately" self._base_connector.debug_print("{}. {}. {}".format(err, error_code, error_msg)) if received_headers: headers['Received'] = received_headers # handle the subject string, if required add a new key subject = headers.get('Subject') if subject: try: headers['decodedSubject'] = str(make_header(decode_header(subject))) except Exception: headers['decodedSubject'] = self._decode_uni_string(subject, subject) return dict(headers) def _get_error_message_from_exception(self, e): """ This method is used to get appropriate error message from the exception. :param e: Exception object :return: error message """ try: if e.args: if len(e.args) > 1: error_code = e.args[0] error_msg = e.args[1] elif len(e.args) == 1: error_code = "Error code unavailable" error_msg = e.args[0] else: error_code = "Error code unavailable" error_msg = "Error message unavailable. Please check the asset configuration and|or action parameters." except Exception: error_code = "Error code unavailable" error_msg = "Error message unavailable. Please check the asset configuration and|or action parameters." return error_code, error_msg def _handle_mail_object(self, mail, email_id, rfc822_email, tmp_dir, start_time_epoch): parsed_mail = OrderedDict() # Create a tmp directory for this email, will extract all files here tmp_dir = tmp_dir if not os.path.exists(tmp_dir): os.makedirs(tmp_dir) extract_attach = self._config[PROC_EMAIL_JSON_EXTRACT_ATTACHMENTS] charset = mail.get_content_charset() if charset is None: charset = 'utf-8' # Extract fields and place it in a dictionary parsed_mail[PROC_EMAIL_JSON_SUBJECT] = mail.get('Subject', '') parsed_mail[PROC_EMAIL_JSON_FROM] = mail.get('From', '') parsed_mail[PROC_EMAIL_JSON_TO] = mail.get('To', '') parsed_mail[PROC_EMAIL_JSON_DATE] = mail.get('Date', '') parsed_mail[PROC_EMAIL_JSON_MSG_ID] = mail.get('Message-ID', '') parsed_mail[PROC_EMAIL_JSON_FILES] = files = [] parsed_mail[PROC_EMAIL_JSON_BODIES] = bodies = [] parsed_mail[PROC_EMAIL_JSON_START_TIME] = start_time_epoch parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] = [] # parse the parts of the email if mail.is_multipart(): for i, part in enumerate(mail.walk()): add_email_id = None if i == 0: add_email_id = email_id self._parse_email_headers(parsed_mail, part, add_email_id=add_email_id) self._base_connector.debug_print("part: {0}".format(part.__dict__)) self._base_connector.debug_print("part type", type(part)) if part.is_multipart(): self.check_and_update_eml(part) continue try: ret_val = self._handle_part(part, i, tmp_dir, extract_attach, parsed_mail) except Exception as e: self._base_connector.debug_print("ErrorExp in _handle_part # {0}".format(i), e) continue if phantom.is_fail(ret_val): continue else: self._parse_email_headers(parsed_mail, mail, add_email_id=email_id) # parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS].append(mail.items()) file_path = "{0}/part_1.text".format(tmp_dir) with open(file_path, 'wb') as f: # noqa f.write(mail.get_payload(decode=True)) bodies.append({'file_path': file_path, 'charset': charset}) self._add_body_in_email_headers(parsed_mail, file_path, mail.get_content_charset(), 'text/plain') # get the container name container_name = self._get_container_name(parsed_mail, email_id) if container_name is None: return phantom.APP_ERROR # Add the container # first save the container, to do that copy things from parsed_mail to a new object container = {} container_data = dict(parsed_mail) # delete the header info, we dont make it a part of the container json del (container_data[PROC_EMAIL_JSON_EMAIL_HEADERS]) container.update(_container_common) self._container['source_data_identifier'] = email_id self._container['name'] = container_name self._container['data'] = {'raw_email': rfc822_email} # Create the sets before handling the bodies If both the bodies add the same ip # only one artifact should be created parsed_mail[PROC_EMAIL_JSON_IPS] = set() parsed_mail[PROC_EMAIL_JSON_HASHES] = set() parsed_mail[PROC_EMAIL_JSON_URLS] = set() parsed_mail[PROC_EMAIL_JSON_DOMAINS] = set() # For bodies for i, body in enumerate(bodies): if not body: continue try: self._handle_body(body, parsed_mail, email_id) except Exception as e: self._base_connector.debug_print_debug_print("ErrorExp in _handle_body # {0}: {1}".format(i, str(e))) continue # Files self._attachments.extend(files) self._create_artifacts(parsed_mail) return phantom.APP_SUCCESS def _add_body_in_email_headers(self, parsed_mail, file_path, charset, content_type): # Add email_bodies to email_headers email_headers = parsed_mail[PROC_EMAIL_JSON_EMAIL_HEADERS] try: with open(file_path, 'r') as f: body_content = f.read() except Exception: with open(file_path, 'rb') as f: body_content = f.read() self._base_connector.debug_print("Reading file data using binary mode") # Add body to the last added Email artifact body_content = UnicodeDammit(body_content).unicode_markup.encode('utf-8').decode('utf-8') if 'text/plain' in content_type: try: email_headers[-1]['cef']['bodyText'] = self._get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyText'] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyText'] = self._decode_uni_string(body_content, body_content) error_code, error_msg = self._get_error_message_from_exception(e) err = "Error occurred while parsing text/plain body content for creating artifacts" self._base_connector.debug_print("{}. {}. {}".format(err, error_code, error_msg)) elif 'text/html' in content_type: try: email_headers[-1]['cef']['bodyHtml'] = self._get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyHtml'] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyHtml'] = self._decode_uni_string(body_content, body_content) error_code, error_msg = self._get_error_message_from_exception(e) err = "Error occurred while parsing text/html body content for creating artifacts" self._base_connector.debug_print("{}. {}. {}".format(err, error_code, error_msg)) else: if not email_headers[-1]['cef'].get('bodyOther'): email_headers[-1]['cef']['bodyOther'] = {} try: email_headers[-1]['cef']['bodyOther'][content_type] = self._get_string( body_content, charset) except Exception as e: try: email_headers[-1]['cef']['bodyOther'][content_type] = str(make_header(decode_header(body_content))) except Exception: email_headers[-1]['cef']['bodyOther'][content_type] = self._decode_uni_string(body_content, body_content) error_code, error_msg = self._get_error_message_from_exception(e) err = "Error occurred while parsing bodyOther content for creating artifacts" self._base_connector.debug_print("{}. {}. {}".format(err, error_code, error_msg)) def _get_string(self, input_str, charset): try: if input_str: if self._python_version == 2: input_str = UnicodeDammit(input_str).unicode_markup.encode(charset) else: input_str = UnicodeDammit(input_str).unicode_markup.encode(charset).decode(charset) except Exception: try: input_str = str(make_header(decode_header(input_str))) except Exception: input_str = self._decode_uni_string(input_str, input_str) self._base_connector.debug_print( "Error occurred while converting to string with specific encoding {}".format(input_str)) return input_str def _set_email_id_contains(self, email_id): if not self._base_connector: return try: email_id = self._get_string(email_id, 'utf-8') except Exception: email_id = str(email_id) if self._base_connector.get_app_id() == EXCHANGE_ONPREM_APP_ID and email_id.endswith('='): self._email_id_contains = ["exchange email id"] elif self._base_connector.get_app_id() == OFFICE365_APP_ID and email_id.endswith('='): self._email_id_contains = ["office 365 email id"] elif self._base_connector.get_app_id() == IMAP_APP_ID and email_id.isdigit(): self._email_id_contains = ["imap email id"] elif ph_utils.is_sha1(email_id): self._email_id_contains = ["vault id"] return def _int_process_email(self, rfc822_email, email_id, start_time_epoch): mail = email.message_from_string(rfc822_email) tmp_dir = tempfile.mkdtemp(prefix='ph_email') try: ret_val = self._handle_mail_object(mail, email_id, rfc822_email, tmp_dir, start_time_epoch) except Exception as e: message = "ErrorExp in _handle_mail_object: {0}".format(e) self._base_connector.debug_print(message) return phantom.APP_ERROR, message, [] results = [{'container': self._container, 'artifacts': self._artifacts, 'files': self._attachments, 'temp_directory': tmp_dir}] return ret_val, PROC_EMAIL_PARSED, results def check_and_update_eml(self, part): if self._config[PROC_EMAIL_JSON_EXTRACT_EMAIL_ATTACHMENTS]: tmp_dir = None msg = None file_extension = '' try: tmp_dir = tempfile.mkdtemp(prefix='ph_email') filename = self._get_file_name(part.get_filename()) _, file_extension = os.path.splitext(filename) if filename.endswith('.eml'): file_path = os.path.join(tmp_dir, filename) msg = part.get_payload()[0] with open(file_path, 'wb') as f: # noqa f.write(msg.as_bytes()) self._attachments.append({'file_name': filename, 'file_path': file_path}) except IOError as e: error_msg = str(e) if "File name too long" in error_msg: self.write_with_new_filename(tmp_dir, msg, file_extension, self._attachments, as_byte=True) else: self._base_connector.debug_print('Failed to write file: {}'.format(e)) except Exception as e: self._base_connector.debug_print("Exception occurred: {}".format(e)) def write_with_new_filename(self, tmp_dir, data, file_extension, dict_to_fill, as_byte=False): try: random_suffix = '_' + ''.join(random.SystemRandom().choice(string.ascii_lowercase) for _ in range(16)) new_file_name = "ph_long_file_name_{0}{1}".format(random_suffix, file_extension) file_path = os.path.join(tmp_dir, new_file_name) with open(file_path, 'wb') as f: if as_byte: f.write(data.as_bytes()) else: f.write(data) dict_to_fill.append({'file_name': new_file_name, 'file_path': file_path}) except Exception as e: self._base_connector.debug_print('Exception while writing file: {}'.format(e)) def process_email(self, rfc822_email, email_id, epoch): try: self._set_email_id_contains(email_id) except Exception: pass ret_val, message, results = self._int_process_email(rfc822_email, email_id, epoch) if not ret_val: return phantom.APP_ERROR, message self._parse_results(results) return phantom.APP_SUCCESS, PROC_EMAIL_PROCESSED def _parse_results(self, results): param = self._base_connector.get_current_param() container_count = EWS_DEFAULT_CONTAINER_COUNT artifact_count = EWS_DEFAULT_ARTIFACT_COUNT if param: container_count = param.get(phantom.APP_JSON_CONTAINER_COUNT, EWS_DEFAULT_CONTAINER_COUNT) artifact_count = param.get(phantom.APP_JSON_ARTIFACT_COUNT, EWS_DEFAULT_ARTIFACT_COUNT) results = results[:container_count] for result in results: container = result.get('container') if not container: continue container.update(_container_common) try: ret_val, message, container_id = self._base_connector.save_container(container) except Exception as e: self._base_connector.debug_print("Exception: ", e) continue self._base_connector.debug_print(PROC_EMAIL_SAVE_CONTAINER.format(ret_val, message, container_id)) if phantom.is_fail(ret_val): message = PROC_EMAIL_FAILED_CONTAINER.format(container['source_data_identifier'], message) self._base_connector.debug_print(message) continue if not container_id: message = PROC_EMAIL_SAVE_CONTAINER_FAILED self._base_connector.debug_print(message) continue files = result.get('files') vault_artifacts_added = 0 for curr_file in files: ret_val, added_to_vault = self._handle_file(curr_file, container_id) if added_to_vault: vault_artifacts_added += 1 artifacts = result.get('artifacts') if not artifacts: continue if not self._base_connector.is_poll_now(): artifacts = artifacts[:artifact_count] len_artifacts = len(artifacts) for j, artifact in enumerate(artifacts): if not artifact: continue # add the container id to the artifact artifact['container_id'] = container_id self._set_sdi(artifact) # if it is the last artifact of the last container if (j + 1) == len_artifacts: # mark it such that active playbooks get executed artifact['run_automation'] = True ret_val, status_string, artifact_id = self._base_connector.save_artifact(artifact) self._base_connector.debug_print(PROC_EMAIL_SAVE_CONT_PASSED.format(ret_val, status_string, artifact_id)) # delete any temp directories that were created by the email parsing function [shutil.rmtree(x['temp_directory'], ignore_errors=True) for x in results if x.get('temp_directory')] return self._base_connector.set_status(phantom.APP_SUCCESS) def _add_vault_hashes_to_dictionary(self, cef_artifact, vault_id): success, message, vault_info = phantom_rules.vault_info(vault_id=vault_id) if not vault_info: return phantom.APP_ERROR, "Vault ID not found" # The return value is a list, each item represents an item in the vault # matching the vault id, the info that we are looking for (the hashes) # will be the same for every entry, so just access the first one try: metadata = vault_info[0].get('metadata') except Exception: return phantom.APP_ERROR, PROC_EMAIL_FAILED_VAULT_CONT_DATA try: cef_artifact['fileHashSha256'] = metadata['sha256'] except Exception: pass try: cef_artifact['fileHashMd5'] = metadata['md5'] except Exception: pass try: cef_artifact['fileHashSha1'] = metadata['sha1'] except Exception: pass return phantom.APP_SUCCESS, PROC_EMAIL_MAPPED_HASH_VAL def _handle_file(self, curr_file, container_id): file_name = curr_file.get('file_name') local_file_path = curr_file['file_path'] contains = self._get_file_contains(local_file_path) # lets move the data into the vault vault_attach_dict = {} if not file_name: file_name = os.path.basename(local_file_path) self._base_connector.debug_print("Vault file name: {0}".format(file_name)) vault_attach_dict[phantom.APP_JSON_ACTION_NAME] = self._base_connector.get_action_name() vault_attach_dict[phantom.APP_JSON_APP_RUN_ID] = self._base_connector.get_app_run_id() file_name = self._decode_uni_string(file_name, file_name) # success, message, vault_id = phantom_rules.vault_add(container_id, local_file_path, file_name) try: success, message, vault_id = phantom_rules.vault_add(file_location=local_file_path, container=container_id, file_name=file_name, metadata=vault_attach_dict) except Exception as e: self._base_connector.debug_print(phantom.APP_ERR_FILE_ADD_TO_VAULT.format(e)) return phantom.APP_ERROR, phantom.APP_ERROR if not success: self._base_connector.debug_print(PROC_EMAIL_FAILED_VAULT_ADD_FILE.format(message)) return phantom.APP_ERROR, phantom.APP_ERROR # add the vault id artifact to the container cef_artifact = {} if file_name: cef_artifact.update({'fileName': file_name}) if vault_id: cef_artifact.update({'vaultId': vault_id, 'cs6': vault_id, 'cs6Label': 'Vault ID'}) # now get the rest of the hashes and add them to the cef artifact self._add_vault_hashes_to_dictionary(cef_artifact, vault_id) if not cef_artifact: return phantom.APP_SUCCESS, phantom.APP_ERROR artifact = {} artifact.update(_artifact_common) artifact['container_id'] = container_id artifact['name'] = 'Vault Artifact' artifact['cef'] = cef_artifact if contains: artifact['cef_types'] = {'vaultId': contains, 'cs6': contains} self._set_sdi(artifact) ret_val, status_string, artifact_id = self._base_connector.save_artifact(artifact) self._base_connector.debug_print(PROC_EMAIL_SAVE_CONT_PASSED.format(ret_val, status_string, artifact_id)) return phantom.APP_SUCCESS, ret_val def cmp2(self, a, b): return (a > b) - (a < b) def _set_sdi(self, input_dict): if 'source_data_identifier' in input_dict: del input_dict['source_data_identifier'] dict_hash = None # first get the phantom version phantom_version = self._base_connector.get_product_version() if not phantom_version: dict_hash = self._create_dict_hash(input_dict) else: ver_cmp = self.cmp2(phantom_version, HASH_FIXED_PHANTOM_VERSION) if ver_cmp == -1: dict_hash = self._create_dict_hash(input_dict) if dict_hash: input_dict['source_data_identifier'] = dict_hash else: # Remove this code once the backend has fixed PS-4216 _and_ it has been # merged into next so that 2.0 and 2.1 has the code input_dict['source_data_identifier'] = self._create_dict_hash(input_dict) return phantom.APP_SUCCESS def _create_dict_hash(self, input_dict): try: input_dict_str = json.dumps(input_dict, sort_keys=True) except Exception as e: self._base_connector.debug_print('Exception: ', e) return None return hashlib.md5(input_dict_str.encode('utf-8')).hexdigest()
38.744015
168
0.621304
[ "Apache-2.0" ]
chunmanjimmyf/phantom-apps
Apps/phgsgmail/gsgmail_process_email.py
42,076
Python
