id
stringlengths
1
7
text
stringlengths
6
1.03M
dataset_id
stringclasses
1 value
168740
from JumpScale import j def cb(): from .CodeTools import CodeTools return CodeTools() j._register('codetools', cb)
StarcoderdataPython
27307
"Common functions that may be used everywhere" from __future__ import (absolute_import, division, print_function, unicode_literals) import os import sys from distutils.util import strtobool try: input = raw_input except NameError: pass def yes_no_query(question): """Ask the user *question* for 'yes' or 'no'; ask again until user inputs a valid option. Returns: 'True' if user answered 'y', 'yes', 't', 'true', 'on' or '1'. 'False' if user answered 'n', 'no', 'f', 'false', 'off' or '0'. """ print("{} (y/n)".format(question), end=" "), while True: try: return strtobool(input().lower()) except ValueError: print("Please respond with 'y' or 'n'.") def ask_overwrite(dest): """Check if file *dest* exists. If 'True', asks if the user wants to overwrite it (just remove the file for later overwrite). """ msg = "File '{}' already exists. Overwrite file?".format(dest) if os.path.exists(dest): if yes_no_query(msg): os.remove(dest) else: sys.exit("Cancelling operation...")
StarcoderdataPython
99458
import json from django.test import TestCase, LiveServerTestCase import django.test.client from django.core.urlresolvers import reverse from django.contrib.auth.models import User from django.contrib.sites.models import Site import oauthlib.oauth1.rfc5849 from restless_oauth.models import * import requests from oauth_hook import OAuthHook import urlparse class OAuthTestClient(django.test.client.Client): def __init__(self, *args, **kwargs): super(OAuthTestClient, self).__init__(*args, **kwargs) self.client_key = None self.client_secret = None self.access_token = None self.access_secret = None self.oauth_verifier = None self.oauth_uri = None self.oauth_client = None def _init_oauth_client(self): if self.client_key: self.oauth_client = oauthlib.oauth1.rfc5849.Client(self.client_key, client_secret=self.client_secret, resource_owner_key=self.access_token, resource_owner_secret=self.access_secret, verifier=self.oauth_verifier) else: self.oauth_client = None def set_uri(self, uri): self.oauth_uri = unicode(uri) def set_client_key(self, client_key, client_secret=None): self.client_key = unicode(client_key) self.client_secret = unicode(client_secret) self._init_oauth_client() def set_access_token(self, access_token, access_secret=None): self.access_token = unicode(access_token) self.access_secret = unicode(access_secret) self._init_oauth_client() def set_verifier(self, verifier): self.oauth_verifier = verifier self._init_oauth_client() @staticmethod def process(response): try: response.json = json.loads(response.content) except Exception: response.json = None finally: return response def inject_oauth_headers(self, headers, method): if self.oauth_client and self.oauth_uri: uri, oauth_headers, body = self.oauth_client.sign(self.oauth_uri, http_method=unicode(method)) headers = dict(headers) for k, v in oauth_headers.items(): headers['HTTP_' + k.upper()] = v return headers def get(self, url_name, data={}, follow=False, extra={}, *args, **kwargs): return self.process( super(OAuthTestClient, self).get( reverse(url_name, args=args, kwargs=kwargs), data=data, follow=follow, **self.inject_oauth_headers(extra, 'GET'))) def post(self, url_name, data={}, follow=False, extra={}, *args, **kwargs): return self.process( super(OAuthTestClient, self).post( reverse(url_name, args=args, kwargs=kwargs), data=data, follow=follow, **self.inject_oauth_headers(extra, 'POST'))) def put(self, url_name, data={}, follow=False, extra={}, *args, **kwargs): return self.process( super(OAuthTestClient, self).put( reverse(url_name, args=args, kwargs=kwargs), data=data, follow=follow, **self.inject_oauth_headers(extra, 'PUT'))) def delete(self, url_name, data={}, follow=False, extra={}, *args, **kwargs): return self.process( super(OAuthTestClient, self).delete( reverse(url_name, args=args, kwargs=kwargs), content_type=content_type, data=data, follow=follow, **self.inject_oauth_headers(extra, 'DELETE'))) class OAuthViewTest(TestCase): def clean(self): User.objects.all().delete() OAuthClient.objects.all().delete() OAuthRequestToken.objects.all().delete() OAuthAccessToken.objects.all().delete() OAuthVerifier.objects.all().delete() OAuthNonce.objects.all().delete() def setUp(self): self.clean() s = Site.objects.get(id=1) s.domain = 'localhost' s.save() Site.objects.clear_cache() self.client_key = u'CLIENTKEYCLIENTKEYCLIENTKEY' self.client_secret = u'CLIENTSECRETCLIENTSECRET' self.user = User.objects.create_user(username='foo', password='<PASSWORD>') self.client = OAuthClient.objects.create(key=self.client_key, secret=self.client_secret) self.testclient = OAuthTestClient() def tearDown(self): self.clean() def test_returns_bad_req_if_no_oauth_signature(self): tc = OAuthTestClient() r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 400) def test_returns_bad_req_if_invalid_client_key(self): tc = OAuthTestClient() tc.set_client_key('foo', 'bar') tc.set_uri('http://localhost/oauth/request_token') r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 400) self.assertTrue('client key' in r.json.get('error', '')) def test_returns_bad_req_if_nonexistent_client(self): tc = OAuthTestClient() tc.set_client_key(u'CLIENTKEYDOESNTEXIST', u'CLIENTSECRETDOESNTEXIST') tc.set_uri('http://localhost/oauth/request_token') r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 400) self.assertTrue('client key' in r.json.get('error', '')) def test_returns_unauthorized_on_uri_mismatch(self): tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_uri('http://localhost/incorrect/uri') r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 401) def test_get_request_token_succeeds(self): tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_uri('http://localhost/oauth/request_token') r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 200) self.assertTrue(OAuthRequestToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_returns_unauthorized_if_request_replay_attempted(self): tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_uri('http://localhost/oauth/request_token') r = tc.post('oauth_get_request_token') self.assertEqual(r.status_code, 200) tc2 = OAuthTestClient() r2 = tc2.post('oauth_get_request_token', extra={'HTTP_AUTHORIZATION': r.request['HTTP_AUTHORIZATION']}) self.assertEqual(r2.status_code, 401) def test_get_access_token_succeeds(self): request_token = OAuthRequestToken.generate(self.client) verifier = OAuthVerifier.generate(self.user, request_token) tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_access_token(request_token.token, request_token.secret) tc.set_verifier(verifier.verifier) tc.set_uri('http://localhost/oauth/access_token') r = tc.post('oauth_get_access_token') self.assertEqual(r.status_code, 200) self.assertTrue(OAuthAccessToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_get_access_token_returns_bad_req_on_invalid_verifier(self): request_token = OAuthRequestToken.generate(self.client) tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_access_token(request_token.token, request_token.secret) tc.set_verifier(u'INVALIDVERIFIERKEY') tc.set_uri('http://localhost/oauth/access_token') r = tc.post('oauth_get_access_token') self.assertEqual(r.status_code, 400) self.assertTrue('verifier' in r.json.get('error', '')) def test_get_access_token_returns_bad_req_on_invalid_request_token(self): request_token = OAuthRequestToken.generate(self.client) verifier = OAuthVerifier.generate(self.user, request_token) tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_access_token(u'INVALIDREQUESTTOKEN', u'INVALIDREQUESTSECRET') tc.set_verifier(verifier.verifier) tc.set_uri('http://localhost/oauth/access_token') r = tc.post('oauth_get_access_token') self.assertEqual(r.status_code, 400) self.assertTrue('resource owner key' in r.json.get('error', '')) def test_access_protected_resource_fails_without_oauth(self): tc = OAuthTestClient() tc.set_uri('http://localhost/secret/') r = tc.get('protected_endpoint') self.assertEqual(r.status_code, 403) def test_access_protected_resource_succeeds_with_oauth(self): token = OAuthAccessToken.generate(self.user, self.client) tc = OAuthTestClient() tc.set_client_key(self.client_key, self.client_secret) tc.set_access_token(token.token, token.secret) tc.set_uri('http://localhost/secret/') r = tc.get('protected_endpoint') self.assertEqual(r.status_code, 200) self.assertTrue(r.json['success']) class RequestsInteropTest(LiveServerTestCase): def clean(self): User.objects.all().delete() OAuthClient.objects.all().delete() OAuthRequestToken.objects.all().delete() OAuthAccessToken.objects.all().delete() OAuthVerifier.objects.all().delete() OAuthNonce.objects.all().delete() def setUp(self): self.clean() s = Site.objects.get(id=1) s.domain = urlparse.urlparse(self.live_server_url).netloc s.save() Site.objects.clear_cache() self.client_key = u'CLIENTKEYCLIENTKEYCLIENTKEY' self.client_secret = u'CLIENTSECRETCLIENTSECRET' self.user = User.objects.create_user(username='foo', password='<PASSWORD>') self.client = OAuthClient.objects.create(key=self.client_key, secret=self.client_secret) self.testclient = OAuthTestClient() def url_for(self, url_name, *args, **kwargs): return '%s%s' % (self.live_server_url, reverse(url_name, args=args, kwargs=kwargs)) def tearDown(self): self.clean() def test_get_request_token_params_in_query(self): hook = OAuthHook(consumer_key=self.client_key, consumer_secret=self.client_secret) r = requests.post(self.url_for('oauth_get_request_token'), hooks={'pre_request': hook}) self.assertEqual(r.status_code, 200) self.assertTrue(OAuthRequestToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_get_request_token_params_in_headers(self): hook = OAuthHook(consumer_key=self.client_key, consumer_secret=self.client_secret, header_auth=True) r = requests.post(self.url_for('oauth_get_request_token'), hooks={'pre_request': hook}) self.assertEqual(r.status_code, 200) self.assertTrue(OAuthRequestToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_get_request_token_params_in_body(self): hook = OAuthHook(consumer_key=self.client_key, consumer_secret=self.client_secret) r = requests.post(self.url_for('oauth_get_request_token'), hooks={'pre_request': hook}, data='foo=bar', headers={ 'Content-Type': 'application/x-www-form-urlencoded' }, config={'max_retries': 0}) self.assertEqual(r.status_code, 200) self.assertTrue(OAuthRequestToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_get_access_token_succeeds(self): request_token = OAuthRequestToken.generate(self.client) verifier = OAuthVerifier.generate(self.user, request_token) hook = OAuthHook(request_token.token, request_token.secret, self.client_key, self.client_secret, header_auth=True) r = requests.post(self.url_for('oauth_get_access_token'), hooks={'pre_request': hook}, data={ 'oauth_verifier': verifier.verifier, }, config={'max_retries': 0}) self.assertEqual(r.status_code, 200) self.assertTrue(OAuthAccessToken.objects.filter( token=r.json['oauth_token'], secret=r.json['oauth_token_secret']).exists()) def test_access_protected_resource_succeeds(self): token = OAuthAccessToken.generate(self.user, self.client) hook = OAuthHook(token.token, token.secret, self.client_key, self.client_secret, header_auth=True) r = requests.get(self.url_for('protected_endpoint'), hooks={'pre_request': hook}, config={'max_retries': 0}) self.assertEqual(r.status_code, 200) self.assertTrue(r.json['success'])
StarcoderdataPython
1769667
# -*- coding: utf-8 -*- # # This file is part of SplashSync Project. # # Copyright (C) 2015-2020 Splash Sync <www.splashsync.com> # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. # # For the full copyright and license information, please view the LICENSE # file that was distributed with this source code. # import base64 from pathlib import Path from splashpy.client import SplashClient class Files(): """Various Function to Work with Files""" @staticmethod def getFile(file, md5): """Read a file from Splash Server""" # ====================================================================# # Initiate File Request Contents request = { "tasks": { "task": { "id": 1, "name": "ReadFile", "desc": "Read file", "params": {"file": file, "md5": md5}, } } } # ====================================================================# # Execute Task response = SplashClient.getInstance().file(request) # ====================================================================# # Verify Response if response is False: return None if "result" not in response or response["result"] is not "1": return None try: task = response["tasks"]['task'] return task["data"] except Exception: return None @staticmethod def getAssetsPath(): import os base_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__))) return base_path + "/assets" @staticmethod def getRawContents(path): if not Path(path).exists(): return "" with open(path, 'rb') as file: return str(base64.b64encode(file.read()), "UTF-8")
StarcoderdataPython
3243838
<filename>client/tc/azext_tc/_completers.py # -------------------------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for license information. # -------------------------------------------------------------------------------------------- from azure.cli.core.decorators import Completer from knack.log import get_logger from ._client_factory import teamcloud_client_factory logger = get_logger(__name__) def _ensure_base_url(client, base_url): client._client._base_url = base_url # pylint: disable=protected-access @Completer def get_org_completion_list(cmd, prefix, namespace, **kwargs): # pylint: disable=unused-argument client = teamcloud_client_factory(cmd.cli_ctx) _ensure_base_url(client, namespace.base_url) result = client.get_organizations() try: return [p.displayName for p in result.data] except AttributeError: return []
StarcoderdataPython
3204749
import asyncio import importlib import json import logging import os import pprint import re import sys import time import docker import netaddr import netifaces import sh import tornado.httpclient from wotemu.enums import Labels _CGROUP_PATH = "/proc/self/cgroup" _STACK_NAMESPACE = "com.docker.stack.namespace" _CID_HOST_LEN = 12 _STATE_RUNNING = "running" _logger = logging.getLogger(__name__) class NodeHTTPTimeout(Exception): pass async def _ping_catalogue(catalogue_url, thing_ids=None): thing_ids = thing_ids or [] http_client = tornado.httpclient.AsyncHTTPClient() try: catalogue_res = await http_client.fetch(catalogue_url) catalogue = json.loads(catalogue_res.body) assert all(thing_id in catalogue for thing_id in thing_ids) _logger.debug("Catalogue ping OK: %s", catalogue_url) return True except Exception as ex: _logger.debug("Catalogue ping error (%s): %s", catalogue_url, repr(ex)) return False finally: http_client.close() async def _ping_catalogue_timeout(catalogue_url, wait, timeout, thing_ids=None): _logger.debug("Waiting for catalogue:\n%s", pprint.pformat({ "catalogue_url": catalogue_url, "wait": wait, "timeout": timeout, "thing_ids": thing_ids })) ini = time.time() def _raise_timeout(): if timeout is None: return diff = time.time() - ini if diff >= timeout: raise NodeHTTPTimeout( f"HTTP timeout ({timeout} s): {catalogue_url}") while True: _raise_timeout() if (await _ping_catalogue(catalogue_url, thing_ids=thing_ids)): break _raise_timeout() await asyncio.sleep(wait) async def wait_node(conf, name, wait=2, timeout=120, find_replicas=True, thing_ids=None): cont_hosts = [name] if find_replicas: _logger.debug(( "Attempting to translate service name '%s' " "to the container hostnames of all the " "replicas for that service" ), name) try: cont_hosts = get_service_container_hostnames( docker_url=conf.docker_proxy_url, name=name) except Exception as ex: _logger.warning("Error finding container hostnames: %s", ex) _logger.warning("Using untranslated service name: %s", cont_hosts) catalogue_urls = [ "http://{}:{}".format(host, conf.port_catalogue) for host in cont_hosts ] _logger.debug("Catalogue URLs: %s", catalogue_urls) ping_awaitables = [ _ping_catalogue_timeout( catalogue_url=url, wait=wait, timeout=timeout, thing_ids=thing_ids) for url in catalogue_urls ] await asyncio.gather(*ping_awaitables) def _find_service_container_hosts(docker_api_client, service_name): task_filters = { "service": service_name, "desired-state": _STATE_RUNNING } _logger.debug("Filtering Docker tasks using filters: %s", task_filters) try: service_tasks = docker_api_client.tasks(filters=task_filters) except Exception as ex: _logger.warning( "Error finding Docker tasks (filters: %s): %s", task_filters, ex) return [] _logger.debug( "Found %s tasks for service: %s", len(service_tasks), service_name) return [ task["Status"]["ContainerStatus"]["ContainerID"][:_CID_HOST_LEN] for task in service_tasks ] def get_service_container_hostnames(docker_url, name): docker_api_client = docker.APIClient(base_url=docker_url) _logger.debug("Finding container hostnames for: %s", name) service_parts = name.split(".") try: network_candidate = service_parts[-1] docker_api_client.inspect_network(network_candidate) _logger.debug("Found network: %s", network_candidate) base_name = ".".join(service_parts[:-1]) except docker.errors.NotFound: _logger.debug("Network not found: %s", network_candidate) base_name = name namespace = get_current_stack_namespace(docker_url) service_names = [f"{namespace}_" + base_name] if base_name.startswith(f"{namespace}_"): service_names.append(base_name) ret = [ _find_service_container_hosts( docker_api_client=docker_api_client, service_name=service_name) for service_name in service_names ] ret = [host for item in ret for host in item] if not len(ret): raise Exception("Could not find container hostnames for: %s", name) _logger.debug("Service %s container hostnames: %s", name, ret) return ret def ping_docker(docker_url): try: docker_client = docker.DockerClient(base_url=docker_url) docker_client.ping() except Exception as ex: raise Exception("Could not ping Docker daemon: {}".format(ex)) def get_current_container_id(): try: with open(_CGROUP_PATH, "r") as fh: cgroup = fh.read() except FileNotFoundError as ex: raise Exception(( "The current environment does not " "seem to be a Docker container ({})" ).format(ex)) cid_regex = r"\d+:.+:\/docker\/([a-zA-Z0-9]+)" result = re.search(cid_regex, cgroup) if not result or len(result.groups()) <= 0: _logger.warning("Could not find container ID in:\n%s", cgroup) raise Exception("Could not retrieve container ID") cid = result.groups()[0] _logger.debug("Current container ID: %s", cid) return cid def get_task_container_id(task_dict): return task_dict.get("Status", {}).get("ContainerStatus", {}).get("ContainerID", None) def get_current_task(docker_url): docker_api_client = docker.APIClient(base_url=docker_url) cid = get_current_container_id() task = next(( task for task in docker_api_client.tasks() if get_task_container_id(task) == cid), None) if task is None: raise Exception("Could not find task for container: {}".format(cid)) return task def get_current_stack_namespace(docker_url): curr_task = get_current_task(docker_url=docker_url) return curr_task.get("Spec", {}).get("ContainerSpec", {}).get("Labels", {}).get(_STACK_NAMESPACE, None) def get_task_networks(docker_url, task): docker_api_client = docker.APIClient(base_url=docker_url) network_ids = [ net["Network"]["ID"] for net in task["NetworksAttachments"] ] networks = { net_id: docker_api_client.inspect_network(net_id) for net_id in network_ids } networks = { net_id: net_info for net_id, net_info in networks.items() if net_info.get("Labels", {}).get(Labels.WOTEMU_NETWORK.value, None) is not None } return list(networks.keys()) def get_task_labels(docker_url, task_name): docker_api_client = docker.APIClient(base_url=docker_url) task_info = docker_api_client.inspect_task(task_name) return task_info["Spec"]["ContainerSpec"]["Labels"] def get_network_gateway_task(docker_url, network_id): docker_api_client = docker.APIClient(base_url=docker_url) network_info = docker_api_client.inspect_network(network_id, verbose=True) service_infos = { net_name: info for net_name, info in network_info["Services"].items() if len(net_name) > 0 } _logger.debug( "Network %s services:\n%s", network_id, pprint.pformat(list(service_infos.keys()))) task_infos = { task_info["Name"]: task_info for net_name, serv_info in service_infos.items() for task_info in serv_info["Tasks"] } _logger.debug( "Network %s tasks:\n%s", network_id, pprint.pformat(list(task_infos.keys()))) task_labels = { task_name: get_task_labels(docker_url, task_name) for task_name in task_infos.keys() } return next( task_infos[task_name] for task_name, labels in task_labels.items() if labels.get(Labels.WOTEMU_GATEWAY.value, None) is not None) def get_output_iface_for_task(net_task_dict): task_name = net_task_dict["Name"] task_addr = netaddr.IPAddress(net_task_dict["EndpointIP"]) iface_addrs = { name: netifaces.ifaddresses(name).get(netifaces.AF_INET) for name in netifaces.interfaces() if netifaces.ifaddresses(name).get(netifaces.AF_INET) } _logger.debug( "Current container interfaces:\n%s", pprint.pformat(iface_addrs)) ret = next( (iface_name, addr) for iface_name, iface_addrs in iface_addrs.items() for addr in iface_addrs if task_addr in netaddr.IPNetwork("{}/{}".format(addr["addr"], addr["netmask"]))) _logger.debug("Output interface for %s: %s", task_name, ret) return ret def strip_ansi_codes(val): """Attribution to: https://stackoverflow.com/a/15780675""" return re.sub(r'\x1b\[([0-9,A-Z]{1,2}(;[0-9]{1,2})?(;[0-9]{3})?)?[m|K]?', "", val) def import_func(module_path, func_name): _logger.debug("Attempting to import module: %s", module_path) path_root, path_base = os.path.split(module_path) if path_root not in sys.path: sys.path.insert(0, path_root) mod_name, _ext = os.path.splitext(path_base) mod_import = importlib.import_module(mod_name) mod_dir = dir(mod_import) _logger.info("Imported: %s", mod_import) _logger.debug("dir(%s): %s", mod_import, mod_dir) if func_name not in mod_dir: raise Exception("Module {} does not contain function '{}'".format( mod_import, func_name)) return getattr(mod_import, func_name) async def consume_from_catalogue(wot, port_catalogue, servient_host, thing_id): http_client = tornado.httpclient.AsyncHTTPClient() cat_url = "http://{}:{}".format(servient_host, port_catalogue) _logger.debug("Fetching catalogue: %s", cat_url) catalogue_res = await http_client.fetch(cat_url) catalogue = json.loads(catalogue_res.body) _logger.debug("Catalogue:\n%s", pprint.pformat(catalogue)) if thing_id not in catalogue: raise Exception(f"Thing '{thing_id}' not in catalogue: {cat_url}") td_url = "http://{}:{}/{}".format( servient_host, port_catalogue, catalogue[thing_id].strip("/")) _logger.debug("Consuming from URL: %s", td_url) return await wot.consume_from_url(td_url) def cgget(name): try: sh_cgget = sh.Command("cgget") cmd_parts = ["-v", "-r", name, "/"] proc = sh_cgget(cmd_parts, _err_to_out=True) _logger.debug("%s: %s", proc.ran, proc.stdout) match = re.search(r"(-?\d+)\n", proc.stdout.decode("utf8")) return int(match.group(1)) if match else None except: _logger.warning("Error running cgget for: %s", exc_info=True) return None
StarcoderdataPython
31224
<reponame>sundayliu/flask-tutorial # -*- coding:utf-8 -*- from flask import Blueprint main = Blueprint('main',__name__) from . import views,errors from ..models import Permission @main.app_context_processor def inject_permissions(): return dict(Permission=Permission)
StarcoderdataPython
9812
<reponame>yaosir0317/my_first from enum import Enum import requests class MusicAPP(Enum): qq = "qq" wy = "netease" PRE_URL = "http://www.musictool.top/" headers = {"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/85.0.4183.102 Safari/537.36"} def get_music_list(name, app, page=1): data = {"input": name, "filter": "name", "type": app, "page": page} resp = requests.post(url=PRE_URL, headers=headers, data=data) print(resp.text) print(resp.json()) if __name__ == '__main__': get_music_list("画", MusicAPP.qq)
StarcoderdataPython
3369738
from src.contexts.kms.clients.domain.entities.ClientId import ClientId from src.contexts.kms.cryptokeys.domain.entities.CryptoKey import CryptoKey from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyId import CryptoKeyId from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyIsMaster import CryptoKeyIsMaster from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyIsPrivate import CryptoKeyIsPrivate from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyParameters import CryptoKeyParameters from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyPayload import CryptoKeyPayload from src.contexts.kms.cryptokeys.domain.entities.CryptoKeyType import CryptoKeyType from src.contexts.kms.cryptokeys.domain.repositories.CryptoKeyRepository import CryptoKeyRepository from src.contexts.shared.domain.EventBus import EventBus class CryptoKeyCreator: def __init__(self, cryptokey_repository: CryptoKeyRepository, event_bus: EventBus): self._cryptokey_repository = cryptokey_repository self._event_bus = event_bus async def run(self, cryptokey_id: CryptoKeyId, client_id: ClientId, cryptokey_type: CryptoKeyType, payload: CryptoKeyPayload, parameters: CryptoKeyParameters, is_master: CryptoKeyIsMaster, is_private: CryptoKeyIsPrivate): cryptokey: CryptoKey = CryptoKey.create(cryptokey_id, client_id, cryptokey_type, payload, parameters, is_master, is_private) await self._cryptokey_repository.create_one(cryptokey) await self._event_bus.publish(cryptokey.pull_domain_events())
StarcoderdataPython
4805945
#coding=utf-8 import requests s=requests ###init # data = {"labelData":"{'性别': [], '年龄': [], '病理诊断': ['腺鳞癌'], '病人批次': []}"} data = {"labelData":"{'性别': ['男'], '年龄': ['40','50'], '病理诊断': [], '病人批次': ['2018-01-01','2018-01-10']}"} # data = {"labelData": "{'性别': ['男'], '年龄': ['65'], '病理诊断': [], '病人批次': ['2018-01-01','2018-01-10']}"} # data ={"labelData":"{'性别': [], '年龄': [], '病理诊断': [],'病人批次': []}"} r=s.post('http://192.168.75.251:8686/label_search',data) ##interact #data={"kaks_mean":"较高"} ##genete word #data={"report_id":1} #r=s.post('http://192.168.75.251:8686/generate_word',data) #r=s.post('http://192.168.75.251:8686/report_interact',data) print(r.text)
StarcoderdataPython
1659856
from typing import List, Dict from zhixuewang.teacher.urls import Url from zhixuewang.teacher.models import TeaPerson class Teacher(TeaPerson): """老师账号""" def __init__(self, session): super().__init__() self._session = session self.role = "teacher" def set_base_info(self): r = self._session.get( Url.TEST_URL, headers={ "referer": "https://www.zhixue.com/container/container/teacher/index/" }) json_data = r.json()["teacher"] self.email = json_data.get("email") self.gender = "男" if json_data["gender"] == "1" else "女" self.id = json_data.get("id") self.mobile = json_data.get("mobile") self.name = json_data.get("name") self.role = json_data["roles"][-1] return self def get_score(self, user_num, clazz_id, topicSetId): r = self._session.get( "https://www.zhixue.com/exportpaper/class/getExportStudentInfo/", params={ "type": "allTopicUserNum", "classId": clazz_id, "studentNum": user_num, "topicSetId": topicSetId, "topicNumber": "0", "startScore": "0", "endScore": "0", }) d = r.json() return d.get("result")[0]["userScore"] def get_topicSets(self, examId): r = self._session.get( f"https://www.zhixue.com/exportpaper/class/getSubjectChoice/?examId={examId}" ) d = r.json() return d["result"] def get_class_score(self, classId, topicSetId) -> List[Dict[str, float]]: r = self._session.get( "https://www.zhixue.com/exportpaper/class/getExportStudentInfo/", params={ "type": "export_single_paper_zip", "classId": classId, "studentNum": "", "topicSetId": topicSetId, "topicNumber": "0", "startScore": "0", "endScore": "10000", }) d = r.json() return [{ "name": i["userName"], "score": i["userScore"], } for i in d["result"]] class Headmaster(Teacher): # 校长 def __init__(self, session): super().__init__(session) self.role = "headmaster" class Headteacher(Teacher): # 年级主任 / 班主任 def __init__(self, session): super().__init__(session) self.role = "headteacher"
StarcoderdataPython
91066
import numpy as np import scipy as sp from scipy.linalg import cho_factor, cho_solve import time start_time = time.time() #float_formatter = '{:.4f}'.format #np.set_printoptions(formatter={'float_kind':float_formatter}) N = 1000 print('N: ', N) #Filling N*N array to initialize it A1 = np.zeros((N,N), float) A2 = np.zeros((N,N), float) b1 = np.zeros((N,1), float) b2 = np.ones((N,1), float) #Filling arrays with the correspondant values np.fill_diagonal(A1, 6) np.fill_diagonal(A1[1:], -4) np.fill_diagonal(A1[:, 1:], -4) np.fill_diagonal(A1[2:], 1) np.fill_diagonal(A1[:, 2:], 1) np.fill_diagonal(A2, 7) np.fill_diagonal(A2[1:], -4) np.fill_diagonal(A2[:, 1:], -4) np.fill_diagonal(A2[2:], 1) np.fill_diagonal(A2[:, 2:], 1) b1[0] = 3 b1[1] = -1 b1[-2] = -1 b1[-1] = 3 b2[0] = 4 b2[1] = 0 b2[-2] = 0 b2[-1] = 4 A, low = cho_factor(A1) x = cho_solve((A, low), b1) print('A1 x = b1 \n Ten median x are:') ml = len(x) // 2 - 5 mu = len(x) // 2 + 5 print(x[ml : mu]) A, low = cho_factor(A2) x = cho_solve((A, low), b2) print('A2 x = b2 \n Ten median x are:') ml = len(x) // 2 - 5 mu = len(x) // 2 + 5 print(x[ml : mu]) print("--- %s seconds ---" % (time.time() - start_time))
StarcoderdataPython
1628005
<filename>net.py # -*- coding: utf-8 -*- import sys sys.path.append('./lib') import theano theano.config.on_unused_input = 'warn' import theano.tensor as T import numpy as np from layers import Weight, DataLayer, ConvPoolLayer, DropoutLayer, FCLayer, MaxoutLayer def cosine(x, y, epsilon=np.array(1e-6).astype(np.float32)): norm_x = T.sqrt(T.sum(x ** 2, 1)) + epsilon norm_y = T.sqrt(T.sum(y ** 2, 1)) + epsilon return T.sum(x * y, 1) / (norm_x * norm_y) class AlexNet(object): def __init__(self, config): self.config = config batch_size = config['batch_size'] n_images = config['n_images'] # ##################### BUILD NETWORK ########################## # allocate symbolic variables for the data # 'rand' is a random array used for random cropping/mirroring of data xquery = T.ftensor4('xquery') # Trying to find colour variant of this image xp = T.ftensor4('xp') # Correct colour variant image xns = [] # Non-variant images for i in xrange(n_images-1): xns.append( T.ftensor4('xn'+str(i+1)) ) rands = [] for i in xrange(n_images+1): rands.append( T.fvector('rand'+str(i)) ) layers, params, weight_types = [], [], [] print '... building the model' # Get the representations of all input images query_repr, query_layers, query_params, query_weight_types = \ self.image_repr(xquery, rands[0], config) layers += query_layers params += query_params weight_types += query_weight_types p_repr, p_layers, p_params, p_weight_types = \ self.image_repr(xp, rands[1], config) layers += p_layers params += p_params weight_types += p_weight_types n_reprs = [] for i in xrange(n_images-1): n_repr, n_layers, n_params, n_weight_types = \ self.image_repr(xns[i], rands[i+2], config) n_reprs.append( n_repr ) layers += n_layers params += n_params weight_types += n_weight_types # Compute cosine distance from query image to target images sims_ = [] sims_.append( cosine(query_repr.output, p_repr.output ).dimshuffle(0,'x') ) for i in xrange(n_images-1): sims_.append( cosine(query_repr.output, n_reprs[i].output ).dimshuffle(0,'x') ) sims = T.concatenate(sims_, axis=1) #sims = T.concatenate([ sims[:,1].dimshuffle(0,'x'), sims[:,0].dimshuffle(0,'x') ], axis=1) # Temp: Permute location of correct colour variant, to check that improvements are real #rng = T.shared_randomstreams.RandomStreams(12345) #perm = rng.permutation(size=(sims.shape[0],), n=2) #sims2 = T.concatenate([ sims[T.arange(sims.shape[0]),perm[:,0]].dimshuffle(0,'x'), # sims[T.arange(sims.shape[0]),perm[:,1]].dimshuffle(0,'x') ], axis=1) #index_of_variant = T.argmin(perm, axis=1) # Compute probabilities p_y_given_x = T.nnet.softmax(sims) cost = -T.mean(T.log(p_y_given_x[0, :])) y_pred = T.argmax(p_y_given_x, axis=1) errors = T.neq(y_pred, 0) # index_of_variant) # 0) # #################### NETWORK BUILT ####################### self.testfunc = query_repr.output.shape # sims # errors # T.extra_ops.bincount(y_pred) self.cost = cost self.errors = T.mean(errors) self.errors_top_5 = None self.xquery = xquery self.xp = xp self.xns = xns self.rands = rands self.layers = layers self.params = params self.weight_types = weight_types self.batch_size = batch_size self.n_images = n_images def image_repr(self, x, rand, config): batch_size = config['batch_size'] flag_datalayer = config['use_data_layer'] lib_conv = config['lib_conv'] layers = [] params = [] weight_types = [] if flag_datalayer: data_layer = DataLayer(input=x, image_shape=(3, 256, 256, batch_size), cropsize=227, rand=rand, mirror=True, flag_rand=config['rand_crop']) layer1_input = data_layer.output else: layer1_input = x convpool_layer1 = ConvPoolLayer(input=layer1_input, image_shape=(3, 227, 227, batch_size), filter_shape=(3, 11, 11, 96), convstride=4, padsize=0, group=1, poolsize=3, poolstride=2, bias_init=0.0, lrn=True, lib_conv=lib_conv, ) layers.append(convpool_layer1) params += convpool_layer1.params weight_types += convpool_layer1.weight_type convpool_layer2 = ConvPoolLayer(input=convpool_layer1.output, image_shape=(96, 27, 27, batch_size), filter_shape=(96, 5, 5, 256), convstride=1, padsize=2, group=2, poolsize=3, poolstride=2, bias_init=0.1, lrn=True, lib_conv=lib_conv, ) layers.append(convpool_layer2) params += convpool_layer2.params weight_types += convpool_layer2.weight_type convpool_layer3 = ConvPoolLayer(input=convpool_layer2.output, image_shape=(256, 13, 13, batch_size), filter_shape=(256, 3, 3, 384), convstride=1, padsize=1, group=1, poolsize=1, poolstride=0, bias_init=0.0, lrn=False, lib_conv=lib_conv, ) layers.append(convpool_layer3) params += convpool_layer3.params weight_types += convpool_layer3.weight_type convpool_layer4 = ConvPoolLayer(input=convpool_layer3.output, image_shape=(384, 13, 13, batch_size), filter_shape=(384, 3, 3, 384), convstride=1, padsize=1, group=2, poolsize=1, poolstride=0, bias_init=0.1, lrn=False, lib_conv=lib_conv, ) layers.append(convpool_layer4) params += convpool_layer4.params weight_types += convpool_layer4.weight_type convpool_layer5 = ConvPoolLayer(input=convpool_layer4.output, image_shape=(384, 13, 13, batch_size), filter_shape=(384, 3, 3, 256), convstride=1, padsize=1, group=2, poolsize=3, poolstride=2, bias_init=0.0, lrn=False, lib_conv=lib_conv, ) layers.append(convpool_layer5) params += convpool_layer5.params weight_types += convpool_layer5.weight_type fc_layer6_input = T.flatten( convpool_layer5.output.dimshuffle(3, 0, 1, 2), 2) fc_layer6 = MaxoutLayer(input=fc_layer6_input, n_in=9216, n_out=4096) layers.append(fc_layer6) params += fc_layer6.params weight_types += fc_layer6.weight_type dropout_layer6 = DropoutLayer(fc_layer6.output, n_in=4096, n_out=4096) fc_layer7 = MaxoutLayer(input=dropout_layer6.output, n_in=4096, n_out=4096) layers.append(fc_layer7) params += fc_layer7.params weight_types += fc_layer7.weight_type #dropout_layer7 = DropoutLayer(fc_layer7.output, n_in=4096, n_out=4096) # Rename weight types so that weights can be shared new_weight_types = [] counter_W = 0 counter_b = 0 for w in weight_types: if w == 'W': new_weight_types.append('W'+str(counter_W)) counter_W += 1 elif w == 'b': new_weight_types.append('b'+str(counter_b)) counter_b += 1 weight_types = new_weight_types return fc_layer7, layers, params, weight_types def compile_models(model, config, flag_top_5=False): xquery = model.xquery xp = model.xp xns = model.xns rands = model.rands weight_types = model.weight_types cost = model.cost params = model.params errors = model.errors #errors_top_5 = model.errors_top_5 batch_size = model.batch_size n_images = model.n_images mu = config['momentum'] eta = config['weight_decay'] # create a list of gradients for all model parameters grads = T.grad(cost, params) updates = [] learning_rate = theano.shared(np.float32(config['learning_rate'])) lr = T.scalar('lr') # symbolic learning rate if config['use_data_layer']: raw_size = 256 else: raw_size = 227 shared_xquery = theano.shared(np.zeros((3, raw_size, raw_size, batch_size), dtype=theano.config.floatX), borrow=True) shared_xp = theano.shared(np.zeros((3, raw_size, raw_size, batch_size), dtype=theano.config.floatX), borrow=True) shared_xns = [] for i in xrange(len(xns)): shared_xn = theano.shared(np.zeros((3, raw_size, raw_size, batch_size), dtype=theano.config.floatX), borrow=True) shared_xns.append( shared_xn ) rand_arrs = [] for i in xrange(n_images+1): rand_arr = theano.shared(np.zeros(3, dtype=theano.config.floatX), borrow=True) rand_arrs.append( rand_arr ) vels = [theano.shared(param_i.get_value() * 0.) for param_i in params] assert len(weight_types) == len(params) # Shared weights between all image networks iter_indexes = [] for i in xrange(20): W_indexes = [] b_indexes = [] for j in xrange(len(weight_types)): weight_type = weight_types[j] if weight_type == 'W'+str(i): W_indexes.append(j) elif weight_type == 'b'+str(i): b_indexes.append(j) if len(W_indexes)>0: iter_indexes.append(W_indexes) if len(b_indexes)>0: iter_indexes.append(b_indexes) if len(W_indexes)==0 and len(b_indexes)==0: break for indexes in iter_indexes: index_i = indexes[0] weight_type = weight_types[index_i][0] param_i = params[index_i] grad_i = grads[index_i] vel_i = vels[index_i] change_i = 0 if config['use_momentum']: if weight_type == 'W': real_grad = grad_i + eta * param_i real_lr = lr elif weight_type == 'b': real_grad = grad_i real_lr = 2. * lr else: raise TypeError("Weight Type Error") if config['use_nesterov_momentum']: change_i = mu ** 2 * vel_i - (1 + mu) * real_lr * real_grad else: change_i = mu * vel_i - real_lr * real_grad else: if weight_type == 'W': change_i = - lr * grad_i - eta * lr * param_i elif weight_type == 'b': change_i = - 2 * lr * grad_i else: raise TypeError("Weight Type Error") newval = param_i + change_i for index in indexes: param = params[index] updates.append((param, newval)) if config['use_momentum']: vel = vels[index] updates.append((vel, change_i)) #if config['use_momentum']: # for param_i, grad_i, vel_i, weight_type in \ # zip(params, grads, vels, weight_types): # if weight_type == 'W': # real_grad = grad_i + eta * param_i # real_lr = lr # elif weight_type == 'b': # real_grad = grad_i # real_lr = 2. * lr # else: # raise TypeError("Weight Type Error") # if config['use_nesterov_momentum']: # vel_i_next = mu ** 2 * vel_i - (1 + mu) * real_lr * real_grad # else: # vel_i_next = mu * vel_i - real_lr * real_grad # updates.append((vel_i, vel_i_next)) # updates.append((param_i, param_i + vel_i_next)) #else: # for param_i, grad_i, weight_type in zip(params, grads, weight_types): # #weight_type = weight_type[0] # if weight_type == 'W': # updates.append((param_i, # param_i - lr * grad_i - eta * lr * param_i)) # elif weight_type == 'b': # updates.append((param_i, param_i - 2 * lr * grad_i)) # else: # continue # #raise TypeError("Weight Type Error") # Define Theano Functions givens = [] givens.append((lr, learning_rate)) givens.append((xquery, shared_xquery)) givens.append((xp, shared_xp)) for i in xrange(len(xns)): givens.append((xns[i], shared_xns[i])) for i in xrange(len(rands)): givens.append((rands[i], rand_arrs[i])) train_model = theano.function([], cost, updates=updates, givens=givens) validate_outputs = [cost, errors] #if flag_top_5: # validate_outputs.append(errors_top_5) validate_model = theano.function([], validate_outputs, givens=givens) train_error = theano.function([], errors, givens=givens[1:]) if model.testfunc is not None: testfunc = theano.function([], model.testfunc, givens=givens) else: testfunc = None # # Metrics that can be logged to understand cnn better: # # Variance & mean of weight matrices at each layer # Norm of weight matrices along each of their dimensions # Mean & variance of intermediate representations after each layer # - Also, mean & variance per class label # Mean, variance, norm of gradient # - norm of gradient should not exceed 5 or 15 # Ratio between the update norm and weight norm -> should be around 0.001 # # return (train_model, validate_model, train_error, learning_rate, shared_xquery, shared_xp, shared_xns, rand_arrs, vels, testfunc)
StarcoderdataPython
1609583
