id
string
status
string
_server_id
string
audio
string
ref
string
hyp
string
subset
string
error_types.responses
sequence
error_types.responses.users
sequence
error_types.responses.status
sequence
asr_error.responses
list
asr_error.responses.users
sequence
asr_error.responses.status
sequence
ref_issue.responses.users
sequence
audio_issue.responses.users
sequence
audio_issue.responses.status
sequence
ref_issue.responses
sequence
audio_issue.responses
sequence
ref_issue.responses.status
sequence
dce1711c-1d36-4d2a-86ac-afaf85aacb06
completed
f1cb2f9c-4428-48f7-97e2-3c7359c426a8
<audio controls> <source src="https://huggingface.co/datasets/michaljunczyk/bigos-eval-results-secret/resolve/main/inspection_input/audio/amu-cai/pl-asr-bigos-v2-secret/pwr-viu-unk/pwr-viu-unk-test-0003-00283.mp3" type="audio/mpeg"> </audio>
Reference transcription wav
Hyphotesis
pwr-viu-unk-3
[ [ "none" ] ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "submitted" ]
[ [] ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "submitted" ]
null
null
null
null
null
null
4ed0a8b2-9f17-49c2-b49c-df2dca4e27f5
completed
086340fb-cba9-415c-ab76-503199d1182f
<audio controls> <source src="https://huggingface.co/datasets/michaljunczyk/bigos-eval-results-secret/resolve/main/inspection_input/audio/amu-cai/pl-asr-bigos-v2-secret/pwr-viu-unk/pwr-viu-unk-test-0003-00283.mp3" type="audio/mpeg"> </audio>
Reference transcription wav2
Hyphotesis 2
pwr-viu-unk
[ [ "foreign_language" ] ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "submitted" ]
[ [ { "end": 10, "label": "major", "start": 0 } ] ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "submitted" ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "bee532bf-10c0-4a3f-9386-3b5c3522197a" ]
[ "submitted" ]
[ "minor" ]
[ "hard_noise" ]
[ "submitted" ]

Dataset Card for inspect_asr_eval_results

This dataset has been created with Argilla. As shown in the sections below, this dataset can be loaded into your Argilla server as explained in Load with Argilla, or used directly with the datasets library in Load with datasets.

Using this dataset with Argilla

To load with Argilla, you'll just need to install Argilla as pip install argilla --upgrade and then use the following code:

import argilla as rg

ds = rg.Dataset.from_hub("michaljunczyk/inspect_asr_eval_results")

This will load the settings and records from the dataset repository and push them to you Argilla server for exploration and annotation.

Using this dataset with datasets

To load the records of this dataset with datasets, you'll just need to install datasets as pip install datasets --upgrade and then use the following code:

from datasets import load_dataset

ds = load_dataset("michaljunczyk/inspect_asr_eval_results")

This will only load the records of the dataset, but not the Argilla settings.

Dataset Structure

This dataset repo contains:

  • Dataset records in a format compatible with HuggingFace datasets. These records will be loaded automatically when using rg.Dataset.from_hub and can be loaded independently using the datasets library via load_dataset.
  • The annotation guidelines that have been used for building and curating the dataset, if they've been defined in Argilla.
  • A dataset configuration folder conforming to the Argilla dataset format in .argilla.

The dataset is created in Argilla with: fields, questions, suggestions, metadata, vectors, and guidelines.

Fields

The fields are the features or text of a dataset's records. For example, the 'text' column of a text classification dataset of the 'prompt' column of an instruction following dataset.

Field Name Title Type Required Markdown
audio Audio file text True True
hyp ASR output text True False
ref Reference transcription text True False

Questions

The questions are the questions that will be asked to the annotators. They can be of different types, such as rating, text, label_selection, multi_label_selection, or ranking.