# Copyright 2021 ETH Zurich, Media Technology Center # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import datetime import os import pandas as pd """ This module is mainly used to transform the data from the partners into our desired format. In the and only load_data and get_metadata is used in the algorithms. """ def load_data(folder, input_path='user_item', cut=40,high_cut=1000000, seed=None): """ loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files :param cut: value to cut off users with less than "cut" read articles :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs. (look in create_split to see how the split is defines) """ # cut cuts off users that read less than cut articles user_item_train, user_item_test, user_item_validation = pd.read_pickle( f'{folder}/{input_path}_train.pkl'), pd.read_pickle(f'{folder}/{input_path}_test.pkl'), pd.read_pickle( f'{folder}/{input_path}_validation.pkl') user_item_train = user_item_train[user_item_train.str.len() > cut * 0.7] user_item_train = user_item_train[user_item_train.str.len() < high_cut * 0.7] user_item_test = user_item_test.loc[user_item_train.index] user_item_validation = user_item_validation.loc[user_item_train.index] return user_item_train, user_item_test, user_item_validation def load_data_vertical(folder, input_path='user_item_vertical', cut=40): """ loads the training,validation,test set from the folder, restricts the users with at least "cut" read articles and returns the sets. The Format of the sets is pd.Series with index the UserID and value a list of ArticleIDs :param folder/input_path: {folder}/{input_path} is the path to look for the *_train.pkl files :param cut: value to cut off users with less than "cut" read articles :return: three pd.Series. Index of each series is the UserID. The value is a list of ArticleIDs. (look in create_split to see how the split is defines) """ # cut cuts off users that read less than cut articles user_item_train, user_item_test, user_item_validation = pd.read_parquet( f'{folder}/{input_path}_train.pq'), pd.read_parquet(f'{folder}/{input_path}_test.pq'), pd.read_parquet( f'{folder}/{input_path}_validation.pq') user_item_train = user_item_train[user_item_train['count'] >cut] user_item_test =user_item_test[user_item_test['count'] >cut] user_item_validation = user_item_validation[user_item_validation['count'] >cut] user_item_train['resource_id']=user_item_train['article_id'] user_item_test['resource_id']=user_item_test['article_id'] user_item_validation['resource_id']=user_item_validation['article_id'] return user_item_train, user_item_test, user_item_validation def load_data_cv(folder, input_path='user_item', cut=40, high_cut=100000,seed=1): """ Same as load_data but only returns random 80% of the training set """ # cut cuts off users that read less than cut articles user_item_train, user_item_test, user_item_validation = load_data(folder, input_path=input_path, cut=cut,high_cut=high_cut) user_item_train = user_item_train.sample(frac=0.8,random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return user_item_train, user_item_test, user_item_validation def load_data_vertical_cv(folder, input_path='user_item_vertical', cut=40, high_cut=100000,seed=1): """ Same as load_data but only returns random 80% of the training set """ # cut cuts off users that read less than cut articles user_item_train, user_item_test, user_item_validation = load_data_vertical(folder, input_path=input_path, cut=cut) user_item_train = user_item_train.sample(frac=0.8,random_state=seed) user_item_test = user_item_test.sample(frac=1, random_state=seed) return user_item_train, user_item_test, user_item_validation def get_metadata(folder, usecols=[]): """ Loads and returns the article metadata. The algorithms expect the format to be a Dataframe with two columns: - "resource_id": unique id for the article - "text": full text of the article (without html tags) """ if not usecols: usecols = ['text', 'resource_id'] metadata = pd.read_csv(f"{folder}/meta.csv", usecols=usecols) return metadata.dropna(subset=['text']) def transform_item_matrix_to_horizontal_format(folder, output_path='user_item_matrix.pkl', input_path='user_item_matrix_vertical.pq', sortby='ts'): """ Transforms vertical User-Item matrix where ich row is one click into a horizontal User-item matrix where we have one row for each user and each row contains a (sorted) list of articles she/he clicked on. :param folder: Input folder :param output_path: Filename/path for outputfile :param input_path: Filename/path for inputfile. This pickled file contains a DataFrame with three columns: "user_ix": the UserID and "article_id" the ArticleID and "<sortby>" which should be timestamp to sort by. Each UserID ArticleID pair indicates a click of the user on the article at a time. :param sortby: Columnname of the timestamp column to sort by :return: returns a Series where the index is the UserID and values is the by timestamp sorted list of clicked ArticleIDs """ now = datetime.datetime.now() matrices = pd.read_parquet(f"{folder}/{input_path}") grouped = matrices.sort_values(sortby).groupby(['user_ix']).apply(lambda x: list(x['article_id'])) grouped.to_pickle(f"{folder}/{output_path}") print(f"Data transformed {datetime.datetime.now() - now}") def create_split(folder, input_path='user_item_matrix.pkl', ouput_path='user_item', cut_dump=10): """ Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split. This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10% read articles in the test set. We remove users with less than 10 clicked articles. This is the data that is loaded to train/test the models in the end. """ now = datetime.datetime.now() user_item = pd.read_pickle(f"{folder}/{input_path}") user_item = user_item[user_item.str.len() > (cut_dump)] user_item_train = user_item.apply(lambda x: x[:int(len(x) * 0.7)]) user_item_test = user_item.apply(lambda x: x[int(len(x) * 0.7):int(len(x) * 0.9)]) user_item_validation = user_item.apply(lambda x: x[int(len(x) * 0.9):]) user_item_train.name = 'article_id' user_item_test.name = 'article_id' user_item_validation.name = 'article_id' user_item_train.to_pickle(f'{folder}/{ouput_path}_train.pkl') user_item_test.to_pickle(f'{folder}/{ouput_path}_test.pkl') user_item_validation.to_pickle(f'{folder}/{ouput_path}_validation.pkl') print(f"Split created {datetime.datetime.now() - now}") def create_split_vertical(folder, input_path='user_item_matrix_vertical.pq', ouput_path='user_item_vertical', cut_dump=10,time_column='ts'): """ Loads the horizontal user item data from folder and creates a user-wise a 70% train, 20% validation, 10% test split. This means for each user the first 70% read articles are in the train the next 20% in validation and the last 10% read articles in the test set. We remove users with less than 10 clicked articles. This is the data that is loaded to train/test the models in the end. """ now = datetime.datetime.now() user_item = pd.read_parquet(f"{folder}/{input_path}").sort_values(time_column) user_item['count']=user_item.groupby(['user_ix']).article_id.transform('count') user_item = user_item[user_item['count']>cut_dump] grouped = user_item.groupby(['user_ix']) user_item['percentile'] = (grouped.article_id.cumcount() + 1) / grouped.article_id.transform('count') user_item_train = user_item[user_item['percentile']<=0.7] user_item_test = user_item[(user_item['percentile']>0.7) & (user_item['percentile']<0.9)] user_item_validation = user_item[user_item['percentile']>0.9] user_item_train.to_parquet(f'{folder}/{ouput_path}_train.pq') user_item_test.to_parquet(f'{folder}/{ouput_path}_test.pq') user_item_validation.to_parquet(f'{folder}/{ouput_path}_validation.pq') print(f"Split created {datetime.datetime.now() - now}") def transform_horizontal_to_vertical(df): """ Transforms the horizontal format into vertical format :param df: :return: """ return df.explode().reset_index() if __name__ == "__main__": import pandas as pd folder = os.getenv('DATA_FOLDER','processed') # Transforms the user-item-matrix into a user-series. For each user we store the articles read as one sorted list. # Save the new format. # This format is more convenient for creating the split and for training some of the algorithms. transform_item_matrix_to_horizontal_format(folder=folder) # Create a train,test,validation split. 70%,10%,20% and save it create_split(folder=folder, cut_dump=10) create_split_vertical(folder=folder, cut_dump=10) # loads the saved train,validation,test split train, test, validation = load_data(folder=folder, cut=40) # # if you wish to transform into normal user-item-format # train_vertical = transform_horizontal_to_vertical(train)
49.591346
140
0.728938
[ "Apache-2.0" ]
MTC-ETH/RecommenderSystems
preprocessing.py
10,315
Python