<gh_stars>1-10 import os import pathlib import shutil import tempfile import pytest import torch import torchtraining as tt from torch.utils.tensorboard import SummaryWriter @pytest.mark.parametrize( "klass,inputs", [ (tt.callbacks.tensorboard.Scalar, 15), (tt.callbacks.tensorboard.Scalar, torch.tensor([15]),), (tt.callbacks.tensorboard.Scalars, {"foo": 5, "bar": 10}), ( tt.callbacks.tensorboard.Scalars, {"foo": torch.tensor([5]), "bar": torch.tensor(10)}, ), (tt.callbacks.tensorboard.Histogram, torch.randint(0, 15, size=(10, 30))), # Below need pillow # (tt.callbacks.tensorboard.Image, torch.rand(3, 32, 32)), # (tt.callbacks.tensorboard.Images, torch.rand(8, 3, 32, 32)), # Below needs moviepy # (tt.callbacks.tensorboard.Video, torch.rand(8, 6, 3, 32, 32)), (tt.callbacks.tensorboard.Audio, torch.rand(1, 100)), (tt.callbacks.tensorboard.Text, "example_text"), ], ) def test_tensorboard(klass, inputs): directory = pathlib.Path(tempfile.mkdtemp()) writer = SummaryWriter(directory) tb_writer = klass(writer, "example") tb_writer(inputs) shutil.rmtree(directory, ignore_errors=True)
StarcoderdataPython
3262823
# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import torch import theseus as th from theseus.utils.examples.bundle_adjustment.util import random_small_quaternion def test_residual(): # unit test for Cost term torch.manual_seed(0) batch_size = 4 cam_rot = torch.cat( [ random_small_quaternion(max_degrees=20).unsqueeze(0) for _ in range(batch_size) ] ) cam_tr = torch.rand((batch_size, 3), dtype=torch.float64) * 2 + torch.tensor( [-1, -1, -5.0], dtype=torch.float64 ) cam_pose_data = torch.cat([cam_tr, cam_rot], dim=1) cam_pose = th.SE3(cam_pose_data, name="cam_pose") focal_length = th.Vector( data=torch.tensor([1000], dtype=torch.float64).repeat(batch_size).unsqueeze(1), name="focal_length", ) calib_k1 = th.Vector( data=torch.tensor([-0.1], dtype=torch.float64).repeat(batch_size).unsqueeze(1), name="calib_k1", ) calib_k2 = th.Vector( data=torch.tensor([0.01], dtype=torch.float64).repeat(batch_size).unsqueeze(1), name="calib_k2", ) world_point = th.Vector( data=torch.rand((batch_size, 3), dtype=torch.float64), name="worldPoint" ) point_cam = cam_pose.transform_from(world_point).data proj = -point_cam[:, :2] / point_cam[:, 2:3] proj_sqn = (proj * proj).sum(dim=1).unsqueeze(1) proj_factor = focal_length.data * ( 1.0 + proj_sqn * (calib_k1.data + proj_sqn * calib_k2.data) ) point_projection = proj * proj_factor image_feature_point = th.Vector( data=point_projection.data + (torch.rand((batch_size, 2)) - 0.5) * 50, name="image_feature_point", ) r = th.eb.Reprojection( camera_pose=cam_pose, world_point=world_point, focal_length=focal_length, calib_k1=calib_k1, calib_k2=calib_k2, image_feature_point=image_feature_point, ) base_err = r.error() base_camera_pose = r.camera_pose.copy() base_world_point = r.world_point.copy() n_err = base_err.shape[1] pose_num_jac = torch.zeros((batch_size, n_err, 6), dtype=torch.float64) epsilon = 1e-8 for i in range(6): v = torch.zeros((batch_size, 6), dtype=torch.float64) v[:, i] += epsilon r.camera_pose = base_camera_pose.retract(v) pert_err = r.error() pose_num_jac[:, :, i] = (pert_err - base_err) / epsilon r.camera_pose = base_camera_pose wpt_num_jac = torch.zeros((batch_size, n_err, 3), dtype=torch.float64) for i in range(3): v = torch.zeros((batch_size, 3), dtype=torch.float64) v[:, i] += epsilon r.world_point = base_world_point.retract(v) pert_err = r.error() wpt_num_jac[:, :, i] = (pert_err - base_err) / epsilon (pose_jac, wpt_jac), _ = r.jacobians() assert torch.norm(pose_num_jac - pose_jac) < 5e-5 assert torch.norm(wpt_num_jac - wpt_jac) < 5e-5
StarcoderdataPython
3367579
import pytest from unittest import TestCase from pyflamegpu import * import random as rand AGENT_COUNT = 2049 out_mandatory2D = """ FLAMEGPU_AGENT_FUNCTION(out_mandatory2D, flamegpu::MessageNone, flamegpu::MessageSpatial2D) { FLAMEGPU->message_out.setVariable<int>("id", FLAMEGPU->getVariable<int>("id")); FLAMEGPU->message_out.setLocation( FLAMEGPU->getVariable<float>("x"), FLAMEGPU->getVariable<float>("y")); return flamegpu::ALIVE; } """ out_optional2D = """ FLAMEGPU_AGENT_FUNCTION(out_optional2D, flamegpu::MessageNone, flamegpu::MessageSpatial2D) { if (FLAMEGPU->getVariable<int>("do_output")) { FLAMEGPU->message_out.setVariable<int>("id", FLAMEGPU->getVariable<int>("id")); FLAMEGPU->message_out.setLocation( FLAMEGPU->getVariable<float>("x"), FLAMEGPU->getVariable<float>("y")); } return flamegpu::ALIVE; } """ in2D = """ FLAMEGPU_AGENT_FUNCTION(in2D, flamegpu::MessageSpatial2D, flamegpu::MessageNone) { const float x1 = FLAMEGPU->getVariable<float>("x"); const float y1 = FLAMEGPU->getVariable<float>("y"); unsigned int count = 0; unsigned int badCount = 0; unsigned int myBin[2] = { static_cast<unsigned int>(x1), static_cast<unsigned int>(y1) }; // Count how many messages we received (including our own) // This is all those which fall within the 3x3x3 Moore neighbourhood // Not our search radius for (const auto &message : FLAMEGPU->message_in(x1, y1)) { unsigned int messageBin[2] = { static_cast<unsigned int>(message.getVariable<float>("x")), static_cast<unsigned int>(message.getVariable<float>("y")) }; bool isBad = false; for (unsigned int i = 0; i < 2; ++i) { // Iterate axis int binDiff = myBin[i] - messageBin[i]; if (binDiff > 1 || binDiff < -1) { isBad = true; } } count++; badCount = isBad ? badCount + 1 : badCount; } FLAMEGPU->setVariable<unsigned int>("count", count); FLAMEGPU->setVariable<unsigned int>("badCount", badCount); return flamegpu::ALIVE; } """ count2D = """ FLAMEGPU_AGENT_FUNCTION(count2D, flamegpu::MessageSpatial2D, flamegpu::MessageNone) { unsigned int count = 0; // Count how many messages we received (including our own) // This is all those which fall within the 3x3 Moore neighbourhood for (const auto &message : FLAMEGPU->message_in(0, 0)) { count++; } FLAMEGPU->setVariable<unsigned int>("count", count); return flamegpu::ALIVE; } """ class Spatial2DMessageTest(TestCase): def test_Mandatory(self): bin_counts = {} # Construct model model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") # Location message message = model.newMessageSpatial2D("location") message.setMin(0, 0) message.setMax(11, 11) message.setRadius(1) # 11x11 bins, total 121 message.newVariableInt("id") # unused by current test # Circle agent agent = model.newAgent("agent") agent.newVariableInt("id") agent.newVariableFloat("x") agent.newVariableFloat("y") agent.newVariableUInt("myBin") # This will be presumed bin index of the agent, might not use this agent.newVariableUInt("count") # Store the distance moved here, for validation agent.newVariableUInt("badCount") # Store how many messages are out of range of = agent.newRTCFunction("out", out_mandatory2D) of.setMessageOutput("location") inf = agent.newRTCFunction("in", in2D) inf.setMessageInput("location") # Layer #1 layer = model.newLayer() layer.addAgentFunction(of) # Layer #2 layer = model.newLayer() layer.addAgentFunction(inf) cudaSimulation = pyflamegpu.CUDASimulation(model) population = pyflamegpu.AgentVector(model.Agent("agent"), AGENT_COUNT) # Initialise agents (TODO) # Currently population has not been init, so generate an agent population on the fly for i in range(AGENT_COUNT): instance = population[i] instance.setVariableInt("id", i) pos = [rand.uniform(0.0, 11.0), rand.uniform(0.0, 11.0)] instance.setVariableFloat("x", pos[0]) instance.setVariableFloat("y", pos[1]) # Solve the bin index bin_pos = [int(pos[0]), int(pos[1])] bin_index = bin_pos[1] * 11 + bin_pos[0] instance.setVariableUInt("myBin", bin_index) # Create it if it doesn't already exist if not bin_index in bin_counts: bin_counts[bin_index] = 0 # increment bin count bin_counts[bin_index] += 1 cudaSimulation.setPopulationData(population) # Generate results expectation bin_results = {} # Iterate host bin for x1 in range(11): for y1 in range(11): # Solve the bin index bin_pos1 = [x1, y1] bin_index1 = bin_pos1[1] * 11 + bin_pos1[0] # Count our neighbours count_sum = 0 for x2 in range(-1, 2): bin_pos2 = [bin_pos1[0] + x2, 0] for y2 in range(-1, 2): bin_pos2[1] = bin_pos1[1] + y2 # Ensure bin is in bounds if (bin_pos2[0] >= 0 and bin_pos2[1] >= 0 and bin_pos2[0] < 11 and bin_pos2[1] < 11): bin_index2 = bin_pos2[1] * 11 + bin_pos2[0] count_sum += bin_counts[bin_index2] bin_results[bin_index1] = count_sum # Execute a single step of the model cudaSimulation.step() # Recover the results and check they match what was expected cudaSimulation.getPopulationData(population) # Validate each agent has same result badCountWrong = 0 for ai in population: myBin = ai.getVariableUInt("myBin") myResult = ai.getVariableUInt("count") assert myResult == bin_results[myBin] if ai.getVariableUInt("badCount"): badCountWrong += 1 assert badCountWrong == 0 def test_Optional(self): """ This test is same as Mandatory, however extra flag has been added to block certain agents from outputting messages """ bin_counts = {} bin_counts_optional = {} # Construct model model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") # Location message message = model.newMessageSpatial2D("location") message.setMin(0, 0) message.setMax(11, 11) message.setRadius(1) # 11x11 bins, total 121 message.newVariableInt("id") # unused by current test # Circle agent agent = model.newAgent("agent") agent.newVariableInt("id") agent.newVariableFloat("x") agent.newVariableFloat("y") agent.newVariableInt("do_output") agent.newVariableUInt("myBin") # This will be presumed bin index of the agent, might not use this agent.newVariableUInt("count") # Store the distance moved here, for validation agent.newVariableUInt("badCount") # Store how many messages are out of range of = agent.newRTCFunction("out", out_optional2D) of.setMessageOutput("location") of.setMessageOutputOptional(True); inf = agent.newRTCFunction("in", in2D) inf.setMessageInput("location") # Layer #1 layer = model.newLayer() layer.addAgentFunction(of) # Layer #2 layer = model.newLayer() layer.addAgentFunction(inf) cudaSimulation = pyflamegpu.CUDASimulation(model) population = pyflamegpu.AgentVector(model.Agent("agent"), AGENT_COUNT) # Initialise agents (TODO) # Currently population has not been init, so generate an agent population on the fly for i in range(AGENT_COUNT): instance = population[i] instance.setVariableInt("id", i) pos = [rand.uniform(0.0, 11.0), rand.uniform(0.0, 11.0)] if rand.uniform(0.0, 5.0) < 4.0: # 80% chance of output do_output = 1 else: do_output = 0 instance.setVariableFloat("x", pos[0]) instance.setVariableFloat("y", pos[1]) instance.setVariableInt("do_output", do_output) # Solve the bin index bin_pos = [int(pos[0]), int(pos[1])] bin_index = bin_pos[1] * 11 + bin_pos[0] instance.setVariableUInt("myBin", bin_index) # Create key if it doesn't already exist if not bin_index in bin_counts: bin_counts[bin_index] = 0 bin_counts[bin_index] += 1 if (do_output) : if not bin_index in bin_counts_optional: bin_counts_optional[bin_index] = 0 bin_counts_optional[bin_index] += 1 cudaSimulation.setPopulationData(population) # Generate results expectation bin_results = {} bin_results_optional = {} # Iterate host bin for x1 in range(11): for y1 in range(11): # Solve the bin index bin_pos1 = [x1, y1] bin_index1 = bin_pos1[1] * 11 + bin_pos1[0] # Count our neighbours count_sum = 0 count_sum_optional = 0 for x2 in range(-1, 2): bin_pos2 = [bin_pos1[0] + x2, 0] for y2 in range(-1, 2): bin_pos2[1] = bin_pos1[1] + y2 # Ensure bin is in bounds if (bin_pos2[0] >= 0 and bin_pos2[1] >= 0 and bin_pos2[0] < 11 and bin_pos2[1] < 11): bin_index2 = bin_pos2[1] * 11 + bin_pos2[0] count_sum += bin_counts[bin_index2] count_sum_optional += bin_counts_optional[bin_index2] bin_results[bin_index1] = count_sum bin_results_optional[bin_index1] = count_sum_optional # Execute a single step of the model cudaSimulation.step() # Recover the results and check they match what was expected cudaSimulation.getPopulationData(population) # Validate each agent has same result badCountWrong = 0 for ai in population: myBin = ai.getVariableUInt("myBin") myResult = ai.getVariableUInt("count") #assert myResult == bin_results[myBin] assert myResult == bin_results_optional[myBin] if ai.getVariableUInt("badCount"): badCountWrong += 1 assert badCountWrong == 0 def test_BadRadius(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setRadius(0) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setRadius(-10) assert e.value.type() == "InvalidArgument" def test_BadMin(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") message.setMax(5, 5) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMin(5, 0) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMin(0, 5) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMin(6, 0) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMin(0, 6) assert e.value.type() == "InvalidArgument" def test_BadMax(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") message.setMin(5, 5) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMax(5, 0) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMax(0, 5) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMax(4, 0) assert e.value.type() == "InvalidArgument" with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.setMax(0, 4) assert e.value.type() == "InvalidArgument" def test_UnsetMax(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") message.setMin(5, 5) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: m = pyflamegpu.CUDASimulation(model) assert e.value.type() == "InvalidMessage" def test_UnsetMin(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") message.setMin(5, 5) with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: m = pyflamegpu.CUDASimulation(model) assert e.value.type() == "InvalidMessage" def test_reserved_name(self): model = pyflamegpu.ModelDescription("Spatial2DMessageTestModel") message = model.newMessageSpatial2D("location") with pytest.raises(pyflamegpu.FLAMEGPURuntimeException) as e: message.newVariableInt("_") assert e.value.type() == "ReservedName" def test_ReadEmpty(self): # What happens if we read a message list before it has been output? model = pyflamegpu.ModelDescription("Model") # Location message message = model.newMessageSpatial2D("location") message.setMin(-3, -3) message.setMax(3, 3) message.setRadius(2) message.newVariableInt("id") # unused by current test # Circle agent agent = model.newAgent("agent") agent.newVariableUInt("count", 0) # Count the number of messages read fin = agent.newRTCFunction("in", count2D) fin.setMessageInput("location") # Layer #1 layer = model.newLayer() layer.addAgentFunction(fin) # Create 1 agent pop_in = pyflamegpu.AgentVector(model.Agent("agent"), 1) cudaSimulation = pyflamegpu.CUDASimulation(model) cudaSimulation.setPopulationData(pop_in) # Execute model cudaSimulation.step() # Check result pop_out = pyflamegpu.AgentVector(model.Agent("agent"), 1) pop_out[0].setVariableUInt("count", 1) cudaSimulation.getPopulationData(pop_out) assert len(pop_out) == 1 ai = pop_out[0] assert ai.getVariableUInt("count") == 0
StarcoderdataPython
19336
import gpsd import json import logging import socket import httpx import paho.mqtt.client as mqtt class MQTTReporter: def __init__(self, name, mqtt_server=None, gps_server=None, compass=False): self.name = name self.mqtt_server = mqtt_server self.compass = compass self.gps_server = gps_server self.mqttc = None self.bearing = 'no bearing' def connect(self): logging.info(f'connecting to {self.mqtt_server}') self.mqttc = mqtt.Client() self.mqttc.connect(self.mqtt_server) self.mqttc.loop_start() if self.gps_server: gpsd.connect(host=self.gps_server, port=2947) def get_bearing(self): try: self.bearing = str(float(httpx.get(f'http://{self.gps_server}:8000/v1/').text)) except Exception as err: logging.error('could not update bearing: %s', err) def add_gps(self, publish_args): if not self.gps_server: return publish_args publish_args.update({ 'position': [0, 0], 'altitude': None, 'gps_time': None, 'map_url': None, 'bearing': self.bearing, 'gps': 'no fix'}) try: if self.compass: self.get_bearing() packet = gpsd.get_current() publish_args.update({ 'position': packet.position(), 'altitude': packet.altitude(), 'gps_time': packet.get_time().timestamp(), 'map_url': packet.map_url(), 'bearing': self.bearing, 'gps': 'fix'}) except (gpsd.NoFixError, AttributeError) as err: logging.error('could not update with GPS: %s', err) return publish_args def publish(self, publish_path, publish_args): if not self.mqtt_server: return try: if self.mqttc is None: self.connect() publish_args = self.add_gps(publish_args) publish_args['name'] = self.name self.mqttc.publish(publish_path, json.dumps(publish_args)) except (socket.gaierror, ConnectionRefusedError, mqtt.WebsocketConnectionError, ValueError) as err: logging.error(f'failed to publish to MQTT {self.mqtt_server}: {err}')
StarcoderdataPython
160743
#!/usr/bin/env python3 import os import json import torch from misc_scripts import run_cl_exp, run_rep_exp from utils import get_mini_imagenet, get_omniglot from core_functions.vision import evaluate from core_functions.vision_models import OmniglotCNN, MiniImagenetCNN, ConvBase from core_functions.maml import MAML cuda = True base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/maml_5w5s_min_31_03_12h53_1_1434" meta_test = False eval_iters = False cl_exp = False rep_exp = True cl_params = { "adapt_steps": 1, "inner_lr": 0.5, "n_tasks": 5 } rep_params = { "adapt_steps": 1, "inner_lr": 0.5, "n_tasks": 5, "layers": [1, 2, 3, 4, -1], # MIN # "layers": [2, 4] # Omni } class Lambda(torch.nn.Module): def __init__(self, fn): super(Lambda, self).__init__() self.fn = fn def forward(self, x): return self.fn(x) def run(path): # Initialize with open(path + "/logger.json", "r") as f: params = json.load(f)['config'] device = torch.device('cpu') torch.manual_seed(params['seed']) if cuda and torch.cuda.device_count(): torch.cuda.manual_seed(params['seed']) device = torch.device('cuda') if "min" in path: _, _, test_tasks = get_mini_imagenet(params['ways'], params['shots']) else: _, _, test_tasks = get_omniglot(params['ways'], params['shots']) if "maml" in path: run_maml(params, test_tasks, device) else: run_anil(params, test_tasks, device) def run_maml(params, test_tasks, device): if 'min' == params['dataset']: print('Loading Mini-ImageNet model') model = MiniImagenetCNN(params['ways']) else: print('Loading Omniglot model') model = OmniglotCNN(params['ways']) # Evaluate the model at every checkpoint if eval_iters: ckpnt = base_path + "/model_checkpoints/" model_ckpnt_results = {} for model_ckpnt in os.scandir(ckpnt): if model_ckpnt.path.endswith(".pt"): print(f'Testing {model_ckpnt.path}') res = evaluate_maml(params, model, test_tasks, device, model_ckpnt.path) model_ckpnt_results[model_ckpnt.path] = res with open(base_path + '/ckpnt_results.json', 'w') as fp: json.dump(model_ckpnt_results, fp, sort_keys=True, indent=4) final_model = base_path + '/model.pt' if meta_test: evaluate_maml(params, model, test_tasks, device, final_model) # Run a Continual Learning experiment if cl_exp: print("Running Continual Learning experiment...") model.load_state_dict(torch.load(final_model)) model.to(device) maml = MAML(model, lr=cl_params['inner_lr'], first_order=False) loss = torch.nn.CrossEntropyLoss(reduction='mean') run_cl_exp(base_path, maml, loss, test_tasks, device, params['ways'], params['shots'], cl_params=cl_params) # Run a Representation change experiment if rep_exp: model.load_state_dict(torch.load(final_model)) model.to(device) maml = MAML(model, lr=rep_params['inner_lr'], first_order=False) loss = torch.nn.CrossEntropyLoss(reduction='mean') print("Running Representation experiment...") run_rep_exp(base_path, maml, loss, test_tasks, device, params['ways'], params['shots'], rep_params=rep_params) def run_anil(params, test_tasks, device): # ANIL if 'omni' == params['dataset']: print('Loading Omniglot model') fc_neurons = 128 features = ConvBase(output_size=64, hidden=32, channels=1, max_pool=False) else: print('Loading Mini-ImageNet model') fc_neurons = 1600 features = ConvBase(output_size=64, channels=3, max_pool=True) features = torch.nn.Sequential(features, Lambda(lambda x: x.view(-1, fc_neurons))) head = torch.nn.Linear(fc_neurons, params['ways']) head = MAML(head, lr=params['inner_lr']) # Evaluate the model at every checkpoint if eval_iters: ckpnt = base_path + "/model_checkpoints/" model_ckpnt_results = {} for model_ckpnt in os.scandir(ckpnt): if model_ckpnt.path.endswith(".pt"): if "features" in model_ckpnt.path: features_path = model_ckpnt.path head_path = str.replace(features_path, "features", "head") print(f'Testing {model_ckpnt.path}') res = evaluate_anil(params, features, head, test_tasks, device, features_path, head_path) model_ckpnt_results[model_ckpnt.path] = res with open(base_path + '/ckpnt_results.json', 'w') as fp: json.dump(model_ckpnt_results, fp, sort_keys=True, indent=4) final_features = base_path + '/features.pt' final_head = base_path + '/head.pt' if meta_test: evaluate_anil(params, features, head, test_tasks, device, final_features, final_head) if cl_exp: print("Running Continual Learning experiment...") features.load_state_dict(torch.load(final_features)) features.to(device) head.load_state_dict(torch.load(final_head)) head.to(device) loss = torch.nn.CrossEntropyLoss(reduction='mean') run_cl_exp(base_path, head, loss, test_tasks, device, params['ways'], params['shots'], cl_params=cl_params, features=features) if rep_exp: features.load_state_dict(torch.load(final_features)) features.to(device) head.load_state_dict(torch.load(final_head)) head.to(device) loss = torch.nn.CrossEntropyLoss(reduction='mean') # Only check head change rep_params['layers'] = [-1] print("Running Representation experiment...") run_rep_exp(base_path, head, loss, test_tasks, device, params['ways'], params['shots'], rep_params=rep_params, features=features) def evaluate_maml(params, model, test_tasks, device, path): model.load_state_dict(torch.load(path)) model.to(device) maml = MAML(model, lr=params['inner_lr'], first_order=False) loss = torch.nn.CrossEntropyLoss(reduction='mean') return evaluate(params, test_tasks, maml, loss, device) def evaluate_anil(params, features, head, test_tasks, device, features_path, head_path): features.load_state_dict(torch.load(features_path)) features.to(device) head.load_state_dict(torch.load(head_path)) head = MAML(head, lr=params['inner_lr']) head.to(device) loss = torch.nn.CrossEntropyLoss(reduction='mean') return evaluate(params, test_tasks, head, loss, device, features=features) if __name__ == '__main__': run(base_path) exit() # MIN # ANIL 5w1s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/anil_5w1s_min_10_09_10h08_3_8815" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/anil_5w1s_min_10_09_11h06_2_2906" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/anil_5w1s_min_10_09_11h59_1_1374" # MAML 5w1s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/maml_5w1s_min_10_09_12h58_3_2722" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/maml_5w1s_min_10_09_15h12_1_9323" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w1s/maml_5w1s_min_10_09_17h09_2_6302" # ANIL 5w5s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/anil_5w5s_min_11_09_00h36_1_6461" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/anil_5w5s_min_11_09_03h38_2_8655" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/anil_5w5s_min_11_09_05h56_3_6285" # MAML 5w5s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/maml_5w5s_min_31_03_12h53_1_1434" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/maml_5w5s_min_31_03_12h54_2_1671" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/mini_imagenet/5w5s/maml_5w5s_min_31_03_12h54_3_2104" # Omni # ANIL 20w1s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/anil_20w1s_omni_06_09_11h17_1_4305" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/anil_20w1s_omni_06_09_11h17_2_8126" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/anil_20w1s_omni_06_09_11h17_3_4772" # MAML 20w1s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/maml_20w1s_omni_31_03_10h18_1_9247" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/maml_20w1s_omni_31_03_10h21_2_302" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w1s/maml_20w1s_omni_31_03_10h22_3_7628" # ANIL 20w5s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/anil/anil_20w5s_omni_09_09_13h23_2_4977" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/anil/anil_20w5s_omni_09_09_13h24_1_775" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/anil/anil_20w5s_omni_09_09_14h31_3_5663" # MAML 20w5s base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/maml/maml_20w5s_omni_31_03_10h23_1_6864" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/maml/maml_20w5s_omni_31_03_10h24_2_1576" base_path = "/home/kosz/Projects/KTH/Thesis/models/vision/omniglot/20w5s/maml/maml_20w5s_omni_31_03_10h24_3_8259"
StarcoderdataPython
3309293
from __future__ import print_function, absolute_import import os import subprocess import sys import threading import warnings import numpy as np from numba import jit, autojit, SmartArray, cuda, config from numba.errors import (NumbaDeprecationWarning, NumbaPendingDeprecationWarning, NumbaWarning) import numba.unittest_support as unittest from numba.targets.imputils import iternext_impl class TestDeprecation(unittest.TestCase): def test_autojit(self): with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always") def dummy(): pass autojit(dummy) self.assertEqual(len(w), 1) def check_warning(self, warnings, expected_str, category): self.assertEqual(len(warnings), 1) self.assertEqual(warnings[0].category, category) self.assertIn(expected_str, str(warnings[0].message)) self.assertIn("http://numba.pydata.org", str(warnings[0].message)) def test_jitfallback(self): # tests that @jit falling back to object mode raises a # NumbaDeprecationWarning with warnings.catch_warnings(record=True) as w: warnings.simplefilter("ignore", category=NumbaWarning) warnings.simplefilter("always", category=NumbaDeprecationWarning) def foo(): return [] # empty list cannot be typed jit(foo)() msg = ("Fall-back from the nopython compilation path to the object " "mode compilation path") self.check_warning(w, msg, NumbaDeprecationWarning) def test_reflection_of_mutable_container(self): # tests that reflection in list/set warns def foo_list(a): return a.append(1) def foo_set(a): return a.add(1) for f in [foo_list, foo_set]: container = f.__name__.strip('foo_') inp = eval(container)([10, ]) with warnings.catch_warnings(record=True) as w: warnings.simplefilter("ignore", category=NumbaWarning) warnings.simplefilter("always", category=NumbaPendingDeprecationWarning) jit(nopython=True)(f)(inp) self.assertEqual(len(w), 1) self.assertEqual(w[0].category, NumbaPendingDeprecationWarning) warn_msg = str(w[0].message) msg = ("Encountered the use of a type that is scheduled for " "deprecation") self.assertIn(msg, warn_msg) msg = ("\'reflected %s\' found for argument" % container) self.assertIn(msg, warn_msg) self.assertIn("http://numba.pydata.org", warn_msg) def test_smartarray(self): # tests deprecation of SmartArray with warnings.catch_warnings(record=True) as w: warnings.simplefilter("ignore", category=NumbaWarning) warnings.simplefilter("always", category=NumbaDeprecationWarning) SmartArray(np.zeros(1)) self.assertEqual(len(w), 1) self.assertEqual(w[0].category, NumbaDeprecationWarning) warn_msg = str(w[0].message) msg = "SmartArray is deprecated" self.assertIn(msg, warn_msg) self.assertIn("http://numba.pydata.org", warn_msg) def test_iternext_impl(self): # tests deprecation of iternext_impl without a RefType supplied with warnings.catch_warnings(record=True) as w: warnings.simplefilter("always", category=NumbaDeprecationWarning) @iternext_impl def foo(ctx, builder, sig, args, res): pass self.assertEqual(len(w), 1) self.assertEqual(w[0].category, NumbaDeprecationWarning) warn_msg = str(w[0].message) msg = ("The use of iternext_impl without specifying a " "numba.targets.imputils.RefType is deprecated") def run_cmd(self, cmdline, env, kill_is_ok=False): popen = subprocess.Popen(cmdline, stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env, shell=True) # finish in 20s or kill it, there's no work being done def kill(): popen.stdout.flush() popen.stderr.flush() popen.kill() timeout = threading.Timer(20., kill) try: timeout.start() out, err = popen.communicate() retcode = popen.returncode if retcode != 0: raise AssertionError("process failed with code %s: stderr " "follows\n%s\nstdout :%s" % (retcode, err.decode(), out.decode())) return out.decode(), err.decode() finally: timeout.cancel() return None, None @unittest.skipIf(not cuda.is_available() or config.ENABLE_CUDASIM, "Needs real CUDA stack") def test_numbapro_vars(self): # tests deprecation of NUMBAPRO_ environment variables expected = ("Environment variables with the 'NUMBAPRO' prefix are " "deprecated, found use of %s=%s") NUMBAPRO_VARS = [(['NVVM', 'CUDALIB', 'LIBDEVICE'], '/'), (['VERBOSE_CU_JIT_LOG', ], '1')] # NUMBAPRO_CUDA_LOG_SIZE is not tested, needs a live module/linker for varz, val in NUMBAPRO_VARS: for v in varz: numbapro_var = 'NUMBAPRO_%s' % v env_copy = os.environ.copy() env_copy[numbapro_var] = val call = "'from numba.cuda.cudadrv.libs import test; test()'" cmdline = [sys.executable, "-c", call] out, err = self.run_cmd(' '.join(cmdline), env_copy) self.assertIn('NumbaDeprecationWarning:', err) self.assertIn(expected % (numbapro_var, val), err) self.assertIn("http://numba.pydata.org", err) if __name__ == '__main__': unittest.main()
StarcoderdataPython
84965
<reponame>piyushrpt/isce3<filename>python/packages/isce3/core/Ellipsoid.py #-*- coding: utf-8 -*- # Import the extension from .. import isceextension class Ellipsoid(isceextension.pyEllipsoid): """ Wrapper for pyEllipsoid. """ pass
StarcoderdataPython
1677597
""" Ray factory classes that provide vertex and triangle information for rays on spheres Example: rays = Rays_Tetra(n_level = 4) print(rays.vertices) print(rays.faces) """ from __future__ import print_function, unicode_literals, absolute_import, division import numpy as np from scipy.spatial import ConvexHull import warnings class Rays_Base(object): def __init__(self, **kwargs): self.kwargs = kwargs self._vertices, self._faces = self.setup_vertices_faces() self._vertices = np.asarray(self._vertices, np.float32) self._faces = np.asarray(self._faces, np.int) self._faces = np.asanyarray(self._faces) def setup_vertices_faces(self): """has to return verts , faces verts = ( (z_1,y_1,x_1), ... ) faces ( (0,1,2), (2,3,4), ... ) """ raise NotImplementedError() @property def vertices(self): return self._vertices.copy() @property def faces(self): return self._faces.copy() def __getitem__(self, i): return self.vertices[i] def __len__(self): return len(self._vertices) def __repr__(self): def _conv(x): if isinstance(x,(tuple, list, np.ndarray)): return "_".join(_conv(_x) for _x in x) if isinstance(x,float): return "%.2f"%x return str(x) return "%s_%s" % (self.__class__.__name__, "_".join("%s_%s" % (k, _conv(v)) for k, v in sorted(self.kwargs.items()))) def to_json(self): return { "name": self.__class__.__name__, "kwargs": self.kwargs } def dist_loss_weights(self, anisotropy = (1,1,1)): """returns the anisotropy corrected weights for each ray""" anisotropy = np.array(anisotropy) assert anisotropy.shape == (3,) return np.linalg.norm(self.vertices*anisotropy, axis = -1) def rays_from_json(d): return eval(d["name"])(**d["kwargs"]) ################################################################ class Rays_Cartesian(Rays_Base): def __init__(self, n_rays_x=11, n_rays_z=5): super().__init__(n_rays_x=n_rays_x, n_rays_z=n_rays_z) def setup_vertices_faces(self): """has to return list of ( (z_1,y_1,x_1), ... ) _""" n_rays_x, n_rays_z = self.kwargs["n_rays_x"], self.kwargs["n_rays_z"] dphi = np.float32(2. * np.pi / n_rays_x) dtheta = np.float32(np.pi / n_rays_z) verts = [] for mz in range(n_rays_z): for mx in range(n_rays_x): phi = mx * dphi theta = mz * dtheta if mz == 0: theta = 1e-12 if mz == n_rays_z - 1: theta = np.pi - 1e-12 dx = np.cos(phi) * np.sin(theta) dy = np.sin(phi) * np.sin(theta) dz = np.cos(theta) if mz == 0 or mz == n_rays_z - 1: dx += 1e-12 dy += 1e-12 verts.append([dz, dy, dx]) verts = np.array(verts) def _ind(mz, mx): return mz * n_rays_x + mx faces = [] for mz in range(n_rays_z - 1): for mx in range(n_rays_x): faces.append([_ind(mz, mx), _ind(mz + 1, (mx + 1) % n_rays_x), _ind(mz, (mx + 1) % n_rays_x)]) faces.append([_ind(mz, mx), _ind(mz + 1, mx), _ind(mz + 1, (mx + 1) % n_rays_x)]) faces = np.array(faces) return verts, faces class Rays_SubDivide(Rays_Base): """ Subdivision polyehdra n_level = 1 -> base polyhedra n_level = 2 -> 1x subdivision n_level = 3 -> 2x subdivision ... """ def __init__(self, n_level=4): super().__init__(n_level=n_level) def base_polyhedron(self): raise NotImplementedError() def setup_vertices_faces(self): n_level = self.kwargs["n_level"] verts0, faces0 = self.base_polyhedron() return self._recursive_split(verts0, faces0, n_level) def _recursive_split(self, verts, faces, n_level): if n_level <= 1: return verts, faces else: verts, faces = Rays_SubDivide.split(verts, faces) return self._recursive_split(verts, faces, n_level - 1) @classmethod def split(self, verts0, faces0): """split a level""" split_edges = dict() verts = list(verts0[:]) faces = [] def _add(a, b): """ returns index of middle point and adds vertex if not already added""" edge = tuple(sorted((a, b))) if not edge in split_edges: v = .5 * (verts[a] + verts[b]) v *= 1. / np.linalg.norm(v) verts.append(v) split_edges[edge] = len(verts) - 1 return split_edges[edge] for v1, v2, v3 in faces0: ind1 = _add(v1, v2) ind2 = _add(v2, v3) ind3 = _add(v3, v1) faces.append([v1, ind1, ind3]) faces.append([v2, ind2, ind1]) faces.append([v3, ind3, ind2]) faces.append([ind1, ind2, ind3]) return verts, faces class Rays_Tetra(Rays_SubDivide): """ Subdivision of a tetrahedron n_level = 1 -> normal tetrahedron (4 vertices) n_level = 2 -> 1x subdivision (10 vertices) n_level = 3 -> 2x subdivision (34 vertices) ... """ def base_polyhedron(self): verts = np.array([ [np.sqrt(8. / 9), 0., -1. / 3], [-np.sqrt(2. / 9), np.sqrt(2. / 3), -1. / 3], [-np.sqrt(2. / 9), -np.sqrt(2. / 3), -1. / 3], [0., 0., 1.] ]) faces = [[0, 1, 2], [0, 3, 1], [0, 2, 3], [1, 3, 2]] return verts, faces class Rays_Octo(Rays_SubDivide): """ Subdivision of a tetrahedron n_level = 1 -> normal Octahedron (6 vertices) n_level = 2 -> 1x subdivision (18 vertices) n_level = 3 -> 2x subdivision (66 vertices) """ def base_polyhedron(self): verts = np.array([ [0, 0, 1], [0, 1, 0], [0, 0, -1], [0, -1, 0], [1, 0, 0], [-1, 0, 0]]) faces = [[0, 1, 4], [0, 5, 1], [1, 2, 4], [1, 5, 2], [2, 3, 4], [2, 5, 3], [3, 0, 4], [3, 5, 0], ] return verts, faces def reorder_faces(verts, faces): """reorder faces such that their orientation points outward""" def _single(face): return face[::-1] if np.linalg.det(verts[face])>0 else face return tuple(map(_single, faces)) class Rays_GoldenSpiral(Rays_Base): def __init__(self, n=70, anisotropy = None): if n<4: raise ValueError("At least 4 points have to be given!") super().__init__(n=n, anisotropy = anisotropy if anisotropy is None else tuple(anisotropy)) def setup_vertices_faces(self): n = self.kwargs["n"] anisotropy = self.kwargs["anisotropy"] if anisotropy is None: anisotropy = np.ones(3) else: anisotropy = np.array(anisotropy) # the smaller golden angle = 2pi * 0.3819... g = (3. - np.sqrt(5.)) * np.pi phi = g * np.arange(n) # z = np.linspace(-1, 1, n + 2)[1:-1] # rho = np.sqrt(1. - z ** 2) # verts = np.stack([rho*np.cos(phi), rho*np.sin(phi),z]).T # z = np.linspace(-1, 1, n) rho = np.sqrt(1. - z ** 2) verts = np.stack([z, rho * np.sin(phi), rho * np.cos(phi)]).T # warnings.warn("ray definition has changed! Old results are invalid!") # correct for anisotropy verts = verts/anisotropy #verts /= np.linalg.norm(verts, axis=-1, keepdims=True) hull = ConvexHull(verts) faces = reorder_faces(verts,hull.simplices) verts /= np.linalg.norm(verts, axis=-1, keepdims=True) return verts, faces
StarcoderdataPython
1680407
<filename>mfr/extensions/jasp/exceptions.py from mfr.core.exceptions import RendererError class JaspRendererError(RendererError): def __init__(self, message, *args, **kwargs): super().__init__(message, *args, renderer_class='jasp', **kwargs) class JaspVersionError(JaspRendererError): """The jasp related errors raised from a :class:`mfr.extentions.jasp` and relating to minimum data archive version should throw or subclass JaspVersionError. """ __TYPE = 'jasp_version' def __init__(self, message, *args, code: int=400, created_by: str='', actual_version: str='', required_version: str='', **kwargs): super().__init__(message, *args, code=code, **kwargs) self.created_by = created_by self.actual_version = actual_version self.required_version = required_version self.attr_stack.append([self.__TYPE, { 'created_by': self.created_by, 'actual_version': self.actual_version, 'required_version': self.required_version, }]) class JaspFileCorruptError(JaspRendererError): """The jasp related errors raised from a :class:`mfr.extentions.jasp` and relating to failure while consuming JASP files should inherit from JaspFileCorruptError """ __TYPE = 'jasp_file_corrupt' def __init__(self, message, *args, code: int=400, corruption_type: str='', reason: str='', **kwargs): super().__init__(message, *args, code=code, **kwargs) self.corruption_type = corruption_type self.reason = reason self.attr_stack.append([self.__TYPE, { 'corruption_type': self.corruption_type, 'reason': self.reason, }])
StarcoderdataPython
1633708
<filename>tests/tiebreaks/test_buchholz_minus_2.py import unittest from swiss_tournament.data.player import Player, BYE from swiss_tournament.data.result import Result from swiss_tournament.data.round_pairing import RoundPairing from swiss_tournament.data.tournament import Tournament from swiss_tournament.step.tie_breaker import BuchholzMinus2 class BuchholzMinus2TestCase(unittest.TestCase): unit = BuchholzMinus2() def test_without_rounds(self): result = self.unit.get(Player("alice"), Tournament([Player("alice")], [])) self.assertEqual(0, result) def test_with_one_round(self): result = self.unit.get( player=Player("bob"), tournament=Tournament( players=[ Player("alice"), Player("bob") ], rounds=[ RoundPairing("Round 1", [ Result(Player("alice"), Player("bob"), 1) ]) ] ) ) self.assertEqual(0, result) def test_with_two_rounds(self): result = self.unit.get( player=Player("bob"), tournament=Tournament( players=[ Player("alice"), Player("bob"), Player("charlie"), Player("dave") ], rounds=[ RoundPairing("Round 1", [ Result(Player("alice"), Player("bob"), 1), Result(Player("charlie"), Player("dave"), 0.5) ]), RoundPairing("Round 2", [ Result(Player("charlie"), Player("alice"), 1), Result(Player("dave"), Player("bob"), 1) ]) ] ) ) self.assertEqual(0, result) def test_with_three_rounds(self): result = self.unit.get( player=Player("bob"), tournament=Tournament( players=[ Player("alice"), Player("bob"), Player("charlie"), Player("dave") ], rounds=[ RoundPairing("Round 1", [ Result(Player("alice"), Player("bob"), 1), Result(Player("charlie"), Player("dave"), 1) ]), RoundPairing("Round 2", [ Result(Player("charlie"), Player("alice"), 1), Result(Player("dave"), Player("bob"), 0.5) ]), RoundPairing("Round 3", [ Result(Player("alice"), Player("dave"), 1), Result(Player("bob"), Player("charlie"), 0.5) ]) ] ) ) self.assertEqual(2.5, result) def test_with_bye_on_player(self): result = self.unit.get( player=Player("bob"), tournament=Tournament( players=[ Player("alice"), Player("bob"), Player("charlie"), Player("dave") ], rounds=[ RoundPairing("Round 1", [ Result(Player("alice"), Player("bob"), 1), Result(Player("charlie"), Player("dave"), 0.5) ]), RoundPairing("Round 2", [ Result(Player("charlie"), Player("alice"), 1), Result(Player("bob"), BYE, 0.5) ]), RoundPairing("Round 3", [ Result(Player("alice"), Player("dave"), 1), Result(Player("bob"), Player("dave"), 0.5) ]) ] ) ) self.assertEqual(2, result) def test_with_bye_on_opponent(self): result = self.unit.get( player=Player("bob"), tournament=Tournament( players=[ Player("alice"), Player("bob"), Player("charlie"), Player("dave") ], rounds=[ RoundPairing("Round 1", [ Result(Player("alice"), Player("bob"), 1), Result(Player("charlie"), Player("dave"), 0.5) ]), RoundPairing("Round 2", [ Result(Player("alice"), BYE, 1), Result(Player("bob"), Player("charlie"), 0.5) ]), RoundPairing("Round 3", [ Result(Player("alice"), Player("charlie"), 1), Result(Player("bob"), Player("dave"), 0.5) ]) ] ) ) self.assertEqual(3, result)
StarcoderdataPython
3260039
<filename>python/Exercicios/ex008.py # CONVERSOR DE METRO PARA OUTROS TIPOS DE MEDIDAS mt = float(input('Digite um valor (metro):')) km = mt / 1000 hm = mt / 100 dam = mt / 10 dm = mt * 10 cm = mt * 100 mm = mt * 1000 print(f'\n {mt}M equivale a {km}km.\n {mt}M equivale a {hm}hm.\n {mt}M equivale a {dam}dam.\n {mt}M equivale a {dm}dm' f'\n {mt}M equivale a {cm}cm.\n {mt}M equivale a {mm}mm.')
