Dataset Viewer
Full Screen Viewer
Full Screen
The viewer is disabled because this dataset repo requires arbitrary Python code execution. Please consider
removing the
loading script
and relying on
automated data support
(you can use
convert_to_parquet
from the datasets
library). If this is not possible, please
open a discussion
for direct help.
Google/MusicCapsをスペクトログラムにしたデータ。
- The dataset viwer of this repository is truncated, so maybe you should see this one instaed.
Dataset information
画像 | caption | data_idx | number |
1025px × 216px | 音楽の説明 | どのデータから生成されたデータか | 5秒ずつ区切ったデータのうち、何番目か |
How this dataset was made
- コード:https://colab.research.google.com/drive/13m792FEoXszj72viZuBtusYRUL1z6Cu2?usp=sharing
- 参考にしたKaggle Notebook : https://www.kaggle.com/code/osanseviero/musiccaps-explorer
from PIL import Image
import IPython.display
import cv2
# 1. wavファイルを解析
y, sr = librosa.load("wavファイルなど")
# 2. フーリエ変換を適用して周波数成分を取得
D = librosa.amplitude_to_db(np.abs(librosa.stft(y)), ref=np.max) # librosaを用いてデータを作る
image = Image.fromarray(np.uint8(D), mode='L') # 'L'は1チャンネルのグレースケールモードを指定します
image.save('spectrogram_{}.png')
Recover music(wave form) from sprctrogram
im = Image.open("pngファイル")
db_ud = np.uint8(np.array(im))
amp = librosa.db_to_amplitude(db_ud)
print(amp.shape)
# (1025, 861)は20秒のwavファイルをスペクトログラムにした場合
# (1025, 431)は10秒のwavファイルをスペクトログラムにした場合
# (1025, 216)は5秒のwavファイルをスペクトログラムにした場合
y_inv = librosa.griffinlim(amp*200)
display(IPython.display.Audio(y_inv, rate=sr))
Example : How to use this
- Subset data 1300-1600 and data 3400-3600 are not working now, so please get subset_name_list those were removed first.
1 : get information about this dataset:
- copy this code~~
'''
if you use GoogleColab, remove # to install packages below..
'''
#!pip install datasets
#!pip install huggingface-hub
#!huggingface-cli login
import datasets
from datasets import load_dataset
# make subset_name_list
subset_name_list = [
'data 0-200',
'data 200-600',
'data 600-1000',
'data 1000-1300',
'data 1600-2000',
'data 2000-2200',
'data 2200-2400',
'data 2400-2600',
'data 2600-2800',
'data 3000-3200',
'data 3200-3400',
'data 3600-3800',
'data 3800-4000',
'data 4000-4200',
'data 4200-4400',
'data 4400-4600',
'data 4600-4800',
'data 4800-5000',
'data 5000-5200',
'data 5200-5520'
]
# load_all_datasets
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0])
for subset in subset_name_list:
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
print(subset)
new_ds = load_dataset("mb23/GraySpectrogram", subset)
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
# take place of data[split]
data["train"] = new_dataset_train
data["test"] = new_dataset_test
data
2 : load dataset and change to dataloader:
- You can use the code below:
- ...but (;・∀・)I don't know whether this code works efficiently, because I haven't tried this code so far
import datasets
from datasets import load_dataset, DatasetDict
from torchvision import transforms
from torch.utils.data import DataLoader
# BATCH_SIZE = ???
# IMAGE_SIZE = ???
# TRAIN_SIZE = ??? # the number of training data
# TEST_SIZE = ??? # the number of test data
def load_datasets():
# Define data transforms
data_transforms = [
transforms.Resize((IMG_SIZE, IMG_SIZE)),
transforms.ToTensor(), # Scales data into [0,1]
transforms.Lambda(lambda t: (t * 2) - 1) # Scale between [-1, 1]
]
data_transform = transforms.Compose(data_transforms)
data = load_dataset("mb23/GraySpectrogram", subset_name_list[0])
for subset in subset_name_list:
# Confirm subset_list doesn't include "remove_list" datasets in the above cell.
print(subset)
new_ds = load_dataset("mb23/GraySpectrogram", subset)
new_dataset_train = datasets.concatenate_datasets([data["train"], new_ds["train"]])
new_dataset_test = datasets.concatenate_datasets([data["test"], new_ds["test"]])
# take place of data[split]
data["train"] = new_dataset_train
data["test"] = new_dataset_test
# memo:
# 特徴量上手く抽出する方法が...わからん。これは力づく。
# 本当はload_dataset()の時点で抽出したかったけど、無理そう
# リポジトリ作り直してpush_to_hub()したほうがいいかもしれない。
new_dataset = dict()
new_dataset["train"] = Dataset.from_dict({
"image" : data["train"]["image"],
"caption" : data["train"]["caption"]
})
new_dataset["test"] = Dataset.from_dict({
"image" : data["test"]["image"],
"caption" : data["test"]["caption"]
})
data = datasets.DatasetDict(new_dataset)
train = data["train"]
test = data["test"]
for idx in range(len(train["image"])):
train["image"][idx] = data_transform(train["image"][idx])
test["image"][idx] = data_transform(test["image"][idx])
train = Dataset.from_dict(train)
train = train.with_format("torch") # リスト型回避
test = Dataset.from_dict(train)
test = test.with_format("torch") # リスト型回避
# or
train_loader = DataLoader(train, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
test_loader = DataLoader(test, batch_size=BATCH_SIZE, shuffle=True, drop_last=True)
return train_loader, test_loader
- then try this?
train_loader, test_loader = load_datasets()
- Downloads last month
- 62