# Copyright (c) Facebook, Inc. and its affiliates. # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import os from foundations.step import Step from training.metric_logger import MetricLogger from testing import test_case class TestMetricLogger(test_case.TestCase): def test_create(self): MetricLogger() @staticmethod def create_logger(): logger = MetricLogger() logger.add('train_accuracy', Step.from_iteration(0, 400), 0.5) logger.add('train_accuracy', Step.from_iteration(1, 400), 0.6) logger.add('test_accuracy', Step.from_iteration(0, 400), 0.4) return logger def test_add_get(self): logger = TestMetricLogger.create_logger() self.assertEqual(logger.get_data('train_accuracy'), [(0, 0.5), (1, 0.6)]) self.assertEqual(logger.get_data('test_accuracy'), [(0, 0.4)]) self.assertEqual(logger.get_data('test_loss'), []) def test_overwrite(self): logger = TestMetricLogger.create_logger() logger.add('train_accuracy', Step.from_iteration(0, 400), 1.0) self.assertEqual(logger.get_data('train_accuracy'), [(0, 1.0), (1, 0.6)]) def test_sorting(self): logger = TestMetricLogger.create_logger() logger.add('train_accuracy', Step.from_iteration(5, 400), 0.9) logger.add('train_accuracy', Step.from_iteration(3, 400), 0.7) logger.add('train_accuracy', Step.from_iteration(4, 400), 0.8) self.assertEqual(logger.get_data('train_accuracy'), [(0, 0.5), (1, 0.6), (3, 0.7), (4, 0.8), (5, 0.9)]) def test_str(self): logger = TestMetricLogger.create_logger() expected = ['train_accuracy,0,0.5', 'train_accuracy,1,0.6', 'test_accuracy,0,0.4'] self.assertEqual(str(logger), '\n'.join(expected)) def test_create_from_string(self): logger = TestMetricLogger.create_logger() logger2 = MetricLogger.create_from_string(str(logger)) self.assertEqual(logger.get_data('train_accuracy'), logger2.get_data('train_accuracy')) self.assertEqual(logger.get_data('test_accuracy'), logger2.get_data('test_accuracy')) self.assertEqual(str(logger), str(logger2)) def test_file_operations(self): logger = TestMetricLogger.create_logger() save_loc = os.path.join(self.root, 'temp_logger') logger.save(save_loc) logger2 = MetricLogger.create_from_file(save_loc) self.assertEqual(logger.get_data('train_accuracy'), logger2.get_data('train_accuracy')) self.assertEqual(logger.get_data('test_accuracy'), logger2.get_data('test_accuracy')) self.assertEqual(str(logger), str(logger2)) test_case.main()
41.231884
96
0.660105
[ "MIT" ]
sbam13/open_lth
training/test/test_metric_logger.py
2,845
Python
import logging import os from enum import Enum from functools import lru_cache from typing import Optional from pydantic import BaseSettings, PostgresDsn logger = logging.getLogger(__name__) class EnvironmentEnum(str, Enum): PRODUCTION = "production" LOCAL = "local" class GlobalConfig(BaseSettings): TITLE: str = "Endorser" DESCRIPTION: str = "An endorser service for aca-py wallets" ENVIRONMENT: EnvironmentEnum DEBUG: bool = False TESTING: bool = False TIMEZONE: str = "UTC" # the following defaults match up with default values in scripts/.env.example # these MUST be all set in non-local environments. PSQL_HOST: str = os.environ.get("ENDORSER_POSTGRESQL_HOST", "localhost") PSQL_PORT: int = os.environ.get("ENDORSER_POSTGRESQL_PORT", 5432) PSQL_DB: str = os.environ.get("ENDORSER_POSTGRESQL_DB", "traction") PSQL_USER: str = os.environ.get("ENDORSER_DB_USER", "tractionuser") PSQL_PASS: str = os.environ.get("ENDORSER_DB_USER_PWD", "tractionPass") PSQL_ADMIN_USER: str = os.environ.get("ENDORSER_DB_ADMIN", "tractionadminuser") PSQL_ADMIN_PASS: str = os.environ.get("ENDORSER_DB_ADMIN_PWD", "tractionadminPass") # application connection is async # fmt: off SQLALCHEMY_DATABASE_URI: PostgresDsn = ( f"postgresql+asyncpg://{PSQL_USER}:{PSQL_PASS}@{PSQL_HOST}:{PSQL_PORT}/{PSQL_DB}" # noqa: E501 ) # migrations connection uses owner role and is synchronous SQLALCHEMY_DATABASE_ADMIN_URI: PostgresDsn = ( f"postgresql://{PSQL_ADMIN_USER}:{PSQL_ADMIN_PASS}@{PSQL_HOST}:{PSQL_PORT}/{PSQL_DB}" # noqa: E501 ) # fmt: on ACAPY_ADMIN_URL: str = os.environ.get( "ENDORSER_ACAPY_ADMIN_URL", "http://localhost:9031" ) ACAPY_ADMIN_URL_API_KEY: str = os.environ.get( "ENDORSER_ACAPY_ADMIN_URL_API_KEY", "change-me" ) ENDORSER_API_ADMIN_USER: str = os.environ.get("ENDORSER_API_ADMIN_USER", "endorser") ENDORSER_API_ADMIN_KEY: str = os.environ.get("ENDORSER_API_ADMIN_KEY", "change-me") ENDORSER_WEBHOOK_URL: str = os.environ.get( "ENDORSER_WEBHOOK_URL", "http://endorser-api:5000/webhook" ) ACAPY_WEBHOOK_URL_API_KEY_NAME = "x-api-key" ACAPY_WEBHOOK_URL_API_KEY: str = os.environ.get("ACAPY_WEBHOOK_URL_API_KEY", "") DB_ECHO_LOG: bool = False # Api V1 prefix API_V1_STR = "/v1" # openssl rand -hex 32 JWT_SECRET_KEY = "09d25e094faa6ca2556c818166b7a9563b93f7099f6f0f4caa6cf63b88e8d3e7" JWT_ALGORITHM = "HS256" JWT_ACCESS_TOKEN_EXPIRE_MINUTES = 300 class Config: case_sensitive = True class LocalConfig(GlobalConfig): """Local configurations.""" DEBUG: bool = True ENVIRONMENT: EnvironmentEnum = EnvironmentEnum.LOCAL class ProdConfig(GlobalConfig): """Production configurations.""" DEBUG: bool = False ENVIRONMENT: EnvironmentEnum = EnvironmentEnum.PRODUCTION class FactoryConfig: def __init__(self, environment: Optional[str]): self.environment = environment def __call__(self) -> GlobalConfig: if self.environment == EnvironmentEnum.LOCAL.value: return LocalConfig() return ProdConfig() @lru_cache() def get_configuration() -> GlobalConfig: return FactoryConfig(os.environ.get("ENVIRONMENT"))() settings = get_configuration()
30.669725
107
0.714029
[ "Apache-2.0" ]
Open-Earth-Foundation/traction
services/endorser/api/core/config.py
3,343
Python
import _plotly_utils.basevalidators class InsidetextanchorValidator(_plotly_utils.basevalidators.EnumeratedValidator): def __init__(self, plotly_name="insidetextanchor", parent_name="funnel", **kwargs): super(InsidetextanchorValidator, self).__init__( plotly_name=plotly_name, parent_name=parent_name, edit_type=kwargs.pop("edit_type", "plot"), values=kwargs.pop("values", ["end", "middle", "start"]), **kwargs, )
38.153846
87
0.669355
[ "MIT" ]
labaran1/plotly.py
packages/python/plotly/plotly/validators/funnel/_insidetextanchor.py
496
Python
#!/usr/bin/env python3 # Copyright (c) 2014-2016 The Bitcoin Core developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. """Test the wallet accounts properly when there are cloned transactions with malleated scriptsigs.""" from test_framework.test_framework import BitcoinTestFramework from test_framework.util import * class TxnMallTest(BitcoinTestFramework): def set_test_params(self): self.num_nodes = 4 def add_options(self, parser): parser.add_option("--mineblock", dest="mine_block", default=False, action="store_true", help="Test double-spend of 1-confirmed transaction") def setup_network(self): # Start with split network: super(TxnMallTest, self).setup_network() disconnect_nodes(self.nodes[1], 2) disconnect_nodes(self.nodes[2], 1) def run_test(self): # All nodes should start with 12,500 WEI: starting_balance = 12500 for i in range(4): assert_equal(self.nodes[i].getbalance(), starting_balance) self.nodes[i].getnewaddress() # bug workaround, coins generated assigned to first getnewaddress! self.nodes[0].settxfee(.001) node0_address1 = self.nodes[0].getnewaddress() node0_txid1 = self.nodes[0].sendtoaddress(node0_address1, 12190) node0_tx1 = self.nodes[0].gettransaction(node0_txid1) node0_address2 = self.nodes[0].getnewaddress() node0_txid2 = self.nodes[0].sendtoaddress(node0_address2, 290) node0_tx2 = self.nodes[0].gettransaction(node0_txid2) assert_equal(self.nodes[0].getbalance(), starting_balance + node0_tx1["fee"] + node0_tx2["fee"]) # Coins are sent to node1_address node1_address = self.nodes[1].getnewaddress() # Send tx1, and another transaction tx2 that won't be cloned txid1 = self.nodes[0].sendtoaddress(node1_address, 400) txid2 = self.nodes[0].sendtoaddress(node1_address, 200) # Construct a clone of tx1, to be malleated rawtx1 = self.nodes[0].getrawtransaction(txid1,1) clone_inputs = [{"txid":rawtx1["vin"][0]["txid"],"vout":rawtx1["vin"][0]["vout"]}] clone_outputs = {rawtx1["vout"][0]["scriptPubKey"]["addresses"][0]:rawtx1["vout"][0]["value"], rawtx1["vout"][1]["scriptPubKey"]["addresses"][0]:rawtx1["vout"][1]["value"]} clone_locktime = rawtx1["locktime"] clone_raw = self.nodes[0].createrawtransaction(clone_inputs, clone_outputs, clone_locktime) # createrawtransaction randomizes the order of its outputs, so swap them if necessary. # output 0 is at version+#inputs+input+sigstub+sequence+#outputs # 400 WEI serialized is 00902f5009000000 pos0 = 2*(4+1+36+1+4+1) hex400 = "00902f5009000000" output_len = 16 + 2 + 2 * int("0x" + clone_raw[pos0 + 16 : pos0 + 16 + 2], 0) if (rawtx1["vout"][0]["value"] == 400 and clone_raw[pos0 : pos0 + 16] != hex400 or rawtx1["vout"][0]["value"] != 400 and clone_raw[pos0 : pos0 + 16] == hex400): output0 = clone_raw[pos0 : pos0 + output_len] output1 = clone_raw[pos0 + output_len : pos0 + 2 * output_len] clone_raw = clone_raw[:pos0] + output1 + output0 + clone_raw[pos0 + 2 * output_len:] # Use a different signature hash type to sign. This creates an equivalent but malleated clone. # Don't send the clone anywhere yet tx1_clone = self.nodes[0].signrawtransactionwithwallet(clone_raw, None, "ALL|ANYONECANPAY") assert_equal(tx1_clone["complete"], True) # Have node0 mine a block, if requested: if (self.options.mine_block): self.nodes[0].generate(1) self.sync_blocks(self.nodes[0:2]) tx1 = self.nodes[0].gettransaction(txid1) tx2 = self.nodes[0].gettransaction(txid2) # Node0's balance should be starting balance, plus 500WEI for another # matured block, minus tx1 and tx2 amounts, and minus transaction fees: expected = starting_balance + node0_tx1["fee"] + node0_tx2["fee"] if self.options.mine_block: expected += 500 expected += tx1["amount"] + tx1["fee"] expected += tx2["amount"] + tx2["fee"] assert_equal(self.nodes[0].getbalance(), expected) if self.options.mine_block: assert_equal(tx1["confirmations"], 1) assert_equal(tx2["confirmations"], 1) else: assert_equal(tx1["confirmations"], 0) assert_equal(tx2["confirmations"], 0) # Send clone and its parent to miner self.nodes[2].sendrawtransaction(node0_tx1["hex"]) txid1_clone = self.nodes[2].sendrawtransaction(tx1_clone["hex"]) # ... mine a block... self.nodes[2].generate(1) # Reconnect the split network, and sync chain: connect_nodes(self.nodes[1], 2) self.nodes[2].sendrawtransaction(node0_tx2["hex"]) self.nodes[2].sendrawtransaction(tx2["hex"]) self.nodes[2].generate(1) # Mine another block to make sure we sync self.sync_blocks() # Re-fetch transaction info: tx1 = self.nodes[0].gettransaction(txid1) tx1_clone = self.nodes[0].gettransaction(txid1_clone) tx2 = self.nodes[0].gettransaction(txid2) # Verify expected confirmations assert_equal(tx1["confirmations"], -2) assert_equal(tx1_clone["confirmations"], 2) assert_equal(tx2["confirmations"], 1) # Check node0's total balance; should be same as before the clone, + 1000 WEI for 2 matured, # less possible orphaned matured subsidy expected += 1000 if (self.options.mine_block): expected -= 500 assert_equal(self.nodes[0].getbalance(), expected) if __name__ == '__main__': TxnMallTest().main()