StarcoderdataPython
3301417
from z3 import Optimize, Real, If x = Real('x') y = Real('y') z = Real('z') def z3abs(obj): return If(x > 0, x, -x) optimizer = Optimize() # optimizer.add(x>0.0) # optimizer.add(y>0.0) optimizer.add(x*x+y*y==1.0) optimizer.add_soft(z == x+y) optimizer.maximize(z) result = optimizer.check() print(optimizer.model())
StarcoderdataPython
34600
# WRITE YOUR SOLUTION HERE:
StarcoderdataPython
3333422
from django import forms class ContactForm(forms.Form): amount = forms.IntegerField(label='Количество экземпляров')
StarcoderdataPython
3245588
<filename>home/forms.py from django import forms from .models import product class productform(forms.ModelForm): class Meta: model = product fields = [ 'id', 'name', 'instagram', 'snapchat', 'others', ]
StarcoderdataPython
1682143
# from .vpype import cli import vpype vpype.cli()
StarcoderdataPython
57597
from typing import Any from dataclasses import dataclass @dataclass class ScenarioResult: scenario: Any = None steps: Any = None id: str = None message: str = None elapsed: float = 0.0 exception: str = None threadId: int = None pid: int = None startTime: Any = None endTime: Any = None
StarcoderdataPython
4818685
<filename>seamges/patologias/migrations/0003_auto_20191124_1657.py # Generated by Django 2.2.7 on 2019-11-24 19:57 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('patologias', '0002_auto_20191124_1630'), ] operations = [ migrations.AlterModelOptions( name='patologia', options={'ordering': ['nombre'], 'verbose_name': 'Patología', 'verbose_name_plural': 'Patologías'}, ), ]
StarcoderdataPython
4807240
import math import collections class Cell(object): def __repr__(self): return 'C{val}'.format(val=self.val) def __str__(self): return self.__repr__() def __init__(self, board, val, x, y): self.val = val self.change = False self.x = x self.y = y self.missing_row_nums = board.missing_row_nums[self.y] self.missing_col_nums = board.missing_col_nums[self.x] self.missing_square_nums = board.missing_square_nums[board._determine_square_num(self.x, self.y)] self.valid_nums = None def get_valid_nums(self): return self.missing_square_nums.intersection(self.missing_row_nums, self.missing_col_nums) def has_singleton_solution(self): self.valid_nums = self.get_valid_nums() return len(self.valid_nums) == 1 def update_val_with_singleton(self): if len(self.valid_nums) == 1: self.val = self.valid_nums.pop() self._remove_possibility(self.val) def _remove_possibility(self, only_valid_num): for category in (self.missing_row_nums, self.missing_col_nums, self.missing_square_nums): category.remove(only_valid_num) def _reinsert_possibility(self, valid_num): for category in (self.missing_row_nums, self.missing_col_nums, self.missing_square_nums): category.add(valid_num) class Board(object): def __init__(self, board): self.board = board self.height = len(board) self.width = len(board[0]) self.missing_row_nums = self._get_missing_row_nums() self.missing_col_nums = self._get_missing_col_nums() self.missing_square_nums = self._get_missing_square_nums() self.missing_cells = self._get_missing_cells() def update_value(self, val, x, y): board[y][x] = val def update_board(self): self.missing_row_nums = self._get_missing_row_nums() self.missing_col_nums = self._get_missing_col_nums() self.missing_square_nums = self._get_missing_square_nums() def get_cell_val(self, x, y): return self.board[y][x] def _get_missing_row_nums(self): missing_row_nums = [] for row in self.board: missing_nums = set(range(1, 10)) for num in row: if num in missing_nums: missing_nums.remove(num) missing_row_nums.append(missing_nums) return missing_row_nums def _get_missing_col_nums(self): missing_col_nums = [] for x in range(self.width): missing_nums = set(range(1, 10)) for y in range(self.height): num = self.get_cell_val(x, y) if num in missing_nums: missing_nums.remove(num) missing_col_nums.append(missing_nums) return missing_col_nums def _get_missing_square_nums(self): missing_square_nums = [set(range(1,10)) for _ in range(self.height)] for y in range(self.height): for x in range(self.width): square_idx = self._determine_square_num(x, y) num = self.get_cell_val(x, y) if num in missing_square_nums[square_idx]: missing_square_nums[square_idx].remove(num) return missing_square_nums def _determine_square_num(self, x, y): row_num = math.floor(y / 3) col_num = math.floor(x / 3) return row_num * 3 + col_num def _get_missing_cells(self): missing_cells = collections.OrderedDict() for y, row in enumerate(self.board): for x, num in enumerate(row): if num == 0: missing_cells[(x, y)] = Cell(self, num, x, y) return missing_cells def solve(self): print('Unsolved:') self.print_board() board_has_changed = True while board_has_changed: num_missing_cells_before = len(self.missing_cells) for _ in range(num_missing_cells_before): missing_cell_id, missing_cell = self.missing_cells.popitem(last=False) if missing_cell.has_singleton_solution(): missing_cell.update_val_with_singleton() self.update_value(missing_cell.val, missing_cell.x, missing_cell.y) else: self.missing_cells[missing_cell_id] = missing_cell if len(self.missing_cells) == num_missing_cells_before: board_has_changed = False if len(self.missing_cells) > 0: self.backtrack_solver() print('Solved: ') self.print_board() def backtrack_solver(self, ): if len(self.missing_cells) == 0: return True missing_cell_id, missing_cell = self.missing_cells.popitem(last=False) valid_nums = missing_cell.get_valid_nums() for valid_num in valid_nums: missing_cell._remove_possibility(valid_num) is_valid_path = self.backtrack_solver() if is_valid_path: missing_cell.val = valid_num self.update_value(valid_num, missing_cell_id[0], missing_cell_id[1]) return is_valid_path missing_cell._reinsert_possibility(valid_num) self.missing_cells[missing_cell_id] = missing_cell return False def print_board(self): for row in self.board: str_row = [str(num) for num in row] print(' '.join(str_row)) print('\n') # Easy board def generate_board1(): board = [ [8, 0, 5, 0, 4, 0, 0, 9, 0], [0, 6, 9, 7, 1, 0, 0, 0, 3], [7, 0, 0, 3, 0, 8, 0, 0, 0], [0, 0, 6, 0, 0, 0, 2, 4, 0], [5, 4, 0, 0, 3, 0, 0, 1, 8], [0, 1, 8, 0, 0, 0, 9, 0, 0], [0, 0, 0, 8, 0, 4, 0, 0, 9], [1, 0, 0, 0, 7, 3, 4, 5, 0], [0, 7, 0, 0, 5, 0, 3, 0, 2] ] return board # Hard board def generate_board2(): board = [ [int(i) for i in '006000134'], [int(i) for i in '300400009'], [int(i) for i in '080100000'], [int(i) for i in '600500010'], [int(i) for i in '000761000'], [int(i) for i in '030008007'], [int(i) for i in '000009080'], [int(i) for i in '100004002'], [int(i) for i in '245000600'], ] return board if __name__ == '__main__': print('Board 1:') board = generate_board1() sudoku_puzzle = Board(board) sudoku_puzzle.solve() print('Board 2:') board = generate_board2() sudoku_puzzle = Board(board) sudoku_puzzle.solve()
StarcoderdataPython
99997
<gh_stars>0 from django.conf.urls import url from django.conf.urls.static import static from . import views app_name = "videodownloader" urlpatterns = [ url(r'^$', views.index, name='index'), url(r'^downloadfile/$', views.downloadfile, name='downloadfile'), ]
StarcoderdataPython
1687419
<reponame>zpiman/golemScripts from subprocess import call import urllib import xml.etree.ElementTree as ET import time, math ## serial is not no buon #import serialDecoder.py as sd TELNET = "telnet 192.168.2.241 10001" device = '/dev/cu.usbserial' time_delay = 0.1 time_step = 0.001 class DataGetter(): """Abstract class used for getting the voltage from a device""" def __init__(self): pass def get(self): pass class PotentiometerMover(): """Abstract class used for moving the potentiometer""" def __init__(self): pass def move(self, direction, distance): pass class AD_DataGetter(DataGetter): """Class using the AD4ETH A2D converter for measuring the voltage""" def __init__(self, url): self.url = url def get(self): data = urllib.urlopen(self.url).read() root = ET.fromstring(data) inputs = root[0] return float(inputs.attrib['val']) class Serial_DataGetter(DataGetter): """Class using the VA18B voltmeter over serial connection""" def __init__(self, serialDevice): self.serialDevice def get(self): return float(self.serialDevice.getValue()) class Relay_PotentiometerMover(PotentiometerMover): """Class using the Quido relay for moving the potentiometer head""" def __init__(self): pass def _sendCommand(self, relayId, high): if relayId > 16 or relayId < 1: raise ValueError("Value out of bounds") stateLetter = "" if high: stateLetter = "H" else: stateLetter = "L" stringToSend = "echo '*B1OS" + str(relayId) + stateLetter + "' | " + TELNET call(stringToSend, shell=True) def move(self, val): for i in xrange(abs(val)): if val > 0: self._sendCommand(2, True) self._sendCommand(3, True) else: self._sendCommand(2, False) self._sendCommand(3, False) print val time.sleep(time_delay/(abs(val)/10.0)) self._sendCommand(1, True) time.sleep(time_step) self._sendCommand(1, False) time.sleep(time_step) class Potentiometer(): def __init__(self, voltageGetter, potentiometerMover, rang=0.05): self.vG = voltageGetter self.pM = potentiometerMover self.rang = rang def setValue(self, value): while True: offset = self._offset(value) if abs(offset) < self.rang: # we are in range of the value time.sleep(1) print "done" if abs(self._offset(value)) > self.rang: print "final:",self._offset(value) continue print self._offset(value) return move = self._movement(offset) print "moving", move self._move(int(move)) # move the head a little def _offset(self, value): currentVal = self.getValue() offset = currentVal - value return offset def _movement(self, offset): if offset < 0: sign = True else: sign = False move = math.ceil((offset*10)) if sign: move *= 1 return move def _move(self, val): self.pM.move(val) def getValue(self): return self.vG.get() po = Relay_PotentiometerMover() ## Using AD dataGetter = AD_DataGetter('http://192.168.2.242/data.xml') va = Potentiometer(dataGetter, po) print va.getValue() va.setValue(2) ## Using serial device #with sd.SerialDevice(device, 1) as s: # dataGetter = Serial_DataGetter(s) # va = Potentiometer(dataGetter)
StarcoderdataPython
1050
from __future__ import division from mmtbx.tls import tools import math import time pdb_str_1 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 3.000 0.000 0.000 1.00 0.00 C """ pdb_str_2 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 0.000 3.000 0.000 1.00 0.00 C """ pdb_str_3 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 0.000 0.000 3.000 1.00 0.00 C """ pdb_str_4 = """ CRYST1 10.000 10.000 10.000 90.00 90.00 90.00 P1 ATOM 1 CA THR A 6 0.000 0.000 0.000 1.00 0.00 C ATOM 1 CA THR B 6 1.000 2.000 3.000 1.00 0.00 C """ def exercise_03(): sqrt = math.sqrt vs = [] vs.append( [(sqrt(2)/2, sqrt(2)/2, 0), (-sqrt(2)/2, sqrt(2)/2, 0), (0,0,1)] ) vs.append( [(1,0,0), (0, sqrt(2)/2, sqrt(2)/2), (0, -sqrt(2)/2, sqrt(2)/2)] ) vs.append( [(sqrt(3)/2, 1/2, 0), (-1/2, sqrt(3)/2, 0), (0,0,1)] ) vs.append( [(1,0,0), (0, sqrt(3)/2, 1/2), (0, -1/2, sqrt(3)/2)] ) for pdb_str in [pdb_str_1, pdb_str_2, pdb_str_3, pdb_str_4]: for vs_ in vs: vx,vy,vz = vs_ print vx,vy,vz tools.u_tls_vs_u_ens(pdb_str=pdb_str, tx=0.05,ty=0.07,tz=0.09, vx=vx, vy=vy, vz=vz, n_models=1000) if (__name__ == "__main__"): t0 = time.time() exercise_03() print "Time: %6.4f"%(time.time()-t0) print "OK"
StarcoderdataPython
1695068
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. # coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class PushDataUpdateResponse(Model): """A response to a push data update. :param update_id: The id of the push data update that you can use to track it down. :type update_id: str """ _attribute_map = { 'update_id': {'key': 'updateId', 'type': 'str'}, } def __init__(self, **kwargs): super(PushDataUpdateResponse, self).__init__(**kwargs) self.update_id = kwargs.get('update_id', None)
StarcoderdataPython
189183
<filename>servicios/urls.py<gh_stars>0 from django.urls import path from . import views urlpatterns = [ path('', views.servicios, name="servicios"), path ('constancia/', views.constancia, name="constancia"), path('kardex/', views.kardex, name="kardex"), path('seguro/', views.seguro, name="seguro"), ]
StarcoderdataPython
86158
<filename>mindware/optimizers/base_optimizer.py import abc import os import time import numpy as np import pickle as pkl from mindware.utils.constant import MAX_INT from mindware.utils.logging_utils import get_logger from mindware.components.evaluators.base_evaluator import _BaseEvaluator from mindware.components.utils.topk_saver import CombinedTopKModelSaver class BaseOptimizer(object): def __init__(self, evaluator: _BaseEvaluator, config_space, name, timestamp, eval_type, output_dir=None, seed=None): self.evaluator = evaluator self.config_space = config_space assert name in ['hpo', 'fe'] self.name = name self.seed = np.random.random_integers(MAX_INT) if seed is None else seed self.start_time = time.time() self.timing_list = list() self.incumbent = None self.eval_type = eval_type self.logger = get_logger(self.__module__ + "." + self.__class__.__name__) self.init_hpo_iter_num = None self.early_stopped_flag = False self.timestamp = timestamp self.output_dir = output_dir self.topk_saver = CombinedTopKModelSaver(k=50, model_dir=self.output_dir, identifier=self.timestamp) @abc.abstractmethod def run(self): pass @abc.abstractmethod def iterate(self, budget=MAX_INT): pass # TODO:Refactor the other optimizers def update_saver(self, config_list, perf_list): # Check if all the configs is valid in case of storing None into the config file all_invalid = True for i, perf in enumerate(perf_list): if np.isfinite(perf) and perf != MAX_INT: all_invalid = False if not isinstance(config_list[i], dict): config = config_list[i].get_dictionary().copy() else: config = config_list[i].copy() if self.evaluator.fixed_config is not None: if not isinstance(self.evaluator.fixed_config, dict): fixed_config = self.evaluator.fixed_config.get_dictionary().copy() else: fixed_config = self.evaluator.fixed_config.copy() config.update(fixed_config) classifier_id = config['algorithm'] # -perf: The larger, the better. save_flag, model_path, delete_flag, model_path_deleted = self.topk_saver.add(config, -perf, classifier_id) # By default, the evaluator has already stored the models. if self.eval_type in ['holdout', 'partial']: if save_flag: pass else: os.remove(model_path) self.logger.info("Model deleted from %s" % model_path) try: if delete_flag: os.remove(model_path_deleted) self.logger.info("Model deleted from %s" % model_path_deleted) else: pass except: pass else: continue if not all_invalid: self.topk_saver.save_topk_config() def get_evaluation_stats(self): return def gc(self): return
StarcoderdataPython
153947
<reponame>object-oriented-human/competitive n = int(input()) l = list(map(int, input().split())) print(all([x > 0 for x in l]) and any([str(x)[::-1] == str(x) for x in l]))
StarcoderdataPython
3315392
import torch from torch import Tensor from torch.nn import Module from torch.utils.data import Dataset from torch.utils.data.dataloader import DataLoader from typing import Optional, Sequence, List, Dict, SupportsFloat from utils import make_batch_one_hot class CumulativeStatistic: def __init__(self): self.values_sum = 0.0 self.overall_count = 0.0 self.average = 0.0 def update_using_counts(self, value: SupportsFloat, count: SupportsFloat = 1.0): value = float(value) count = float(count) self.values_sum += value self.overall_count += count self.average = self.values_sum / self.overall_count def update_using_averages(self, value: SupportsFloat, count: SupportsFloat = 1.0): value = float(value) * float(count) count = float(count) self.values_sum += value self.overall_count += count self.average = self.values_sum / self.overall_count def get_accuracy(model: Module, test_dataset: Dataset, device: Optional[torch.device] = None, required_top_k: Optional[Sequence[int]] = None, return_detailed_outputs: bool = False, criterion: Module = None, make_one_hot: bool = False, n_classes: int = -1, **kwargs) -> \ (torch.FloatTensor, Optional[float], Optional[Tensor], Optional[Tensor]): stats: Dict[int, CumulativeStatistic] max_top_k: int all_val_outputs_tmp: List[Tensor] = [] all_val_labels_tmp: List[Tensor] = [] all_val_outputs: Optional[Tensor] = None all_val_labels: Optional[Tensor] = None test_loss: Optional[CumulativeStatistic] = None test_loader: DataLoader if required_top_k is None: required_top_k = [1] max_top_k = max(required_top_k) stats = {} for top_k in required_top_k: stats[top_k] = CumulativeStatistic() if criterion is not None: # Enable test loss test_loss = CumulativeStatistic() if make_one_hot and n_classes <= 0: raise ValueError("n_class must be set when using one_hot_vectors") test_loader = DataLoader(test_dataset, **kwargs) model.eval() with torch.no_grad(): patterns: Tensor labels: Tensor targets: Tensor output: Tensor for patterns, labels in test_loader: # Clear grad model.zero_grad() if return_detailed_outputs: all_val_labels_tmp.append(labels.detach().cpu()) if make_one_hot: targets = make_batch_one_hot(labels, n_classes) else: targets = labels # Send data to device if device is not None: patterns = patterns.to(device) targets = targets.to(device) # Forward output = model(patterns) if criterion is not None: test_loss.update_using_averages(criterion(output, targets).detach().cpu().item(), count=len(labels)) output = output.detach().cpu() if return_detailed_outputs: all_val_outputs_tmp.append(output) # https://gist.github.com/weiaicunzai/2a5ae6eac6712c70bde0630f3e76b77b # Gets the indexes of max_top_k elements _, top_k_idx = output.topk(max_top_k, 1) top_k_idx = top_k_idx.t() # correct will have values True where index == label correct = top_k_idx.eq(labels.reshape(1, -1).expand_as(top_k_idx)) for top_k in required_top_k: correct_k = correct[:top_k].reshape(-1).float().sum(0) # Number of correct patterns for this top_k stats[top_k].update_using_counts(correct_k, len(labels)) if return_detailed_outputs: all_val_outputs = torch.cat(all_val_outputs_tmp) all_val_labels = torch.cat(all_val_labels_tmp) acc_results = torch.empty(len(required_top_k), dtype=torch.float) for top_idx, top_k in enumerate(required_top_k): acc_results[top_idx] = stats[top_k].average test_loss_result = None if criterion is not None: test_loss_result = test_loss.average return acc_results, test_loss_result, all_val_outputs, all_val_labels
StarcoderdataPython
3204196
<reponame>2degrees/djeneralize<gh_stars>1-10 from django.db import models from djeneralize.fields import SpecializedForeignKey from djeneralize.models import BaseGeneralizationModel class Shop(models.Model): name = models.CharField(max_length=30) producer = SpecializedForeignKey('FruitProducer', related_name='shops') class FruitProducer(BaseGeneralizationModel): name = models.CharField(max_length=30) pen = models.ForeignKey('writing.WritingImplement') produce = SpecializedForeignKey('fruit.Fruit') class EcoProducer(FruitProducer): fertilizer = models.CharField(max_length=30) class Meta: specialization = 'eco_producer' class StandardProducer(FruitProducer): chemicals = models.CharField(max_length=30) class Meta: specialization = 'standard_producer'
StarcoderdataPython
156816
<filename>tau/core/migrations/0002_reset_all_account_webhooks.py # Generated by Django 3.1.7 on 2021-11-06 12:18 from django.db import migrations from constance import config def toggle_reset_webhooks(apps, schema_editor): config.RESET_ALL_WEBHOOKS = True class Migration(migrations.Migration): dependencies = [ ('core', '0001_scope_update_for_chat'), ] operations = [ migrations.RunPython(toggle_reset_webhooks) ]
StarcoderdataPython
1703292
"""add new section table Revision ID: c5cf60c29302 Revises: <KEY> Create Date: 2016-06-21 13:26:54.041246 """ # revision identifiers, used by Alembic. revision = 'c5cf60c29302' down_revision = '<KEY>' branch_labels = None depends_on = None from alembic import op import sqlalchemy as sa def upgrade(): op.create_table('section', sa.Column('id', sa.INTEGER()), sa.Column('name', sa.String(), default=''), sa.PrimaryKeyConstraint('id')) op.add_column('category', sa.Column('section_id', sa.INTEGER())) sa.ForeignKeyConstraint(['section_id'], ['section.id']) def downgrade(): op.drop_table('section') op.drop_column('category', 'section_id')
StarcoderdataPython
8423
<filename>pctest/test_publish.py<gh_stars>0 #!/usr/bin/python3 # pip3 install websockets import asyncio import websockets import json import datetime import sys class test_publish: idnum = 1 def __init__( self, sym, price, spread ): self.symbol = sym self.pidnum = test_publish.idnum test_publish.idnum += 1 self.sidnum = test_publish.idnum test_publish.idnum += 1 self.psubid = -1 self.ssubid = -1 self.price = price self.spread = spread def gen_subscribe_price(self): req = { 'jsonrpc': '2.0', 'method' : 'subscribe_price', 'params' : { 'account': self.account, 'price_type' : 'price' }, 'id': self.sidnum } return json.dumps( req ) def gen_subscribe_price_sched(self): req = { 'jsonrpc': '2.0', 'method' : 'subscribe_price_sched', 'params' : { 'account': self.account, 'price_type' : 'price' }, 'id': self.pidnum } return json.dumps( req ) def gen_update_price(self): req = { 'jsonrpc': '2.0', 'method': 'update_price', 'params':{ 'account': self.account, 'price_type': 'price', 'status': 'trading', 'price': self.price, 'conf': self.spread }, 'id': None } self.price += self.spread return json.dumps( req ) def parse_reply( self, msg, allsub ): # parse subscription replies subid = msg['result']['subscription'] allsub[subid] = self if msg['id'] == self.pidnum: self.psubid = subid; else: self.ssubid = subid async def parse_notify( self, ws, msg ): # parse subscription notification messages subid = msg['params']['subscription'] ts = datetime.datetime.utcnow().isoformat() if subid == self.ssubid: # aggregate price update res = msg['params']['result'] price = res['price'] spread = res['conf'] status = res['status'] print( f'{ts} received aggregate price update symbol=' + self.symbol + f',price={price}, spread={spread}, status={status}' ) else: # request to submit price print( f'{ts} submit price to block-chain symbol=' + self.symbol + f',price={self.price}, spread={self.spread}, subscription={subid}') await ws.send( self.gen_update_price() ) async def subscribe( self, acct, ws, allids ): # submmit initial subscriptions self.account = acct allids[self.pidnum] = self allids[self.sidnum] = self await ws.send( self.gen_subscribe_price() ) await ws.send( self.gen_subscribe_price_sched() ) # wbsocket event loop async def poll( uri ): # connect to pythd ws = await websockets.connect(uri) # submit subscriptions to pythd allids = {} allsub = {} allsym = {} sym1 = test_publish( 'SYMBOL1/USD', 10000, 100 ) sym2 = test_publish( 'SYMBOL2/USD', 2000000, 20000 ) allsym[sym1.symbol] = sym1 allsym[sym2.symbol] = sym2 # lookup accounts by symbol and subscribe req = { 'jsonrpc': '2.0', 'method': 'get_product_list', 'id': None } await ws.send( json.dumps( req ) ) msg = json.loads( await ws.recv() ) for prod in msg['result']: sym = prod['attr_dict']['symbol'] for px in prod['price']: if sym in allsym and px['price_type'] == 'price': await allsym[sym].subscribe( px['account'], ws, allids ); # poll for updates from pythd while True: msg = json.loads( await ws.recv() ) # print(msg) if 'error' in msg: ts = datetime.datetime.utcnow().isoformat() code = msg['error']['code'] emsg = msg['error']['message'] print( f'{ts} error code: {code} msg: {emsg}' ) sys.exit(1) elif 'result' in msg: msgid = msg['id'] if msgid in allids: allids[msgid].parse_reply( msg, allsub ) else: subid = msg['params']['subscription'] if subid in allsub: await allsub[subid].parse_notify( ws, msg ) # connect to pythd, subscribe to and start publishing on two symbols if __name__ == '__main__': uri='ws://localhost:8910' eloop = asyncio.get_event_loop() try: eloop.run_until_complete( poll( uri ) ) except ConnectionRefusedError: print( f'connection refused uri={uri}' ) sys.exit(1)
StarcoderdataPython
1735811
# # script.py # # This file is modified from python-mitcoinlib. # # Distributed under the MIT/X11 software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. # """Scripts Functionality to build scripts, as well as SignatureHash(). """ from __future__ import absolute_import, division, print_function, unicode_literals from test_framework.mininode import CTransaction, CTxOut, hash256 import sys bchr = chr bord = ord if sys.version > '3': long = int bchr = lambda x: bytes([x]) bord = lambda x: x import copy import struct import test_framework.bignum MAX_SCRIPT_SIZE = 10000 MAX_SCRIPT_ELEMENT_SIZE = 520 MAX_SCRIPT_OPCODES = 201 OPCODE_NAMES = {} _opcode_instances = [] class CScriptOp(int): """A single script opcode""" __slots__ = [] @staticmethod def encode_op_pushdata(d): """Encode a PUSHDATA op, returning bytes""" if len(d) < 0x4c: return b'' + bchr(len(d)) + d # OP_PUSHDATA elif len(d) <= 0xff: return b'\x4c' + bchr(len(d)) + d # OP_PUSHDATA1 elif len(d) <= 0xffff: return b'\x4d' + struct.pack(b'<H', len(d)) + d # OP_PUSHDATA2 elif len(d) <= 0xffffffff: return b'\x4e' + struct.pack(b'<I', len(d)) + d # OP_PUSHDATA4 else: raise ValueError("Data too long to encode in a PUSHDATA op") @staticmethod def encode_op_n(n): """Encode a small integer op, returning an opcode""" if not (0 <= n <= 16): raise ValueError('Integer must be in range 0 <= n <= 16, got %d' % n) if n == 0: return OP_0 else: return CScriptOp(OP_1 + n-1) def decode_op_n(self): """Decode a small integer opcode, returning an integer""" if self == OP_0: return 0 if not (self == OP_0 or OP_1 <= self <= OP_16): raise ValueError('op %r is not an OP_N' % self) return int(self - OP_1+1) def is_small_int(self): """Return true if the op pushes a small integer to the stack""" if 0x51 <= self <= 0x60 or self == 0: return True else: return False def __str__(self): return repr(self) def __repr__(self): if self in OPCODE_NAMES: return OPCODE_NAMES[self] else: return 'CScriptOp(0x%x)' % self def __new__(cls, n): try: return _opcode_instances[n] except IndexError: assert len(_opcode_instances) == n _opcode_instances.append(super(CScriptOp, cls).__new__(cls, n)) return _opcode_instances[n] # Populate opcode instance table for n in range(0xff+1): CScriptOp(n) # push value OP_0 = CScriptOp(0x00) OP_FALSE = OP_0 OP_PUSHDATA1 = CScriptOp(0x4c) OP_PUSHDATA2 = CScriptOp(0x4d) OP_PUSHDATA4 = CScriptOp(0x4e) OP_1NEGATE = CScriptOp(0x4f) OP_RESERVED = CScriptOp(0x50) OP_1 = CScriptOp(0x51) OP_TRUE=OP_1 OP_2 = CScriptOp(0x52) OP_3 = CScriptOp(0x53) OP_4 = CScriptOp(0x54) OP_5 = CScriptOp(0x55) OP_6 = CScriptOp(0x56) OP_7 = CScriptOp(0x57) OP_8 = CScriptOp(0x58) OP_9 = CScriptOp(0x59) OP_10 = CScriptOp(0x5a) OP_11 = CScriptOp(0x5b) OP_12 = CScriptOp(0x5c) OP_13 = CScriptOp(0x5d) OP_14 = CScriptOp(0x5e) OP_15 = CScriptOp(0x5f) OP_16 = CScriptOp(0x60) # control OP_NOP = CScriptOp(0x61) OP_VER = CScriptOp(0x62) OP_IF = CScriptOp(0x63) OP_NOTIF = CScriptOp(0x64) OP_VERIF = CScriptOp(0x65) OP_VERNOTIF = CScriptOp(0x66) OP_ELSE = CScriptOp(0x67) OP_ENDIF = CScriptOp(0x68) OP_VERIFY = CScriptOp(0x69) OP_RETURN = CScriptOp(0x6a) # stack ops OP_TOALTSTACK = CScriptOp(0x6b) OP_FROMALTSTACK = CScriptOp(0x6c) OP_2DROP = CScriptOp(0x6d) OP_2DUP = CScriptOp(0x6e) OP_3DUP = CScriptOp(0x6f) OP_2OVER = CScriptOp(0x70) OP_2ROT = CScriptOp(0x71) OP_2SWAP = CScriptOp(0x72) OP_IFDUP = CScriptOp(0x73) OP_DEPTH = CScriptOp(0x74) OP_DROP = CScriptOp(0x75) OP_DUP = CScriptOp(0x76) OP_NIP = CScriptOp(0x77) OP_OVER = CScriptOp(0x78) OP_PICK = CScriptOp(0x79) OP_ROLL = CScriptOp(0x7a) OP_ROT = CScriptOp(0x7b) OP_SWAP = CScriptOp(0x7c) OP_TUCK = CScriptOp(0x7d) # splice ops OP_CAT = CScriptOp(0x7e) OP_SUBSTR = CScriptOp(0x7f) OP_LEFT = CScriptOp(0x80) OP_RIGHT = CScriptOp(0x81) OP_SIZE = CScriptOp(0x82) # bit logic OP_INVERT = CScriptOp(0x83) OP_AND = CScriptOp(0x84) OP_OR = CScriptOp(0x85) OP_XOR = CScriptOp(0x86) OP_EQUAL = CScriptOp(0x87) OP_EQUALVERIFY = CScriptOp(0x88) OP_RESERVED1 = CScriptOp(0x89) OP_RESERVED2 = CScriptOp(0x8a) # numeric OP_1ADD = CScriptOp(0x8b) OP_1SUB = CScriptOp(0x8c) OP_2MUL = CScriptOp(0x8d) OP_2DIV = CScriptOp(0x8e) OP_NEGATE = CScriptOp(0x8f) OP_ABS = CScriptOp(0x90) OP_NOT = CScriptOp(0x91) OP_0NOTEQUAL = CScriptOp(0x92) OP_ADD = CScriptOp(0x93) OP_SUB = CScriptOp(0x94) OP_MUL = CScriptOp(0x95) OP_DIV = CScriptOp(0x96) OP_MOD = CScriptOp(0x97) OP_LSHIFT = CScriptOp(0x98) OP_RSHIFT = CScriptOp(0x99) OP_BOOLAND = CScriptOp(0x9a) OP_BOOLOR = CScriptOp(0x9b) OP_NUMEQUAL = CScriptOp(0x9c) OP_NUMEQUALVERIFY = CScriptOp(0x9d) OP_NUMNOTEQUAL = CScriptOp(0x9e) OP_LESSTHAN = CScriptOp(0x9f) OP_GREATERTHAN = CScriptOp(0xa0) OP_LESSTHANOREQUAL = CScriptOp(0xa1) OP_GREATERTHANOREQUAL = CScriptOp(0xa2) OP_MIN = CScriptOp(0xa3) OP_MAX = CScriptOp(0xa4) OP_WITHIN = CScriptOp(0xa5) # crypto OP_RIPEMD160 = CScriptOp(0xa6) OP_SHA1 = CScriptOp(0xa7) OP_SHA256 = CScriptOp(0xa8) OP_HASH160 = CScriptOp(0xa9) OP_HASH256 = CScriptOp(0xaa) OP_CODESEPARATOR = CScriptOp(0xab) OP_CHECKSIG = CScriptOp(0xac) OP_CHECKSIGVERIFY = CScriptOp(0xad) OP_CHECKMULTISIG = CScriptOp(0xae) OP_CHECKMULTISIGVERIFY = CScriptOp(0xaf) # expansion OP_NOP1 = CScriptOp(0xb0) OP_NOP2 = CScriptOp(0xb1) OP_NOP3 = CScriptOp(0xb2) OP_NOP4 = CScriptOp(0xb3) OP_NOP5 = CScriptOp(0xb4) OP_NOP6 = CScriptOp(0xb5) OP_NOP7 = CScriptOp(0xb6) OP_NOP8 = CScriptOp(0xb7) OP_NOP9 = CScriptOp(0xb8) OP_NOP10 = CScriptOp(0xb9) # template matching params OP_SMALLINTEGER = CScriptOp(0xfa) OP_PUBKEYS = CScriptOp(0xfb) OP_PUBKEYHASH = CScriptOp(0xfd) OP_PUBKEY = CScriptOp(0xfe) OP_INVALIDOPCODE = CScriptOp(0xff) VALID_OPCODES = { OP_1NEGATE, OP_RESERVED, OP_1, OP_2, OP_3, OP_4, OP_5, OP_6, OP_7, OP_8, OP_9, OP_10, OP_11, OP_12, OP_13, OP_14, OP_15, OP_16, OP_NOP, OP_VER, OP_IF, OP_NOTIF, OP_VERIF, OP_VERNOTIF, OP_ELSE, OP_ENDIF, OP_VERIFY, OP_RETURN, OP_TOALTSTACK, OP_FROMALTSTACK, OP_2DROP, OP_2DUP, OP_3DUP, OP_2OVER, OP_2ROT, OP_2SWAP, OP_IFDUP, OP_DEPTH, OP_DROP, OP_DUP, OP_NIP, OP_OVER, OP_PICK, OP_ROLL, OP_ROT, OP_SWAP, OP_TUCK, OP_CAT, OP_SUBSTR, OP_LEFT, OP_RIGHT, OP_SIZE, OP_INVERT, OP_AND, OP_OR, OP_XOR, OP_EQUAL, OP_EQUALVERIFY, OP_RESERVED1, OP_RESERVED2, OP_1ADD, OP_1SUB, OP_2MUL, OP_2DIV, OP_NEGATE, OP_ABS, OP_NOT, OP_0NOTEQUAL, OP_ADD, OP_SUB, OP_MUL, OP_DIV, OP_MOD, OP_LSHIFT, OP_RSHIFT, OP_BOOLAND, OP_BOOLOR, OP_NUMEQUAL, OP_NUMEQUALVERIFY, OP_NUMNOTEQUAL, OP_LESSTHAN, OP_GREATERTHAN, OP_LESSTHANOREQUAL, OP_GREATERTHANOREQUAL, OP_MIN, OP_MAX, OP_WITHIN, OP_RIPEMD160, OP_SHA1, OP_SHA256, OP_HASH160, OP_HASH256, OP_CODESEPARATOR, OP_CHECKSIG, OP_CHECKSIGVERIFY, OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY, OP_NOP1, OP_NOP2, OP_NOP3, OP_NOP4, OP_NOP5, OP_NOP6, OP_NOP7, OP_NOP8, OP_NOP9, OP_NOP10, OP_SMALLINTEGER, OP_PUBKEYS, OP_PUBKEYHASH, OP_PUBKEY, } OPCODE_NAMES.update({ OP_0 : 'OP_0', OP_PUSHDATA1 : 'OP_PUSHDATA1', OP_PUSHDATA2 : 'OP_PUSHDATA2', OP_PUSHDATA4 : 'OP_PUSHDATA4', OP_1NEGATE : 'OP_1NEGATE', OP_RESERVED : 'OP_RESERVED', OP_1 : 'OP_1', OP_2 : 'OP_2', OP_3 : 'OP_3', OP_4 : 'OP_4', OP_5 : 'OP_5', OP_6 : 'OP_6', OP_7 : 'OP_7', OP_8 : 'OP_8', OP_9 : 'OP_9', OP_10 : 'OP_10', OP_11 : 'OP_11', OP_12 : 'OP_12', OP_13 : 'OP_13', OP_14 : 'OP_14', OP_15 : 'OP_15', OP_16 : 'OP_16', OP_NOP : 'OP_NOP', OP_VER : 'OP_VER', OP_IF : 'OP_IF', OP_NOTIF : 'OP_NOTIF', OP_VERIF : 'OP_VERIF', OP_VERNOTIF : 'OP_VERNOTIF', OP_ELSE : 'OP_ELSE', OP_ENDIF : 'OP_ENDIF', OP_VERIFY : 'OP_VERIFY', OP_RETURN : 'OP_RETURN', OP_TOALTSTACK : 'OP_TOALTSTACK', OP_FROMALTSTACK : 'OP_FROMALTSTACK', OP_2DROP : 'OP_2DROP', OP_2DUP : 'OP_2DUP', OP_3DUP : 'OP_3DUP', OP_2OVER : 'OP_2OVER', OP_2ROT : 'OP_2ROT', OP_2SWAP : 'OP_2SWAP', OP_IFDUP : 'OP_IFDUP', OP_DEPTH : 'OP_DEPTH', OP_DROP : 'OP_DROP', OP_DUP : 'OP_DUP', OP_NIP : 'OP_NIP', OP_OVER : 'OP_OVER', OP_PICK : 'OP_PICK', OP_ROLL : 'OP_ROLL', OP_ROT : 'OP_ROT', OP_SWAP : 'OP_SWAP', OP_TUCK : 'OP_TUCK', OP_CAT : 'OP_CAT', OP_SUBSTR : 'OP_SUBSTR', OP_LEFT : 'OP_LEFT', OP_RIGHT : 'OP_RIGHT', OP_SIZE : 'OP_SIZE', OP_INVERT : 'OP_INVERT', OP_AND : 'OP_AND', OP_OR : 'OP_OR', OP_XOR : 'OP_XOR', OP_EQUAL : 'OP_EQUAL', OP_EQUALVERIFY : 'OP_EQUALVERIFY', OP_RESERVED1 : 'OP_RESERVED1', OP_RESERVED2 : 'OP_RESERVED2', OP_1ADD : 'OP_1ADD', OP_1SUB : 'OP_1SUB', OP_2MUL : 'OP_2MUL', OP_2DIV : 'OP_2DIV', OP_NEGATE : 'OP_NEGATE', OP_ABS : 'OP_ABS', OP_NOT : 'OP_NOT', OP_0NOTEQUAL : 'OP_0NOTEQUAL', OP_ADD : 'OP_ADD', OP_SUB : 'OP_SUB', OP_MUL : 'OP_MUL', OP_DIV : 'OP_DIV', OP_MOD : 'OP_MOD', OP_LSHIFT : 'OP_LSHIFT', OP_RSHIFT : 'OP_RSHIFT', OP_BOOLAND : 'OP_BOOLAND', OP_BOOLOR : 'OP_BOOLOR', OP_NUMEQUAL : 'OP_NUMEQUAL', OP_NUMEQUALVERIFY : 'OP_NUMEQUALVERIFY', OP_NUMNOTEQUAL : 'OP_NUMNOTEQUAL', OP_LESSTHAN : 'OP_LESSTHAN', OP_GREATERTHAN : 'OP_GREATERTHAN', OP_LESSTHANOREQUAL : 'OP_LESSTHANOREQUAL', OP_GREATERTHANOREQUAL : 'OP_GREATERTHANOREQUAL', OP_MIN : 'OP_MIN', OP_MAX : 'OP_MAX', OP_WITHIN : 'OP_WITHIN', OP_RIPEMD160 : 'OP_RIPEMD160', OP_SHA1 : 'OP_SHA1', OP_SHA256 : 'OP_SHA256', OP_HASH160 : 'OP_HASH160', OP_HASH256 : 'OP_HASH256', OP_CODESEPARATOR : 'OP_CODESEPARATOR', OP_CHECKSIG : 'OP_CHECKSIG', OP_CHECKSIGVERIFY : 'OP_CHECKSIGVERIFY', OP_CHECKMULTISIG : 'OP_CHECKMULTISIG', OP_CHECKMULTISIGVERIFY : 'OP_CHECKMULTISIGVERIFY', OP_NOP1 : 'OP_NOP1', OP_NOP2 : 'OP_NOP2', OP_NOP3 : 'OP_NOP3', OP_NOP4 : 'OP_NOP4', OP_NOP5 : 'OP_NOP5', OP_NOP6 : 'OP_NOP6', OP_NOP7 : 'OP_NOP7', OP_NOP8 : 'OP_NOP8', OP_NOP9 : 'OP_NOP9', OP_NOP10 : 'OP_NOP10', OP_SMALLINTEGER : 'OP_SMALLINTEGER', OP_PUBKEYS : 'OP_PUBKEYS', OP_PUBKEYHASH : 'OP_PUBKEYHASH', OP_PUBKEY : 'OP_PUBKEY', OP_INVALIDOPCODE : 'OP_INVALIDOPCODE', }) OPCODES_BY_NAME = { 'OP_0' : OP_0, 'OP_PUSHDATA1' : OP_PUSHDATA1, 'OP_PUSHDATA2' : OP_PUSHDATA2, 'OP_PUSHDATA4' : OP_PUSHDATA4, 'OP_1NEGATE' : OP_1NEGATE, 'OP_RESERVED' : OP_RESERVED, 'OP_1' : OP_1, 'OP_2' : OP_2, 'OP_3' : OP_3, 'OP_4' : OP_4, 'OP_5' : OP_5, 'OP_6' : OP_6, 'OP_7' : OP_7, 'OP_8' : OP_8, 'OP_9' : OP_9, 'OP_10' : OP_10, 'OP_11' : OP_11, 'OP_12' : OP_12, 'OP_13' : OP_13, 'OP_14' : OP_14, 'OP_15' : OP_15, 'OP_16' : OP_16, 'OP_NOP' : OP_NOP, 'OP_VER' : OP_VER, 'OP_IF' : OP_IF, 'OP_NOTIF' : OP_NOTIF, 'OP_VERIF' : OP_VERIF, 'OP_VERNOTIF' : OP_VERNOTIF, 'OP_ELSE' : OP_ELSE, 'OP_ENDIF' : OP_ENDIF, 'OP_VERIFY' : OP_VERIFY, 'OP_RETURN' : OP_RETURN, 'OP_TOALTSTACK' : OP_TOALTSTACK, 'OP_FROMALTSTACK' : OP_FROMALTSTACK, 'OP_2DROP' : OP_2DROP, 'OP_2DUP' : OP_2DUP, 'OP_3DUP' : OP_3DUP, 'OP_2OVER' : OP_2OVER, 'OP_2ROT' : OP_2ROT, 'OP_2SWAP' : OP_2SWAP, 'OP_IFDUP' : OP_IFDUP, 'OP_DEPTH' : OP_DEPTH, 'OP_DROP' : OP_DROP, 'OP_DUP' : OP_DUP, 'OP_NIP' : OP_NIP, 'OP_OVER' : OP_OVER, 'OP_PICK' : OP_PICK, 'OP_ROLL' : OP_ROLL, 'OP_ROT' : OP_ROT, 'OP_SWAP' : OP_SWAP, 'OP_TUCK' : OP_TUCK, 'OP_CAT' : OP_CAT, 'OP_SUBSTR' : OP_SUBSTR, 'OP_LEFT' : OP_LEFT, 'OP_RIGHT' : OP_RIGHT, 'OP_SIZE' : OP_SIZE, 'OP_INVERT' : OP_INVERT, 'OP_AND' : OP_AND, 'OP_OR' : OP_OR, 'OP_XOR' : OP_XOR, 'OP_EQUAL' : OP_EQUAL, 'OP_EQUALVERIFY' : OP_EQUALVERIFY, 'OP_RESERVED1' : OP_RESERVED1, 'OP_RESERVED2' : OP_RESERVED2, 'OP_1ADD' : OP_1ADD, 'OP_1SUB' : OP_1SUB, 'OP_2MUL' : OP_2MUL, 'OP_2DIV' : OP_2DIV, 'OP_NEGATE' : OP_NEGATE, 'OP_ABS' : OP_ABS, 'OP_NOT' : OP_NOT, 'OP_0NOTEQUAL' : OP_0NOTEQUAL, 'OP_ADD' : OP_ADD, 'OP_SUB' : OP_SUB, 'OP_MUL' : OP_MUL, 'OP_DIV' : OP_DIV, 'OP_MOD' : OP_MOD, 'OP_LSHIFT' : OP_LSHIFT, 'OP_RSHIFT' : OP_RSHIFT, 'OP_BOOLAND' : OP_BOOLAND, 'OP_BOOLOR' : OP_BOOLOR, 'OP_NUMEQUAL' : OP_NUMEQUAL, 'OP_NUMEQUALVERIFY' : OP_NUMEQUALVERIFY, 'OP_NUMNOTEQUAL' : OP_NUMNOTEQUAL, 'OP_LESSTHAN' : OP_LESSTHAN, 'OP_GREATERTHAN' : OP_GREATERTHAN, 'OP_LESSTHANOREQUAL' : OP_LESSTHANOREQUAL, 'OP_GREATERTHANOREQUAL' : OP_GREATERTHANOREQUAL, 'OP_MIN' : OP_MIN, 'OP_MAX' : OP_MAX, 'OP_WITHIN' : OP_WITHIN, 'OP_RIPEMD160' : OP_RIPEMD160, 'OP_SHA1' : OP_SHA1, 'OP_SHA256' : OP_SHA256, 'OP_HASH160' : OP_HASH160, 'OP_HASH256' : OP_HASH256, 'OP_CODESEPARATOR' : OP_CODESEPARATOR, 'OP_CHECKSIG' : OP_CHECKSIG, 'OP_CHECKSIGVERIFY' : OP_CHECKSIGVERIFY, 'OP_CHECKMULTISIG' : OP_CHECKMULTISIG, 'OP_CHECKMULTISIGVERIFY' : OP_CHECKMULTISIGVERIFY, 'OP_NOP1' : OP_NOP1, 'OP_NOP2' : OP_NOP2, 'OP_NOP3' : OP_NOP3, 'OP_NOP4' : OP_NOP4, 'OP_NOP5' : OP_NOP5, 'OP_NOP6' : OP_NOP6, 'OP_NOP7' : OP_NOP7, 'OP_NOP8' : OP_NOP8, 'OP_NOP9' : OP_NOP9, 'OP_NOP10' : OP_NOP10, 'OP_SMALLINTEGER' : OP_SMALLINTEGER, 'OP_PUBKEYS' : OP_PUBKEYS, 'OP_PUBKEYHASH' : OP_PUBKEYHASH, 'OP_PUBKEY' : OP_PUBKEY, } class CScriptInvalidError(Exception): """Base class for CScript exceptions""" pass class CScriptTruncatedPushDataError(CScriptInvalidError): """Invalid pushdata due to truncation""" def __init__(self, msg, data): self.data = data super(CScriptTruncatedPushDataError, self).__init__(msg) # This is used, eg, for blockchain heights in coinbase scripts (bip34) class CScriptNum(object): def __init__(self, d=0): self.value = d @staticmethod def encode(obj): r = bytearray(0) if obj.value == 0: return bytes(r) neg = obj.value < 0 absvalue = -obj.value if neg else obj.value while (absvalue): r.append(chr(absvalue & 0xff)) absvalue >>= 8 if r[-1] & 0x80: r.append(0x80 if neg else 0) elif neg: r[-1] |= 0x80 return bytes(bchr(len(r)) + r) class CScript(bytes): """Serialized script A bytes subclass, so you can use this directly whenever bytes are accepted. Note that this means that indexing does *not* work - you'll get an index by byte rather than opcode. This format was chosen for efficiency so that the general case would not require creating a lot of little CScriptOP objects. iter(script) however does iterate by opcode. """ @classmethod def __coerce_instance(cls, other): # Coerce other into bytes if isinstance(other, CScriptOp): other = bchr(other) elif isinstance(other, CScriptNum): if (other.value == 0): other = bchr(CScriptOp(OP_0)) else: other = CScriptNum.encode(other) elif isinstance(other, (int, long)): if 0 <= other <= 16: other = bytes(bchr(CScriptOp.encode_op_n(other))) elif other == -1: other = bytes(bchr(OP_1NEGATE)) else: other = CScriptOp.encode_op_pushdata(bignum.bn2vch(other)) elif isinstance(other, (bytes, bytearray)): other = CScriptOp.encode_op_pushdata(other) return other def __add__(self, other): # Do the coercion outside of the try block so that errors in it are # noticed. other = self.__coerce_instance(other) try: # bytes.__add__ always returns bytes instances unfortunately return CScript(super(CScript, self).__add__(other)) except TypeError: raise TypeError('Can not add a %r instance to a CScript' % other.__class__) def join(self, iterable): # join makes no sense for a CScript() raise NotImplementedError def __new__(cls, value=b''): if isinstance(value, bytes) or isinstance(value, bytearray): return super(CScript, cls).__new__(cls, value) else: def coerce_iterable(iterable): for instance in iterable: yield cls.__coerce_instance(instance) # Annoyingly on both python2 and python3 bytes.join() always # returns a bytes instance even when subclassed. return super(CScript, cls).__new__(cls, b''.join(coerce_iterable(value))) def raw_iter(self): """Raw iteration Yields tuples of (opcode, data, sop_idx) so that the different possible PUSHDATA encodings can be accurately distinguished, as well as determining the exact opcode byte indexes. (sop_idx) """ i = 0 while i < len(self): sop_idx = i opcode = bord(self[i]) i += 1 if opcode > OP_PUSHDATA4: yield (opcode, None, sop_idx) else: datasize = None pushdata_type = None if opcode < OP_PUSHDATA1: pushdata_type = 'PUSHDATA(%d)' % opcode datasize = opcode elif opcode == OP_PUSHDATA1: pushdata_type = 'PUSHDATA1' if i >= len(self): raise CScriptInvalidError('PUSHDATA1: missing data length') datasize = bord(self[i]) i += 1 elif opcode == OP_PUSHDATA2: pushdata_type = 'PUSHDATA2' if i + 1 >= len(self): raise CScriptInvalidError('PUSHDATA2: missing data length') datasize = bord(self[i]) + (bord(self[i+1]) << 8) i += 2 elif opcode == OP_PUSHDATA4: pushdata_type = 'PUSHDATA4' if i + 3 >= len(self): raise CScriptInvalidError('PUSHDATA4: missing data length') datasize = bord(self[i]) + (bord(self[i+1]) << 8) + (bord(self[i+2]) << 16) + (bord(self[i+3]) << 24) i += 4 else: assert False # shouldn't happen data = bytes(self[i:i+datasize]) # Check for truncation if len(data) < datasize: raise CScriptTruncatedPushDataError('%s: truncated data' % pushdata_type, data) i += datasize yield (opcode, data, sop_idx) def __iter__(self): """'Cooked' iteration Returns either a CScriptOP instance, an integer, or bytes, as appropriate. See raw_iter() if you need to distinguish the different possible PUSHDATA encodings. """ for (opcode, data, sop_idx) in self.raw_iter(): if data is not None: yield data else: opcode = CScriptOp(opcode) if opcode.is_small_int(): yield opcode.decode_op_n() else: yield CScriptOp(opcode) def __repr__(self): # For Python3 compatibility add b before strings so testcases don't # need to change def _repr(o): if isinstance(o, bytes): return "x('%s')" % binascii.hexlify(o).decode('utf8') else: return repr(o) ops = [] i = iter(self) while True: op = None try: op = _repr(next(i)) except CScriptTruncatedPushDataError as err: op = '%s...<ERROR: %s>' % (_repr(err.data), err) break except CScriptInvalidError as err: op = '<ERROR: %s>' % err break except StopIteration: break finally: if op is not None: ops.append(op) return "CScript([%s])" % ', '.join(ops) def GetSigOpCount(self, fAccurate): """Get the SigOp count. fAccurate - Accurately count CHECKMULTISIG, see BIP16 for details. Note that this is consensus-critical. """ n = 0 lastOpcode = OP_INVALIDOPCODE for (opcode, data, sop_idx) in self.raw_iter(): if opcode in (OP_CHECKSIG, OP_CHECKSIGVERIFY): n += 1 elif opcode in (OP_CHECKMULTISIG, OP_CHECKMULTISIGVERIFY): if fAccurate and (OP_1 <= lastOpcode <= OP_16): n += opcode.decode_op_n() else: n += 20 lastOpcode = opcode return n SIGHASH_ALL = 1 SIGHASH_NONE = 2 SIGHASH_SINGLE = 3 SIGHASH_ANYONECANPAY = 0x80 def FindAndDelete(script, sig): """Consensus critical, see FindAndDelete() in Satoshi codebase""" r = b'' last_sop_idx = sop_idx = 0 skip = True for (opcode, data, sop_idx) in script.raw_iter(): if not skip: r += script[last_sop_idx:sop_idx] last_sop_idx = sop_idx if script[sop_idx:sop_idx + len(sig)] == sig: skip = True else: skip = False if not skip: r += script[last_sop_idx:] return CScript(r) def SignatureHash(script, txTo, inIdx, hashtype): """Consensus-correct SignatureHash Returns (hash, err) to precisely match the consensus-critical behavior of the SIGHASH_SINGLE bug. (inIdx is *not* checked for validity) """ HASH_ONE = b'\x01\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00' if inIdx >= len(txTo.vin): return (HASH_ONE, "inIdx %d out of range (%d)" % (inIdx, len(txTo.vin))) txtmp = CTransaction(txTo) for txin in txtmp.vin: txin.scriptSig = b'' txtmp.vin[inIdx].scriptSig = FindAndDelete(script, CScript([OP_CODESEPARATOR])) if (hashtype & 0x1f) == SIGHASH_NONE: txtmp.vout = [] for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 elif (hashtype & 0x1f) == SIGHASH_SINGLE: outIdx = inIdx if outIdx >= len(txtmp.vout): return (HASH_ONE, "outIdx %d out of range (%d)" % (outIdx, len(txtmp.vout))) tmp = txtmp.vout[outIdx] txtmp.vout = [] for i in range(outIdx): txtmp.vout.append(CTxOut()) txtmp.vout.append(tmp) for i in range(len(txtmp.vin)): if i != inIdx: txtmp.vin[i].nSequence = 0 if hashtype & SIGHASH_ANYONECANPAY: tmp = txtmp.vin[inIdx] txtmp.vin = [] txtmp.vin.append(tmp) s = txtmp.serialize() s += struct.pack(b"<I", hashtype) hash = hash256(s) return (hash, None)
StarcoderdataPython
