|
import csv |
|
import os |
|
|
|
import datasets |
|
|
|
logger = datasets.logging.get_logger(__name__) |
|
|
|
_DESCRIPTION = """ |
|
""" |
|
|
|
_URLS = { |
|
"ccd": "https://drive.google.com/u/0/uc?id=13UYcJ6BcojsCKy-yc9qgHTyBMCCWB-w1&export=download", |
|
"clothing": "https://drive.google.com/u/0/uc?id=1BwDS30xzFEDqP-z9adj4wVSlsSjOIGqc&export=download", |
|
"clothing_binary": "https://drive.google.com/u/0/uc?id=1P5aPKD0wU1NWUlh2QiIYwSPN-S3wD3ua&export=download", |
|
"electronics": "https://drive.google.com/u/0/uc?id=1ztIUsraLPJSKkkle_uTrd78hYsSKKmur&export=download", |
|
"electronics_binary": "https://drive.google.com/u/0/uc?id=103kJN6snOc2sSMH9ojd_PNohVQ1g4XUJ&export=download", |
|
"office": "https://drive.google.com/u/0/uc?id=1DbrvS02d75sXoxaaPh90bJdRvr15fUS5&export=download", |
|
"office_binary": "https://drive.google.com/u/0/uc?id=1ED4JnoTFu_4H80jBUJlqRrEor-taZ2Qz&export=download", |
|
"toxicity": "https://drive.google.com/u/0/uc?id=1iATGRaGuOqiUrj31jYjAzns8iS_BJh1h&export=download", |
|
} |
|
|
|
_FIELDS = { |
|
"amazon": ["date", "rating", "reviewText", "summary"], |
|
"ccd": ["date", "product", "subproduct", "issue", "subissue", "text"], |
|
"toxicity": ["rev_id", "toxicity", "date", "comment", "sample"], |
|
} |
|
|
|
_LABELS = { |
|
"amazon": ["1", "2", "3", "4", "5"], |
|
"amazon_binary": ["0", "1"], |
|
"ccd": [ |
|
"Checking or savings account", |
|
"Credit card or prepaid card", |
|
"Credit reporting, credit repair services, or other personal consumer reports", |
|
"Debt collection", |
|
"Money transfer, virtual currency, or money service", |
|
"Mortgage", |
|
"Payday loan, title loan, or personal loan", |
|
"Student loan", |
|
"Vehicle loan or lease", |
|
], |
|
"toxicity": [0, 1], |
|
} |
|
|
|
|
|
class QBConfig(datasets.BuilderConfig): |
|
def __init__( |
|
self, |
|
csv_fields, |
|
label_classes, |
|
label_column, |
|
text_column, |
|
url, |
|
**kwargs, |
|
): |
|
super().__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.csv_fields = csv_fields |
|
self.label_classes = label_classes |
|
self.label_column = label_column |
|
self.text_column = text_column |
|
self.url = url |
|
|
|
|
|
class QB(datasets.GeneratorBasedBuilder): |
|
BUILDER_CONFIGS = [ |
|
QBConfig( |
|
name="ccd", |
|
description="Consumer Complaints Database", |
|
url=_URLS["ccd"], |
|
csv_fields=_FIELDS["ccd"], |
|
label_classes=_LABELS["ccd"], |
|
label_column="product", |
|
text_column="text", |
|
), |
|
QBConfig( |
|
name="clothing", |
|
description="Amazon Reviews (Clothing)", |
|
url=_URLS["clothing"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="clothing_binary", |
|
description="Amazon Reviews (Clothing) with binary labels", |
|
url=_URLS["clothing_binary"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon_binary"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="electronics", |
|
description="Amazon Reviews (Electronics)", |
|
url=_URLS["electronics"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="electronics_binary", |
|
description="Amazon Reviews (Electronics) with binary labels", |
|
url=_URLS["electronics_binary"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon_binary"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="office", |
|
description="Amazon Reviews (Office)", |
|
url=_URLS["office"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="office_binary", |
|
description="Amazon Reviews (Office) with binary labels", |
|
url=_URLS["office_binary"], |
|
csv_fields=_FIELDS["amazon"], |
|
label_classes=_LABELS["amazon_binary"], |
|
label_column="rating", |
|
text_column="reviewText", |
|
), |
|
QBConfig( |
|
name="toxicity", |
|
description="Wikipedia toxicity data set", |
|
url=_URLS["toxicity"], |
|
csv_fields=_FIELDS["toxicity"], |
|
label_classes=_LABELS["toxicity"], |
|
label_column="toxicity", |
|
text_column="comment", |
|
), |
|
] |
|
|
|
def _info(self): |
|
features = { |
|
"date": datasets.Value("string"), |
|
"id": datasets.Value("int32"), |
|
"label": datasets.features.ClassLabel(names=self.config.label_classes), |
|
"text": datasets.Value("string"), |
|
} |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(self.config.url) |
|
logger.info(str(downloaded_files)) |
|
train_filepath = os.path.join(downloaded_files, "train.csv") |
|
test_filepath = os.path.join(downloaded_files, "test.csv") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={"filepath": train_filepath}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={"filepath": test_filepath}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
logger.info(f"generating examples from {filepath}") |
|
idx = 0 |
|
with open(filepath, encoding="utf-8") as f: |
|
reader = csv.DictReader(f, fieldnames=self.config.csv_fields) |
|
for row in reader: |
|
yield idx, { |
|
"date": row["date"], |
|
"id": idx, |
|
"label": row[self.config.label_column], |
|
"text": row[self.config.text_column], |
|
} |
|
idx += 1 |
|
|