45.587786
168
0.64501
[ "MIT" ]
weicrypto/wei
test/functional/wallet_txn_clone.py
5,972
Python
import collections from collections import defaultdict import sys import json import random from jsmin import jsmin from io import StringIO import numpy as np import copy import os script_n = os.path.basename(__file__).split('.')[0] script_n = script_n.split('_', 1)[1] def to_ng(loc): return (int(loc[0]/4), int(loc[1]/4), int(loc[2]/40)) '''Load data''' import compress_pickle fname = 'gen_210518_setup01_v2_syndb_threshold_20_coalesced.gz' grc_mfs_locs = compress_pickle.load(fname) mfs_locs = defaultdict(list) for grc in grc_mfs_locs: for mf in grc_mfs_locs[grc]: for syn in grc_mfs_locs[grc][mf]: mfs_locs[mf].append(syn['syn_loc0']) # print(mfs_locs[mf]); asdf asdff = (172644, 113468, 89) asdfff = (137580, 101824, 369) # white list for big boutons whitelist = set([ (172644, 113468, 89), (163520, 98364, 83), (113008, 109372, 1154), (70424, 116512, 71), (186536, 100020, 130), (86780, 110184, 81), (177992, 108528, 1164), (127368, 101716, 1143), (155036, 103252, 71), (97884, 104152, 1160), (109476, 104808, 76), (82936, 122484, 76), (113532, 104660, 1150), (78904, 115540, 1158), (190684, 91276, 1015), (160500, 99828, 1165), (109020, 115476, 74), (93516, 101476, 858), (126728, 104988, 86), (173456, 106376, 71), (197436, 95688, 898), (122752, 110608, 85), (122192, 119344, 70), (122396, 118840, 83), (204868, 103452, 145), (94212, 107860, 1137), (92360, 105844, 1162), (84704, 115452, 119), (54036, 105484, 394), (110624, 105800, 70), (170512, 99132, 107), (71200, 114308, 1123), (106588, 98692, 1160), (70164, 107908, 1015), (144772, 106812, 105), (asdff), (asdff), (asdff), ]) blacklist = set([ (137580, 101824, 369), (127384, 115252, 746), (155268, 99276, 918), (182000, 91966, 716), (119828, 107400, 312), (171384, 94244, 573), (asdfff), (asdfff), (asdfff), (asdfff), (asdfff), (asdfff), ]) '''Cluster and extract locations of MF boutons''' from sklearn.cluster import DBSCAN mfs_bouton_locs = {} '''if a bouton location has less than this many synapses then it won't be considered in order to reduce false positives''' # bouton_synapse_threshold = 6 # safe for determining big bouton locations bouton_synapse_threshold = 2 bouton_synapse_threshold = 3 bouton_synapse_threshold = 4 # 4 is a bit iffy, since it has some semi big boutons bouton_synapse_threshold = 5 # bouton_synapse_threshold = 6 # this threshold has quite a bit of FPs for mf in mfs_locs: dbscan = DBSCAN(eps=8000, min_samples=2) # max dist set to 8um # dbscan = DBSCAN(eps=10000, min_samples=2) # max dist set to 8um dbscan.fit(mfs_locs[mf]) loc_by_label = defaultdict(list) for loc, label in zip(mfs_locs[mf], dbscan.labels_): loc_by_label[label].append(loc) mf_bouton_locs = [] for label in loc_by_label: if len(loc_by_label[label]) <= bouton_synapse_threshold: whitelisted = False for loc in loc_by_label[label]: if to_ng(loc) in whitelist: whitelisted = True if not whitelisted: if len(loc_by_label[label]) >= 2: print(f'Ignoring {mf} due to insufficient synapses') for loc in loc_by_label[label]: print(to_ng(loc)) continue sum = [0, 0, 0] for loc in loc_by_label[label]: sum = [sum[0]+loc[0], sum[1]+loc[1], sum[2]+loc[2]] center = [ int(sum[0]/len(loc_by_label[label])), int(sum[1]/len(loc_by_label[label])), int(sum[2]/len(loc_by_label[label])), ] mf_bouton_locs.append(center) mfs_bouton_locs[mf] = mf_bouton_locs # print(mf_bouton_locs) # for loc in mf_bouton_locs: # print([int(loc[0]/4), int(loc[1]/4), int(loc[2]/40)]) mfs_bouton_count = defaultdict(list) for mf in mfs_bouton_locs: mfs_bouton_count[len(mfs_bouton_locs[mf])].append(mf) for count in sorted(mfs_bouton_count.keys()): print(f'{count}: {mfs_bouton_count[count]}') '''save mfs_bouton_locs''' import compress_pickle compress_pickle.dump(( mfs_bouton_locs ), f"{script_n}.gz") asdf for loc in mfs_bouton_locs['mf_431']: print([int(loc[0]/4), int(loc[1]/4), int(loc[2]/40)]) for loc in mfs_locs['mf_41']: print([int(loc[0]/4), int(loc[1]/4), int(loc[2]/40)])
28.427673
122
0.623009
[ "MIT" ]
htem/cb2_project_analysis
analysis/gen_db/mf_grc/gen_mf_locs_210518.py
4,520
Python
import unittest class TestPython(unittest.TestCase): def test_float_to_int_coercion(self): self.assertEqual(1, int(1.0)) def test_get_empty_dict(self): self.assertIsNone({}.get('key')) def test_trueness(self): self.assertTrue(bool(10))
19.785714
41
0.67509
[ "MIT" ]
microcoder/course-python-mipt
4/tests/test_python.py
277
Python
# third-party from flask import render_template, url_for, request, jsonify # locals from . import warehouse @warehouse.route('/element_types', methods=['GET']) def index(): return render_template("warehouse/element_types.html") @warehouse.route('/element_type', methods=['POST']) def create_new_element_type(): print(request.__dict__) print(request.data) print(request.get_json()) return jsonify({ "success": True }) # @warehouse.route('/element_type', methods=['GET']) # @warehouse.route('/element_type/<element_type_id>', methods=['GET']) # def element_type(element_type_id=None): # pass # @warehouse.route('/element_type', methods=['POST']) # def new_element_type()
26.296296
70
0.707042
[ "MIT" ]
thiagolcmelo/dynamic
warehouse/views.py
710
Python
# copyright (c) 2018 paddlepaddle authors. all rights reserved. # # licensed under the apache license, version 2.0 (the "license"); # you may not use this file except in compliance with the license. # you may obtain a copy of the license at # # http://www.apache.org/licenses/license-2.0 # # unless required by applicable law or agreed to in writing, software # distributed under the license is distributed on an "as is" basis, # without warranties or conditions of any kind, either express or implied. # see the license for the specific language governing permissions and # limitations under the license. import os import unittest import random import numpy as np import paddle.fluid as fluid import six import paddle from paddle.fluid.framework import IrGraph from paddle.fluid.contrib.slim.quantization import QuantizationTransformPass from paddle.fluid.contrib.slim.quantization import QuantizationFreezePass from paddle.fluid.contrib.slim.quantization import ConvertToInt8Pass from paddle.fluid.contrib.slim.quantization import TransformForMobilePass from paddle.fluid.contrib.slim.quantization import AddQuantDequantPass from paddle.fluid import core paddle.enable_static() os.environ["CUDA_VISIBLE_DEVICES"] = "0" os.environ["CPU_NUM"] = "1" def linear_fc(num): data = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = data for _ in six.moves.xrange(num): hidden = fluid.layers.fc(hidden, size=128, act='relu') loss = fluid.layers.cross_entropy(input=hidden, label=label) loss = fluid.layers.mean(loss) return loss def residual_block(num, quant_skip_pattern=None): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=bias_attr) return fluid.layers.batch_norm(input=tmp, act=act) data = fluid.layers.data( name='image', shape=[1, 1, 32, 32], dtype='float32', append_batch_size=False) label = fluid.layers.data( name='label', shape=[1, 1], dtype='int64', append_batch_size=False) hidden = data for _ in six.moves.xrange(num): conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True) short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None) hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') matmul_weight = fluid.layers.create_parameter( shape=[1, 16, 32, 32], dtype='float32') hidden = fluid.layers.matmul(hidden, matmul_weight, True, True) if quant_skip_pattern: with fluid.name_scope(quant_skip_pattern): pool = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='avg', pool_stride=2) else: pool = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='avg', pool_stride=2) fc = fluid.layers.fc(input=pool, size=10) loss = fluid.layers.cross_entropy(input=fc, label=label) loss = fluid.layers.mean(loss) return loss def conv_net(img, label, quant_skip_pattern): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=img, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, pool_type='max', act="relu") conv_pool_1 = fluid.layers.batch_norm(conv_pool_1) conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, pool_type='avg', act="relu") hidden = fluid.layers.fc(input=conv_pool_2, size=100, act='relu') with fluid.name_scope(quant_skip_pattern): prediction = fluid.layers.fc(input=hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) avg_loss = fluid.layers.mean(loss) return avg_loss class TestQuantizationTransformPass(unittest.TestCase): def setUp(self): self.quantizable_op_and_inputs = { 'conv2d': ['Input', 'Filter'], 'depthwise_conv2d': ['Input', 'Filter'], 'mul': ['X', 'Y'] } self.quantizable_grad_op_inputs = { 'conv2d_grad': ['Input', 'Filter'], 'depthwise_conv2d_grad': ['Input', 'Filter'], 'mul_grad': ['X', 'Y'] } def check_program(self, program): quantized_ops = set() for block in program.blocks: for op in block.ops: # check forward if op.type in self.quantizable_op_and_inputs: for arg_name in op.input_arg_names: self.assertTrue( arg_name.endswith('.quantized.dequantized')) quantized_ops.add(arg_name) for op in block.ops: # check backward if op.type in self.quantizable_grad_op_inputs: for pname in self.quantizable_grad_op_inputs[op.type]: arg_name = op.input(pname)[0] self.assertTrue( arg_name.endswith('.quantized.dequantized')) self.assertTrue(arg_name in quantized_ops) def linear_fc_quant(self, activation_quant_type, weight_quantize_type, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = linear_fc(3) opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) place = fluid.CPUPlace() graph = IrGraph(core.Graph(main.desc), for_test=False) transform_pass = QuantizationTransformPass( scope=fluid.global_scope(), place=place, activation_quantize_type=activation_quant_type, weight_quantize_type=weight_quantize_type) transform_pass.apply(graph) if not for_ci: marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) graph.draw('.', 'quantize_fc_' + activation_quant_type, marked_nodes) program = graph.to_program() self.check_program(program) val_graph = IrGraph(core.Graph(program.desc), for_test=False) if not for_ci: val_marked_nodes = set() for op in val_graph.all_op_nodes(): if op.name().find('quantize') > -1: val_marked_nodes.add(op) val_graph.draw('.', 'val_fc_' + activation_quant_type, val_marked_nodes) def test_linear_fc_quant_abs_max(self): self.linear_fc_quant('abs_max', 'abs_max', for_ci=True) def test_linear_fc_quant_range_abs_max(self): self.linear_fc_quant('range_abs_max', 'abs_max', for_ci=True) def test_linear_fc_quant_moving_average_abs_max(self): self.linear_fc_quant( 'moving_average_abs_max', 'channel_wise_abs_max', for_ci=True) def residual_block_quant(self, activation_quant_type, weight_quantize_type, quantizable_op_type, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = residual_block(2) opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) place = fluid.CPUPlace() graph = IrGraph(core.Graph(main.desc), for_test=False) transform_pass = QuantizationTransformPass( scope=fluid.global_scope(), place=place, activation_quantize_type=activation_quant_type, weight_quantize_type=weight_quantize_type, quantizable_op_type=quantizable_op_type) transform_pass.apply(graph) if not for_ci: marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) graph.draw('.', 'quantize_residual_' + activation_quant_type, marked_nodes) program = graph.to_program() self.check_program(program) val_graph = IrGraph(core.Graph(program.desc), for_test=False) if not for_ci: val_marked_nodes = set() for op in val_graph.all_op_nodes(): if op.name().find('quantize') > -1: val_marked_nodes.add(op) val_graph.draw('.', 'val_residual_' + activation_quant_type, val_marked_nodes) def test_residual_block_abs_max(self): quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul', 'matmul'] self.residual_block_quant( 'abs_max', 'abs_max', quantizable_op_type, for_ci=True) def test_residual_block_range_abs_max(self): quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul', 'matmul'] self.residual_block_quant( 'range_abs_max', 'abs_max', quantizable_op_type, for_ci=True) def test_residual_block_moving_average_abs_max(self): quantizable_op_type = ['conv2d', 'depthwise_conv2d', 'mul', 'matmul'] self.residual_block_quant( 'moving_average_abs_max', 'channel_wise_abs_max', quantizable_op_type, for_ci=True) class TestQuantizationFreezePass(unittest.TestCase): def freeze_graph(self, use_cuda, seed, activation_quant_type, bias_correction=False, weight_quant_type='abs_max', for_ci=True, quant_skip_pattern='skip_quant'): def build_program(main, startup, is_test): main.random_seed = seed startup.random_seed = seed with fluid.unique_name.guard(): with fluid.program_guard(main, startup): img = fluid.layers.data( name='image', shape=[1, 28, 28], dtype='float32') label = fluid.layers.data( name='label', shape=[1], dtype='int64') loss = conv_net(img, label, quant_skip_pattern) if not is_test: opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) return [img, label], loss random.seed(0) np.random.seed(0) main = fluid.Program() startup = fluid.Program() test_program = fluid.Program() feeds, loss = build_program(main, startup, False) build_program(test_program, startup, True) test_program = test_program.clone(for_test=True) main_graph = IrGraph(core.Graph(main.desc), for_test=False) test_graph = IrGraph(core.Graph(test_program.desc), for_test=True) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) scope = fluid.Scope() with fluid.scope_guard(scope): exe.run(startup) transform_pass = QuantizationTransformPass( scope=scope, place=place, activation_quantize_type=activation_quant_type, weight_quantize_type=weight_quant_type, skip_pattern=quant_skip_pattern) transform_pass.apply(main_graph) transform_pass.apply(test_graph) dev_name = '_gpu_' if use_cuda else '_cpu_' if not for_ci: marked_nodes = set() for op in main_graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) main_graph.draw('.', 'main' + dev_name + activation_quant_type + '_' + weight_quant_type, marked_nodes) marked_nodes = set() for op in test_graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) test_graph.draw('.', 'test' + dev_name + activation_quant_type + '_' + weight_quant_type, marked_nodes) build_strategy = fluid.BuildStrategy() build_strategy.memory_optimize = False build_strategy.enable_inplace = False build_strategy.fuse_all_reduce_ops = False binary = fluid.CompiledProgram(main_graph.graph).with_data_parallel( loss_name=loss.name, build_strategy=build_strategy) quantized_test_program = test_graph.to_program() iters = 5 batch_size = 8 train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=500), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) feeder = fluid.DataFeeder(feed_list=feeds, place=place) with fluid.scope_guard(scope): for _ in range(iters): data = next(train_reader()) loss_v = exe.run(binary, feed=feeder.feed(data), fetch_list=[loss]) if not for_ci: print('{}: {}'.format('loss' + dev_name + activation_quant_type + '_' + weight_quant_type, loss_v)) test_data = next(test_reader()) with fluid.program_guard(quantized_test_program): w_var = fluid.framework._get_var('conv2d_1.w_0.quantized', quantized_test_program) # Testing with fluid.scope_guard(scope): test_loss1, w_quant = exe.run(program=quantized_test_program, feed=feeder.feed(test_data), fetch_list=[loss, w_var]) # Freeze graph for inference, but the weight of fc/conv is still float type. freeze_pass = QuantizationFreezePass( scope=scope, place=place, bias_correction=bias_correction, \ weight_quantize_type=weight_quant_type) freeze_pass.apply(test_graph) if not for_ci: marked_nodes = set() for op in test_graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) test_graph.draw('.', 'test_freeze' + dev_name + activation_quant_type + '_' + weight_quant_type, marked_nodes) server_program = test_graph.to_program() with fluid.scope_guard(scope): test_loss2, = exe.run(program=server_program, feed=feeder.feed(test_data), fetch_list=[loss]) self.assertAlmostEqual(test_loss1, test_loss2, delta=5e-3) if not for_ci: print( '{}: {}'.format('test_loss1' + dev_name + activation_quant_type + '_' + weight_quant_type, test_loss1)) print( '{}: {}'.format('test_loss2' + dev_name + activation_quant_type + '_' + weight_quant_type, test_loss2)) w_freeze = np.array(scope.find_var('conv2d_1.w_0').get_tensor()) # Maybe failed, this is due to the calculation precision # self.assertAlmostEqual(np.sum(w_freeze), np.sum(w_quant)) if not for_ci: print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type + '_' + weight_quant_type, np.sum(w_freeze))) print('{}: {}'.format('w_quant' + dev_name + activation_quant_type + '_' + weight_quant_type, np.sum(w_quant))) # Convert parameter to 8-bit. convert_int8_pass = ConvertToInt8Pass(scope=scope, place=place) convert_int8_pass.apply(test_graph) if not for_ci: marked_nodes = set() for op in test_graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) test_graph.draw('.', 'test_int8' + dev_name + activation_quant_type + '_' + weight_quant_type, marked_nodes) server_program_int8 = test_graph.to_program() # Save the 8-bit parameter and model file. with fluid.scope_guard(scope): fluid.io.save_inference_model( 'server_int8' + dev_name + activation_quant_type + '_' + weight_quant_type, ['image', 'label'], [loss], exe, server_program_int8) # Test whether the 8-bit parameter and model file can be loaded successfully. [infer, feed, fetch] = fluid.io.load_inference_model( 'server_int8' + dev_name + activation_quant_type + '_' + weight_quant_type, exe) # Check the loaded 8-bit weight. w_8bit = np.array(scope.find_var('conv2d_1.w_0.int8').get_tensor()) self.assertEqual(w_8bit.dtype, np.int8) self.assertEqual(np.sum(w_8bit), np.sum(w_freeze)) if not for_ci: print('{}: {}'.format('w_8bit' + dev_name + activation_quant_type + '_' + weight_quant_type, np.sum(w_8bit))) print('{}: {}'.format('w_freeze' + dev_name + activation_quant_type + '_' + weight_quant_type, np.sum(w_freeze))) mobile_pass = TransformForMobilePass() mobile_pass.apply(test_graph) if not for_ci: marked_nodes = set() for op in test_graph.all_op_nodes(): if op.name().find('quantize') > -1: marked_nodes.add(op) test_graph.draw('.', 'test_mobile' + dev_name + activation_quant_type + '_' + weight_quant_type, marked_nodes) mobile_program = test_graph.to_program() with fluid.scope_guard(scope): fluid.io.save_inference_model( 'mobile_int8' + dev_name + activation_quant_type + '_' + weight_quant_type, ['image', 'label'], [loss], exe, mobile_program) def test_freeze_graph_cuda_dynamic(self): if fluid.core.is_compiled_with_cuda(): with fluid.unique_name.guard(): self.freeze_graph( True, seed=1, activation_quant_type='abs_max', weight_quant_type='abs_max', for_ci=True) with fluid.unique_name.guard(): self.freeze_graph( True, seed=1, activation_quant_type='abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) def test_freeze_graph_cpu_dynamic(self): with fluid.unique_name.guard(): self.freeze_graph( False, seed=2, activation_quant_type='abs_max', weight_quant_type='abs_max', for_ci=True) self.freeze_graph( False, seed=2, activation_quant_type='abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) def test_freeze_graph_cuda_static(self): if fluid.core.is_compiled_with_cuda(): with fluid.unique_name.guard(): self.freeze_graph( True, seed=1, activation_quant_type='range_abs_max', bias_correction=True, weight_quant_type='abs_max', for_ci=True) self.freeze_graph( True, seed=1, activation_quant_type='range_abs_max', weight_quant_type='abs_max', for_ci=True) self.freeze_graph( True, seed=1, activation_quant_type='moving_average_abs_max', weight_quant_type='abs_max', for_ci=True) self.freeze_graph( True, seed=1, activation_quant_type='range_abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) self.freeze_graph( True, seed=1, activation_quant_type='moving_average_abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) self.freeze_graph( True, seed=1, activation_quant_type='moving_average_abs_max', bias_correction=True, weight_quant_type='channel_wise_abs_max', for_ci=True) def test_freeze_graph_cpu_static(self): with fluid.unique_name.guard(): self.freeze_graph( False, seed=2, activation_quant_type='range_abs_max', weight_quant_type='abs_max', for_ci=True) self.freeze_graph( False, seed=2, activation_quant_type='moving_average_abs_max', weight_quant_type='abs_max', for_ci=True) self.freeze_graph( False, seed=2, activation_quant_type='range_abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) self.freeze_graph( False, seed=2, activation_quant_type='moving_average_abs_max', weight_quant_type='channel_wise_abs_max', for_ci=True) def quant_dequant_residual_block(num, quant_skip_pattern=None): def conv_bn_layer(input, ch_out, filter_size, stride, padding, act='relu', bias_attr=False): tmp = fluid.layers.conv2d( input=input, filter_size=filter_size, num_filters=ch_out, stride=stride, padding=padding, act=None, bias_attr=bias_attr) return fluid.layers.batch_norm(input=tmp, act=act) data1 = fluid.layers.data(name='image', shape=[1, 32, 32], dtype='float32') data2 = fluid.layers.data( name='matmul_input', shape=[16, 32, 32], dtype='float32') label = fluid.layers.data(name='label', shape=[1], dtype='int64') hidden = data1 for _ in six.moves.xrange(num): conv = conv_bn_layer(hidden, 16, 3, 1, 1, act=None, bias_attr=True) short = conv_bn_layer(hidden, 16, 1, 1, 0, act=None) hidden = fluid.layers.elementwise_add(x=conv, y=short, act='relu') hidden = fluid.layers.matmul(hidden, data2, True, True) if isinstance(quant_skip_pattern, str): with fluid.name_scope(quant_skip_pattern): pool1 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='avg', pool_stride=2) pool2 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='max', pool_stride=2) pool_add = fluid.layers.elementwise_add( x=pool1, y=pool2, act='relu') elif isinstance(quant_skip_pattern, list): assert len( quant_skip_pattern ) > 1, 'test config error: the len of quant_skip_pattern list should be greater than 1.' with fluid.name_scope(quant_skip_pattern[0]): pool1 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='avg', pool_stride=2) pool2 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='max', pool_stride=2) with fluid.name_scope(quant_skip_pattern[1]): pool_add = fluid.layers.elementwise_add( x=pool1, y=pool2, act='relu') else: pool1 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='avg', pool_stride=2) pool2 = fluid.layers.pool2d( input=hidden, pool_size=2, pool_type='max', pool_stride=2) pool_add = fluid.layers.elementwise_add(x=pool1, y=pool2, act='relu') fc = fluid.layers.fc(input=pool_add, size=10) loss = fluid.layers.cross_entropy(input=fc, label=label) loss = fluid.layers.mean(loss) return loss class TestAddQuantDequantPass(unittest.TestCase): def setUp(self): self._target_ops = {'elementwise_add', 'pool2d'} self._target_grad_ops = {'elementwise_add_grad', 'pool2d_grad'} def check_graph(self, graph, skip_pattern=None): ops = graph.all_op_nodes() for op_node in ops: if op_node.name() in self._target_ops: user_skipped = False if isinstance(skip_pattern, list): user_skipped = op_node.op().has_attr("op_namescope") and \ any(pattern in op_node.op().attr("op_namescope") for pattern in skip_pattern) elif isinstance(skip_pattern, str): user_skipped = op_node.op().has_attr("op_namescope") and \ op_node.op().attr("op_namescope").find(skip_pattern) != -1 if user_skipped: continue in_nodes_all_not_persistable = True for input_name in op_node.input_arg_names(): in_node = graph._find_node_by_name(op_node.inputs, input_name) in_nodes_all_not_persistable = ( in_nodes_all_not_persistable and not in_node.persistable()) if not in_nodes_all_not_persistable: continue input_names = op_node.input_arg_names() for input_name in input_names: self.assertTrue(input_name.endswith('.quant_dequant')) def residual_block_quant(self, quantizable_op_type, skip_pattern=None, for_ci=True): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = quant_dequant_residual_block(2, skip_pattern) opt = fluid.optimizer.Adam(learning_rate=0.001) opt.minimize(loss) place = fluid.CPUPlace() graph = IrGraph(core.Graph(main.desc), for_test=False) add_quant_dequant_pass = AddQuantDequantPass( scope=fluid.global_scope(), place=place, skip_pattern=skip_pattern, quantizable_op_type=quantizable_op_type) add_quant_dequant_pass.apply(graph) if not for_ci: marked_nodes = set() for op in graph.all_op_nodes(): if op.name().find('quant') > -1: marked_nodes.add(op) graph.draw('.', 'add_quant_dequant_graph', marked_nodes) self.check_graph(graph, skip_pattern) program = graph.to_program() val_graph = IrGraph(core.Graph(program.desc), for_test=False) if not for_ci: val_marked_nodes = set() for op in val_graph.all_op_nodes(): if op.name().find('quant') > -1: val_marked_nodes.add(op) val_graph.draw('.', 'val_add_quant_dequant_graph', val_marked_nodes) def test_residual_block(self): quantizable_op_type = ['elementwise_add', 'pool2d', 'mul', 'matmul'] self.residual_block_quant( quantizable_op_type, skip_pattern=None, for_ci=True) def test_residual_block_skip_pattern(self): quantizable_op_type = ['elementwise_add', 'pool2d', 'mul', 'matmul'] self.residual_block_quant( quantizable_op_type, skip_pattern='skip_quant', for_ci=True) def test_residual_block_skip_pattern(self): quantizable_op_type = ['elementwise_add', 'pool2d', 'mul', 'matmul'] self.residual_block_quant( quantizable_op_type, skip_pattern=['skip_quant1', 'skip_quant2'], for_ci=True) if __name__ == '__main__': unittest.main()
42.29233