3372880
<reponame>christus02/citrix-adc-metrics-exporter-serverless<gh_stars>1-10 import json import copy IN_JSON = "metrics.json" OUT_JSON = "out.json" #Read the input metrics json with open(IN_JSON) as f: metrics = json.load(f) f.close() UNIT_CONVERSION = [ {"key": "_mbits_rate", "value": "Megabits/Second"}, {"key": "_mbits", "value": "Megabytes"}, {"key": "_mb", "value": "Megabytes"}, {"key": "_rate", "value": "Count/Second"}, {"key": "percent", "value": "Percent"} ] COUNTER_TEMPLATE = { 'MetricName': '', 'Unit': 'Count', 'Value': '', 'Timestamp': '', 'Dimensions': [ {'Name': 'Description', 'Value': ''}, {'Name': 'CitrixADC-AutoScale-Group', 'Value': ''}, {'Name': 'CitrixADC-InstanceID', 'Value': ''} ] } out_ds = dict() for feature in metrics.keys(): out_ds[feature] = dict() out_ds[feature]['counters'] = list() for cntr in metrics[feature].get('counters', []): cntr_template = copy.deepcopy(COUNTER_TEMPLATE) # Deep copy is required as we have dict() of dict() metric_name = cntr[0] metric_description = cntr[1] cntr_template['MetricName'] = metric_name cntr_template['Dimensions'][0]['Value'] = metric_description #Find the right Unit for unit in UNIT_CONVERSION: if unit['key'] in metric_description: cntr_template['Unit'] = unit['value'] break out_ds[feature]['counters'].append(cntr_template) for cntr in metrics[feature].get('gauges', []): cntr_template = copy.deepcopy(COUNTER_TEMPLATE) # Deep copy is required as we have dict() of dict() metric_name = cntr[0] metric_description = cntr[1] cntr_template['MetricName'] = metric_name cntr_template['Dimensions'][0]['Value'] = metric_description #Find the right Unit for unit in UNIT_CONVERSION: if unit['key'] in metric_description: cntr_template['Unit'] = unit['value'] break out_ds[feature]['counters'].append(cntr_template) #Write to a JSON File with open(OUT_JSON, 'w') as f: json.dump(out_ds, f, indent=4) f.close()
StarcoderdataPython
3329144
<filename>Lagrange_poly1.py #! /usr/bin/env python """ File: Lagrange_poly1.py Copyright (c) 2016 <NAME> License: MIT Course: PHYS227 Assignment: 5.23 Date: Feb 20, 2016 Email: <EMAIL> Name: <NAME> Description: Implements Lagrange's interpolation formula """ import numpy as np def p_L(x, xp, yp): """ Returns the polynomial pL(x), known as Lagrange's interpolation formula """ summation = 0.0 for k in xrange(len(yp)): summation += L_k(x, k, xp, yp) * yp[k] return summation def L_k(x, k, xp, yp): """ Returns the product that is used in calculating Lagrange's interpolation formula """ product = 1.0 for i in xrange(len(xp)): if i == k: continue product *= (x - xp[i]) / float(xp[k] - xp[i]) return product def test_L(): xp = np.asarray([2, 3]) yp = np.asarray([]) assert(abs(L_k(-1, 1, xp, yp) - (-3)) < 1e-3) def test_p_L(): xp = np.linspace(0, np.pi, 5) yp = np.sin(xp) for i in xrange(len(yp)): assert(abs(p_L(xp[i], xp, yp) - yp[i]) < 1e-3), 'Failure' test_p_L() assert(abs(p_L(np.pi * 0.375, np.linspace(0, np.pi, 5), np.sin(np.linspace(0, np.pi, 5))) - np.sin(0.375 * np.pi)) < 1e-3)
StarcoderdataPython
3359742
<reponame>davidcim/wirinj from unittest import TestCase from wirinj import Autowiring, Definitions from wirinj.core import INJECTED from wirinj.injector import Injector class Reality(object): pass class Thing: reality: Reality = INJECTED cfg = INJECTED not_injected = 'ABC' def __init__(self, param): self.param = param config = { 'cfg': 'DEF', } class TestInjector(TestCase): def test_field_injection(self): inj = Injector(Definitions(config), Autowiring()) thing = inj.get(Thing, 'my-param') self.assertIsInstance(thing, Thing) self.assertEqual(thing.param, 'my-param') self.assertIsInstance(thing.reality, Reality) self.assertEqual(thing.not_injected, 'ABC') self.assertEqual(thing.cfg, 'DEF')
StarcoderdataPython
1770520
<filename>sphinx/source/docs/user_guide/examples/styling_fixed_ticker.py from bokeh.plotting import figure, output_file, show output_file("fixed_ticks.html") p = figure(plot_width=400, plot_height=400) p.circle([1,2,3,4,5], [2,5,8,2,7], size=10) p.xaxis.ticker = [2, 3.5, 4] show(p)
StarcoderdataPython
192894
# -*- coding: utf-8 -*- """ Created on Tue Jun 16 14:53:39 2020 @author: nbarl """ import csv def mirrorDouble(fileName) : with open(fileName, 'r+', newline='') as file: dataReader = csv.reader(file, delimiter=';') newData = [] for row in dataReader : newLine = createMirror(row) newData.append(newLine) dataWriter = csv.writer(file, delimiter=';') for row in newData[1:] : dataWriter.writerow(row) def createMirror(l) : newL = [] width = 7 height = 6 for i in range(width) : for j in range(height) : newL.append(l[height*(width-i-1) + j]) shift = width*height for i in range(width) : newL.append(l[width-i-1+shift]) return newL
StarcoderdataPython
3397685
import tests.perf.test_ozone_ar_speed_many as gen gen.run_test(350)
StarcoderdataPython
75701
from setuptools import find_packages, setup LONG_DESCRIPTION = ( 'Desc.' ) setup( name='mhealth', version='0.0.3', packages=find_packages(where='src'), package_dir={'': 'src'}, url='https://github.com/callumstew/pymhealth', author='<NAME>', author_email='<EMAIL>', description='An mHealth processing and feature extraction library', long_description=LONG_DESCRIPTION, install_requires=[ 'numpy', 'numba', 'scipy', 'hdbscan' ], classifiers=[ 'Programming Language :: Python', ] )
StarcoderdataPython
1616853
<reponame>ETLopes/Marmileve-kivy<gh_stars>0 from kivy.app import App from kivy.uix.floatlayout import FloatLayout from prettytable import from_db_cursor from prettytable import PrettyTable import sqlite3 conn = sqlite3.connect('marmileve.db') c = conn.cursor() class TelaInicial(FloatLayout): def on_press_bt(self): login = self.ids.login_text.text senha = self.ids.senha_text.text c.execute('SELECT * FROM login WHERE login = ? and senha = ?', (login, senha)) query = (c.fetchone()) if query is not None: self.clear_widgets() self.add_widget(TelaMenu()) class TelaMenu(FloatLayout): def add_pedido(self): self.clear_widgets() self.add_widget(AddPedido()) def show_estoque(self): self.clear_widgets() self.add_widget(ShowEstoque()) def add_clientes(self): self.clear_widgets() self.add_widget(AddCliente()) def telainicial(self): self.clear_widgets() self.add_widget(TelaInicial()) x = PrettyTable() class AddPedido(FloatLayout): global pedido pedido = [] def telamenu(self): self.clear_widgets() self.add_widget(TelaMenu()) x.clear_rows() global pedido pedido = [] item = [] print(str(item) + 'pedido tem que estar limpo') print(str(pedido) + 'pedido tem que estar limpo' ) def addpedido(self): global item item = [] if x.field_names == []: x.field_names = ['Cliente', 'Prato', 'Tam', 'Qtd'] item.append(self.ids.cliente.text) item.append(self.ids.prato.text) item.append((self.ids.tam.text).upper()) item.append(self.ids.qtd.text) print(str(item) + 'item só deve ter um item') x.add_row(item) pedido.append(item) self.ids.resumo.text = str(x) print(str(pedido) + 'um ou mais itens') return pedido def rempedido(self): if len(pedido) > 0: x.del_row(len(pedido)-1) del pedido[len(pedido)-1] self.ids.resumo.text = str(x) def concluipedido(self): global pedido if len(pedido) > 0: print(pedido) for i in pedido: c.execute('INSERT INTO pedidos(pedido_cliente, pedido_pratoid, pedido_tam, pedido_qtd, pedido_data) VALUES (?,?,?,?,datetime("now"))', (i[0], i[1], i[2], i[3])) conn.commit() pedido = [] x.clear_rows() self.ids.resumo.text = 'Pedido adicionado' class ShowEstoque(FloatLayout): def telamenu(self): self.clear_widgets() self.add_widget(TelaMenu()) def estoquelist(self): c.execute('SELECT * FROM show_estoque') t = from_db_cursor(c) self.ids.label_estoque.text = str(t) class AddCliente(FloatLayout): def telamenu(self): self.clear_widgets() self.add_widget(TelaMenu()) class MarmileveApp(App): pass janela = MarmileveApp() janela.run()
StarcoderdataPython
41534
<filename>flask_tube/app.py # -*- coding: utf-8 -*- import os import logging import inspect from logging.handlers import SMTPHandler, RotatingFileHandler from werkzeug.utils import import_string, find_modules from flask import Flask, Blueprint class App(Flask): """Custom Flask Class.""" def __init__( self, import_name, config=None, packages=None, extensions=None, middlewares=None, errorhandlers=None): super(App, self).__init__( import_name, instance_path=os.getcwd(), instance_relative_config=True) self.packages = packages if packages else [] self.exts = extensions if extensions else [] self.middlewares = middlewares if middlewares else [] self.errorhandlers = errorhandlers if errorhandlers else[] # config if config: self.config.from_pyfile(config) elif os.getenv('FLASK') == 'dev': self.config.from_pyfile('config/development.conf') self.logger.info("Config: Development") elif os.getenv('FLASK') == 'test': self.config.from_pyfile('config/test.conf') self.logger.info("Config: Test") else: self.config.from_pyfile('config/production.conf') self.logger.info("Config: Production") self.configure_extensions(self.exts) self.configure_middlewares(self.middlewares) self.configure_errorhandlers(self.errorhandlers) # register module self.configure_packages(self.packages) self.configure_logging() def configure_extensions(self, extensions): for extension in extensions.__dict__.values(): if not inspect.isclass(extension) and hasattr(extension, 'init_app'): extension.init_app(self) def configure_packages(self, packages): for package_name in packages: package_name = '%s.%s' % (self.import_name, package_name) modules = find_modules(package_name) for module in modules: __import__(module) package = import_string(package_name) for attr_name in dir(package): attr = getattr(package, attr_name) if isinstance(attr, Blueprint): self.register_blueprint(attr) def configure_middlewares(self, middlewares): for middleware in middlewares: middleware(self) def configure_errorhandlers(self, errorhandlers): for errorhandler in errorhandlers: errorhandler(self) def configure_logging(self): mail_handler = \ SMTPHandler(self.config['MAIL_SERVER'], self.config['DEFAULT_MAIL_SENDER'], self.config['ADMINS'], 'selflication error', ( self.config['MAIL_USERNAME'], self.config['MAIL_PASSWORD'], )) mail_handler.setLevel(logging.ERROR) self.logger.addHandler(mail_handler) formatter = logging.Formatter( '%(asctime)s %(levelname)s: %(message)s ' '[in %(pathname)s:%(lineno)d]') debug_log = os.path.join(self.root_path, self.config['DEBUG_LOG']) debug_file_handler = \ RotatingFileHandler(debug_log, maxBytes=100000, backupCount=10) debug_file_handler.setLevel(logging.DEBUG) debug_file_handler.setFormatter(formatter) self.logger.addHandler(debug_file_handler) error_log = os.path.join(self.root_path, self.config['ERROR_LOG']) error_file_handler = \ RotatingFileHandler(error_log, maxBytes=100000, backupCount=10) error_file_handler.setLevel(logging.ERROR) error_file_handler.setFormatter(formatter) self.logger.addHandler(error_file_handler)
StarcoderdataPython
29808
<reponame>Surfict/osparc-simcore # pylint:disable=unused-variable # pylint:disable=unused-argument # pylint:disable=redefined-outer-name # pylint:disable=no-member # pylint:disable=protected-access # pylint:disable=too-many-arguments import re import shutil import tempfile import threading from collections import namedtuple from pathlib import Path from typing import Any, Dict, Optional, Type, Union import pytest from aiohttp.client import ClientSession from attr import dataclass from pydantic.error_wrappers import ValidationError from simcore_sdk.node_ports_v2 import exceptions, node_config from simcore_sdk.node_ports_v2.links import DownloadLink, FileLink, PortLink from simcore_sdk.node_ports_v2.port import Port from utils_port_v2 import create_valid_port_config from yarl import URL ##################### HELPERS def camel_to_snake(name): name = re.sub("(.)([A-Z][a-z]+)", r"\1_\2", name) return re.sub("([a-z0-9])([A-Z])", r"\1_\2", name).lower() PortParams = namedtuple( "PortParams", "port_cfg, exp_value_type, exp_value_converter, exp_value, exp_get_value, new_value, exp_new_value, exp_new_get_value", ) def this_node_file_name() -> Path: return Path(tempfile.gettempdir(), "this_node_file.txt") def another_node_file_name() -> Path: return Path(tempfile.gettempdir(), "another_node_file.txt") def download_file_folder_name() -> Path: return Path(tempfile.gettempdir(), "simcorefiles", f"{threading.get_ident()}") def project_id() -> str: return "cd0d8dbb-3263-44dc-921c-49c075ac0dd9" def node_uuid() -> str: return "609b7af4-6861-4aa7-a16e-730ea8125190" def user_id() -> int: return 666 def simcore_store_id() -> str: return "0" def datcore_store_id() -> str: return "1" def e_tag() -> str: return "1212132546546321-1" ##################### FIXTURES @pytest.fixture def this_node_file(tmp_path: Path) -> Path: file_path = this_node_file_name() file_path.write_text("some dummy data") assert file_path.exists() yield file_path if file_path.exists(): file_path.unlink() @pytest.fixture def another_node_file() -> Path: file_path = another_node_file_name() file_path.write_text("some dummy data") assert file_path.exists() yield file_path if file_path.exists(): file_path.unlink() @pytest.fixture def download_file_folder() -> Path: destination_path = download_file_folder_name() destination_path.mkdir(parents=True, exist_ok=True) yield destination_path if destination_path.exists(): shutil.rmtree(destination_path) @pytest.fixture(scope="module", name="project_id") def project_id_fixture() -> str: """NOTE: since pytest does not allow to use fixtures inside parametrizations, this trick allows to re-use the same function in a fixture with a same "fixture" name""" return project_id() @pytest.fixture(scope="module", name="node_uuid") def node_uuid_fixture() -> str: """NOTE: since pytest does not allow to use fixtures inside parametrizations, this trick allows to re-use the same function in a fixture with a same "fixture" name""" return node_uuid() @pytest.fixture(scope="module", name="user_id") def user_id_fixture() -> int: """NOTE: since pytest does not allow to use fixtures inside parametrizations, this trick allows to re-use the same function in a fixture with a same "fixture" name""" return user_id() @pytest.fixture async def mock_download_file( monkeypatch, this_node_file: Path, project_id: str, node_uuid: str, download_file_folder: Path, ): async def mock_download_file_from_link( download_link: URL, local_folder: Path, session: Optional[ClientSession] = None, file_name: Optional[str] = None, ) -> Path: assert str(local_folder).startswith(str(download_file_folder)) destination_path = local_folder / this_node_file.name destination_path.parent.mkdir(parents=True, exist_ok=True) shutil.copy(this_node_file, destination_path) return destination_path from simcore_sdk.node_ports_common import filemanager monkeypatch.setattr( filemanager, "download_file_from_link", mock_download_file_from_link ) @pytest.fixture(scope="session", name="e_tag") def e_tag_fixture() -> str: return "1212132546546321-1" @pytest.fixture async def mock_upload_file(mocker, e_tag): mock = mocker.patch( "simcore_sdk.node_ports_common.filemanager.upload_file", return_value=(simcore_store_id(), e_tag), ) yield mock @pytest.fixture def common_fixtures( loop, storage_v0_service_mock, mock_download_file, mock_upload_file, this_node_file: Path, another_node_file: Path, download_file_folder: Path, ): """this module main fixture""" node_config.STORAGE_ENDPOINT = "storage:8080" ##################### TESTS @pytest.mark.parametrize( "port_cfg, exp_value_type, exp_value_converter, exp_value, exp_get_value, new_value, exp_new_value, exp_new_get_value", [ pytest.param( *PortParams( port_cfg=create_valid_port_config("integer", defaultValue=3), exp_value_type=(int), exp_value_converter=int, exp_value=3, exp_get_value=3, new_value=7, exp_new_value=7, exp_new_get_value=7, ), id="integer value with default", ), pytest.param( *PortParams( port_cfg=create_valid_port_config("number", defaultValue=-23.45), exp_value_type=(float), exp_value_converter=float, exp_value=-23.45, exp_get_value=-23.45, new_value=7, exp_new_value=7.0, exp_new_get_value=7.0, ), id="number value with default", ), pytest.param( *PortParams( port_cfg=create_valid_port_config("boolean", defaultValue=True), exp_value_type=(bool), exp_value_converter=bool, exp_value=True, exp_get_value=True, new_value=False, exp_new_value=False, exp_new_get_value=False, ), id="boolean value with default", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "boolean", defaultValue=True, value=False ), exp_value_type=(bool), exp_value_converter=bool, exp_value=False, exp_get_value=False, new_value=True, exp_new_value=True, exp_new_get_value=True, ), id="boolean value with default and value", ), pytest.param( *PortParams( port_cfg=create_valid_port_config("data:*/*", key="no_file"), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=None, exp_get_value=None, new_value=str(this_node_file_name()), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "no_file" / this_node_file_name().name, ), id="file type with no payload", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="no_file_with_default", defaultValue=str(this_node_file_name()), ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=None, exp_get_value=None, new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "no_file_with_default" / this_node_file_name().name, ), id="file link with no payload and default value", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="some_file", value={ "store": simcore_store_id(), "path": f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", ), exp_get_value=download_file_folder_name() / "some_file" / this_node_file_name().name, new_value=None, exp_new_value=None, exp_new_get_value=None, ), id="file link with payload that gets reset", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="some_file_with_file_to_key_map", fileToKeyMap={ "a_new_fancy_name.csv": "some_file_with_file_to_key_map" }, value={ "store": simcore_store_id(), "path": f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", ), exp_get_value=download_file_folder_name() / "some_file_with_file_to_key_map" / "a_new_fancy_name.csv", new_value=None, exp_new_value=None, exp_new_get_value=None, ), id="file link with fileToKeyMap with payload that gets reset", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="some_file_on_datcore", value={ "store": datcore_store_id(), "path": f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", "dataset": "some blahblah", "label": "some blahblah", }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=FileLink( store=datcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", dataset="some blahblah", label="some blahblah", ), exp_get_value=download_file_folder_name() / "some_file_on_datcore" / this_node_file_name().name, new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "some_file_on_datcore" / this_node_file_name().name, ), id="file link with payload on store 1", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="download_link", value={ "downloadLink": "https://raw.githubusercontent.com/ITISFoundation/osparc-simcore/master/README.md" }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=DownloadLink( downloadLink="https://raw.githubusercontent.com/ITISFoundation/osparc-simcore/master/README.md" ), exp_get_value=download_file_folder_name() / "download_link" / this_node_file_name().name, new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "download_link" / this_node_file_name().name, ), id="download link file type gets set back on store", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="download_link_with_file_to_key", fileToKeyMap={ "a_cool_file_type.zip": "download_link_with_file_to_key" }, value={ "downloadLink": "https://raw.githubusercontent.com/ITISFoundation/osparc-simcore/master/README.md" }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=DownloadLink( downloadLink="https://raw.githubusercontent.com/ITISFoundation/osparc-simcore/master/README.md" ), exp_get_value=download_file_folder_name() / "download_link_with_file_to_key" / "a_cool_file_type.zip", new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "download_link_with_file_to_key" / "a_cool_file_type.zip", ), id="download link file type with filetokeymap gets set back on store", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="file_port_link", value={ "nodeUuid": "238e5b86-ed65-44b0-9aa4-f0e23ca8a083", "output": "the_output_of_that_node", }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=PortLink( nodeUuid="238e5b86-ed65-44b0-9aa4-f0e23ca8a083", output="the_output_of_that_node", ), exp_get_value=download_file_folder_name() / "file_port_link" / another_node_file_name().name, new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "file_port_link" / this_node_file_name().name, ), id="file node link type gets set back on store", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "data:*/*", key="file_port_link_with_file_to_key_map", fileToKeyMap={ "a_cool_file_type.zip": "file_port_link_with_file_to_key_map" }, value={ "nodeUuid": "238e5b86-ed65-44b0-9aa4-f0e23ca8a083", "output": "the_output_of_that_node", }, ), exp_value_type=(Path, str), exp_value_converter=Path, exp_value=PortLink( nodeUuid="238e5b86-ed65-44b0-9aa4-f0e23ca8a083", output="the_output_of_that_node", ), exp_get_value=download_file_folder_name() / "file_port_link_with_file_to_key_map" / "a_cool_file_type.zip", new_value=this_node_file_name(), exp_new_value=FileLink( store=simcore_store_id(), path=f"{project_id()}/{node_uuid()}/{this_node_file_name().name}", e_tag=e_tag(), ), exp_new_get_value=download_file_folder_name() / "file_port_link_with_file_to_key_map" / "a_cool_file_type.zip", ), id="file node link type with file to key map gets set back on store", ), pytest.param( *PortParams( port_cfg=create_valid_port_config( "number", key="number_port_link", value={ "nodeUuid": "238e5b86-ed65-44b0-9aa4-f0e23ca8a083", "output": "the_output_of_that_node", }, ), exp_value_type=(float), exp_value_converter=float, exp_value=PortLink( nodeUuid="238e5b86-ed65-44b0-9aa4-f0e23ca8a083", output="the_output_of_that_node", ), exp_get_value=562.45, new_value=None, exp_new_value=None, exp_new_get_value=None, ), id="number node link type gets reset", ), ], ) async def test_valid_port( common_fixtures: None, user_id: int, project_id: str, node_uuid: str, port_cfg: Dict[str, Any], exp_value_type: Type[Union[int, float, bool, str, Path]], exp_value_converter: Type[Union[int, float, bool, str, Path]], exp_value: Union[int, float, bool, str, Path, FileLink, DownloadLink, PortLink], exp_get_value: Union[int, float, bool, str, Path], new_value: Union[int, float, bool, str, Path], exp_new_value: Union[int, float, bool, str, Path, FileLink], exp_new_get_value: Union[int, float, bool, str, Path], another_node_file: Path, ): @dataclass class FakeNodePorts: user_id: int project_id: str node_uuid: str @staticmethod async def get(key): # this gets called when a node links to another node we return the get value but for files it needs to be a real one return ( another_node_file if port_cfg["type"].startswith("data:") else exp_get_value ) @classmethod async def _node_ports_creator_cb(cls, node_uuid: str) -> "FakeNodePorts": return cls(user_id=user_id, project_id=project_id, node_uuid=node_uuid) @staticmethod async def save_to_db_cb(node_ports): return fake_node_ports = FakeNodePorts( user_id=user_id, project_id=project_id, node_uuid=node_uuid ) port = Port(**port_cfg) port._node_ports = fake_node_ports # check schema for k, v in port_cfg.items(): camel_key = camel_to_snake(k) if k == "type": camel_key = "property_type" if k != "value": assert v == getattr(port, camel_key) # check payload assert port._py_value_type == exp_value_type assert port._py_value_converter == exp_value_converter assert port.value == exp_value if isinstance(exp_get_value, Path): # if it's a file let's create one there already exp_get_value.parent.mkdir(parents=True, exist_ok=True) exp_get_value.touch() if exp_get_value is None: assert await port.get() == None else: assert await port.get() == exp_get_value if isinstance(exp_value, PortLink) and isinstance(exp_get_value, Path): # as the file is moved internally we need to re-create it or it fails another_node_file_name().touch(exist_ok=True) # it should work several times assert await port.get() == exp_get_value # set a new value await port.set(new_value) assert port.value == exp_new_value if isinstance(exp_new_get_value, Path): # if it's a file let's create one there already exp_new_get_value.parent.mkdir(parents=True, exist_ok=True) exp_new_get_value.touch() if exp_new_get_value is None: assert await port.get() == None else: assert await port.get() == exp_new_get_value assert await port.get() == exp_new_get_value @pytest.mark.parametrize( "port_cfg", [ { "key": "some.key", "label": "some label", "description": "some description", "type": "integer", "displayOrder": 2.3, }, { "key": "some:key", "label": "", "description": "", "type": "integer", "displayOrder": 2.3, }, { "key": "some_key", "label": "", "description": "", "type": "blahblah", "displayOrder": 2.3, }, { "key": "some_file_with_file_in_value", "label": "", "description": "", "type": "data:*/*", "displayOrder": 2.3, "value": __file__, }, ], ) def test_invalid_port(common_fixtures: None, port_cfg: Dict[str, Any]): with pytest.raises(ValidationError): Port(**port_cfg) @pytest.mark.parametrize( "port_cfg", [(create_valid_port_config("data:*/*", key="set_some_inexisting_file"))] ) async def test_invalid_file_type_setter( common_fixtures: None, project_id: str, node_uuid: str, port_cfg: Dict[str, Any] ): port = Port(**port_cfg) # set a file that does not exist with pytest.raises(exceptions.InvalidItemTypeError): await port.set("some/dummy/file/name") # set a folder fails too with pytest.raises(exceptions.InvalidItemTypeError): await port.set(Path(__file__).parent)
StarcoderdataPython
159883
<reponame>satori99/example-custom-config """Platform for sensor integration.""" from homeassistant.const import TEMP_CELSIUS from homeassistant.helpers.entity import Entity from . import DOMAIN def setup_platform(hass, config, add_entities, discovery_info=None): """Set up the sensor platform.""" # We only want this platform to be set up via discovery. if discovery_info is None: return add_entities([ExampleSensor()]) class ExampleSensor(Entity): """Representation of a sensor.""" def __init__(self): """Initialize the sensor.""" self._state = None @property def name(self): """Return the name of the sensor.""" return 'Example Temperature' @property def state(self): """Return the state of the sensor.""" return self._state @property def unit_of_measurement(self): """Return the unit of measurement.""" return TEMP_CELSIUS def update(self): """Fetch new state data for the sensor. This is the only method that should fetch new data for Home Assistant. """ self._state = self.hass.data[DOMAIN]['temperature']
StarcoderdataPython
1760782
<filename>utils.py # -*- coding: utf-8 -*- import io import math from collections import Counter from tqdm import tqdm import tensorflow as tf # TF 2.0 FILE_PATH = './data/' def create_dataset(path, limit_size=None): lines = io.open(path, encoding='UTF-8').read().strip().split('\n') lines = ['<s> ' + line + ' </s>' for line in tqdm(lines[:limit_size])] #lines = [line for line in tqdm(lines[:limit_size])] # Print examples for line in lines[:5]: print(line) return lines def tokenize(text, vocab, max_len): lang_tokenizer = tf.keras.preprocessing.text.Tokenizer(filters='', oov_token='<unk>') lang_tokenizer.word_index = vocab tensor = lang_tokenizer.texts_to_sequences(text) tensor = tf.keras.preprocessing.sequence.pad_sequences(tensor, maxlen=max_len, padding='post') return tensor, lang_tokenizer def load_dataset(path, max_len, limit_size=None, lang=['en', 'de']): dataset_train_input_path = 'train.{}'.format(lang[0]) dataset_train_target_path = 'train.{}'.format(lang[1]) print('Loading...') vocab_input = load_vocab(path, lang[0]) vocab_target = load_vocab(path, lang[1]) input_text = create_dataset(path + dataset_train_input_path, limit_size) target_text = create_dataset(path + dataset_train_target_path, limit_size) print('Tokenizing...') input_tensor, input_lang_tokenizer = tokenize(input_text, vocab_input, max_len) target_tensor, target_lang_tokenizer = tokenize(target_text, vocab_target, max_len) return input_tensor, target_tensor, input_lang_tokenizer, target_lang_tokenizer def max_length(tensor): return max(len(t) for t in tensor) def load_dataset_test(path): it, tt, ilt, tlt = load_dataset(path, 90, 5000) print(tt[0].shape) print(it.shape, tt.shape) max_it, max_tt = max_length(it), max_length(tt) print(max_it, max_tt) def load_vocab(path, lang): lines = io.open(path + 'vocab.50K.{}'.format(lang), encoding='UTF-8').read().strip().split('\n') vocab = {} # 0 is padding for idx, word in enumerate(lines): vocab[word] = idx + 1 return vocab def convert_vocab(tokenizer, vocab): for key, val in vocab.items(): tokenizer.index_word[val] = key def select_optimizer(optimizer, learning_rate): if optimizer == 'adam': return tf.optimizers.Adam(learning_rate) elif optimizer == 'sgd': return tf.optimizers.SGD(learning_rate) elif optimizer == 'rmsprop': return tf.optimizers.RMSprop(learning_rate) def loss_function(loss_object, y_true, y_pred): mask = tf.math.logical_not(tf.math.equal(y_true, 0)) loss = loss_object(y_true, y_pred) mask = tf.cast(mask, dtype=loss.dtype) loss *= mask return tf.reduce_mean(loss) def ngrams(text, n): """ Argus: text - list type, Ex. ['I', 'like', 'a', 'dog', '.'] n - Divide by n, int type """ if type(text) == str: text = text.split() grams = (tuple(text[idx:idx + n]) for idx in range(len(text) - n + 1)) return grams class BLEU(): """ref: http://www.nltk.org/_modules/nltk/align/bleu.html """ @staticmethod def compute(candidate, references, weights): """ Argus: candidate - list type references - dual list type weights - list type """ candidate = [word.lower() for word in candidate] references = [[word.lower() for word in reference] for reference in references] p_ns = (BLEU.modified_precision(candidate, references, i) for i, _ in enumerate(weights, start=1)) print(p_ns) s = math.fsum(w * math.log(p_n) for w, p_n in zip(weights, p_ns) if p_n) bp = BLEU.brevity_penalty(candidate, references) return bp * math.exp(s) @staticmethod def modified_precision(candidate, references, n): counts = Counter(ngrams(candidate, n)) if len(counts) == 0: return 0 max_counts = {} for reference in references: reference_counts = Counter(ngrams(reference, n)) for ngram in counts: max_counts[ngram] = max(max_counts.get(ngram, 0), reference_counts[ngram]) clipped_counts = dict((ngram, min(cnt, max_counts[ngram])) for ngram, cnt in counts.items()) return sum(clipped_counts.values()) / sum(counts.values()) @staticmethod def brevity_penalty(candidate, references): c = len(candidate) r = min(abs(len(r) - c) for r in references) if c > r: return 1 else: return math.exp(1 - r / c) def main(): #load_dataset_test(FILE_PATH) weights = [0.25, 0.25, 0.25, 0.25] candidate1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'which', 'ensures', 'that', 'the', 'military', 'always', 'obeys', 'the', 'commands', 'of', 'the', 'party'] reference1 = ['It', 'is', 'a', 'guide', 'to', 'action', 'that', 'ensures', 'that', 'the', 'military', 'will', 'forever', 'heed', 'Party', 'commands'] reference2 = ['It', 'is', 'the', 'guiding', 'principle', 'which', 'guarantees', 'the', 'military', 'forces', 'always', 'being', 'under', 'the', 'command', 'of', 'the', 'Party'] reference3 = ['It', 'is', 'the', 'practical', 'guide', 'for', 'the', 'army', 'always', 'to', 'heed', 'the', 'directions', 'of', 'the', 'party'] print(ngrams(candidate1, 3)) print(BLEU.compute(candidate1, [reference1, reference2, reference3], weights)) pass if __name__ == '__main__': main()
StarcoderdataPython
153421