Question Name Title Type Required Description Values/Labels
error_types Mark all ASR errors present in the hypothesis or select OK - no errors. multi_label_selection True Select all that apply. ['none', 'spacing', 'punctuation', 'numerical', 'removal', 'addition', 'replacement', 'spelling', 'syntax', 'foreign_language', 'empty', 'hallucination']
asr_error If applicable, mark error spans in ASR hypothesis. span False Mark and classify ASR errors. N/A
ref_issue If applicable, mark issues in reference. label_selection False N/A ['minor', 'major', 'critical']
audio_issue If applicable, mark issues in audio. label_selection False N/A ['invalid', 'hard_noise', 'hard_interlocutor']

Data Instances

An example of a dataset instance in Argilla looks as follows:

{
    "_server_id": "f1cb2f9c-4428-48f7-97e2-3c7359c426a8",
    "fields": {
        "audio": "\n\u003caudio controls\u003e\n    \u003csource src=\"https://huggingface.co/datasets/michaljunczyk/bigos-eval-results-secret/resolve/main/inspection_input/audio/amu-cai/pl-asr-bigos-v2-secret/pwr-viu-unk/pwr-viu-unk-test-0003-00283.mp3\" type=\"audio/mpeg\"\u003e\n\u003c/audio\u003e\n",
        "hyp": "Hyphotesis",
        "ref": "Reference transcription wav"
    },
    "id": "dce1711c-1d36-4d2a-86ac-afaf85aacb06",
    "metadata": {
        "subset": "pwr-viu-unk-3"
    },
    "responses": {
        "asr_error": [
            {
                "user_id": "bee532bf-10c0-4a3f-9386-3b5c3522197a",
                "value": []
            }
        ],
        "error_types": [
            {
                "user_id": "bee532bf-10c0-4a3f-9386-3b5c3522197a",
                "value": [
                    "none"
                ]
            }
        ]
    },
    "status": "completed",
    "suggestions": {},
    "vectors": {}
}

While the same record in HuggingFace datasets looks as follows:

{
    "_server_id": "f1cb2f9c-4428-48f7-97e2-3c7359c426a8",
    "asr_error.responses": [
        []
    ],
    "asr_error.responses.status": [
        "submitted"
    ],
    "asr_error.responses.users": [
        "bee532bf-10c0-4a3f-9386-3b5c3522197a"
    ],
    "audio": "\n\u003caudio controls\u003e\n    \u003csource src=\"https://huggingface.co/datasets/michaljunczyk/bigos-eval-results-secret/resolve/main/inspection_input/audio/amu-cai/pl-asr-bigos-v2-secret/pwr-viu-unk/pwr-viu-unk-test-0003-00283.mp3\" type=\"audio/mpeg\"\u003e\n\u003c/audio\u003e\n",
    "audio_issue.responses": null,
    "audio_issue.responses.status": null,
    "audio_issue.responses.users": null,
    "error_types.responses": [
        [
            "none"
        ]
    ],
    "error_types.responses.status": [
        "submitted"
    ],
    "error_types.responses.users": [
        "bee532bf-10c0-4a3f-9386-3b5c3522197a"
    ],
    "hyp": "Hyphotesis",
    "id": "dce1711c-1d36-4d2a-86ac-afaf85aacb06",
    "ref": "Reference transcription wav",
    "ref_issue.responses": null,
    "ref_issue.responses.status": null,
    "ref_issue.responses.users": null,
    "status": "completed",
    "subset": "pwr-viu-unk-3"
}

Data Splits

The dataset contains a single split, which is train.

Dataset Creation

Curation Rationale

[More Information Needed]

Source Data

Initial Data Collection and Normalization

[More Information Needed]

Who are the source language producers?

[More Information Needed]

Annotations

Annotation guidelines

Inspect ASR evaluation results and data.

Annotation process

[More Information Needed]

Who are the annotators?

[More Information Needed]

Personal and Sensitive Information

[More Information Needed]

Considerations for Using the Data

Social Impact of Dataset

[More Information Needed]

Discussion of Biases

[More Information Needed]

Other Known Limitations

[More Information Needed]

Additional Information

Dataset Curators

[More Information Needed]

Licensing Information

[More Information Needed]

Citation Information

[More Information Needed]

Contributions

[More Information Needed]

Downloads last month
30