File size: 6,376 Bytes
5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e f5ea9ab 5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e b11f1fe 5e9d12e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
import csv
import os
import datasets
logger = datasets.logging.get_logger(__name__)
_DESCRIPTION = """
"""
_URLS = {
"ccd": "https://drive.google.com/u/0/uc?id=13UYcJ6BcojsCKy-yc9qgHTyBMCCWB-w1&export=download",
"clothing": "https://drive.google.com/u/0/uc?id=1BwDS30xzFEDqP-z9adj4wVSlsSjOIGqc&export=download",
"clothing_binary": "https://drive.google.com/u/0/uc?id=1P5aPKD0wU1NWUlh2QiIYwSPN-S3wD3ua&export=download",
"electronics": "https://drive.google.com/u/0/uc?id=1ztIUsraLPJSKkkle_uTrd78hYsSKKmur&export=download",
"electronics_binary": "https://drive.google.com/u/0/uc?id=103kJN6snOc2sSMH9ojd_PNohVQ1g4XUJ&export=download",
"office": "https://drive.google.com/u/0/uc?id=1DbrvS02d75sXoxaaPh90bJdRvr15fUS5&export=download",
"office_binary": "https://drive.google.com/u/0/uc?id=1ED4JnoTFu_4H80jBUJlqRrEor-taZ2Qz&export=download",
"toxicity": "https://drive.google.com/u/0/uc?id=1iATGRaGuOqiUrj31jYjAzns8iS_BJh1h&export=download",
}
_FIELDS = {
"amazon": ["date", "rating", "reviewText", "summary"],
"ccd": ["date", "product", "subproduct", "issue", "subissue", "text"],
"toxicity": ["rev_id", "toxicity", "date", "comment", "sample"],
}
_LABELS = {
"amazon": ["1", "2", "3", "4", "5"],
"amazon_binary": ["0", "1"],
"ccd": [
"Checking or savings account",
"Credit card or prepaid card",
"Credit reporting, credit repair services, or other personal consumer reports",
"Debt collection",
"Money transfer, virtual currency, or money service",
"Mortgage",
"Payday loan, title loan, or personal loan",
"Student loan",
"Vehicle loan or lease",
],
"toxicity": [0, 1],
}
class QBConfig(datasets.BuilderConfig):
def __init__(
self,
csv_fields,
label_classes,
label_column,
text_column,
url,
**kwargs,
):
super().__init__(version=datasets.Version("1.0.0", ""), **kwargs)
self.csv_fields = csv_fields
self.label_classes = label_classes
self.label_column = label_column
self.text_column = text_column
self.url = url
class QB(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
QBConfig(
name="ccd",
description="Consumer Complaints Database",
url=_URLS["ccd"],
csv_fields=_FIELDS["ccd"],
label_classes=_LABELS["ccd"],
label_column="product",
text_column="text",
),
QBConfig(
name="clothing",
description="Amazon Reviews (Clothing)",
url=_URLS["clothing"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="clothing_binary",
description="Amazon Reviews (Clothing) with binary labels",
url=_URLS["clothing_binary"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon_binary"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="electronics",
description="Amazon Reviews (Electronics)",
url=_URLS["electronics"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="electronics_binary",
description="Amazon Reviews (Electronics) with binary labels",
url=_URLS["electronics_binary"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon_binary"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="office",
description="Amazon Reviews (Office)",
url=_URLS["office"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="office_binary",
description="Amazon Reviews (Office) with binary labels",
url=_URLS["office_binary"],
csv_fields=_FIELDS["amazon"],
label_classes=_LABELS["amazon_binary"],
label_column="rating",
text_column="reviewText",
),
QBConfig(
name="toxicity",
description="Wikipedia toxicity data set",
url=_URLS["toxicity"],
csv_fields=_FIELDS["toxicity"],
label_classes=_LABELS["toxicity"],
label_column="toxicity",
text_column="comment",
),
]
def _info(self):
features = {
"date": datasets.Value("string"),
"id": datasets.Value("int32"),
"label": datasets.features.ClassLabel(names=self.config.label_classes),
"text": datasets.Value("string"),
}
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(features),
)
def _split_generators(self, dl_manager):
downloaded_files = dl_manager.download_and_extract(self.config.url)
logger.info(str(downloaded_files))
train_filepath = os.path.join(downloaded_files, "train.csv")
test_filepath = os.path.join(downloaded_files, "test.csv")
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": train_filepath},
),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": test_filepath},
),
]
def _generate_examples(self, filepath):
logger.info(f"generating examples from {filepath}")
idx = 0
with open(filepath, encoding="utf-8") as f:
reader = csv.DictReader(f, fieldnames=self.config.csv_fields)
for row in reader:
yield idx, {
"date": row["date"],
"id": idx,
"label": row[self.config.label_column],
"text": row[self.config.text_column],
}
idx += 1
|