import datetime import simplejson as json from django.conf import settings from django.http import HttpResponse from django.utils.encoding import force_text from django.utils.functional import Promise from django.views.generic import FormView from .app_settings import SLICK_REPORTING_DEFAULT_END_DATE, SLICK_REPORTING_DEFAULT_START_DATE, \ SLICK_REPORTING_DEFAULT_CHARTS_ENGINE from .form_factory import report_form_factory from .generator import ReportGenerator class SlickReportViewBase(FormView): group_by = None columns = None hidden_columns = None report_title = '' time_series_pattern = '' time_series_columns = None date_field = None swap_sign = False report_generator_class = ReportGenerator report_model = None base_model = None limit_records = None queryset = None chart_settings = None crosstab_model = None crosstab_ids = None crosstab_columns = None crosstab_compute_reminder = True excluded_fields = None """ A list of chart settings objects instructing front end on how to plot the data. """ template_name = 'slick_reporting/simple_report.html' def get(self, request, *args, **kwargs): form_class = self.get_form_class() self.form = self.get_form(form_class) if self.form.is_valid(): report_data = self.get_report_results() if request.is_ajax(): return self.ajax_render_to_response(report_data) return self.render_to_response(self.get_context_data(report_data=report_data)) return self.render_to_response(self.get_context_data()) @classmethod def get_report_model(cls): return cls.report_model or cls.queryset.model def ajax_render_to_response(self, report_data): return HttpResponse(self.serialize_to_json(report_data), content_type="application/json") def serialize_to_json(self, response_data): """ Returns the JSON string for the compiled data object. """ def date_handler(obj): if type(obj) is datetime.datetime: return obj.strftime('%Y-%m-%d %H:%M') elif hasattr(obj, 'isoformat'): return obj.isoformat() elif isinstance(obj, Promise): return force_text(obj) indent = None if settings.DEBUG: indent = 4 return json.dumps(response_data, indent=indent, use_decimal=True, default=date_handler) def get_form_class(self): """ Automatically instantiate a form based on details provided :return: """ return self.form_class or report_form_factory(self.get_report_model(), crosstab_model=self.crosstab_model, display_compute_reminder=self.crosstab_compute_reminder, excluded_fields=self.excluded_fields) def get_form_kwargs(self): """ Returns the keyword arguments for instantiating the form. """ kwargs = { 'initial': self.get_initial(), 'prefix': self.get_prefix(), } if self.request.method in ('POST', 'PUT'): kwargs.update({ 'data': self.request.POST, 'files': self.request.FILES, }) elif self.request.method in ('GET', 'PUT'): # elif self.request.GET: kwargs.update({ 'data': self.request.GET, 'files': self.request.FILES, }) return kwargs def get_report_generator(self, queryset, for_print): q_filters, kw_filters = self.form.get_filters() if self.crosstab_model: self.crosstab_ids = self.form.get_crosstab_ids() crosstab_compute_reminder = self.form.get_crosstab_compute_reminder() if self.request.GET or self.request.POST \ else self.crosstab_compute_reminder return self.report_generator_class(self.get_report_model(), start_date=self.form.cleaned_data['start_date'], end_date=self.form.cleaned_data['end_date'], q_filters=q_filters, kwargs_filters=kw_filters, date_field=self.date_field, main_queryset=queryset, print_flag=for_print, limit_records=self.limit_records, swap_sign=self.swap_sign, columns=self.columns, hidden_columns=self.hidden_columns, group_by=self.group_by, time_series_pattern=self.time_series_pattern, time_series_columns=self.time_series_columns, crosstab_model=self.crosstab_model, crosstab_ids=self.crosstab_ids, crosstab_columns=self.crosstab_columns, crosstab_compute_reminder=crosstab_compute_reminder, format_row_func=self.format_row ) def format_row(self, row_obj): """ A hook to format each row . This method gets called on each row in the results. <ust return the object :param row_obj: a dict representing a single row in the results :return: A dict representing a single row in the results """ return row_obj def get_columns_data(self, columns): """ Hook to get the columns information to front end :param columns: :return: """ # columns = report_generator.get_list_display_columns() data = [] hidden = self.hidden_columns or [] for col in columns: data.append({ 'name': col['name'], 'computation_field': col.get('original_name', ''), 'verbose_name': col['verbose_name'], 'visible': col.get('visible', col['name'] not in hidden), 'type': col.get('type', 'text'), 'is_summable': col.get('is_summable', ''), }) return data def get_report_results(self, for_print=False): """ Gets the reports Data, and, its meta data used by datatables.net and highcharts :return: JsonResponse """ queryset = self.get_queryset() report_generator = self.get_report_generator(queryset, for_print) data = report_generator.get_report_data() data = self.filter_results(data, for_print) data = { 'report_slug': self.get_report_slug(), 'data': data, 'columns': self.get_columns_data(report_generator.get_list_display_columns()), 'metadata': self.get_metadata(generator=report_generator), 'chart_settings': self.get_chart_settings() } return data def get_metadata(self, generator): """ A hook to send data about the report for front end which can later be used in charting :return: """ time_series_columns = generator.get_time_series_parsed_columns() crosstab_columns = generator.get_crosstab_parsed_columns() metadata = { 'time_series_pattern': self.time_series_pattern, 'time_series_column_names': [x['name'] for x in time_series_columns], 'time_series_column_verbose_names': [x['verbose_name'] for x in time_series_columns], 'crosstab_model': self.crosstab_model or '', 'crosstab_column_names': [x['name'] for x in crosstab_columns], 'crosstab_column_verbose_names': [x['verbose_name'] for x in crosstab_columns], } return metadata def get_chart_settings(self): """ Ensure the sane settings are passed to the front end. """ output = [] for i, x in enumerate(self.chart_settings or []): x['id'] = x.get('id', f"{x['type']}-{i}") if not x.get('title', False): x['title'] = self.report_title x['engine_name'] = x.get('engine_name', SLICK_REPORTING_DEFAULT_CHARTS_ENGINE) output.append(x) return output def get_queryset(self): return self.queryset or self.report_model.objects def filter_results(self, data, for_print=False): """ Hook to Filter results based on computed data (like eliminate __balance__ = 0, etc) :param data: List of objects :param for_print: is print request :return: filtered data """ return data @classmethod def get_report_slug(cls): return cls.__name__.lower() def get_initial(self): # todo revise why not actually displaying datetime on screen return { 'start_date': SLICK_REPORTING_DEFAULT_START_DATE, 'end_date': SLICK_REPORTING_DEFAULT_END_DATE } def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) if not (self.request.POST or self.request.GET): # initialize empty form with initials if the no data is in the get or the post context['form'] = self.get_form_class()() return context class SlickReportView(SlickReportViewBase): def __init_subclass__(cls) -> None: date_field = getattr(cls, 'date_field', '') if not date_field: raise TypeError(f'`date_field` is not set on {cls}') # sanity check, raises error if the columns or date fields is not mapped cls.report_generator_class.check_columns([cls.date_field], False, cls.get_report_model()) cls.report_generator_class.check_columns(cls.columns, cls.group_by, cls.get_report_model()) super().__init_subclass__()
StarcoderdataPython
1642853
<gh_stars>0 # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import division, print_function, unicode_literals from sumy.parsers.html import HtmlParser from sumy.parsers.plaintext import PlaintextParser from sumy.nlp.tokenizers import Tokenizer from sumy.summarizers.lsa import LsaSummarizer as Summarizer from sumy.nlp.stemmers import Stemmer from sumy.utils import get_stop_words LANGUAGE = "english" SENTENCES_COUNT = 10 if __name__ == "__main__": url = "https://en.wikipedia.org/wiki/Automatic_summarization" html=''' <p>Well, I do not know what type of features you are giving to your neural network. However, in general, I would go with a single neural network. It seems that you have no limitation in resources for training your network and the only problem is resources while you apply your network. </p> <p>The thing is that probably the two problems have things in common (e.g. both types of plates are rectangular). This means that if you use two networks, each has to solve the same sub-problem (the common part) again. If you use only one network the common part of the problem takes fewer cells/weights to be solved and the remaining weights/cells can be employed for better recognition.</p> <p>In the end, if I was in your place I would try both of them. I think that is the only way to be really sure what is the best solution. When speaking theoretically it is possible that we do not include some factors.</p> ''' #parser = HtmlParser.from_url(url, Tokenizer(LANGUAGE)) #parser=HtmlParser.from_string(html, tokenizer=Tokenizer(LANGUAGE), url=None ) # or for plain text files from post_rec.Utility.TextPreprocessing import InformationAbstrator text_extractor=InformationAbstrator(100) text_extractor.initParagraphFilter(text_extractor.lexrankSummary) plain_text=" ".join( text_extractor.clipText(html) ) parser = PlaintextParser.from_string(plain_text, Tokenizer(LANGUAGE)) stemmer = Stemmer(LANGUAGE) summarizer = Summarizer(stemmer) summarizer.stop_words = get_stop_words(LANGUAGE) for sentence in summarizer(parser.document, SENTENCES_COUNT): print(sentence)
StarcoderdataPython
187738
<filename>__init__.py from .core.detectors import CornerNet, LineNet, CornerNet_Squeeze, CornerNet_Saccade, CornerNet_ifp_Saccade from .core.vis_utils import draw_bboxes
StarcoderdataPython
3335269
# -*- coding: utf-8 -*- # # Copyright The Plasma Project. # See LICENSE.txt for details. """ `ISmallMessage` Flex Messaging compatibility tests. .. versionadded:: 0.1 """ import unittest import datetime import uuid import pyamf from plasma.test import util from plasma.flex.messaging import messages from plasma.flex.messaging.messages import small class BaseTestCase(unittest.TestCase): """ Tests for :class:`messages.AbstractMessage` """ cls = None flags = [0x80, 0x80, 0x02] def test_too_many_flags(self): """ Test to check that if more than 2 flags are received in __readamf__ an error will be thrown. """ if self.cls is None: return class Mock: b = self.flags def __init__(self): self.i = iter(self.b) def readUnsignedByte(self): return self.i.next() def readObject(self): return {} a = self.cls() self.assertRaises(pyamf.DecodeError, a.__readamf__, Mock()) def test_not_enough_flags(self): if self.cls is None: return class Mock: b = [0x80, 0x80] def __init__(self): self.i = iter(self.b) def readUnsignedByte(self): try: return self.i.next() except StopIteration: return 0x00 def readObject(self): return {} a = self.cls() self.assertRaises(pyamf.DecodeError, a.__readamf__, Mock()) class AsyncMessageExtTestCase(BaseTestCase): """ Tests for :class:`small.AsyncMessageExt` """ cls = small.AsyncMessageExt flags = [0x80, 0x00, 0x80, 0x00] def test_alias(self): alias = pyamf.get_class_alias(self.cls) alias.compile() self.assertTrue(alias.sealed) self.assertFalse(alias.dynamic) self.assertEquals(alias.alias, 'DSA') self.assertTrue(alias.external) class AcknowledgeMessageExtTestCase(BaseTestCase): """ Tests for :class:`small.AcknowledgeMessageExt` """ cls = small.AcknowledgeMessageExt flags = [0x80, 0x00, 0x80, 0x80, 0x00] def test_alias(self): alias = pyamf.get_class_alias(self.cls) alias.compile() self.assertTrue(alias.sealed) self.assertFalse(alias.dynamic) self.assertEquals(alias.alias, 'DSK') self.assertTrue(alias.external) class CommandMessageExtTestCase(BaseTestCase): """ Tests for :class:`small.CommandMessageExt` """ cls = small.CommandMessageExt flags = [0x80, 0x00, 0x00, 0x80, 0x00] def test_flags_no_operation(self): """ Test to ensure that 0 is written for the command flag when operation is `None`. """ class MockDataOutput: written = [] def writeUnsignedByte(self, byte): self.written.append(byte) def writeObject(self, object): self.written.append(object) a = self.cls() b = MockDataOutput() a.operation = None a.__writeamf__(b) self.assertEquals(b.written, [0, 1, None, 0]) def test_alias(self): alias = pyamf.get_class_alias(self.cls) alias.compile() self.assertTrue(alias.sealed) self.assertFalse(alias.dynamic) self.assertEquals(alias.alias, 'DSC') self.assertTrue(alias.external) class EncodingTestCase(unittest.TestCase): """ Encoding tests for :mod:`small` """ def test_AcknowledgeMessage(self): m = messages.AcknowledgeMessage(correlationId='1234') bytes = pyamf.encode(m.getSmallMessage(), encoding=pyamf.AMF3).getvalue() self.assertEquals(bytes, '\n\x07\x07DSK\x00\x01\x06\t1234') def test_CommandMessage(self): m = messages.CommandMessage() bytes = pyamf.encode(m.getSmallMessage(), encoding=pyamf.AMF3).getvalue() self.assertEquals(bytes, '\n\x07\x07DSC\x00\x01\x01\x01\x04\xce\x10') m = messages.CommandMessage(operation='foo.bar') bytes = pyamf.encode(m.getSmallMessage(), encoding=pyamf.AMF3).getvalue() self.assertEquals(bytes, '\n\x07\x07DSC\x00\x01\x01\x01\x06\x0ffoo.bar') class SmallMessageTestCase(unittest.TestCase): """ Tests for :class:`messages.SmallMessageMixIn` """ def setUp(self): self.decoder = pyamf.get_decoder(pyamf.AMF3) self.buffer = self.decoder.stream def test_acknowledge(self): bytes = ('\n\x07\x07DSK\xa8\x03\n\x0b\x01%DSMessagingVersion\x05?\xf0' '\x00\x00\x00\x00\x00\x00\tDSId\x06IEE0D161D-C11D-25CB-8DBE-3B77B' '54B55D9\x01\x05Br3&m\x85\x10\x00\x0c!\xee\r\x16\x1d\xc1(&[\xc9' '\x80RK\x9bE\xc6\xc4\x0c!\xee\r\x16\x1d\xc1=\x8e\xa3\xe0\x10\xef' '\xad;\xe5\xc5j\x02\x0c!S\x84\x83\xdb\xa9\xc8\xcaM`\x952f\xdbQ' '\xc9<') self.buffer.write(bytes) self.buffer.seek(0) msg = self.decoder.readElement() self.assertTrue(isinstance(msg, small.AcknowledgeMessageExt)) self.assertEquals(msg.body, None) self.assertEquals(msg.destination, None) self.assertEquals(msg.timeToLive, None) self.assertEquals(msg.timestamp, datetime.datetime(2009, 8, 19, 11, 24, 43, 985000)) self.assertEquals(msg.headers, { 'DSMessagingVersion': 1.0, 'DSId': u'EE0D161D-C11D-25CB-8DBE-3B77B54B55D9' }) self.assertEquals(msg.clientId, uuid.UUID('ee0d161d-c128-265b-c980-524b9b45c6c4')) self.assertEquals(msg.messageId, uuid.UUID('ee0d161d-c13d-8ea3-e010-efad3be5c56a')) self.assertEquals(msg.correlationId, uuid.UUID('538483db-a9c8-ca4d-6095-3266db51c93c')) self.assertEquals(self.buffer.remaining(), 0) # now encode the msg to check that encoding is byte for byte the same buffer = pyamf.encode(msg, encoding=pyamf.AMF3).getvalue() self.assertEquals(buffer, bytes) def test_command(self): bytes = ('\n\x07\x07DSC\x88\x02\n\x0b\x01\tDSId\x06IEE0D161D-C11D-' '25CB-8DBE-3B77B54B55D9\x01\x0c!\xc0\xdf\xb7|\xd6\xee$1s\x152f' '\xe11\xa8f\x01\x06\x01\x01\x04\x02') self.buffer.write(bytes) self.buffer.seek(0) msg = self.decoder.readElement() self.assertTrue(isinstance(msg, small.CommandMessageExt)) self.assertEquals(msg.body, None) self.assertEquals(msg.destination, None) self.assertEquals(msg.timeToLive, None) self.assertEquals(msg.timestamp, None) self.assertEquals(msg.headers, { 'DSId': u'EE0D161D-C11D-25CB-8DBE-3B77B54B55D9' }) self.assertEquals(msg.clientId, None) self.assertEquals(msg.messageId, uuid.UUID('c0dfb77c-d6ee-2431-7315-3266e131a866')) self.assertEquals(msg.correlationId, u'') self.assertEquals(self.buffer.remaining(), 0) # now encode the msg to check that encoding is byte for byte the same buffer = pyamf.encode(msg, encoding=pyamf.AMF3).getvalue() self.assertEquals(buffer, bytes) def test_getmessage(self): """Tests for `getSmallMessage`""" for cls in ['AbstractMessage', 'ErrorMessage', 'RemotingMessage']: cls = getattr(messages, cls) self.assertRaises(NotImplementedError, cls().getSmallMessage) kwargs = { 'body': {'foo': 'bar'}, 'clientId': 'spam', 'destination': 'eggs', 'headers': {'blarg': 'whoop'}, 'messageId': 'baz', 'timestamp': 1234, 'timeToLive': 99 } # test async a = messages.AsyncMessage(correlationId='yay', **kwargs) m = a.getSmallMessage() k = kwargs.copy() k.update({'correlationId': 'yay'}) self.assertTrue(isinstance(m, small.AsyncMessageExt)) d = util.dict_for_slots(m) self.assertEquals(d, k) # test command a = messages.CommandMessage(operation='yay', **kwargs) m = a.getSmallMessage() k = kwargs.copy() k.update({ 'operation': 'yay', 'correlationId': None }) self.assertTrue(isinstance(m, small.CommandMessageExt)) d = util.dict_for_slots(m) self.assertEquals(d, k) # test ack a = messages.AcknowledgeMessage(**kwargs) m = a.getSmallMessage() k = kwargs.copy() k.update({'correlationId': None}) self.assertTrue(isinstance(m, small.AcknowledgeMessageExt)) d = util.dict_for_slots(m) self.assertEquals(d, k)
StarcoderdataPython
143383
<filename>uliweb/utils/timeit.py import time from contextlib import contextmanager @contextmanager def timeit(output): """ If output is string, then print the string and also time used """ b = time.time() yield print(output, 'time used: %.3fs' % (time.time()-b))
StarcoderdataPython
11984
#!/usr/bin/env python3 import matplotlib.pyplot as plt import numpy as np convolve_grayscale_padding = __import__( '2-convolve_grayscale_padding').convolve_grayscale_padding if __name__ == '__main__': dataset = np.load('../../supervised_learning/data/MNIST.npz') images = dataset['X_train'] print(images.shape) kernel = np.array([[1, 0, -1], [1, 0, -1], [1, 0, -1]]) images_conv = convolve_grayscale_padding(images, kernel, (2, 4)) print(images_conv.shape) plt.imshow(images[0], cmap='gray') plt.show() plt.imshow(images_conv[0], cmap='gray') plt.show()
StarcoderdataPython
1655363
<gh_stars>1-10 import codecs import pandas as pd import numpy as np import argparse import jieba import os def is_chinese(uchar): if uchar >= u'\u4e00' and uchar <= u'\u9fa5': return True else: return False def is_punctuation(uchar): punctuations = [',', '。', '?', '!', ':'] if uchar in punctuations: return True else: return False def text_process(text): temp_text = '' for _ in text: if is_chinese(_) or is_punctuation(_): temp_text += _ text = temp_text return text if __name__ == '__main__': parser = argparse.ArgumentParser(description='clean data') # read outside parameters parser.add_argument('-write-train', type=str, default='../data/train_clean.csv', help='write train file name') parser.add_argument('-write-test', type=str, default='../data/test_clean.csv', help='write test file name') # parser.add_argument('-test', type=int, default=0, help='clean test file') # parser.add_argument('-train', type=int, default=1, help='clean train file') args = parser.parse_args() train=pd.read_csv("../data/Train_DataSet.csv") train_label_df=pd.read_csv("../data/Train_DataSet_Label.csv") test=pd.read_csv("../data/Test_DataSet.csv") train=train.merge(train_label_df,on='id',how='left') train['label']=train['label'].fillna(-1) train=train[train['label']!=-1] train['label']=train['label'].astype(int) test['content']=test['content'].fillna('无') train['content']=train['content'].fillna('无') test['title']=test['title'].fillna('无') train['title']=train['title'].fillna('无') # clean train file for i in train.index: # clean title title = text_process(str(train.loc[i, 'title'])) if title == '': train.loc[i, 'title'] = '无' else: train.loc[i, 'title'] = title # clean content content = text_process(str(train.loc[i, 'content'])) if content == '': train.loc[i, 'content'] = '无' else: train.loc[i, 'content'] = content # write to new csv train.to_csv(args.write_train, index=False, encoding='utf-8') print('clean train done') # clean test file for i in test.index: title = text_process(str(test.loc[i, 'title'])) if title == '': test.loc[i, 'title'] = '无' else: test.loc[i, 'title'] = title content = text_process(str(test.loc[i, 'content'])) if content == '': test.loc[i, 'content'] = '无' else: test.loc[i, 'content'] = content # write to new csv test.to_csv(args.write_test, index=False, encoding='utf-8') print('clean test done')
StarcoderdataPython
3231121
<filename>src/fcrypt.py<gh_stars>0 from . import encryptor, logger import os import argparse from platform import system, release from pathlib import Path from time import sleep __version__ = '1.0.0' system_os = system() system_release = release() current_dir = os.getcwd() default_key_path = '\\default.key' if system_os == 'Windows' else '/default.key' key = None info = f""" #===================================================# Crypto - File Encryptor/Decryptor App written by h4sh Detected OS : {system_os} OS Release : {system_release} #===================================================# """ epilog = """ Exit Codes: * 0 -> Success. * 1 -> Supplied an invalid path. * 2 -> Failure to load the key file. * 3 -> Failure to decrypt a specified file. * 4 -> Failure to encrypt a specified file. * 5 -> User stopped the action """ def setup_parser(): parser = argparse.ArgumentParser(description="Encrypt/Decrypt specified files using Fernet", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=epilog) parser.add_argument('path', metavar='path', type=str, help='File to encrypt/decrypt') parser.add_argument('-k', '--key-path', default=current_dir + default_key_path, type=str, help='Path to the encryption key') parser.add_argument('-v', '--verbose', action='store_true', help='Enable verbose') parser.add_argument('-d', '--decrypt', action='store_true', help='Decrypt the file') parser.add_argument('-y', '--yes', action='store_true', help='By-pass safety check') parser.add_argument('--version', action='version', version=f'Crypto @ {__version__}', help='Display app version') return parser.parse_args() def exec(): args = setup_parser() print(info) decrypt = args.decrypt override = args.yes if not Path(args.path).exists(): logger.error(f'Invalid path : {args.path}') return 1 if not Path(args.key_path).exists(): logger.warn(f'Key not found : {args.key_path} | Generating new key...') key = encryptor.key_create() logger.verbose(f'Key generated. Writing to {args.key_path}', args.verbose) encryptor.key_write(key, args.key_path) logger.success(f'New key has been written to: {args.key_path}') else: logger.verbose(f'Key found! Loading into memory...', args.verbose) key = encryptor.key_load(args.key_path) if key != None: logger.success(f'Key loaded into memory!') else: logger.error(f'Unable to load the key. Exiting...') return 2 if not override and not decrypt: logger.warn(f'Are you sure you wish to encrypt "{args.path}"?') u = input('(y/n)> ').lower() if u not in ('y', 'ye', 'yes'): logger.info('Task stopped by the user') return 5 if decrypt: logger.info(f'Decrypting -> {args.path}...') try: encryptor.file_decrypt(key, args.path, args.path) logger.success(f'Decryption complete!') except Exception as e: logger.error(f'Failed to decrypt -> {e}') return 3 else: logger.info(f'Encrypting -> {args.path}...') try: encryptor.file_encrypt(key, args.path, args.path) logger.success(f'Encryption complete!') except Exception as e: logger.error(f'Failed to encrypt -> {e}') return 4 return 0 if __name__ == '__main__': exec()
StarcoderdataPython
3336901
<reponame>paulcacheux/ctw # -*- coding: utf-8 -*- """ Created on Thu May 9 18:24:31 2019 @author: Mathurin """ from fractions import Fraction import markov import graphviz class Tree: def __init__(self, m): self.m = m self.top = Node(None, 0, None, [], m) self.nodes = [self.top] def insert_node(self, value, depth, parent): node = Node(value, depth, parent, [], m) self.nodes.append(node) return node def get_node_of_depth(self, depth): return [node for node in self.nodes if node.depth == depth] def debug_print(self): for node in self.nodes: print("{}".format(repr(node))) def compute_prob(self, beta): for node in self.nodes: node.compute_pe() self.top.compute_pw(beta) class Node: def __init__(self, value, depth, parent, children, m): self.m = m self.value = value self.depth = depth self.parent = parent self.children = children self.count = [0] * m self.pe = None def __repr__(self): return "Node(depth={}, value={}, context={}, count={}, pe={}, pw={})".format(self.depth, self.value, self.get_context(), self.count, float(self.pe), float(self.pw)) def is_leaf(self): return len(self.children)==0 def get_context(self): if self.parent is None: return [] return [self.value] + self.parent.get_context() def compute_pe(self): Ms = sum(self.count) num = 1 for j in range(self.m): for i in range(self.count[j]): num *= Fraction(1, 2) + i den = 1 for i in range(Ms): den *= Fraction(m, 2) + i res = num / den self.pe = res def compute_pw(self, beta): if self.is_leaf(): self.pw = self.pe else: p = 1 for c in self.children: c.compute_pw(beta) p *= c.pw self.pw = beta * self.pe + (1 - beta) * p def build_tree(tree, data, D): for i in range(1, D+1): for j in range(len(data) - i + 1): context = data[j:j+i] value = context[0] rest = context[1:] depth = len(rest) after = None if j+i < len(data): after = data[j+i] for node in tree.get_node_of_depth(depth): if node.get_context() == rest: value_node = get_node_in_tree(tree, node, depth, value) if after is not None: value_node.count[after] += 1 def get_node_in_tree(tree, current_node, depth, value): for c in current_node.children: if c.value == value: return c c = tree.insert_node(value, depth + 1, current_node) current_node.children.append(c) return c def compute_input_proba(tree): proba=1 for node in tree.nodes : if node.is_leaf(): # le noeud est une feuille proba*=node.pe return proba m = 2 tree = Tree(m) #input_bits = markov.gen_markov(10) input_bits=[0,1,0,1,0,1,0,1,0,1,0,1,0,1] print(input_bits) build_tree(tree, input_bits, 2) tree.compute_prob(Fraction(1, 2)) #tree.debug_print() print(graphviz.main_node_to_graphviz(tree.top)) print(float(compute_input_proba(tree))*100,'%')
StarcoderdataPython
14431
from django.views.generic import ListView, DetailView from django.views.generic.edit import CreateView, UpdateView, DeleteView from django.urls import reverse_lazy, reverse from django.shortcuts import redirect from .models import StockEntry, StockEntryLine from .forms import StockEntryForm, StockEntryLineForm, StockEntryLineIF from main.views import BaseView class StockEntryList(BaseView, ListView): model = StockEntry template_name = 'stock/list.html' paginate_by = 8 permission_required = 'stockentry.view_stockentry' class StockEntryDetail(BaseView, DetailView): model = StockEntry form_class = StockEntryForm template_name = 'stock/detail.html' fields = "__all__" pk_url_kwarg = 'pk' permission_required = 'stockentry.view_stockentry' def get_context_data(self, **kwargs): context = super().get_context_data(**kwargs) lines = StockEntryLine.objects.all().filter(parent=self.kwargs['pk']) new_line = StockEntryLineForm(initial={'parent':self.object}) context['new_line'] = new_line context['lines'] = lines return context class StockEntryCreate(BaseView, CreateView): model = StockEntry form_class = StockEntryForm template_name = 'stock/create.html' permission_required = 'stockentry.add_stockentry' def get_success_url(self): return reverse('stock:detail', kwargs={'pk':self.object.id}) class StockEntryUpdate(BaseView, UpdateView): model = StockEntry form_class = StockEntryForm formset_class = StockEntryLineIF template_name = 'stock/detail.html' pk_url_kwarg = 'pk' success_url = reverse_lazy('stock:detail') permission_required = 'stockentry.change_stockentry' # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # lines = StockEntryLine.objects.all().filter(parent=self.kwargs['pk']) # new_line = StockEntryLineForm(initial={'parent':self.object}) # context['new_line'] = new_line # context['lines'] = lines # return context # def get_success_url(self): # pk = self.kwargs['pk'] # return reverse('stock:detail', kwargs={'pk':pk}) def post(self, request, *args, **kwargs): obj = self.get_object() if kwargs.get('process') == 'submit': obj.submit_stock_entry(obj.id) if kwargs.get('process') == 'cancel': obj.cancel_stock_entry(obj.id) return redirect('stock:detail', pk=obj.id) class StockEntryLineCreate(BaseView, CreateView): model = StockEntryLine form_class = StockEntryLineForm template_name = 'stock/add_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.add_stockentryline' # def get_context_data(self, **kwargs): # context = super().get_context_data(**kwargs) # context['parent'] = self.kwargs['pk'] # return context def get_success_url(self): # pk = self.kwargs['pk'] # parent = StockEntry.objects.get(pk=self.kwargs['pk']) parent_id = self.request.POST['parent'] return reverse('stock:detail', kwargs={'pk':parent_id}) class StockEntryLineEdit(BaseView, UpdateView): model = StockEntryLine form_class = StockEntryLineForm template_name = 'stock/edit_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.change_stockentryline' def get_success_url(self): line = StockEntryLine.objects.get(pk=self.kwargs['pk']) return reverse('stock:detail', kwargs={'pk':line.parent.id}) class StockEntryLineDelete(BaseView, DeleteView): model = StockEntryLine template_name = 'stock/delete_line.html' pk_url_kwarg = 'pk' permission_required = 'stockentryline.delete_stockentryline' def get_success_url(self): return reverse('stock:detail', kwargs={'pk':self.object.parent.id})
StarcoderdataPython
4832817
<filename>schema.py<gh_stars>0 from loopDB import LoopDB # Importing the LoopDB module loopDB = LoopDB( app.config["DATABASE_URL"] , clean = True) loopDB.initFromFile('schema.json') # Initialising from the schema file
StarcoderdataPython
146077
import re import pandas as pd import numpy as np COLUMN_NAMES = [ 'Material family', 'Youngs modulus', 'Specific stiffness', 'Yield strength', 'Tensile strength', 'Specific strength', 'Elongation', 'Compressive strength', 'Flexural modulus', 'Flexural strength', 'Shear modulus', 'Bulk modulus', 'Poisson ratio', 'Shape factor', 'Hardness vickers', 'Elastic stored energy', 'Fatigue strength', 'Fracture toughness', 'Toughness', 'Ductility index', 'Melting point', 'Max service temp', 'Min service temp', 'Thermal conductivity', 'Specific heat capacity', 'Thermal expansion coefficient', 'Thermal shock resistance', 'Thermal distortion resistance', 'Latent heat of fusion', 'Electrical resistivity', 'Electrical conductivity', 'Galvanic potential', 'Mechanical loss coefficient', ] BAD_PROPERTIES = [ 'Elongation', # This is because there's over 600 bad properties in the dataset 'Hardness vickers', # not worth saving 'Specific stiffness', 'Specific strength', 'Shape factor', 'Elastic stored energy', 'Toughness', 'Ductility index', 'Thermal shock resistance', 'Thermal distortion resistance', # These properties are not actually real properties of the material 'Max service temp', 'Min service temp', 'Electrical resistivity', # This really messes with our data selection 'Galvanic potential', ] # These are materials with invalid values for one or more properties # This entry is here because there's materials with higher, but valid values # And I don't want to lose them BAD_MATERIALS = [ "PEEK/IM carbon fiber, UD prepreg, UD lay-up" ] def parsing_material_data(material_text, new_file): with open(material_text, "r") as stuff_to_write: with open(new_file, "w") as stuff_written: in_thermal_properties = False in_electrical_properties = False in_mechanical_properties = False in_impact_properties = False for line in stuff_to_write: if line.startswith("done"): stuff_written.write(line) elif "Mechanical properties" in line: in_mechanical_properties = True elif "Impact & fracture properties" in line: in_mechanical_properties = False in_impact_properties = True elif "Thermal properties" in line: in_thermal_properties = True in_impact_properties = False elif "Electrical properties" in line: in_thermal_properties = False in_electrical_properties = True elif "Magnetic properties" in line: in_electrical_properties = False in_mechanical_properties = False in_thermal_properties = False in_impact_properties = False elif "Mechanical loss coefficient" in line: stuff_written.write(line) elif line.startswith("Material family"): stuff_written.write(line) elif in_thermal_properties is True or in_electrical_properties is True or in_mechanical_properties is True or in_impact_properties is True: stuff_written.write(line) def parsing_refined_data(new_file): material_name = [] material_family = [] young_modulus_values = [] specific_stiffness_values = [] yield_strength_values = [] tensile_strength_values = [] specific_strength_values = [] elongation_values = [] compressive_strength_values = [] flexural_modulus_values = [] flexural_strength_values = [] shear_modulus_values = [] bulk_modulus_values = [] poisson_ratio_values = [] shape_factor_values = [] hardness_vickers_values = [] elastic_stored_energy_values = [] fatigue_strength_values = [] fracture_toughness_values = [] toughness_values = [] ductility_index_values = [] melting_values = [] max_service_temp_values = [] min_service_temp_values = [] therm_cond_values = [] spec_heat_cap_values = [] therm_expan_coeff_values = [] therm_shock_resist_values = [] therm_dist_resist_values = [] latent_heat_fusion_values = [] elec_resist_values = [] elec_cond_values = [] galvanic_potential_values = [] mech_loss_coeff_values = [] with open(new_file, "r") as sample_info: for line in sample_info: if line.startswith("done"): for line_item in range(2, len(line.split(' '))): material_name.append((line.split(' ')[line_item].strip('" ,\t\n'))) elif line.startswith("Material family"): for line_item in range(1, len(line.split(' ')) - 1): material_family.append(line.split(' ')[line_item].strip(' ",\t\n')) elif line.startswith("Young's modulus (10^6 psi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 young_modulus_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': young_modulus_values.append("Null") else: young_modulus_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Specific stiffness (lbf.ft/lb)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 specific_stiffness_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': specific_stiffness_values.append("Null") else: specific_stiffness_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Yield strength (elastic limit) (ksi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 yield_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': yield_strength_values.append("Null") else: yield_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Tensile strength (ksi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 tensile_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': tensile_strength_values.append("Null") else: tensile_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Specific strength (lbf.ft/lb)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 specific_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': specific_strength_values.append("Null") else: specific_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Elongation (% strain)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 elongation_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': elongation_values.append("Null") else: elongation_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Compressive strength (ksi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 compressive_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': compressive_strength_values.append("Null") else: compressive_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Flexural modulus (10^6 psi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 flexural_modulus_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': flexural_modulus_values.append("Null") else: flexural_modulus_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Flexural strength (modulus of rupture) (ksi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 flexural_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': flexural_strength_values.append("Null") else: flexural_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Shear modulus (10^6 psi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 shear_modulus_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': shear_modulus_values.append("Null") else: shear_modulus_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Bulk modulus (10^6 psi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 bulk_modulus_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': bulk_modulus_values.append("Null") else: bulk_modulus_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Poisson's ratio"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 poisson_ratio_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': poisson_ratio_values.append("Null") else: poisson_ratio_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Shape factor"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 shape_factor_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': shape_factor_values.append("Null") else: shape_factor_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Hardness - Vickers (HV)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 hardness_vickers_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': hardness_vickers_values.append("Null") else: hardness_vickers_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Elastic stored energy (springs) (ft.lbf/in^3)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 elastic_stored_energy_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': elastic_stored_energy_values.append("Null") else: elastic_stored_energy_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Fatigue strength at 10^7 cycles (ksi)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 fatigue_strength_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': fatigue_strength_values.append("Null") else: fatigue_strength_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Fracture toughness (ksi.in^0.5)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 fracture_toughness_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': fracture_toughness_values.append("Null") else: fracture_toughness_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Toughness (G) (ft.lbf/in^2)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 toughness_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': toughness_values.append("Null") else: toughness_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Ductility index (mil)"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 ductility_index_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': ductility_index_values.append("Null") else: ductility_index_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Melting"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 melting_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': melting_values.append("Null") else: melting_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Maximum