112
0.56919
[ "Apache-2.0" ]
0x45f/Paddle
python/paddle/fluid/contrib/slim/tests/test_quantization_pass.py
29,224
Python
#!/usr/bin/envpython # -*- coding: utf-8 -*- def black(string): return'\033[30m'+string+'\033[0m' def blue(string): return'\033[94m'+string+'\033[0m' def gray(string): return'\033[1;30m'+string+'\033[0m' def green(string): return'\033[92m'+string+'\033[0m' def cyan(string): return'\033[96m'+string+'\033[0m' def lightPurple(string): return'\033[94m'+string+'\033[0m' def purple(string): return'\033[95m'+string+'\033[0m' def red(string): return'\033[91m'+string+'\033[0m' def underline(string): return'\033[4m'+string+'\033[0m' def white(string): return'\033[0m'+string+'\033[0m' def white_2(string): return'\033[1m'+string+'\033[0m' def yellow(string): return'\033[93m'+string+'\033[0m'
19.205128
39
0.635514
[ "MIT" ]
Mattewn99/Instagram-Autogagement
utils/color.py
749
Python
import cProfile import json import logging import os import pstats import signal import tempfile import time import traceback from django.conf import settings from django.utils.timezone import now as tz_now from django.db import DatabaseError, OperationalError, connection as django_connection from django.db.utils import InterfaceError, InternalError import psutil import redis from awx.main.consumers import emit_channel_notification from awx.main.models import (JobEvent, AdHocCommandEvent, ProjectUpdateEvent, InventoryUpdateEvent, SystemJobEvent, UnifiedJob, Job) from awx.main.tasks import handle_success_and_failure_notifications from awx.main.models.events import emit_event_detail from .base import BaseWorker logger = logging.getLogger('awx.main.commands.run_callback_receiver') class CallbackBrokerWorker(BaseWorker): ''' A worker implementation that deserializes callback event data and persists it into the database. The code that *generates* these types of messages is found in the ansible-runner display callback plugin. ''' MAX_RETRIES = 2 last_stats = time.time() total = 0 last_event = '' prof = None def __init__(self): self.buff = {} self.pid = os.getpid() self.redis = redis.Redis.from_url(settings.BROKER_URL) for key in self.redis.keys('awx_callback_receiver_statistics_*'): self.redis.delete(key) def read(self, queue): try: res = self.redis.blpop(settings.CALLBACK_QUEUE, timeout=settings.JOB_EVENT_BUFFER_SECONDS) if res is None: return {'event': 'FLUSH'} self.total += 1 return json.loads(res[1]) except redis.exceptions.RedisError: logger.exception("encountered an error communicating with redis") time.sleep(1) except (json.JSONDecodeError, KeyError): logger.exception("failed to decode JSON message from redis") finally: self.record_statistics() return {'event': 'FLUSH'} def record_statistics(self): # buffer stat recording to once per (by default) 5s if time.time() - self.last_stats > settings.JOB_EVENT_STATISTICS_INTERVAL: try: self.redis.set(f'awx_callback_receiver_statistics_{self.pid}', self.debug()) self.last_stats = time.time() except Exception: logger.exception("encountered an error communicating with redis") self.last_stats = time.time() def debug(self): return f'. worker[pid:{self.pid}] sent={self.total} rss={self.mb}MB {self.last_event}' @property def mb(self): return '{:0.3f}'.format( psutil.Process(self.pid).memory_info().rss / 1024.0 / 1024.0 ) def toggle_profiling(self, *args): if self.prof: self.prof.disable() filename = f'callback-{self.pid}.pstats' filepath = os.path.join(tempfile.gettempdir(), filename) with open(filepath, 'w') as f: pstats.Stats(self.prof, stream=f).sort_stats('cumulative').print_stats() pstats.Stats(self.prof).dump_stats(filepath + '.raw') self.prof = False logger.error(f'profiling is disabled, wrote {filepath}') else: self.prof = cProfile.Profile() self.prof.enable() logger.error('profiling is enabled') def work_loop(self, *args, **kw): if settings.AWX_CALLBACK_PROFILE: signal.signal(signal.SIGUSR1, self.toggle_profiling) return super(CallbackBrokerWorker, self).work_loop(*args, **kw) def flush(self, force=False): now = tz_now() if ( force or any([len(events) >= 1000 for events in self.buff.values()]) ): for cls, events in self.buff.items(): logger.debug(f'{cls.__name__}.objects.bulk_create({len(events)})') for e in events: if not e.created: e.created = now e.modified = now try: cls.objects.bulk_create(events) except Exception: # if an exception occurs, we should re-attempt to save the # events one-by-one, because something in the list is # broken/stale for e in events: try: e.save() except Exception: logger.exception('Database Error Saving Job Event') for e in events: emit_event_detail(e) self.buff = {} def perform_work(self, body): try: flush = body.get('event') == 'FLUSH' if flush: self.last_event = '' if not flush: event_map = { 'job_id': JobEvent, 'ad_hoc_command_id': AdHocCommandEvent, 'project_update_id': ProjectUpdateEvent, 'inventory_update_id': InventoryUpdateEvent, 'system_job_id': SystemJobEvent, } job_identifier = 'unknown job' for key, cls in event_map.items(): if key in body: job_identifier = body[key] break self.last_event = f'\n\t- {cls.__name__} for #{job_identifier} ({body.get("event", "")} {body.get("uuid", "")})' # noqa if body.get('event') == 'EOF': try: final_counter = body.get('final_counter', 0) logger.info('Event processing is finished for Job {}, sending notifications'.format(job_identifier)) # EOF events are sent when stdout for the running task is # closed. don't actually persist them to the database; we # just use them to report `summary` websocket events as an # approximation for when a job is "done" emit_channel_notification( 'jobs-summary', dict(group_name='jobs', unified_job_id=job_identifier, final_counter=final_counter) ) # Additionally, when we've processed all events, we should # have all the data we need to send out success/failure # notification templates uj = UnifiedJob.objects.get(pk=job_identifier) if isinstance(uj, Job): # *actual playbooks* send their success/failure # notifications in response to the playbook_on_stats # event handling code in main.models.events pass elif hasattr(uj, 'send_notification_templates'): handle_success_and_failure_notifications.apply_async([uj.id]) except Exception: logger.exception('Worker failed to emit notifications: Job {}'.format(job_identifier)) return event = cls.create_from_data(**body) self.buff.setdefault(cls, []).append(event) retries = 0 while retries <= self.MAX_RETRIES: try: self.flush(force=flush) break except (OperationalError, InterfaceError, InternalError): if retries >= self.MAX_RETRIES: logger.exception('Worker could not re-establish database connectivity, giving up on one or more events.') return delay = 60 * retries logger.exception('Database Error Saving Job Event, retry #{i} in {delay} seconds:'.format( i=retries + 1, delay=delay )) django_connection.close() time.sleep(delay) retries += 1 except DatabaseError: logger.exception('Database Error Saving Job Event') break except Exception as exc: tb = traceback.format_exc() logger.error('Callback Task Processor Raised Exception: %r', exc) logger.error('Detail: {}'.format(tb))
40.840376
136
0.550178
[ "Apache-2.0" ]
EzzioMoreira/awx
awx/main/dispatch/worker/callback.py
8,699
Python
from flask import render_template, flash, redirect, url_for, request from flask.views import MethodView from app.middleware import auth from app.models.user import User from app.validators.register_form import RegisterForm from app.services import avatar_service class RegisterController(MethodView): @auth.optional def get(self): """ Show register form Returns: Register template with form """ return render_template('auth/register.html', form=RegisterForm()) @auth.optional def post(self): """ Handle the POST request and sign up the user if form validation passes Returns: A redirect or a template with the validation errors """ form = RegisterForm() if form.validate_on_submit(): form.validate_username(form.username) avatar = 'no-image.png' if 'avatar' in request.files and request.files['avatar']: avatar = avatar_service.save(form.avatar.data) User.create(form.username.data, form.password.data, avatar) flash('Your account has been created. You may now login.', 'info') return redirect(url_for('login')) return render_template('auth/register.html', form=form)
25.934783
74
0.709975
[ "MIT" ]
TheSynt4x/flask-blog
app/controllers/auth/register.py
1,193
Python