service temperature"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 max_service_temp_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': max_service_temp_values.append("Null") else: max_service_temp_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Minimum service temperature"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 min_service_temp_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': min_service_temp_values.append("Null") else: min_service_temp_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Thermal conductivity"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 therm_cond_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': therm_cond_values.append("Null") else: therm_cond_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Specific heat capacity"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 spec_heat_cap_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': spec_heat_cap_values.append("Null") else: spec_heat_cap_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Thermal expansion coefficient"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 therm_expan_coeff_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': therm_expan_coeff_values.append("Null") else: therm_expan_coeff_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Thermal shock resistance"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 therm_shock_resist_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': therm_shock_resist_values.append("Null") else: therm_shock_resist_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Thermal distortion resistance"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 therm_dist_resist_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': therm_dist_resist_values.append("Null") else: therm_dist_resist_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Latent heat of fusion"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 latent_heat_fusion_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': latent_heat_fusion_values.append("Null") else: latent_heat_fusion_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Electrical resistivity"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 elec_resist_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': elec_resist_values.append("Null") else: elec_resist_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Electrical conductivity"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 elec_cond_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': elec_cond_values.append("Null") else: elec_cond_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Galvanic potential"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 galvanic_potential_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': galvanic_potential_values.append("Null") else: galvanic_potential_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) elif line.startswith("Mechanical loss coefficient"): for line_item in range(1, (len(line.split(",")) - 1)): if " - " in line.split(",")[line_item].strip(" "): left_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[0] right_of_dash = line.split(",")[line_item].strip(" ").split(" - ")[1] average_of_dash = (float(left_of_dash) + float(right_of_dash)) / 2 mech_loss_coeff_values.append(round(average_of_dash, 6)) elif line.split(",")[line_item] is '': mech_loss_coeff_values.append("Null") else: mech_loss_coeff_values.append(round(float(line.split(",")[line_item].strip(" ")), 6)) #Brinell Hardness, Dielectric Constant, Dielectric Strength, Dissipation Factor, excluded because lacking way too much data (>10 rows of materials non-existent) null_extender = ["Null"] * 18 material_name.extend(null_extender) material_family.extend(null_extender) return(material_name, material_family, young_modulus_values, specific_stiffness_values, yield_strength_values, tensile_strength_values, specific_strength_values, elongation_values, compressive_strength_values, flexural_modulus_values, flexural_strength_values, shear_modulus_values, bulk_modulus_values, poisson_ratio_values, shape_factor_values, hardness_vickers_values, elastic_stored_energy_values, fatigue_strength_values, fracture_toughness_values, toughness_values, ductility_index_values, melting_values, max_service_temp_values, min_service_temp_values, therm_cond_values, spec_heat_cap_values, therm_expan_coeff_values, therm_shock_resist_values, therm_dist_resist_values, latent_heat_fusion_values, elec_resist_values, elec_cond_values, galvanic_potential_values, mech_loss_coeff_values) def null_invalid_properties(frame: pd.DataFrame): # This drops elements in our dataset which have invalid values for any of the following properties # found to contain a salvagable amount of invalid data COLUMNS_TO_SCRUB = [ "Tensile strength", "Compressive strength", "Flexural modulus", "Flexural strength", "Bulk modulus", "Elastic stored energy", "Fatigue strength", "Fracture toughness", "Toughness", "Thermal expansion coefficient", ] for c in COLUMNS_TO_SCRUB: # They're all some kind of number between 40k and 50k # with bias towards repeating values frame[c].mask(frame[c].gt(40000), inplace=True) # Be gingerly with this column because there's larger entries with valid values frame["Thermal shock resistance"].mask(frame["Thermal shock resistance"].eq(47650), inplace=True) frame["Fracture toughness"].mask(frame["Fracture toughness"].gt(12000), inplace=True) def properties_dataframe_from_file(path: str): property_lists = parsing_refined_data(path) frame = pd.DataFrame(index=property_lists[0], data={ k: v for (k, v) in zip(COLUMN_NAMES, property_lists[1:]) }) frame.replace("Null", np.nan, inplace=True) null_invalid_properties(frame) return frame if __name__ == "__main__": parsing_material_data("C:/Users/Everet/Documents/AMP_Project/Pres_3/Updated_PCM.csv", "C:/Users/Everet/Documents/AMP_Project/Pres_3/new_TEM.csv") material_name, material_family, young_modulus_values, specific_stiffness_values, yield_strength_values, tensile_strength_values, specific_strength_values, elongation_values, compressive_strength_values, flexural_modulus_values, flexural_strength_values, shear_modulus_values, bulk_modulus_values, poisson_ratio_values, shape_factor_values, hardness_vickers_values, elastic_stored_energy_values, fatigue_strength_values, fracture_toughness_values, toughness_values, ductility_index_values, melting_values, max_service_temp_values, min_service_temp_values, therm_cond_values, spec_heat_cap_values, therm_expan_coeff_values, therm_shock_resist_values, therm_dist_resist_values, latent_heat_fusion_values, elec_resist_values, elec_cond_values, galvanic_potential_values, mech_loss_coeff_values = parsing_refined_data("C:/Users/Everet/Documents/AMP_Project/Pres_3/new_TEM.csv") print(len(material_name), len(material_family), len(young_modulus_values), len(specific_stiffness_values), len(yield_strength_values), len(tensile_strength_values)) print(material_name[0]) print(material_family[0]) print(material_family[-4]) print(set(material_family)) #print(len(specific_strength_values), len(elongation_values), len(compressive_strength_values), len(flexural_modulus_values), len(flexural_strength_values)) #print(len(shear_modulus_values), len(bulk_modulus_values), len(poisson_ratio_values), len(shape_factor_values), len(hardness_vickers_values)) #print(len(elastic_stored_energy_values), len(fatigue_strength_values), len(fracture_toughness_values), len(toughness_values), len(ductility_index_values)) #print(len(melting_values), len(max_service_temp_values), len(min_service_temp_values), len(therm_cond_values), len(spec_heat_cap_values)) #print(len(therm_expan_coeff_values), len(therm_shock_resist_values), len(therm_dist_resist_values), len(latent_heat_fusion_values), len(elec_resist_values)) #print(len(elec_cond_values), len(galvanic_potential_values), len(mech_loss_coeff_values)) #33 properties total
StarcoderdataPython
197755
<reponame>v22arvind/Plot-Pings-in-Python import datetime import os import re import sys import time from optparse import OptionParser import numpy as np # software version __version__ = "1.1.0" ping_flag = "n" if sys.platform != "win32": ping_flag = "c" # ping def pinger(host, n): """Executes the PCs ping command""" proc = os.popen(f"ping -{ping_flag} {n} {host}") return "".join(proc.readlines()) # wrapper for ping def call_pinger(host, n): """Calls the pinger function and returns results as arrays""" out = pinger(host, n) try: if sys.platform == "win32": loss_idx = int(re.search("\d+(?=% loss)", out).group(0)) ping_idx = int(re.search("(?<=Average =) \d+", out).group(0)) else: # the next two lines assume this format: # 4 packets transmitted, 4 received, 0% packet loss, time 3002ms # rtt min/avg/max/mdev = 24.146/63.155/128.436/42.823 ms loss_idx = float(re.search("\d+(?=% packet loss)", out).group(0)) ping_idx = float(out.split("/")[-3]) except: ping_idx = np.nan # bad connection loss_idx = 100.0 # append data # ping = np.append(ping, ping_idx) # loss = np.append(loss, loss_idx) # t = np.append(t, time.time()) return ping_idx, loss_idx, out # writes out to the log file # def write_log(log_file, log_body): # """Writes results to a log file""" # log_file.write(f"TIME: {datetime.datetime.now().ctime()}\n{log_body}\n\n") # produces ping vs time plot def plot_gen(ping, now, nans, host, interactive=False, size="1280x640"): """Generates ping vs time plot""" if not interactive: import matplotlib matplotlib.use("Agg") # no need to load gui toolkit, can run headless import matplotlib.pyplot as plt size = [int(dim) for dim in size.split("x")] datestr = now[0].ctime().split() datestr = datestr[0] + " " + datestr[1] + " " + datestr[2] + " " + datestr[-1] plt.figure(figsize=(size[0] / 80.0, size[1] / 80.0)) # dpi is 80 plt.plot(now[~nans], ping[~nans], drawstyle="steps") plt.title(f"Ping Results for {host}") plt.ylabel("Latency [ms]") plt.xlabel(f"Time, {datestr} [GMT-{time.timezone // 3600}]") plt.xticks(size=10) plt.yticks(size=10) plt.ylim(ping[~nans].min() - 5, ping[~nans].max() + 5) # plot packet losses start = [] finish = [] for i in range(len(nans)): if nans[i]: if i == 0 or nans[i] != nans[i - 1]: start.append(i) if i == len(nans) - 1 or nans[i + 1] != nans[i]: finish.append(i) # add the red bars for bad pings for i in range(len(start)): plt.axvspan(now[start[i]], now[finish[i]], color="red") return plt # main def main(argv=None): # for interactive mode if not argv: argv = sys.argv[1:] # handle cmd line arguments parser = OptionParser() parser.add_option( "-p", "--plot", dest="plot", action="store_true", help="generates plot after data collection is finished", ) parser.add_option( "-f", "--file", dest="fsave", action="store_true", help="save plot to file in the current directory", ) parser.add_option( "-H", "--host", dest="host", default="google.com", help="the url or ip address to ping [default: �fault]", ) parser.add_option( "-n", "--num", dest="n", default=1, type="int", help="the number of packets to send on each ping iteration [default: �fault]", ) parser.add_option( "-t", "--dt", dest="dt", default=0.5, type="float", help="the time interval (seconds) in which successive pings are sent [default: �fault s]", ) parser.add_option( "-l", "--log", dest="log", action="store_true", help="save a log file of the event in the current directory", ) parser.add_option( "-s", "--size", dest="size", default="1280x640", help="If plotting/saving a plot, this is the plot's dimensions" "in pixels (at 80 DPI) in the format XxY [default: 1280x640]", ) # unpack and initialize data opts, args = parser.parse_args(argv) # write log if specified # if opts.log or opts.fsave: # log_file.write(f"PingPlot Version {__version__} - Log File\n\n\n") # start the main loop print(f"PingPlot Version {__version__} -- by ccampo\n") print("{0:^23}\n=======================".format("Run Parameters")) print("{0:>17} {1}".format("Hostname:", opts.host)) print("{0:>17} {1}".format("Ping interval:", str(opts.dt) + " s")) print("{0:>17} {1}".format("Packets per ping:", opts.n)) print("\n\nPress CTRL+C to quit...\n") print( "{0:^15} {1:^15} {2:^15} {3:^15} {4:^15}\n".format( "AVG. PING", "PACKET LOSS", "NUM. PINGS", "NUM. TIMEOUTS", "TIME ELAPSED" ) ) while True: ping = np.array([]) loss = np.array([]) t = np.array([]) now = np.array([]) cnt = 0 save_count = 0 loop_start_time = datetime.datetime.now() now_time = datetime.datetime.now() date_str = now_time.isoformat()[:-7][:10] time_str = f"{now_time.hour}h{now_time.minute}m{now_time.second}s" stamp = date_str + "_" + time_str log_name = f"Log\pingplot_v{__version__}_{opts.host}_{stamp}.log" plot_name = f"Plot\pingplot_v{__version__}_{opts.host}_{stamp}.png" log_file = open(log_name, "w") while (datetime.datetime.now() - loop_start_time).total_seconds() / 3600 < 4: # quit on ctrl+c try: ping_idx, loss_idx, out = call_pinger(opts.host, opts.n) ping = np.append(ping, ping_idx) loss = np.append(loss, loss_idx) now = np.append(now, datetime.datetime.now()) t = np.append(t, time.time()) cnt += 1 save_count += 1 log_file.write( f"{datetime.datetime.now().strftime('%x %X')},{opts.host},{opts.n},{ping_idx},{loss_idx} \n" ) # get ping data mean_loss = loss.mean() nans = np.isnan(ping) if len(ping[~nans]) > 0: mean_ping = ping[~np.isnan(ping)].mean() else: mean_ping = np.nan # if opts.log: # write_log(log_file, out) # only ping after time dt time.sleep(opts.dt) delta_t = datetime.timedelta(seconds=(round(time.time() - t[0], 0))) sys.stdout.write( "\r{0:^15.8} {1:^15.10} {2:^15} {3:^15} {4:^15}".format( str(round(mean_ping, 2)) + " ms", str(round(mean_loss, 2)) + " %", cnt * opts.n, len(ping[nans]), str(delta_t), ) ) sys.stdout.flush() if save_count > 30: save_count = 0 plt = plot_gen(ping, now, nans, opts.host, opts.plot, opts.size) plt.savefig(plot_name) except KeyboardInterrupt: break print("\n") # close log file print(f"Saved log file {log_name}") log_file.close() # make plot to save # check if any data was collected if len(ping[~nans]) == 0: print( "Error: cannot generate plot; no data collected. Please check your connection." ) return 2 plt = plot_gen(ping, now, nans, opts.host, opts.plot, opts.size) print(f"Saved plot {plot_name}") plt.savefig(plot_name) # plt.show() return 2 # exit if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
1730868
# Copyright (c) Microsoft Corporation. # Licensed under the MIT License. """ Shared interfaces """ import logging as log from pydoc import locate from dacite import from_dict from dataclasses import dataclass, field from typing import List, Optional, Union, cast from .common import IDebugDecorator """ Component config is either a string of the name of component to load. Example: { "mycomponent" : "my.namespace.MyController", ... } Or it is a dictionary with a `name` field and parameter overrides for the defaults. Example: { "mycomponent": { "name": "my.namespace.MyController", "someParam": 42.0 }, ... } """ ComponentConfig = Union[dict, str] class IDevice: @dataclass class Calibration: servoOffsets: List[int] = field(default_factory=lambda: [0, 0, 0]) # plate calibration as a percentage of frame size plateXOffset: float = 0.0 plateYOffset: float = 0.0 ballHue: int = 32 # orange/yellow rotation: float = -30.0 # the camera sits -30deg rotated from plate coords @dataclass class Config: frequencyHz: float = 30.0 joystickThreshold: float = 0.8 menu_idx: int = 0 debug: bool = False debugDecorator: Optional[ComponentConfig] = None sensor: Optional[ComponentConfig] = None detectors: Optional[ComponentConfig] = None controller: Optional[ComponentConfig] = None actuator: Optional[ComponentConfig] = None def __init__( self, config: Config, calibration: Calibration, debug_decorator: Optional[IDebugDecorator], ): self.debug_decorator = debug_decorator self.config = config # shared per-machine calibration data self.calibration = calibration self.next_device: Optional[str] = None self.previous_menu: int = self.config.menu_idx def update(self): pass def run(self): pass def stop(self): pass def set_next_device(self, device_name: str): self.next_device = device_name def get_next_device(self) -> Optional[str]: return self.next_device def component_from_config( self, component_config: ComponentConfig ) -> Optional[object]: """ Import classes with the following signature, and construct them with their config class. class Foo: @dataclass class Config: param1: type = default param2: type = default ... def __init__(self, config: Config): ... """ class_name = "" config = {} try: # if we're just a string expand out into a dict with no config if type(component_config) is str: class_name = cast(str, component_config) elif type(component_config) is dict: class_name = cast(dict, component_config)["name"] config = component_config # locate class ref for module.name.Foo and module.name.Foo.Config class_ref = locate(class_name, forceload=False) config_ref = locate(class_name + ".Config", forceload=False) # unpack dict into dataclass config_inst = from_dict(config_ref, config) ref = class_ref(config_inst, self) # type: ignore except Exception as e: log.exception(f"Error creating class {class_name}\n{e}") return None return ref
StarcoderdataPython
102292
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import numpy as np import h5py import sys if __name__ == '__main__' : EXIT_FAILURE = 1 EXIT_SUCCESS = 0 # Check if we have a program argument, otherwise terminate if len(sys.argv) <= 1 : print("Usage: " + sys.argv[0] + " H5FILE\n") sys.exit(EXIT_FAILURE) filename = sys.argv[1] # Open HDF5 file h5in = h5py.File(filename, 'r') try : pass finally : h5in.close()
StarcoderdataPython
1771386
<filename>numpyro/contrib/module.py<gh_stars>1-10 # Copyright Contributors to the Pyro project. # SPDX-License-Identifier: Apache-2.0 from functools import partial from jax import numpy as jnp import numpyro from numpyro.distributions.discrete import PRNGIdentity def flax_module(name, nn, input_shape=None): """ Declare a :mod:`~flax` style neural network inside a model so that its parameters are registered for optimization via :func:`~numpyro.primitives.param` statements. :param str name: name of the module to be registered. :param flax.nn.Module nn: a `flax` Module which has .init and .apply methods :param tuple input_shape: shape of the input taken by the neural network. :return: a callable with bound parameters that takes an array as an input and returns the neural network transformed output array. """ try: import flax # noqa: F401 except ImportError: raise ImportError("Looking like you want to use flax to declare " "nn modules. This is an experimental feature. " "You need to install `flax` to be able to use this feature. " "It can be installed with `pip install flax`.") module_key = name + '$params' nn_params = numpyro.param(module_key) if nn_params is None: if input_shape is None: raise ValueError('Valid value for `input_shape` needed to initialize.') # feed in dummy data to init params rng_key = numpyro.sample(name + '$rng_key', PRNGIdentity()) _, nn_params = nn.init(rng_key, jnp.ones(input_shape)) numpyro.param(module_key, nn_params) return partial(nn.call, nn_params) def haiku_module(name, nn, input_shape=None): """ Declare a :mod:`~haiku` style neural network inside a model so that its parameters are registered for optimization via :func:`~numpyro.primitives.param` statements. :param str name: name of the module to be registered. :param haiku.Module nn: a `haiku` Module which has .init and .apply methods :param tuple input_shape: shape of the input taken by the neural network. :return: a callable with bound parameters that takes an array as an input and returns the neural network transformed output array. """ try: import haiku # noqa: F401 except ImportError: raise ImportError("Looking like you want to use haiku to declare " "nn modules. This is an experimental feature. " "You need to install `haiku` to be able to use this feature. " "It can be installed with `pip install git+https://github.com/deepmind/dm-haiku`.") module_key = name + '$params' nn_params = numpyro.param(module_key) if nn_params is None: if input_shape is None: raise ValueError('Valid value for `input_shape` needed to initialize.') # feed in dummy data to init params rng_key = numpyro.sample(name + '$rng_key', PRNGIdentity()) nn_params = nn.init(rng_key, jnp.ones(input_shape)) numpyro.param(module_key, nn_params) return partial(nn.apply, nn_params, None)
StarcoderdataPython
28436
from setuptools import setup setup( name='torch-dimcheck', version='0.0.1', description='Dimensionality annotations for tensor parameters and return values', packages=['torch_dimcheck'], author='<NAME>', author_email='<EMAIL>', )
StarcoderdataPython
153474
from collections import OrderedDict from decimal import Decimal, ROUND_DOWN from models import models def get_results(name): results = models.Result.select( models.Result, models.Call.accept_ap, models.Call.override_winner ).where( (models.Result.level == 'state') | (models.Result.level == 'national') | (models.Result.level == 'district'), models.Result.officename == name ).order_by( models.Result.statepostal, models.Result.seatname, -models.Result.votecount, models.Result.last ).join( models.Call, on=(models.Call.call_id == models.Result.id) ).dicts() grouped = OrderedDict() for result in results: grouped[result['raceid']] = grouped.get(result['raceid'], []) + [result] return grouped def comma_filter(value): """ Format a number with commas. """ return '{:,}'.format(value) def percent_filter(value): """ Format percentage """ value = Decimal(value) * Decimal(100) if value == 0: return '0%' elif value == 100: return '100%' elif value > 0 and value < 1: return '<1%' else: cleaned_pct = value.quantize(Decimal('.1'), rounding=ROUND_DOWN) return '{:.1f}%'.format(cleaned_pct) def never_cache_preview(response): """ Ensure preview is never cached """ response.cache_control.max_age = 0 response.cache_control.no_cache = True response.cache_control.must_revalidate = True response.cache_control.no_store = True return response def open_db(): """ Open db connection """ if models.db._local.closed: models.db.connect() def close_db(response): """ Close db connection """ models.db.close() return response
StarcoderdataPython
4821612
from drf_yasg.utils import swagger_auto_schema from social_django.utils import load_strategy, load_backend from social_core.exceptions import MissingBackend from social_core.backends.oauth import BaseOAuth1 from django.http import HttpResponseRedirect from django.conf import settings from django.core import mail from django.template.loader import render_to_string from django.utils.html import strip_tags from rest_framework import status from rest_framework.generics import RetrieveUpdateAPIView,\ CreateAPIView from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from rest_framework.views import APIView from .renderers import UserJSONRenderer from .serializers import (LoginSerializer, RegistrationSerializer, UserSerializer, SocialAuthenticationSerializer, CreateEmailVerificationSerializer, PasswordChangeSerializer, PasswordResetSerializer, PasswordResetTokenSerializer) from .utils import validate_image from authors.apps.core.utils import TokenHandler from threading import Thread from .models import User, PasswordResetToken class RegistrationAPIView(APIView): """ post: Register a new user by creating a new user instance. All newly registered users will have an email sent to their email address for verification """ # Allow any user (authenticated or not) to hit this endpoint. permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = RegistrationSerializer @swagger_auto_schema(query_serializer=RegistrationSerializer, responses={201: UserSerializer()}) def post(self, request): user = request.data.get('user', {}) # The create serializer, validate serializer, save serializer pattern # below is common and you will see it a lot throughout this course and # your own work later on. Get familiar with it. serializer = self.serializer_class(data=user) serializer.is_valid(raise_exception=True) user_email = serializer.validated_data['email'] username = serializer.validated_data['username'] callback = {'url': serializer.validated_data['callback_url']} token_payload = {'email': user_email, 'callback_url': callback['url']} domain = settings.DOMAIN token = TokenHandler().create_verification_token(token_payload) template_name = 'email_verification.html' context = {'username': username, 'token': token, 'domain': domain} # https://stackoverflow.com/questions/3005080/how-to-send-html-email-with-django-with-dynamic-content-in-it html_message = render_to_string(template_name, context) text_message = strip_tags(html_message) thread = Thread( target=mail.send_mail, args=[ 'Please verify your email', text_message, settings.FROM_EMAIL, [user_email, ], html_message] ) thread.setDaemon(True) thread.start() message = { 'message': 'Successfully created your account. Please proceed to your email ' + # noqa user_email + ' to verify your account.'} serializer.save() return Response(message, status=status.HTTP_201_CREATED) class LoginAPIView(APIView): """ post: Login an exising user. Users who have not verified their accounts should not be able to log in. """ permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = LoginSerializer @swagger_auto_schema(query_serializer=LoginSerializer, responses={200: UserSerializer()}) def post(self, request): user = request.data.get('user', {}) # Notice here that we do not call `serializer.save()` like we did for # the registration endpoint. This is because we don't actually have # anything to save. Instead, the `validate` method on our serializer # handles everything we need. serializer = self.serializer_class(data=user) serializer.is_valid(raise_exception=True) username = serializer.data.get('username') instance = User.objects.get(username=username) user_serializer = UserSerializer( instance, context={'current_user': request.user}) return Response(user_serializer.data, status=status.HTTP_200_OK) class UserRetrieveUpdateAPIView(RetrieveUpdateAPIView): """ get: Retrieve details of a user put: Update all details of a user patch: Update a single detail of a user """ permission_classes = (IsAuthenticated,) renderer_classes = (UserJSONRenderer,) serializer_class = UserSerializer def retrieve(self, request, *args, **kwargs): # There is nothing to validate or save here. Instead, we just want the # serializer to handle turning our `User` object into something that # can be JSONified and sent to the client. serializer = self.serializer_class( request.user, context={'current_user': request.user}) return Response(serializer.data, status=status.HTTP_200_OK) def update(self, request, *args, **kwargs): image = self.request.data.get('image') validate_image(image) serializer_data = request.data user_data = { 'username': serializer_data.get('username', request.user.username), 'email': serializer_data.get('email', request.user.email), 'profile': { 'first_name': serializer_data.get( 'first_name', request.user.profile.last_name), 'last_name': serializer_data.get( 'last_name', request.user.profile.last_name), 'birth_date': serializer_data.get( 'birth_date', request.user.profile.birth_date), 'bio': serializer_data.get('bio', request.user.profile.bio), 'image': serializer_data.get( 'image', request.user.profile.image), 'city': serializer_data.get( 'city', request.user.profile.city), 'country': serializer_data.get( 'country', request.user.profile.country), 'phone': serializer_data.get( 'phone', request.user.profile.phone), 'website': serializer_data.get( 'website', request.user.profile.website), } } # Here is that serialize, validate, save pattern we talked about # before. serializer = self.serializer_class( request.user, data=user_data, partial=True, context={'current_user': request.user} ) serializer.is_valid(raise_exception=True) serializer.save() return Response(serializer.data, status=status.HTTP_200_OK) class SocialAuthenticationView(CreateAPIView): """ Login to the site via social authentication services (Google, Twitter, Facebook) """ permission_classes = (AllowAny,) serializer_class = SocialAuthenticationSerializer renderer_classes = (UserJSONRenderer,) def create(self, request): """Creates user if not present and returns an authentication token""" serializer = self.serializer_class(data=request.data) serializer.is_valid(raise_exception=True) provider = serializer.data.get("provider") authenticated_user = request.user if not \ request.user.is_anonymous else None strategy = load_strategy(request) # Load backend associated with the provider try: backend = load_backend( strategy=strategy, name=provider, redirect_uri=None) access_token = serializer.data.get("access_token") if isinstance(backend, BaseOAuth1): access_token = { 'oauth_token': request.data['access_token'], 'oauth_token_secret': request.data['access_token_secret'] } except MissingBackend: error_msg = """Provider not supported, Please use 'google-oauth2', 'facebook', or 'twitter'.""" return Response({"error": error_msg}, status=status.HTTP_400_BAD_REQUEST) try: user = backend.do_auth(access_token, user=authenticated_user) except BaseException as error: return Response({"error": str(error)}, status=status.HTTP_400_BAD_REQUEST) user.is_verified = True user.save() serializer = UserSerializer( user, context={'current_user': request.user}) serializer.instance = user return Response(serializer.data, status=status.HTTP_200_OK) class EmailVerificationView(APIView): """We need a view that will handle requests for verifying email adresses""" permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = UserSerializer def get(self, request, token): decoded_token = TokenHandler().validate_token(token) if 'email' not in decoded_token: return Response( {'error': 'invalid token'}, status=status.HTTP_400_BAD_REQUEST) # we check if the user exists and whether they are verified. # if we don't find a user we raise an error # if we find a registered user, we raise an error try: user = User.objects.get(email=decoded_token['email']) except User.DoesNotExist: return Response( {'email': 'No user with this email has been registered'}, status=status.HTTP_404_NOT_FOUND ) if user.is_verified is True: return Response( {'email': 'This email has already been verified'}, status=status.HTTP_400_BAD_REQUEST ) user.is_verified = True user.save() return HttpResponseRedirect(decoded_token['callback_url']) class CreateEmailVerificationTokenAPIView(APIView): """ This class contains method for creating a new verification token for registered users """ permission_classes = (AllowAny,) renderer_classes = (UserJSONRenderer,) serializer_class = CreateEmailVerificationSerializer def post(self, request): """This is the method that will be called when users want a new verification token.""" data = request.data serializer = self.serializer_class(data=data) serializer.is_valid(raise_exception=True) payload = serializer.create_payload(data) token = TokenHandler().create_verification_token(payload) user_email = payload['email'] domain = settings.DOMAIN template_name = 'email_verification.html' context = {'username': payload['username'], 'token': token, 'domain': domain} html_message = render_to_string(template_name, context) text_message = strip_tags(html_message) thread = Thread( target=mail.send_mail, args=[ 'Please verify your email', text_message, settings.FROM_EMAIL, [user_email, ], html_message] ) thread.setDaemon(True) thread.start() message = {'message': 'New verification token created. Please proceed to your email ' + # noqa user_email + ' to verify your account.'} return Response(message, status=status.HTTP_201_CREATED) class PasswordResetView(APIView): """ post: Get a user's email where password reset link will be sent. """ def post(self, request): data = request.data.get('payload') serializer = PasswordResetSerializer(data=data) serializer.is_valid(raise_exception=True) user_email = data['email'] callback_url = data['callback_url'] message = "A password reset link has been sent to your email." try: user = User.objects.get(email=user_email) user_id = user.id payload = { "email": user_email, "callback_url": callback_url } token = TokenHandler().create_verification_token(payload) token_data = { "user": user_id, "token": token } serializer = PasswordResetTokenSerializer(data=token_data) serializer.is_valid(raise_exception=True) serializer.save() TokenHandler().send_password_reset_link(user_email, token, callback_url) return Response({"message": message}, status=status.HTTP_200_OK) except User.DoesNotExist: return Response( {"message": message}, status=status.HTTP_200_OK ) def put(self, request): """ put: Update a user's password with a new password. """ try: data = request.data.get('user_password') serializer = PasswordChangeSerializer(data=data) serializer.is_valid(raise_exception=True) token = data['token'] user = PasswordResetToken.objects.get(token=token) is_valid = user.is_valid if is_valid: credentials = TokenHandler().validate_token(token) password = data['password'] confirm_password = data['confirm_password'] if password != confirm_password: return Response({"message": "Passwords do not Match"}) serializer = PasswordChangeSerializer(data=data) serializer.is_valid(raise_exception=True) serializer = PasswordChangeSerializer(instance=User, data=data, partial=True) serializer = User.objects.get(email=credentials['email']) serializer.set_password(password) serializer.save() user.is_valid = False user.save() return Response( {'message': 'Your password has been changed.'}, status=status.HTTP_202_ACCEPTED) else: return Response( {'message': 'Sorry, we couldn\'t find that password reset' ' key in our database. Please send another request.'}, status=status.HTTP_404_NOT_FOUND ) except PasswordResetToken.DoesNotExist: return Response( {'message': 'A user with the given token does not exist.'}, status=status.HTTP_404_NOT_FOUND )
StarcoderdataPython
3248652
<reponame>feifeigood/watch<gh_stars>1-10 import threading from datetime import datetime from time import sleep from cx_Oracle import DatabaseError, OperationalError from watch import app, lock, notification_pool, task_pool, unsent_pool from watch.utils.chat_bot import send_message from watch.utils.manage_message import t_italic from watch.utils.parse_args import get_offset def check_dnd_time(): if not app.config['DND_HOURS']: return False start_dnd_hour = app.config['DND_HOURS'][0] end_dnd_hour = app.config['DND_HOURS'][1] now_hour = datetime.now().hour if start_dnd_hour < end_dnd_hour and start_dnd_hour <= now_hour < end_dnd_hour: return True if start_dnd_hour >= end_dnd_hour and (now_hour >= start_dnd_hour or now_hour < end_dnd_hour): return True return False def prepare_and_send(chat_id, reply_to_message_id, message, sound): message_parameters = {'chat_id': chat_id , 'text': message , 'parse_mode': 'HTML' , 'disable_web_page_preview': 'true'} if reply_to_message_id: message_parameters['reply_to_message_id'] = reply_to_message_id if sound == 'no': message_parameters['disable_notification'] = 'true' elif sound == 'default': if check_dnd_time(): message_parameters['disable_notification'] = 'true' return send_message(message_parameters) class Worker(threading.Thread): def __init__(self): super(Worker, self).__init__() self.active = True def run(self): while self.active: # Now dnd means "send with no sound". Formerly tasks did were't processing at dnd hours. # if check_dnd_time(): # sleep(app.config['WORKER_FREQ_SEC']) # continue with lock: active_tasks = tuple(t for t in sorted(task_pool.values() , key=lambda x: x.priority) if t.state == 'wait') for task in active_tasks: with lock: if not task_pool.get(task.uuid): continue if task.last_call: pt = task.period[-1:] pv = task.period[:-1] next_call = task.last_call + get_offset(pv, pt) if next_call > datetime.now(): continue task.state = 'run' try: task_start_time = datetime.now() message = app.view_functions[task.endpoint](task) r = 0 if message: if task.text: message = f'{t_italic(task.text)}\n{message}' notification_pool.appendleft((datetime.now() , task.uuid , task.name , message)) if task.chat_id and not app.config['MUTE_MESSAGES']: r = prepare_and_send(task.chat_id, task.reply_to_message_id, message, task.sound) if r != 0: unsent_pool.appendleft((datetime.now() , task.uuid , task.name , task.chat_id , task.reply_to_message_id , message)) if task.finished: del task_pool[task.uuid] else: task.last_call = datetime.now() task.duration = (task.last_call - task_start_time).seconds task.execs += 1 task.state = 'wait' if r == 0 or not app.config['FAIL_TASK_ON_MSG_ERROR'] else 'msg error' # retry sending even if prev msg had no recipient if r == 0 and message and not app.config['MUTE_MESSAGES']: while r == 0 and len(unsent_pool) > 0: m = unsent_pool.popleft() r = prepare_and_send(m[3] , m[4] , f'{t_italic("This message was postponed due to network problem")}' f'\n{m[5]}' , 'default') if r == 0 and task_pool.get(m[1], None): task_pool[m[1]].state = 'wait' if r != 0: unsent_pool.appendleft(m) except (DatabaseError, OperationalError) as e: app.logger.error(f'{task.uuid} {e.args[0].message}') task.state = 'db error' if app.config['SLEEP_ON_FAIL_SEC'] > 0 and e.args[0].code in (12170, 3113): app.logger.error(f"Sleeping for {app.config['SLEEP_ON_FAIL_SEC']} seconds...") sleep(app.config['SLEEP_ON_FAIL_SEC']) break sleep(app.config['WORKER_FREQ_SEC']) def shutdown(self): self.active = False
StarcoderdataPython
3380263
import sys import argparse import numpy as np import json from plot_config import * # plot configuration file width = 4.5 # default_width height = 3.5 # default_height def plot_runtime(x, y, z, group_labels, group_size, nolegend=False, mnist=False): ######################## PLOT CODE ######################## ax = plt.figure().gca() ax.yaxis.grid(color=gridcolor, linestyle=linestyle, linewidth=0.5) ax.xaxis.grid(color=gridcolor, linestyle=linestyle, linewidth=0.5) fig = matplotlib.pyplot.gcf() if mnist: fig.set_size_inches(width * 1.5, height) else: fig.set_size_inches(width, height) xticks = np.sort(np.unique(x)) secondary_labels = ['Parallelized', '1 CPU'] line_styles = ['solid', 'dashdot'] group_number = 0 for i in range(0, len(y), group_size): sort = np.argsort(x[i:i+group_size]) # multi-core plot ax.plot( x[i:i+group_size][sort], y[:,0][i:i+group_size][sort], marker=markers[0], color=colors[group_number], lw=linewidth, ls=line_styles[0], ) plt.fill_between( x[i:i+group_size][sort], y[:,0][i:i+group_size][sort] - y[:,1][i:i+group_size][sort], y[:,0][i:i+group_size][sort] + y[:,1][i:i+group_size][sort], color=colors[group_number], alpha=error_opacity, linewidth=0, ) # set the "ghost" labels ax.plot(np.NaN, np.NaN, label=group_labels[group_number], marker=markers[0], color=colors[group_number], lw=linewidth, ls=line_styles[0], ) # compute single core time server_time = z[:,0][i:i+group_size][sort][0] # server time on one table num_tables = x[i:i+group_size][sort] server_time_single = server_time * num_tables other_latency = y[:,0][i:i+group_size][sort] - server_time px = x[i:i+group_size][sort] py = other_latency + server_time_single if mnist: # single core plot ax.plot( px, py, marker=markers[0], color=colors[group_number], lw=linewidth, ls=line_styles[1], ) group_number += 1 if not nolegend: ax2 = ax.twinx() # twin ghost axis to overlay ax2.plot(np.NaN, np.NaN, label=secondary_labels[0], ls=line_styles[0], lw=linewidth, color='black', ) ax2.plot(np.NaN, np.NaN, label=secondary_labels[1], ls=line_styles[1], lw=linewidth, color='black', ) ax2.get_yaxis().set_visible(False) nc = 2 if mnist: nc = 1 # mnist doesn't have 500 probes ax.legend(title='Probes', ncol=nc, fancybox=False, loc='upper left', framealpha=0.95, edgecolor=edgecolor) if mnist: ax2.legend(loc='upper center', fancybox=False, framealpha=0.95, edgecolor=edgecolor, handlelength=2.5) ax.set_xticks(xticks) return ax if __name__ == '__main__': argparser = argparse.ArgumentParser(sys.argv[0]) argparser.add_argument("--file", type=str, default='') argparser.add_argument("--cap", type=int, default=4) argparser.add_argument("--mnist", type=bool, nargs='?', const=True, default=False) argparser.add_argument("--nolegend", type=bool, nargs='?', const=True, default=False) args = argparser.parse_args() if args.mnist: colors = colors[1:] # read experiment file (expected json) with open(args.file, 'r') as myfile: data=myfile.read() # parse the experiment file as json results = json.loads(data) num_tables = [] num_probes = [] server_time_ms = [] client_latency_ms = [] bandwidth_up_bytes = [] bandwidth_down_bytes = [] bandwidth_total_bytes = [] num_results = 0 num_trials = len(results[0]["query_up_bandwidth_bytes"]) dataset = results[0]["dataset_name"] # first we extract the relevent bits for i in range(len(results)): # skip these; they don't look good in the plots if results[i]["num_probes"] == 5 or results[i]["num_probes"] == 50: continue num_probes.append(results[i]["num_probes"]) num_tables.append(results[i]["num_tables"]) # extract and compute bandwidth statistics bandwidth_up = np.array(results[i]["query_up_bandwidth_bytes"]) bandwidth_down = np.array(results[i]["query_down_bandwidth_bytes"]) bandwidth_total = bandwidth_up + bandwidth_down avg = np.mean(bandwidth_total) std = np.std(bandwidth_total) bandwidth_total_bytes.append([avg, confidence95(std, num_trials)]) avg_up = np.mean(bandwidth_up) std_up = np.std(bandwidth_up) bandwidth_up_bytes.append([avg_up, confidence95(std_up, num_trials)]) avg_down = np.mean(bandwidth_down) std_down = np.std(bandwidth_down) bandwidth_down_bytes.append([avg_down, confidence95(std_down, num_trials)]) avg = np.mean(results[i]["query_client_ms"]) std = np.std(results[i]["query_client_ms"]) client_latency_ms.append([avg, confidence95(std, num_trials)]) server_total = np.array(results[i]["dpf_server_ms"]) + np.array(results[i]["masking_server_us"])*MICRO_TO_MILLI avg = np.mean(server_total) std = np.std(server_total) server_time_ms.append([avg, confidence95(std, num_trials)]) num_results += 1 # convert everything to numpy arrays num_tables = np.array(num_tables) num_probes = np.array(num_probes) server_time_ms = np.array(server_time_ms) client_latency_ms = np.array(client_latency_ms) bandwidth_total_bytes = np.array(bandwidth_total_bytes) bandwidth_down_bytes = np.array(bandwidth_down_bytes) bandwidth_up_bytes = np.array(bandwidth_up_bytes) group_size = len(np.unique(num_tables)) # make the ANN processing as a function of table size plots sort = np.argsort(num_probes) num_tables = num_tables[sort][:args.cap * group_size] num_probes = num_probes[sort][:args.cap * group_size] server_time_ms = server_time_ms[sort][:args.cap * group_size] client_latency_ms = client_latency_ms[sort][:args.cap * group_size] bandwidth_total_bytes = bandwidth_total_bytes[sort][:args.cap * group_size] bandwidth_down_bytes = bandwidth_down_bytes[sort][:args.cap * group_size] bandwidth_up_bytes = bandwidth_up_bytes[sort][:args.cap * group_size] # figure out how many different groups we have group_size = len(np.unique(num_tables)) group_labels = np.array([str(i) for i in np.unique(num_probes)]) # plot client end-to-end time ax = plot_runtime(num_tables, client_latency_ms*MILLI_TO_SECONDS, server_time_ms*MILLI_TO_SECONDS, group_labels, group_size, args.nolegend, args.mnist) ax.set_xlabel('Number of hash tables') ax.set_ylabel('Client latency (seconds)') #ax.set_yscale("log", base=10) ax.set_ylim(0, ax.get_ylim()[1] * 1.25) # make y axis 25% bigger ax.set_title(dataset.upper() + " dataset") ax.figure.tight_layout() ax.figure.savefig(dataset + '_latency_client.pdf', bbox_inches='tight') sort = np.argsort(num_tables) group_size_probes = len(np.unique(num_probes)) print("Bandwidth (kB) per #probes (1 table): " + str(np.sort(bandwidth_total_bytes[:,0][sort][0:group_size_probes])*BYTES_TO_KB))
StarcoderdataPython
1740590
<gh_stars>100-1000 ########################################################################## # # Copyright (c) 2011-2014, Image Engine Design Inc. All rights reserved. # Copyright (c) 2012, <NAME>. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above # copyright notice, this list of conditions and the following # disclaimer. # # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following # disclaimer in the documentation and/or other materials provided with # the distribution. # # * Neither the name of <NAME> nor the names of # any other contributors to this software may be used to endorse or # promote products derived from this software without specific prior # written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS # IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, # THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF # LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING # NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS # SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ########################################################################## import unittest import imath import IECore import Gaffer import GafferTest import GafferUI import GafferUITest class AuxiliaryNodeGadgetTest( GafferUITest.TestCase ) : def testContents( self ) : n = Gaffer.Node() g = GafferUI.AuxiliaryNodeGadget( n ) self.assertFalse( g.getContents() ) def testNodules( self ) : # Test a bunch of things not supported on AuxiliaryGadgets, just to make sure that they return # None instead of crashing n = Gaffer.Node() n["i"] = Gaffer.IntPlug() g = GafferUI.AuxiliaryNodeGadget( n ) self.assertFalse( g.nodule( n["i"] ) ) def testNoduleTangents( self ) : n = GafferTest.AddNode() g = GafferUI.AuxiliaryNodeGadget( n ) self.assertEqual( g.connectionTangent( g.nodule( n["op1"] ) ), imath.V3f( 0, 0, 0 ) ) def testEdgeGadgets( self ) : n = GafferTest.MultiplyNode() g = GafferUI.AuxiliaryNodeGadget( n ) for name, edge in g.Edge.names.items() : self.assertTrue( g.getEdgeGadget( edge ) is None ) eg = GafferUI.TextGadget( name ) g.setEdgeGadget( edge, eg ) self.assertTrue( g.getEdgeGadget( edge ) is None ) if __name__ == "__main__": unittest.main()
StarcoderdataPython
3219875
<filename>sympy/physics/quantum/tests/test_dagger.py from sympy import I, Matrix, symbols, conjugate, Expr, Integer from sympy.physics.quantum.dagger import adjoint, Dagger from sympy.external import import_module from sympy.testing.pytest import skip def test_scalars(): x = symbols('x', complex=True) assert Dagger(x) == conjugate(x) assert Dagger(I*x) == -I*conjugate(x) i = symbols('i', real=True) assert Dagger(i) == i p = symbols('p') assert isinstance(Dagger(p), adjoint) i = Integer(3) assert Dagger(i) == i A = symbols('A', commutative=False) assert Dagger(A).is_commutative is False def test_matrix(): x = symbols('x') m = Matrix([[I, x*I], [2, 4]]) assert Dagger(m) == m.H class Foo(Expr): def _eval_adjoint(self): return I def test_eval_adjoint(): f = Foo() d = Dagger(f) assert d == I np = import_module('numpy') def test_numpy_dagger(): if not np: skip("numpy not installed.") a = np.matrix([[1.0, 2.0j], [-1.0j, 2.0]]) adag = a.copy().transpose().conjugate() assert (Dagger(a) == adag).all() scipy = import_module('scipy', import_kwargs={'fromlist': ['sparse']}) def test_scipy_sparse_dagger(): if not np: skip("numpy not installed.") if not scipy: skip("scipy not installed.") else: sparse = scipy.sparse a = sparse.csr_matrix([[1.0 + 0.0j, 2.0j], [-1.0j, 2.0 + 0.0j]]) adag = a.copy().transpose().conjugate() assert np.linalg.norm((Dagger(a) - adag).todense()) == 0.0
StarcoderdataPython
1659435
from pyramid.config import Configurator from clld.interfaces import IMapMarker from clld.web.icon import ICON_MAP """ Even if not used, these models should still be imported. The original comment: we must make sure custom models are known at database initialization! """ from northeuralex import models """ An ugly hack to register the following strings for i10n/l18n so that the model names change in the templates. Ugh! This is how the problem of renaming the models is handled in other clld apps (e.g. asjp and wals) as well. """ _ = lambda x: x _('Parameter') _('Parameters') """ Dictionary mapping language families to clld.web.icon.Icon instances. Used in the get_map_marker hook. """ FAMILY_ICONS = { 'Uralic': ICON_MAP['c0000dd'], 'Indo-European': ICON_MAP['c009900'], 'Turkic': ICON_MAP['c990099'], 'Mongolic': ICON_MAP['cdd0000'], 'Tungusic': ICON_MAP['cffff00'], 'Yeniseian': ICON_MAP['cffffff'], 'Yukaghir': ICON_MAP['c00ff00'], 'Chukotko-Kamchatkan': ICON_MAP['c00ffff'], 'Nivkh': ICON_MAP['ccccccc'], 'Ainu': ICON_MAP['cff6600'], 'Koreanic': ICON_MAP['s0000dd'], 'Japonic': ICON_MAP['s009900'], 'Eskimo-Aleut': ICON_MAP['s990099'], 'Dravidian': ICON_MAP['sdd0000'], 'Burushaski': ICON_MAP['sffff00'], 'Kartvelian': ICON_MAP['sffffff'], 'Basque': ICON_MAP['s00ff00'], 'Abkhaz-Adyge': ICON_MAP['s00ffff'], 'Nakh-Daghestanian': ICON_MAP['scccccc'], 'Afro-Asiatic': ICON_MAP['sff6600'], 'Sino-Tibetan': ICON_MAP['t0000dd'], '_default': ICON_MAP['cff6600'] } def get_map_marker(item, req): """ Hook called for each marker on each map. Determines the map marker for the given item (the latter would be an instance of a different class depending on the map). Returns the URL of the selected map marker. In other words, makes sure that each marker on a map would consistently use the same icon depending on the language family. The idea how to achieve different markers for different language families was stolen from the __init__ module of the sails clld project. """ family = None if isinstance(item, models.Doculect): family = item.family elif isinstance(item, models.Synset): family = item.language.family if family not in FAMILY_ICONS: family = '_default' return FAMILY_ICONS[family].url(req) def main(global_config, **settings): """ Returns a Pyramid WSGI application. Apart from the clld boilerplate, it orders the home sub-navigation and registers the get_map_marker hook. """ config = Configurator(settings=settings) config.include('clld.web.app') config.registry.settings['home_comp'] = ['help', 'download', 'legal', 'contact'] config.registry.registerUtility(get_map_marker, IMapMarker) return config.make_wsgi_app()
StarcoderdataPython
117868
<reponame>haihala/space-tavern from constants import CONFPATH from engine import Engine from json import load, dump from os import mkdir import sys from os.path import isdir, isfile, dirname def load_config(): with open(CONFPATH) as f: return load(f) def main(resolution): engine = Engine(load_config(), resolution) engine.run() if __name__=="__main__": main([int(i) for i in sys.argv[1:3]])
StarcoderdataPython
1701027
<reponame>k4rrot/escrow-api<filename>api/escrow.py from datetime import datetime from flask import current_app, Blueprint, request, make_response, jsonify from mongoengine.errors import DoesNotExist import requests from models.record import EscrowRecord escrow = Blueprint('escrow', __name__, url_prefix='/escrow') def resolve_escrow_record(record: EscrowRecord): disclose = True if record.release_date else False return { 'id': str(record.id), 'name': record.name, 'data': record.key if disclose else None, 'payment_address': record.payment_address, 'release_amount': record.release_amount, 'create_date': record.create_date.isoformat(), 'release_date': record.release_date.isoformat() if disclose else None, } def check_address(address: str, amount: float, method: str): if method == 'sochain': resp = requests.get( 'https://sochain.com/api/v2/get_address_balance/BTC/{}'.format( address ) ) if resp.status_code != 200: return False balance = float( resp.json().get('data', {}).get('confirmed_balance', 0) ) if balance >= amount: return True # Default to unverified return False @escrow.route('/', defaults={'escrow_id': None}, methods=['GET']) @escrow.route('/<escrow_id>', methods=['GET']) def get_escrow(escrow_id): # get all escrow records if not escrow_id: skip = request.args.get('skip', 0) take = request.args.get('take', 100) all_records = EscrowRecord.objects() \ .order_by('create_date') \ .skip(skip).limit(take) return make_response( jsonify([resolve_escrow_record(i) for i in all_records]), 200, ) # Attempt to retrieve record try: record = EscrowRecord.objects.get(id=escrow_id) if check_address( record.payment_address, record.release_amount, current_app.config.get( 'ADDRESS_VERIFY_METHOD', ), ): # Release key record.modify(release_date=datetime.now()) return make_response( jsonify( resolve_escrow_record(record) ), 200 ) else: return make_response( jsonify( resolve_escrow_record(record) ), 200 ) except DoesNotExist: return make_response('', 404) @escrow.route('/', methods=['POST']) def create_escrow(): args = request.json escrow = { 'name': args.get('name')[:256], 'key': args.get('data'), 'payment_address': args.get('address'), 'release_amount': args.get('amount'), } if None in list(escrow.keys()): return make_response( jsonify( {'err': 'name, key, address, and amount are required'} ), 400, ) new_escrow = EscrowRecord(**escrow) new_escrow.save() escrow['id'] = str(new_escrow.id) return make_response( jsonify(escrow), 200, )
StarcoderdataPython
147977
#!/usr/bin/python3 # Transfer vector graph (.svg) into LEdit code (.tco) # usage: python3 svg2tco.py [-s SHIFTX SHIFTY] MASKFILENAME > OUTPUTCODE.tco # NOTICE: Currently, only boxes(rectangles) & polygons will work. import xml.dom.minidom import sys def polygonProcess(pgpcps): # since codes about polygon and path share the drawing part, so I put them here. pgpnum=int(len(pgpcps)/2); # number of points # output print("polygon ",end=''); # LEDIT command for pgpit in range(0,pgpnum): pgx=float(pgpcps[pgpit*2]); pgy=float(pgpcps[pgpit*2+1]); # Fix svg cood: (1,-1) * All cood + (0,1052.3622) pgy=1052.3622-pgy; # rotate 180: (900,900) - All cood #pgx=900.-pgx; #pgy=900.-pgy; # add shift pgx=pgx+shiftx; pgy=pgy+shifty; # output print("!%.3f !%.3f " % (pgx,pgy),end=''); # LEDIT script print("\x0D"); if len(sys.argv)<2: raise(Exception('Error: no input')); shiftx=0.; shifty=0.; if sys.argv[1].startswith('-'): option=sys.argv[1][1]; if option=='s': if len(sys.argv)<5: raise(Exception('Error: not enough coordinate parameters to shift')); shiftx=float(sys.argv[2]); shifty=float(sys.argv[3]); svgFileName=sys.argv[4]; elif option=='h': print('# Transfer vector graph (.svg) into LEdit code (.tco)\n# usage: python3 svg2tco.py [-s SHIFTX SHIFTY] MASKFILENAME > OUTPUTCODE.tco\n# NOTICE: Currently, only boxes(rectangles) & polygons will work.'); sys.exit(); else: raise(Exception('Error: unknown option.')); sys.exit(); else: svgFileName=sys.argv[1]; dom = xml.dom.minidom.parse(svgFileName.replace("\n","")); root = dom.documentElement; rts = root.getElementsByTagName('rect'); pgs = root.getElementsByTagName('polygon'); pts = root.getElementsByTagName('path'); for rt in rts: # rectangles rtx=float(rt.getAttribute("x")); rty=float(rt.getAttribute("y")); rtw=float(rt.getAttribute("width")); rth=float(rt.getAttribute("height")); # Fix svg cood: (1,-1) * All cood + (0,1052.3622) rty=1052.3622-rty-rth; # rotate 180: (900,900) - All cood #rtx=900.-rtx-rtw; #rty=900.-rty-rth; # add shift rtx=rtx+shiftx; rty=rty+shifty; # use box center as (x,y) rtx=rtx+rtw/2.; rty=rty+rth/2.; # output print("box %.3f %.3f !%.3f !%.3f\x0D" % (rtw,rth,rtx,rty)); # LEDIT script for pg in pgs: # polygons pgps=pg.getAttribute("points"); pgps=pgps.replace(","," "); # polygon points pgpcps=pgps.split(); # polygon points coordinate pairs if (len(pgpcps)%2!=0): # unpaired coordinates of points pgid=""; try: pgid=pg.getAttribute("id"); except Exception: noop; raise(Exception("Error at polygon "+pgid+": unpaired coordinates.")); polygonProcess(pgpcps); for pt in pts: # paths (currently polygon only) ptps=pt.getAttribute("d"); paras=ptps.split(); # commands and parameters pgset=[]; # set of polygons pgpcps=[]; # current polygon (described by polygon points coordinate pairs) paranum=len(paras); paraiter=0; com=''; # current command pos=[0.,0.]; # current position try: while (paraiter<paranum): if (len(paras[paraiter])==1): # command com=paras[paraiter]; if (com=='z' or com=='Z'): # close path if (len(pgpcps)>0): # save polygon pgset.append(pgpcps); pgpcps=[]; else: # coords tmpcoord=paras[paraiter].split(','); if (com=='m'): # move to relative position if (len(tmpcoord)!=2): raise(Exception('Error: 2D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos=[float(tmpcoord[0])+pos[0],float(tmpcoord[1])+pos[1]]; if (len(pgpcps)>0): # save the last one (this should be done by command 'Z' or 'z'. but for now we treat all paths as polygons. maybe we should not do this here in future versions.) pgset.append(pgpcps); pgpcps=pos; com='l'; elif (com=='M'): # move to absolute position if (len(tmpcoord)!=2): raise(Exception('Error: 2D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos=[float(tmpcoord[0]),float(tmpcoord[1])]; if (len(pgpcps)>0): # save the last one (this should be done by command 'Z' or 'z'. but for now we treat all paths as polygons. maybe we should not do this here in future versions.) pgset.append(pgpcps); pgpcps=pos; com='L'; elif (com=='l'): # line to relative position if (len(tmpcoord)!=2): raise(Exception('Error: 2D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos=[float(tmpcoord[0])+pos[0],float(tmpcoord[1])+pos[1]]; pgpcps.extend(pos); elif (com=='L'): # line to absolute position if (len(tmpcoord)!=2): raise(Exception('Error: 2D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos=[float(tmpcoord[0]),float(tmpcoord[1])]; pgpcps.extend(pos); elif (com=='v'): # vertical line to relative position if (len(tmpcoord)!=1): raise(Exception('Error: 1D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos[1]=float(tmpcoord[1])+pos[1]; pgpcps.extend(pos); elif (com=='V'): # vertical line to absolute position if (len(tmpcoord)!=1): raise(Exception('Error: 1D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos[1]=float(tmpcoord[1]); pgpcps.extend(pos); elif (com=='h'): # horizontal line to relative position if (len(tmpcoord)!=1): raise(Exception('Error: 1D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos[0]=float(tmpcoord[0])+pos[0]; pgpcps.extend(pos); elif (com=='H'): # horizontal line to absolute position if (len(tmpcoord)!=1): raise(Exception('Error: 1D coordinate needed, '+str(len(tmpcoord))+'D inputed.')); pos[0]=float(tmpcoord[0]); pgpcps.extend(pos); elif (com=='z' or com=='Z'): # close path raise(Exception('Error: Z command need no coordinates, '+str(len(tmpcoord))+'D inputed.')); else: # curves are not supported yet. raise(Exception('Error: unsupported command '+com+', '+str(len(tmpcoord))+'D coordinate inputed.')); paraiter+=1; except Exception as e: print(str(e),file=sys.stderr); for pgpcps in pgset: # polygon points coordinate pairs if (len(pgpcps)%2!=0): # unpaired coordinates of points raise(Exception("Internal Error: unpaired coordinates. -> This should never happen. If it happens, then there is a bug.")); polygonProcess(pgpcps);
StarcoderdataPython
4838775
<filename>stubs.min/System/Windows/Forms/__init___parts/PropertyValueChangedEventArgs.py<gh_stars>1-10 class PropertyValueChangedEventArgs(EventArgs): """ Provides data for the System.Windows.Forms.PropertyGrid.PropertyValueChanged event of a System.Windows.Forms.PropertyGrid. PropertyValueChangedEventArgs(changedItem: GridItem,oldValue: object) """ @staticmethod def __new__(self,changedItem,oldValue): """ __new__(cls: type,changedItem: GridItem,oldValue: object) """ pass ChangedItem=property(lambda self: object(),lambda self,v: None,lambda self: None) """Gets the System.Windows.Forms.GridItem that was changed. Get: ChangedItem(self: PropertyValueChangedEventArgs) -> GridItem """ OldValue=property(lambda self: object(),lambda self,v: None,lambda self: None) """The value of the grid item before it was changed. Get: OldValue(self: PropertyValueChangedEventArgs) -> object """
StarcoderdataPython
1777700
<filename>pop_elements_even_index.py ''' write a function that pops all elements at even indexes ''' def pop_elements(alist): for i in range(0, len(alist)): if i%2 == 0: alist.pop(i) return alist
StarcoderdataPython
3375913
"""Utilities for constructing a metric """ import functools import itertools from typing import Tuple, Union, List import sympy from sympy import Function, sin, Expr, Array, Derivative as D, MatrixBase, Matrix, Symbol from sympy.diffgeom import twoform_to_matrix from sympy.printing.latex import latex from pystein import coords, symbols from pystein import constants from pystein.constants import c from pystein.utilities import tensor_pow as tpow, matrix_to_twoform class Metric: """Metric represents a twoform on a manifold that is symmetric. This class is capable of being created from and converted to both twoform notation and matrix notation given a coordinate system. """ def __init__(self, twoform: Expr = None, matrix: Array = None, coord_system: coords.CoordSystem = None, components: Tuple[Expr, ...] = None): """Create a Metric""" if twoform is None and matrix is None: raise ValueError('Must specify either twoform or matrix to produce metric') # Construct twoform if none given if twoform is None: if not isinstance(matrix, MatrixBase): matrix = Matrix(matrix) if coord_system is None: raise ValueError('Must specify coord system if constructing metric from matrix') twoform = matrix_to_twoform(matrix, coord_system.base_oneforms()) # TODO check ordering of base oneforms? # Construct matrix if none given if matrix is None: matrix = twoform_to_matrix(twoform) coord_system = coords.CoordSystem.from_twoform(twoform) # Set instance attributes self._twoform = twoform self._matrix = matrix self._inverse = None # lazy caching of inverse matrix self.coord_system = coord_system self.components = components def __repr__(self): """String repr""" return repr(self.twoform) def _repr_latex_(self): """LaTeX repr in Jupyter""" s = latex(self.twoform, mode='plain') return "$\\displaystyle %s$" % s @property def twoform(self): """Safe accessor for twoform""" return self._twoform @property def matrix(self): """Safe accessor for matrix""" return self._matrix @property def inverse(self): # TODO include method parameters in here, for instance pseudo inverse """Compute the inverse metric (if possible) and return new Metric instance""" if self._inverse is None: self._inverse = self.matrix.inv() # only compute once return Metric(matrix=self._inverse, coord_system=self.coord_system, components=self.components) def subs(self, *args, **kwargs): """Pass thru to twoform substitution""" return Metric(twoform=self.twoform.subs(*args, **kwargs), # TODO make the filtering below more robust components=tuple(c for c in self.components if not c.subs(*args, **kwargs).doit().is_constant())) def inner_product(self, vec1: List[sympy.Expr], vec2: List[sympy.Expr]): N = len(self.coord_system.base_symbols()) res = 0 for mu in range(N): for nu in range(N): res += self._matrix[mu, nu] * vec1[mu] * vec2[nu] return res def norm(self, vec: List[sympy.Expr]): return sympy.sqrt(self.inner_product(vec, vec)) def angle(self, vec1, vec2): norm_ip = self.inner_product(vec1, vec2) / self.norm(vec1) / self.norm(vec2) return sympy.acos(norm_ip) def minkowski(): """Utility for constructing the Minkowski metric Returns: Metric, the Minkowski metric for flat space References: [1] <NAME>, Cosmology (Oxford University Press, Oxford ; New York, 2008). """ cs = coords.cartesian_coords() dt, dx, dy, dz = cs.base_oneforms() form = - tpow(dt, 2) + tpow(dx, 2) + tpow(dy, 2) + tpow(dz, 2) return Metric(twoform=form) def friedmann_lemaitre_roberston_walker(curvature_constant: Symbol = symbols.k, cartesian: bool = False): """Utility for constructing the FLRW metric in terms of a unit lapse and general scale function `a`. Args: curvature_constant: Symbol, default "k", the curvature parameter in reduced polar coordinates cartesian: bool, default False. If true create a cartesian FLRW and ignore curvature_constant argument Returns: Metric, the FLRW metric References: [1] <NAME>, Cosmology (Oxford University Press, Oxford ; New York, 2008). """ a = Function('a')(symbols.t) if cartesian: cs = coords.cartesian_coords() dt, dx, dy, dz = cs.base_oneforms() form = - c ** 2 * tpow(dt, 2) + a ** 2 * (tpow(dx, 2) + tpow(dy, 2) + tpow(dz, 2)) else: cs = coords.toroidal_coords() _, r, theta, _ = cs.base_symbols() dt, dr, dtheta, dphi = cs.base_oneforms() form = - c ** 2 * tpow(dt, 2) + a ** 2 * (1 / (1 - curvature_constant * r ** 2) * tpow(dr, 2) + r ** 2 * (tpow(dtheta, 2) + sin(theta) ** 2 * tpow(dphi, 2))) return Metric(twoform=form, components=(a,)) flrw = friedmann_lemaitre_roberston_walker # shorthand for conventional names def general_inhomogeneous_isotropic(use_natural_units: bool = True): """Utility for constructing a general inhomogeneous, but still isotropic, metric (GIIM). The metric components M, N, L, S all depend on time and radius, but not theta or phi (hence isotropy). Returns: Metric, the GIIM metric """ cs = coords.toroidal_coords() t, r, theta, _ = cs.base_symbols() dt, dr, dtheta, dphi = cs.base_oneforms() # Create generic isotropic metric component functions M = Function('M')(t, r) N = Function('N')(t, r) L = Function('L')(t, r) S = Function('S')(t, r) form = - c ** 2 * N ** 2 * tpow(dt, 2) + \ L ** 2 * tpow(dr + c * M * dt, 2) + \ S ** 2 * (tpow(dtheta, 2) + sin(theta) ** 2 * tpow(dphi, 2)) if use_natural_units: form = constants.subs_natural(form) return Metric(twoform=form, components=(M, N, L, S)) gii = general_inhomogeneous_isotropic # shorthand for conventional names def _deriv_simplify_rule(component: Function, variables: Union[Expr, Tuple[Expr, ...]], use_dots: bool = False): """Helper function for simplifying derivative notation""" if not isinstance(variables, tuple): # TODO make this "boxing" more robust variables = (variables,) args = component.args order = len(variables) key = functools.reduce(D, (component,) + variables) if any(v not in args for v in variables): # check against simplified return (key, 0) if len(args) == 1: fmt = ('\\' + order * 'd' + 'ot{{{}}}') if use_dots else ('{}' + order * '\'') return (key, Function(fmt.format(component.name))(*args)) fmt = '{}_' + '{{' + ' '.join([v.name for v in variables]) + '}}' return (key, Function(fmt.format(component.name))(*args)) def simplify_deriv_notation(expr: Expr, metric: Metric, max_order: int = 2, use_dots: bool = False): """Utility for Simplifying LaTeX representation of a sympy Expression via substitutions. Note that this function simplifies the LaTeX output of the Expr at the cost of the Expr semantics, only use this after all operations on the Expr (including simplification) have been performed. Args: expr: Expr, the sympy expression metric: Metric, the metric containing components whose derivatives will be simplified max_order: int, default 2, the max derivative order to replace use_dots: bool, default False. If True use dot notation for derivatives of single-variable functions Returns: Expr, the modified expression. Recall this is only useful for LaTeX conversion, not semantically valid in sympy. """ # Create Simplification Shorthand components = tuple(sorted(metric.components, key=lambda x: x.name)) variables = metric.coord_system.base_symbols() rules = [] for n in range(1, max_order + 1): n_order_rules = [_deriv_simplify_rule(c, vs, use_dots=use_dots) for c, vs in itertools.product(components, itertools.product(*(n * [variables])))] rules.extend(n_order_rules) return expr.subs(dict(rules))
StarcoderdataPython
3280184
# AUTOGENERATED! DO NOT EDIT! File to edit: nbs/text.symbols.ipynb (unless otherwise specified). __all__ = ['symbols_portuguese', 'PORTUGUESE_SYMBOLS', 'symbols_polish', 'POLISH_SYMBOLS', 'symbols_dutch', 'DUTCH_SYMBOLS', 'symbols_spanish', 'SPANISH_SYMBOLS', 'symbols', 'symbols_nvidia_taco2', 'symbols_with_ipa', 'grad_tts_symbols', 'DEFAULT_SYMBOLS', 'IPA_SYMBOLS', 'NVIDIA_TACO2_SYMBOLS', 'GRAD_TTS_SYMBOLS', 'SYMBOL_SETS', 'symbols_to_sequence', 'arpabet_to_sequence', 'should_keep_symbol', 'symbol_to_id', 'id_to_symbol', 'curly_re', 'words_re'] # Cell """ from https://github.com/keithito/tacotron """ """ Defines the set of symbols used in text input to the model. The default is a set of ASCII characters that works well for English or text that has been run through Unidecode. For other data, you can modify _characters. See TRAINING_DATA.md for details. """ from . import cmudict _pad = "_" _punctuation_nvidia_taco2 = "!'(),.:;? " _punctuation = "!'\",.:;? " _math = "#%&*+-/[]()" _special = "@©°½—₩€$" _special_nvidia_taco2 = "-" _accented = "áçéêëñöøćž" _numbers = "0123456789" _letters = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" _letters_ipa = "ɑɐɒæɓʙβɔɕçɗɖðʤəɘɚɛɜɝɞɟʄɡɠɢʛɦɧħɥʜɨɪʝɭɬɫɮʟɱɯɰŋɳɲɴøɵɸθœɶʘɹɺɾɻʀʁɽʂʃʈʧʉʊʋⱱʌɣɤʍχʎʏʑʐʒʔʡʕʢǀǁǂǃˈˌːˑʼʴʰʱʲʷˠˤ˞↓↑→↗↘'̩'ᵻ" # Prepend "@" to ARPAbet symbols to ensure uniqueness (some are the same as # uppercase letters): _arpabet = ["@" + s for s in cmudict.valid_symbols] # Language-specific symbol sets: _portuguese = "áàãâéèêíìîóòõôúùûçÁÀÃÂÉÈÊÍÌÎÓÒÕÔÚÙÛÇabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" symbols_portuguese = ( [_pad] + list(_special_nvidia_taco2) + list(_punctuation_nvidia_taco2) + list(_portuguese) + _arpabet ) PORTUGUESE_SYMBOLS = "portuguese" ## _polish = "AĄBCĆDEĘFGHIJKLŁMNŃOÓPRSŚTUWYZŹŻaąbcćdeęfghijklłmnńoóprsśtuwyzźż" _punctuation_polish = "!,.? " symbols_polish = ( [_pad] + list(_special_nvidia_taco2) + list(_punctuation_polish) + list(_polish) + _arpabet ) POLISH_SYMBOLS = "polish" ## _dutch = "éèêëíìîüÉÈÊËÍÌÎÜabcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ" symbols_dutch = ( [_pad] + list(_special_nvidia_taco2) + list(_punctuation_nvidia_taco2) + list(_dutch) + _arpabet ) DUTCH_SYMBOLS = "dutch" ## _spanish = "AÁBCDEÉFGHIÍJKLMNÑOÓPQRSTUÚÜVWXYZaábcdeéfghiíjklmnñoópqrstuúüvwxyz" _punctuation_spanish = "!¡'(),.:;?¿ " symbols_spanish = ( [_pad] + list(_special_nvidia_taco2) + list(_punctuation_spanish) + list(_spanish) + _arpabet ) SPANISH_SYMBOLS = "spanish" # Export all symbols: symbols = ( list(_pad + _punctuation + _math + _special + _accented + _numbers + _letters) + _arpabet ) symbols_nvidia_taco2 = ( [_pad] + list(_special_nvidia_taco2) + list(_punctuation_nvidia_taco2) + list(_letters) + _arpabet ) symbols_with_ipa = symbols + list(_letters_ipa) grad_tts_symbols = list(_pad + "-" + "!'(),.:;? " + _letters) + _arpabet DEFAULT_SYMBOLS = "default" IPA_SYMBOLS = "ipa" NVIDIA_TACO2_SYMBOLS = "nvidia_taco2" GRAD_TTS_SYMBOLS = "gradtts" SYMBOL_SETS = { DEFAULT_SYMBOLS: symbols, IPA_SYMBOLS: symbols_with_ipa, NVIDIA_TACO2_SYMBOLS: symbols_nvidia_taco2, GRAD_TTS_SYMBOLS: grad_tts_symbols, PORTUGUESE_SYMBOLS: symbols_portuguese, POLISH_SYMBOLS: symbols_polish, DUTCH_SYMBOLS: symbols_dutch, SPANISH_SYMBOLS: symbols_spanish, } # Cell import re symbol_to_id = { DEFAULT_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[DEFAULT_SYMBOLS])}, IPA_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[IPA_SYMBOLS])}, NVIDIA_TACO2_SYMBOLS: { s: i for i, s in enumerate(SYMBOL_SETS[NVIDIA_TACO2_SYMBOLS]) }, GRAD_TTS_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[GRAD_TTS_SYMBOLS])}, PORTUGUESE_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[PORTUGUESE_SYMBOLS])}, POLISH_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[POLISH_SYMBOLS])}, DUTCH_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[DUTCH_SYMBOLS])}, SPANISH_SYMBOLS: {s: i for i, s in enumerate(SYMBOL_SETS[SPANISH_SYMBOLS])}, } id_to_symbol = { DEFAULT_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[DEFAULT_SYMBOLS])}, IPA_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[IPA_SYMBOLS])}, NVIDIA_TACO2_SYMBOLS: { i: s for i, s in enumerate(SYMBOL_SETS[NVIDIA_TACO2_SYMBOLS]) }, GRAD_TTS_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[GRAD_TTS_SYMBOLS])}, PORTUGUESE_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[PORTUGUESE_SYMBOLS])}, POLISH_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[POLISH_SYMBOLS])}, DUTCH_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[DUTCH_SYMBOLS])}, SPANISH_SYMBOLS: {i: s for i, s in enumerate(SYMBOL_SETS[SPANISH_SYMBOLS])}, } curly_re = re.compile(r"(.*?)\{(.+?)\}(.*)") words_re = re.compile( r"([a-zA-ZÀ-ž]+['][a-zA-ZÀ-ž]{1,2}|[a-zA-ZÀ-ž]+)|([{][^}]+[}]|[^a-zA-ZÀ-ž{}]+)" ) def symbols_to_sequence(symbols, symbol_set=DEFAULT_SYMBOLS, ignore_symbols=["_", "~"]): return [ symbol_to_id[symbol_set][s] for s in symbols if should_keep_symbol(s, symbol_set, ignore_symbols) ] def arpabet_to_sequence(text, symbol_set=DEFAULT_SYMBOLS): return symbols_to_sequence(["@" + s for s in text.split()], symbol_set=symbol_set) def should_keep_symbol(s, symbol_set=DEFAULT_SYMBOLS, ignore_symbols=["_", "~"]): return s in symbol_to_id[symbol_set] and s not in ignore_symbols
StarcoderdataPython
94317
<reponame>Mymoza/pyannote-audio #!/usr/bin/env python # encoding: utf-8 # The MIT License (MIT) # Copyright (c) 2016-2019 CNRS # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # AUTHORS # <NAME> - http://herve.niderb.fr from pyannote.audio.util import mkdir_p from .callback import Callback class Checkpoint(Callback): """Model checkpoints""" def __init__(self): super().__init__() def on_train_start(self, trainer): mkdir_p(trainer.log_dir_) def load_epoch(self, trainer, epoch): trainer.load_epoch(epoch) def on_epoch_end(self, trainer): trainer.save_epoch()
StarcoderdataPython
170517
<filename>utils/util.py import sys import os import logging from datetime import datetime import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from tensorboardX import SummaryWriter class AverageMeter(object): def __init__(self, name=''): self._name = name self.avg = 0.0 self.sum = 0.0 self.cnt = 0.0 def reset(self): self.avg = 0.0 self.sum = 0.0 self.cnt = 0.0 def update(self, val, n=1): self.sum += val * n self.cnt += n self.avg = self.sum / self.cnt def __str__(self): return "%s: %.5f" % (self._name, self.avg) def get_avg(self): return self.avg def __repr__(self): return self.__str__() def set_random_seed(seed): import random logging.info("Set seed: {}".format(seed)) random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) def get_logger(log_dir=None): logger = logging.getLogger() for handler in logger.handlers: handler.close() logger.handlers.clear() log_format = "%(asctime)s | %(message)s" logging.basicConfig(stream=sys.stdout, level=logging.INFO, format=log_format, datefmt="%m/%d %I:%M:%S %p") if log_dir: os.makedirs(log_dir, exist_ok=True) file_handler = logging.FileHandler(os.path.join(log_dir, "logger")) file_handler.setFormatter(logging.Formatter(log_format)) logging.getLogger().addHandler(file_handler) return logger def get_writer(title, seed, writer_dir=None): today = datetime.today() current_time = today.strftime("%d%m%Y%H%M%S") writer_dir = os.path.join( writer_dir, current_time + "_{}_{}".format( title, seed)) writer = SummaryWriter(log_dir=writer_dir) return writer def accuracy(output, target, topk=(1,)): """Compute the precision for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() if target.ndimension() > 1: target = target.max(1)[1] correct = pred.eq(target.reshape(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0) res.append(correct_k.mul_(1.0 / batch_size)) return res def resume_checkpoint( model, checkpoint_path, criterion=None, optimizer=None, lr_scheduler=None): resume_epoch = None if os.path.isfile(checkpoint_path): checkpoint = torch.load(checkpoint_path) if isinstance(checkpoint, dict) and "model" in checkpoint: model.load_state_dict(checkpoint["model"]) if criterion is not None and "criterion" in checkpoint: criterion.load_state_dict(checkpoint["criterion"]) if optimizer is not None and "optimizer" in checkpoint: optimizer.load_state_dict(checkpoint["optimizer"]) if lr_scheduler is not None and "scheduler" in checkpoint: lr_scheduler.load_state_dict(checkpoint["scheduler"]) if "epoch" in checkpoint: resume_epoch = checkpoint["epoch"] else: model.load_state_dict(checkpoint) else: raise return resume_epoch def save( model, checkpoint_path, criterion=None, optimizer=None, lr_scheduler=None, resume_epoch=None): if optimizer is None and resume_epoch is None and lr_scheduler is None: checkpoint = model.module.state_dict() if isinstance( model, nn.DataParallel) else model.state_dict() else: checkpoint = {"model": model.module.state_dict() if isinstance( model, nn.DataParallel) else model.state_dict()} if criterion is not None: checkpoint["criterion"] = criterion.state_dict() if optimizer is not None: checkpoint["optimizer"] = optimizer.state_dict() if lr_scheduler is not None: checkpoint["scheduler"] = lr_scheduler.state_dict() if resume_epoch is not None: checkpoint["epoch"] = resume_epoch torch.save(checkpoint, checkpoint_path) def min_max_normalize(min_value, max_value, value): new_value = (value - min_value) / (max_value - min_value) return new_value
StarcoderdataPython
1747227
<filename>freegames/Code Description/bounce_d.py """bounce.py를 한국어로 알기 쉽게 설명하는 파일""" """Bounce, a simple animation demo. # Bounce, 간단한 애니메이션 데모 Exercises # 연습문제들 1. Make the ball speed up and down. # 1. 공의 속도를 빠르거나 느리게 만들자 2. Change how the ball bounces when it hits a wall. # 2. 공이 벽이랑 부딪힐때 튀기는 방법을 바꿔보자 3. Make the ball leave a trail. # 3. 공이 이동하면서 자취를 남기도록 해보자 4. Change the ball color based on position. # 4. 위치에 따른 공의 색깔을 바꿔보자 Hint: colormode(255); color(0, 100, 200) """ from random import * # random 모듈을 불러온다 from turtle import * # turtle 모듈을 불러온다 from freegames import vector # freegames utils.py에서 선언된 vector를 불러온다 def value(): # (-5, -3) 그리고 (3, 5) 사이에만 있는 랜덤한 수를 생성하는 함수 "Randomly generate value between (-5, -3) or (3, 5)." return (3 + random() * 2) * choice([1, -1]) ball = vector(0, 0) # 공의 초기 좌표를 (0, 0)으로 설정해준다 aim = vector(value(), value()) # aim의 초기 좌표는 value 함수에서 구한 랜덤 값을 각각 x좌표와 y좌표에 넣어준다 def draw(): # 공을 움직여주고 그 화면을 나타내주는 함수 "Move ball and draw game." ball.move(aim) # 공을 aim에 설정되있는 좌표만큼 움직여준다 x = ball.x # x와 y를 ball.x와 ball.y 값으로 설정해준다 y = ball.y if x < -200 or x > 200: # 만약 x가 -200보다 작거나 200보다 크면 aim의 x좌표의 부호를 바꿔준다 aim.x = -aim.x if y < -200 or y > 200: # 만약 y가 -200보다 작거나 200보다 크면 aim의 x좌표의 부호를 바꿔준다 aim.y = -aim.y clear() # turtle 모듈의 함수인데 거북이를 그대로 둔 채 화면을 지워준다 goto(x, y) # 거북이를 (x, y)좌표로 이동시켜준다 dot(10) # 거북이가 있는 위치에 반경 10인 원을 그려준다 ontimer(draw, 50) # 50ms 마다 draw 함수가 실행되도록 해준다 setup(420, 420, 370, 0) # 초기 그래픽 설정을 해준다 hideturtle() # turtle 모듈의 거북이를 숨겨준다 tracer(False) # 거북이가 움직이는 자취를 숨겨준다 up() # 펜을 들게 해준다 draw() # 들고 있는 펜으로 화면 위에 그림을 그려준다 done() # turtle 모듈을 종료 시켜준다
StarcoderdataPython
3354228
#!/usr/bin/env python # # This code implements the segment mining in Entropy/IP # @1 finds frequency outliers (like constants, enums, etc.) # @2 finds highly dense ranges of values (like close /32 prefixes) # @3 finds uniformly distributed ranges of values (like counters) # @4 prints what didn't get into @1-@3 # # Note that not every piece of the code was mentioned in the paper, as the # description would be too detailed - this is a heuristics algorithm. # # Mind the different terminology vs. the paper. # Runs in python2. Requires numpy and scikit-learn. # # Copyright (c) 2015-2016 Akamai Technologies, Inc. # See file "LICENSE" for licensing information. # Author: <NAME> # import sys from collections import defaultdict import argparse import math import numpy as np from sklearn.cluster import DBSCAN # segment labels SL = ["A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", \ "O", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] # parse arguments ASAP p = argparse.ArgumentParser(description='Entropy/IP: segment mining') p.add_argument('ips', help='file with IPv6 addresses in full hex form') p.add_argument('segments', help='file with segments (output of a1-segments.py)') p.add_argument('--segment', help='alternative segment definition') args = p.parse_args() ###################################### helper functions def read_segment(segment): d = segment.split('-') return [{"start":int(d[0]), "stop":int(d[1])}] def read_segments(src): segments = [] for line in src: if line[0:10] != "# segment\t": continue d = line[0:-1].split('\t') row = {"start":int(d[2]), "stop":int(d[3])} segments.append(row) return segments def read_ips(src, segments): db = [] N = 0 for segment in segments: cl = segment.copy() cl["vals"] = [] db.append(cl) for line in src: if len(line) < 32: continue line = line[:-1].split()[0].lower() if len(line) > 32: continue N += 1 for cl in db: cl["vals"].append(int(line[cl["start"]/4:cl["stop"]/4], 16)) return db, N ###################################### pretty-printers def ppcnt(pcnt): return "%7.2f%%" % (pcnt) def pp(vals, counts, N): if len(counts) == 0: return False rv = False # print starting from top-freq indexer = counts.argsort()[::-1] for u,c in zip(vals[indexer], counts[indexer]): pcnt = 100.0*c/N if pcnt < 0.005: continue fmt1 = "%0" + str(L/4) + "x" fmt2 = " "*(2+32-L/4) + "%" + "s" print (" " + fmt1 + fmt2) % (u, ppcnt(100.0*c/N)) rv = True return rv def rpp(vals, counts, L, N): if len(counts) == 0: return False rv = False # print heavy-hitters if len(counts) > 4: q1, q3 = np.percentile(counts, [25, 75]) T = min(0.1*N, max(q3 + 1.5*(q1 - q1), 0.02*N)) hhs = counts > T rv = pp(vals[hhs], counts[hhs], N) vals = vals[~hhs] counts = counts[~hhs] pcnt = 100.0 * sum(counts)/N if pcnt < 0.05: return rv if len(vals) < 5: rv |= pp(vals, counts, N) else: fmt1 = "* %0" + str(L/4) + "x" + "-%0" + str(L/4) + "x" fmt2 = " "*(1+32-L/4-L/4-1) + " %" + "s" print (fmt1 + fmt2) % (vals.min(), vals.max(), ppcnt(pcnt)) rv = True return rv ###################################### custom DBSCAN metrics def metric(p1,p2): bdiff = math.fabs(p2[0] - p1[0]) pdiff = math.fabs(math.log(p2[2],13) - math.log(p1[2],13)) return bdiff*0.25 + pdiff*50.0 ###################################### main ## prepare: read segments and IPs if args.segment: segments = read_segment(args.segment) else: segments = read_segments(open(args.segments)) db,N = read_ips(open(args.ips), segments) ## for each segment... for cn,cl in enumerate(db): L = cl["stop"] - cl["start"] P = 1.0/2**L print "%s: bits %d-%d (hex chars %2d-%2d)" \ % (SL[cn], cl["start"], cl["stop"], cl["start"]/4+1, cl["stop"]/4) ### sample IPs if dataset too large? if len(cl["vals"]) > 50000: vals = np.random.choice(cl["vals"], size=50000) else: vals = np.asarray(cl["vals"]) N = len(vals) unique,counts = np.unique(vals, return_counts=True) ### detect frequency top-outliers (@1) if len(counts) > 10: q1, q3 = np.percentile(counts, [25, 75]) iqr = q3 - q1 T = min(0.1*N, max(q3 + 1.5*iqr, 1.0*P*N)) hhs = counts > T nhhs = ~hhs # too many? use top 10th as *threshold* if sum(hhs) > 10: indexer = counts.argsort()[::-1] t10 = max(2, counts[indexer[9]]) hhs = counts >= t10 nhhs = ~hhs # still too many? just use the top 10 if sum(hhs) > 10: hhs = indexer[0:10] nhhs = indexer[10:] else: # frequency table very short: take all >0.1% hhs = counts > max(2, 0.001*N) nhhs = ~hhs # divide into outliers vs. non-outliers hhunique = unique[hhs] hhcounts = counts[hhs] unique2 = unique[nhhs] counts2 = counts[nhhs] # present (sorted by counts) pp(hhunique, hhcounts, N) # anything significant left? if sum(counts2) < 0.001*N: continue elif len(counts2) < 5: pp(unique2, counts2, N) continue ### find dense regions (@2) if L >= 8: dbscan = DBSCAN(eps=(L/4.0)**3.0, min_samples=5) regions = dbscan.fit_predict(unique2.reshape(-1,1)) labels = set(regions) left = sum(counts2) for label in labels: rvals = unique2[regions == label] rcounts = counts2[regions == label] # anything significant? if label == -1: continue elif sum(rcounts) < 0.001*N: regions[regions == label] = -1 continue # find density observedc = float(sum(rcounts)) expectedc = float(rvals.max() - rvals.min()) / (2**L-1) * left density = observedc / expectedc if density < 100.0: regions[regions == label] = -1 continue rpp(rvals, rcounts, L, N) unique3 = unique2[regions == -1] counts3 = counts2[regions == -1] else: unique3 = unique2 counts3 = counts2 ### find continuous regions of similar probability (@3) if L >= 8 and len(counts3) > 1: bincount = min(256, 2**(cl["stop"]-cl["start"])) hist,bins = np.histogram(unique3, weights=counts3, bins=bincount) step = bins[1] - bins[0] data = np.asarray((range(0,len(hist)), bins[:-1], 1.0*hist/N)).T data = data[data[:,2] > 0.0] dbscan = DBSCAN(eps=5.0, min_samples=5, metric=metric) regions = dbscan.fit_predict(data) labels = set(regions) cregions = [] for label in labels: rbins = data[regions == label,1] rfreqs = data[regions == label,2] # unlabeled: just background if label == -1: continue # anything significant? if len(rbins) < 5 or sum(rfreqs) < 0.1: regions[regions == label] = -1 continue start = rbins.min() stop = rbins.max() + step avg = rfreqs.mean() cregions.append((start, stop, avg)) # convert clusters to ranges if len(cregions) > 0: cregions = np.array(cregions) cregions = list(cregions[np.argsort(cregions[:,0])]) i = 0 while i+1 < len(cregions): cur = cregions[i] nxt = cregions[i+1] if nxt[0] < cur[1]: if nxt[2] > cur[2]: if cur[1] > nxt[1]: cregions.insert(i+2, np.array([nxt[1], cur[1], cur[2]])) cur[1] = nxt[0] else: nxt[0] = cur[1] i += 1 # print real ranges + probability for cregion in cregions: indexer = (unique3 >= cregion[0]) & (unique3 <= cregion[1]) rvals = unique3[indexer] rcounts = counts3[indexer] if rpp(rvals, rcounts, L, N): unique3 = unique3[~indexer] counts3 = counts3[~indexer] ### print the rest (@4) pcnt = 100.0 * counts3.sum() / N rpp(unique3, counts3, L, N)
StarcoderdataPython
26979
from hamcrest import * from tests.helpers.sql import sql_query class TestSqlQueries: def test_sql_select(self, namespace, index, item): # Given("Create namespace with item") db, namespace_name = namespace item_definition = item # When ("Execute SQL query SELECT") query = f'SELECT * FROM {namespace_name}' item_list = sql_query(namespace, query) # Then ("Check that selected item is in result") assert_that(item_list, has_item(equal_to(item_definition)), "Can't SQL select data") def test_sql_select_with_join(self, namespace, second_namespace_for_join, index, items): # Given("Create two namespaces") db, namespace_name = namespace second_namespace_name, second_ns_item_definition_join = second_namespace_for_join # When ("Execute SQL query SELECT with JOIN") query = f'SELECT id FROM {namespace_name} INNER JOIN {second_namespace_name} ON {namespace_name}.id = {second_namespace_name}.id' item_list = sql_query(namespace, query) # Then ("Check that selected item is in result") assert_that(item_list, has_item(equal_to({'id': 1, f'joined_{second_namespace_name}': [second_ns_item_definition_join]})), "Can't SQL select data with JOIN") def test_sql_select_with_condition(self, namespace, index, items): # Given("Create namespace with item") db, namespace_name = namespace # When ("Execute SQL query SELECT") query = f'SELECT * FROM {namespace_name} WHERE id=3' item_list = sql_query(namespace, query) # Then ("Check that selected item is in result") assert_that(item_list, has_item(equal_to({'id': 3, 'val': 'testval3'})), "Can't SQL select data with condition") def test_sql_update(self, namespace, index, item): # Given("Create namespace with item") db, namespace_name = namespace # When ("Execute SQL query UPDATE") query = f"UPDATE {namespace_name} SET \"val\" = 'new_val' WHERE id = 100" item_list = sql_query(namespace, query) # Then ("Check that item is updated") assert_that(item_list, has_item(equal_to({'id': 100, 'val': 'new_val'})), "Can't SQL update data") def test_sql_delete(self, namespace, index, item): # Given("Create namespace with item") db, namespace_name = namespace # When ("Execute SQL query DELETE") query_delete = f"DELETE FROM {namespace_name} WHERE id = 100" sql_query(namespace, query_delete) # Then ("Check that item is deleted") query_select = f"SELECT * FROM {namespace_name}" item_list = sql_query(namespace, query_select) assert_that(item_list, equal_to([]), "Can't SQL delete data") def test_sql_select_with_syntax_error(self, namespace, index, item): # Given("Create namespace with item") # When ("Execute SQL query SELECT with incorrect syntax") query = f'SELECT *' # Then ("Check that selected item is in result") assert_that(calling(sql_query).with_args(namespace, query), raises(Exception, matching=has_string(string_contains_in_order( "Expected", "but found"))), "Error wasn't raised when syntax was incorrect")
StarcoderdataPython
4823605
#!/usr/bin/env python3 # -*- encoding: utf-8 -*- from utilities.commander import Commander from versioning.git.command import GitCommand class GitVersioner: """ Class which is for interaction with git and version control. """ def __init__(self, project_dir: str): """ Initializes git versioner. Arguments: project_dir {str} -- Defines project root directory. """ self.__commander = Commander(project_dir) def add_changes(self) -> (bool, str): """ It collects all changes from the latest commit. Returns: {(bool, str)} -- Returns tuple with flag for success and output message. """ process = self.__commander.execute(GitCommand.ADD_CHANGES) (output, _) = process.communicate() return (process.returncode == 0, output) def create_commit(self, message: str) -> (bool, str): """ Creates a new commit with provided message. Returns: {(bool, str)} -- Returns tuple with flag for success and output message. """ process = self.__commander.execute(GitCommand.CREATE_COMMIT.format(message)) (output, _) = process.communicate() return (process.returncode == 0, output) def create_tag(self, name: str, message: str=None) -> (bool, str): """ Creates a new tag for the latest commmit. Returns: {(bool, str)} -- Returns tuple with flag for success and output message. """ if message is None: message = "" process = self.__commander.execute(GitCommand.CREATE_TAG_WITH_MESSAGE.format(name, message)) (output, _) = process.communicate() return (process.returncode == 0, output) def push_changes(self) -> (bool, str): """ Pushes current changes which includes both commits and tags from current branch. Returns: {(bool, str)} -- Returns tuple with flag for success and output message. """ process = self.__commander.execute(GitCommand.PUSH_CHANGES) (output, _) = process.communicate() return (process.returncode == 0, output)
StarcoderdataPython
180425
<reponame>google-cloud-sdk-unofficial/google-cloud-sdk<gh_stars>1-10 """Generated message classes for iamcredentials version v1. Creates short-lived credentials for impersonating IAM service accounts. To enable this API, you must enable the IAM API (iam.googleapis.com). """ # NOTE: This file is autogenerated and should not be edited by hand. from __future__ import absolute_import from apitools.base.protorpclite import messages as _messages from apitools.base.py import encoding package = 'iamcredentials' class GenerateAccessTokenRequest(_messages.Message): r"""A GenerateAccessTokenRequest object. Fields: delegates: The sequence of service accounts in a delegation chain. This field is required for [delegated requests](https://cloud.google.com/iam/help/credentials/delegated- request). For [direct requests](https://cloud.google.com/iam/help/credentials/direct-request), which are more common, do not specify this field. Each service account must be granted the `roles/iam.serviceAccountTokenCreator` role on its next service account in the chain. The last service account in the chain must be granted the `roles/iam.serviceAccountTokenCreator` role on the service account that is specified in the `name` field of the request. The delegates must have the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. lifetime: The desired lifetime duration of the access token in seconds. By default, the maximum allowed value is 1 hour. To set a lifetime of up to 12 hours, you can add the service account as an allowed value in an Organization Policy that enforces the `constraints/iam.allowServiceAccountCredentialLifetimeExtension` constraint. See detailed instructions at https://cloud.google.com/iam/help/credentials/lifetime If a value is not specified, the token's lifetime will be set to a default value of 1 hour. scope: Required. Code to identify the scopes to be included in the OAuth 2.0 access token. See https://developers.google.com/identity/protocols/googlescopes for more information. At least one value required. """ delegates = _messages.StringField(1, repeated=True) lifetime = _messages.StringField(2) scope = _messages.StringField(3, repeated=True) class GenerateAccessTokenResponse(_messages.Message): r"""A GenerateAccessTokenResponse object. Fields: accessToken: The OAuth 2.0 access token. expireTime: Token expiration time. The expiration time is always set. """ accessToken = _messages.StringField(1) expireTime = _messages.StringField(2) class GenerateIdTokenRequest(_messages.Message): r"""A GenerateIdTokenRequest object. Fields: audience: Required. The audience for the token, such as the API or account that this token grants access to. delegates: The sequence of service accounts in a delegation chain. Each service account must be granted the `roles/iam.serviceAccountTokenCreator` role on its next service account in the chain. The last service account in the chain must be granted the `roles/iam.serviceAccountTokenCreator` role on the service account that is specified in the `name` field of the request. The delegates must have the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. includeEmail: Include the service account email in the token. If set to `true`, the token will contain `email` and `email_verified` claims. """ audience = _messages.StringField(1) delegates = _messages.StringField(2, repeated=True) includeEmail = _messages.BooleanField(3) class GenerateIdTokenResponse(_messages.Message): r"""A GenerateIdTokenResponse object. Fields: token: The OpenId Connect ID token. """ token = _messages.StringField(1) class IamcredentialsProjectsServiceAccountsGenerateAccessTokenRequest(_messages.Message): r"""A IamcredentialsProjectsServiceAccountsGenerateAccessTokenRequest object. Fields: generateAccessTokenRequest: A GenerateAccessTokenRequest resource to be passed as the request body. name: Required. The resource name of the service account for which the credentials are requested, in the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. """ generateAccessTokenRequest = _messages.MessageField('GenerateAccessTokenRequest', 1) name = _messages.StringField(2, required=True) class IamcredentialsProjectsServiceAccountsGenerateIdTokenRequest(_messages.Message): r"""A IamcredentialsProjectsServiceAccountsGenerateIdTokenRequest object. Fields: generateIdTokenRequest: A GenerateIdTokenRequest resource to be passed as the request body. name: Required. The resource name of the service account for which the credentials are requested, in the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. """ generateIdTokenRequest = _messages.MessageField('GenerateIdTokenRequest', 1) name = _messages.StringField(2, required=True) class IamcredentialsProjectsServiceAccountsSignBlobRequest(_messages.Message): r"""A IamcredentialsProjectsServiceAccountsSignBlobRequest object. Fields: name: Required. The resource name of the service account for which the credentials are requested, in the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. signBlobRequest: A SignBlobRequest resource to be passed as the request body. """ name = _messages.StringField(1, required=True) signBlobRequest = _messages.MessageField('SignBlobRequest', 2) class IamcredentialsProjectsServiceAccountsSignJwtRequest(_messages.Message): r"""A IamcredentialsProjectsServiceAccountsSignJwtRequest object. Fields: name: Required. The resource name of the service account for which the credentials are requested, in the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. signJwtRequest: A SignJwtRequest resource to be passed as the request body. """ name = _messages.StringField(1, required=True) signJwtRequest = _messages.MessageField('SignJwtRequest', 2) class SignBlobRequest(_messages.Message): r"""A SignBlobRequest object. Fields: delegates: The sequence of service accounts in a delegation chain. Each service account must be granted the `roles/iam.serviceAccountTokenCreator` role on its next service account in the chain. The last service account in the chain must be granted the `roles/iam.serviceAccountTokenCreator` role on the service account that is specified in the `name` field of the request. The delegates must have the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. payload: Required. The bytes to sign. """ delegates = _messages.StringField(1, repeated=True) payload = _messages.BytesField(2) class SignBlobResponse(_messages.Message): r"""A SignBlobResponse object. Fields: keyId: The ID of the key used to sign the blob. The key used for signing will remain valid for at least 12 hours after the blob is signed. To verify the signature, you can retrieve the public key in several formats from the following endpoints: - RSA public key wrapped in an X.509 v3 certificate: `https://www.googleapis.com/service_accounts/v1/metadata/x5 09/{ACCOUNT_EMAIL}` - Raw key in JSON format: `https://www.googleapis.co m/service_accounts/v1/metadata/raw/{ACCOUNT_EMAIL}` - JSON Web Key (JWK): `https://www.googleapis.com/service_accounts/v1/metadata/jwk/{ACC OUNT_EMAIL}` signedBlob: The signature for the blob. Does not include the original blob. After the key pair referenced by the `key_id` response field expires, Google no longer exposes the public key that can be used to verify the blob. As a result, the receiver can no longer verify the signature. """ keyId = _messages.StringField(1) signedBlob = _messages.BytesField(2) class SignJwtRequest(_messages.Message): r"""A SignJwtRequest object. Fields: delegates: The sequence of service accounts in a delegation chain. Each service account must be granted the `roles/iam.serviceAccountTokenCreator` role on its next service account in the chain. The last service account in the chain must be granted the `roles/iam.serviceAccountTokenCreator` role on the service account that is specified in the `name` field of the request. The delegates must have the following format: `projects/-/serviceAccounts/{ACCOUNT_EMAIL_OR_UNIQUEID}`. The `-` wildcard character is required; replacing it with a project ID is invalid. payload: Required. The JWT payload to sign. Must be a serialized JSON object that contains a JWT Claims Set. For example: `{"sub": "<EMAIL>", "iat": 313435}` If the JWT Claims Set contains an expiration time (`exp`) claim, it must be an integer timestamp that is not in the past and no more than 12 hours in the future. """ delegates = _messages.StringField(1, repeated=True) payload = _messages.StringField(2) class SignJwtResponse(_messages.Message): r"""A SignJwtResponse object. Fields: keyId: The ID of the key used to sign the JWT. The key used for signing will remain valid for at least 12 hours after the JWT is signed. To verify the signature, you can retrieve the public key in several formats from the following endpoints: - RSA public key wrapped in an X.509 v3 certificate: `https://www.googleapis.com/service_accounts/v1/metadata/x5 09/{ACCOUNT_EMAIL}` - Raw key in JSON format: `https://www.googleapis.co m/service_accounts/v1/metadata/raw/{ACCOUNT_EMAIL}` - JSON Web Key (JWK): `https://www.googleapis.com/service_accounts/v1/metadata/jwk/{ACC OUNT_EMAIL}` signedJwt: The signed JWT. Contains the automatically generated header; the client-supplied payload; and the signature, which is generated using the key referenced by the `kid` field in the header. After the key pair referenced by the `key_id` response field expires, Google no longer exposes the public key that can be used to verify the JWT. As a result, the receiver can no longer verify the signature. """ keyId = _messages.StringField(1) signedJwt = _messages.StringField(2) class StandardQueryParameters(_messages.Message): r"""Query parameters accepted by all methods. Enums: FXgafvValueValuesEnum: V1 error format. AltValueValuesEnum: Data format for response. Fields: f__xgafv: V1 error format. access_token: OAuth access token. alt: Data format for response. callback: JSONP fields: Selector specifying which fields to include in a partial response. key: API key. Your API key identifies your project and provides you with API access, quota, and reports. Required unless you provide an OAuth 2.0 token. oauth_token: OAuth 2.0 token for the current user. prettyPrint: Returns response with indentations and line breaks. quotaUser: Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exceed 40 characters. trace: A tracing token of the form "token:<tokenid>" to include in api requests. uploadType: Legacy upload protocol for media (e.g. "media", "multipart"). upload_protocol: Upload protocol for media (e.g. "raw", "multipart"). """ class AltValueValuesEnum(_messages.Enum): r"""Data format for response. Values: json: Responses with Content-Type of application/json media: Media download with context-dependent Content-Type proto: Responses with Content-Type of application/x-protobuf """ json = 0 media = 1 proto = 2 class FXgafvValueValuesEnum(_messages.Enum): r"""V1 error format. Values: _1: v1 error format _2: v2 error format """ _1 = 0 _2 = 1 f__xgafv = _messages.EnumField('FXgafvValueValuesEnum', 1) access_token = _messages.StringField(2) alt = _messages.EnumField('AltValueValuesEnum', 3, default='json') callback = _messages.StringField(4) fields = _messages.StringField(5) key = _messages.StringField(6) oauth_token = _messages.StringField(7) prettyPrint = _messages.BooleanField(8, default=True) quotaUser = _messages.StringField(9) trace = _messages.StringField(10) uploadType = _messages.StringField(11) upload_protocol = _messages.StringField(12) encoding.AddCustomJsonFieldMapping( StandardQueryParameters, 'f__xgafv', '$.xgafv') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_1', '1') encoding.AddCustomJsonEnumMapping( StandardQueryParameters.FXgafvValueValuesEnum, '_2', '2')
StarcoderdataPython
1683694
""" KnowYourData ============ A rapid and lightweight module to describe the statistics and structure of data arrays for interactive use. The most simple use case to display data is if you have a numpy array 'x': >>> from knowyourdata import kyd >>> kyd(x) """ import sys import numpy as np from IPython.display import display # Getting HTML Template from . import kyd_html_display_template kyd_htmltemplate = kyd_html_display_template.kyd_htmltemplate class KYD_datasummary(object): """A class to store and display the summary information""" text_repr = "" html_repr = "" # Display Settings col_width = 10 precision = 4 def __repr__(self): """ The Plain String Representation of the Data Summary """ return self.text_repr def _repr_html_(self): """ The HTML Representation of the Data Summary """ return self.html_repr def make_html_repr(self): """Make HTML Representation of Data Summary""" self.html_repr = kyd_htmltemplate.format(kyd_class=self.kyd_class) def make_txt_basic_stats(self): """Make Text Representation of Basic Statistics""" pstr_list = [] pstr_struct_header1 = "Basic Statistics " pstr_struct_header2 = '' pstr_list.append(pstr_struct_header1) pstr_list.append(pstr_struct_header2) template_str = ( " {0:^10} " " {1:>8} " " {2:<10} " " {3:>8} " " {4:<10} " ) tmp_data = [ [ "Mean:", "{kyd_class.mean:.{kyd_class.precision}}".format( kyd_class=self.kyd_class), "", "Std Dev:", "{kyd_class.std:.{kyd_class.precision}}".format( kyd_class=self.kyd_class) ], ["Min:", "1Q:", "Median:", "3Q:", "Max:"], [ "{kyd_class.min: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.firstquartile: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.median: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.thirdquartile: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.max: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), ], ['-99 CI:', '-95 CI:', '-68 CI:', '+68 CI:', '+95 CI:', '+99 CI:'], [ "{kyd_class.ci_99[0]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.ci_95[0]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.ci_68[0]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.ci_68[1]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.ci_95[1]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), "{kyd_class.ci_99[1]: .{kyd_class.precision}}".format( kyd_class=self.kyd_class), ], ] n_tmp_data = len(tmp_data) num_rows_in_cols = [len(i) for i in tmp_data] num_rows = np.max(num_rows_in_cols) for i in range(n_tmp_data): tmp_col = tmp_data[i] for j in range(num_rows_in_cols[i], num_rows): tmp_col.append("") for i in range(num_rows): pstr_list.append( template_str.format( tmp_data[0][i], tmp_data[1][i], tmp_data[2][i], tmp_data[3][i], tmp_data[4][i], ) ) return pstr_list def make_txt_struct(self): """Make Text Representation of Array""" pstr_list = [] # pstr_struct_header0 = "................." # Commenting out Ansi Coloured Version # pstr_struct_header1 = '\033[1m' + "Array Structure " + '\033[0m' pstr_struct_header1 = "Array Structure " pstr_struct_header2 = " " # pstr_list.append(pstr_struct_header0) pstr_list.append(pstr_struct_header1) pstr_list.append(pstr_struct_header2) pstr_n_dim = ( "Number of Dimensions:\t" "{kyd_class.ndim}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_n_dim) pstr_shape = ( "Shape of Dimensions:\t" "{kyd_class.shape}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_shape) pstr_dtype = ( "Array Data Type:\t" "{kyd_class.dtype}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_dtype) pstr_memsize = ( "Memory Size:\t\t" "{kyd_class.human_memsize}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_memsize) pstr_spacer = ("") pstr_list.append(pstr_spacer) pstr_numnan = ( "Number of NaN:\t" "{kyd_class.num_nan}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_numnan) pstr_numinf = ( "Number of Inf:\t" "{kyd_class.num_inf}").format( kyd_class=self.kyd_class) pstr_list.append(pstr_numinf) return pstr_list def make_text_repr(self): """Making final text string for plain text representation""" tmp_text_repr = "" tmp_text_repr += "\n" pstr_basic = self.make_txt_basic_stats() pstr_struct = self.make_txt_struct() n_basic = len(pstr_basic) n_struct = len(pstr_struct) l_colwidth = max([len(x) for x in pstr_basic]) + 1 r_colwidth = max([len(x) for x in pstr_struct]) + 2 # new_colwidth = self.col_width + 20 # Finding the longest string len_list = max([n_basic, n_struct]) for i in range(len_list): tmp_str = '| ' if i < n_basic: tmp_str += (pstr_basic[i].ljust(l_colwidth)) else: tmp_str += ''.ljust(l_colwidth) tmp_str += ' | ' if i < n_struct: tmp_str += (pstr_struct[i].expandtabs().ljust(r_colwidth)) else: tmp_str += ''.ljust(r_colwidth) tmp_str += '\t|' tmp_text_repr += tmp_str + "\n" tmp_text_repr += "\n" self.text_repr = tmp_text_repr def __init__(self, kyd_class): super(KYD_datasummary, self).__init__() self.kyd_class = kyd_class self.make_text_repr() self.make_html_repr() class KYD(object): """The Central Class for KYD""" # Variable for Data Vector data = None # Initial Flags f_allfinite = False f_allnonfinite = False f_hasnan = False f_hasinf = False # Initialized Numbers num_nan = 0 num_inf = 0 # Display Settings col_width = 10 precision = 4 def check_finite(self): """Checking to see if all elements are finite and setting flags""" if np.all(np.isfinite(self.data)): self.filt_data = self.data self.f_allfinite = True else: finite_inds = np.where(np.isfinite(self.data)) self.filt_data = self.data[finite_inds] if self.filt_data.size == 0: self.f_allnonfinite = True if np.any(np.isnan(self.data)): self.f_hasnan = True self.num_nan = np.sum(np.isnan(self.data)) if np.any(np.isinf(self.data)): self.f_hasinf = True self.num_inf = np.sum(np.isinf(self.data)) def check_struct(self): """Determining the Structure of the Numpy Array""" self.dtype = self.data.dtype self.ndim = self.data.ndim self.shape = self.data.shape self.size = self.data.size self.memsize = sys.getsizeof(self.data) self.human_memsize = sizeof_fmt(self.memsize) def get_basic_stats(self): """Get basic statistics about array""" if self.f_allnonfinite: self.min = self.max = self.range = np.nan self.mean = self.std = self.median = np.nan self.firstquartile = self.thirdquartile = np.nan self.ci_68 = self.ci_95 = self.ci_99 = np.array([np.nan, np.nan]) return self.min = np.float_(np.min(self.filt_data)) self.max = np.float_(np.max(self.filt_data)) self.range = self.max - self.min self.mean = np.mean(self.filt_data) self.std = np.std(self.filt_data) self.median = np.float_(np.median(self.filt_data)) self.firstquartile = np.float_(np.percentile(self.filt_data, 25)) self.thirdquartile = np.float_(np.percentile(self.filt_data, 75)) self.ci_99 = np.float_( np.percentile(self.filt_data, np.array([0.5, 99.5]))) self.ci_95 = np.float_( np.percentile(self.filt_data, np.array([2.5, 97.5]))) self.ci_68 = np.float_( np.percentile(self.filt_data, np.array([16.0, 84.0]))) def make_summary(self): """Making Data Summary""" self.data_summary = KYD_datasummary(self) def clear_memory(self): """Ensuring the Numpy Array does not exist in memory""" del self.data del self.filt_data def display(self, short=False): """Displaying all relevant statistics""" if short: pass try: get_ipython display(self.data_summary) except NameError: print(self.data_summary) def __init__(self, data): super(KYD, self).__init__() # Ensuring that the array is a numpy array if not isinstance(data, np.ndarray): data = np.array(data) self.data = data self.check_finite() self.check_struct() self.get_basic_stats() self.clear_memory() self.make_summary() def sizeof_fmt(num, suffix='B'): """Return human readable version of in-memory size. Code from <NAME> from Stack Overflow: https://stackoverflow.com/questions/1094841/reusable-library-to-get-human-readable-version-of-file-size """ for unit in ['', 'Ki', 'Mi', 'Gi', 'Ti', 'Pi', 'Ei', 'Zi']: if abs(num) < 1024.0: return "%3.1f%s%s" % (num, unit, suffix) num /= 1024.0 return "%.1f%s%s" % (num, 'Yi', suffix) def kyd(data, full_statistics=False): """Print statistics of any numpy array data -- Numpy Array of Data Keyword arguments: full_statistics -- printing all detailed statistics of the sources (Currently Not Implemented) """ data_kyd = KYD(data) if full_statistics: data_kyd.display() else: data_kyd.display(short=True) return data_kyd
StarcoderdataPython
1740004
<reponame>cfrancisco/dojot """ Certificate utilities. """ import os import requests from src.config import CONFIG from src.utils import Utils from src.ejbca.thing import Thing from src.mqtt_locust.redis_client import RedisClient LOGGER = Utils.create_logger("cert_utils") class CertUtils: """ Handles certificate-related operations. """ @staticmethod def get_private_key_file(device_id: str) -> str: """ Creates the key filename. """ Utils.validate_device_id(device_id) return "{0}.key".format(device_id) @staticmethod def get_certificate_file(device_id: str) -> str: """ Creates the certificate filename. """ Utils.validate_device_id(device_id) return "{0}.crt".format(device_id) @staticmethod def create_cert_files(thing: Thing, directory: str = "/cert/") -> None: """Creates the .key and .crt files for a device. Args: device_id: device's identification. thing: Thing object with certificate's info. directory: directory to save the files. """ key_path = directory + CertUtils.get_private_key_file(thing.device_id) cert_path = directory + CertUtils.get_certificate_file(thing.device_id) try: if os.path.isfile(key_path): os.remove(key_path) with open(key_path, "w") as key_file: key_file.write(str(thing.private_key)) if os.path.isfile(cert_path): os.remove(cert_path) with open(cert_path, "w") as key_file: key_file.write(str(thing.thing_certificate)) except Exception as exception: LOGGER.error("Error: %s", str(exception)) raise @staticmethod def new_cert(tenant: str, device_id: str) -> Thing: """ Creates/renovates the certificate for a device. """ Utils.validate_tenant(tenant) Utils.validate_device_id(device_id) thing = Thing(tenant, device_id) return thing @staticmethod def revoke_cert(thing: Thing) -> None: """ Revokes a certificate for a specific device. """ thing.cert.revoke_cert() @staticmethod def has_been_revoked(thing: Thing) -> bool: """ Verifies whether the certificate has been revoked or not. """ url = CONFIG["dojot"]["url"]+ "/x509/v1/certificates/" + thing.cert.crt['fingerprint'] res = requests.get( url=url, headers={ "Authorization": "Bearer {0}".format(RedisClient().get_jwt()) } ) return res.status_code == 404
StarcoderdataPython
3374241
<gh_stars>10-100 # Copyright 2021 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for Keras metrics functions.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.keras import keras_parameterized from tensorflow.python.keras import layers from tensorflow.python.keras import metrics from tensorflow.python.keras import testing_utils from tensorflow.python.platform import test from tensorflow.python import ipu def _get_model(compile_metrics): model_layers = [ layers.Dense(3, activation='relu', kernel_initializer='ones'), layers.Dense(1, activation='sigmoid', kernel_initializer='ones') ] model = testing_utils.get_model_from_layers(model_layers, input_shape=(4,)) model.compile(loss='mae', metrics=compile_metrics, optimizer='rmsprop', run_eagerly=testing_utils.should_run_eagerly()) return model @keras_parameterized.run_with_all_model_types(exclude_models='subclass') @keras_parameterized.run_all_keras_modes(always_skip_eager=True, always_skip_v1=True) class ResetStatesTest(keras_parameterized.TestCase): def setUp(self): super(ResetStatesTest, self).setUp() cfg = ipu.config.IPUConfig() cfg.auto_select_ipus = 1 cfg.ipu_model.compile_ipu_code = False cfg.ipu_model.tiles_per_ipu = 1 cfg.configure_ipu_system() self._ipu_strategy = ipu.ipu_strategy.IPUStrategyV1() self._ipu_strategy_scope = self._ipu_strategy.scope() self._ipu_strategy_scope.__enter__() def tearDown(self): self._ipu_strategy_scope.__exit__(None, None, None) super(ResetStatesTest, self).tearDown() def test_reset_states_false_positives(self): fp_obj = metrics.FalsePositives() model = _get_model([fp_obj]) x = np.ones((128, 4)) y = np.zeros((128, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(fp_obj.accumulator), 128.) model.evaluate(x, y) self.assertEqual(self.evaluate(fp_obj.accumulator), 128.) def test_reset_states_false_negatives(self): fn_obj = metrics.FalseNegatives() model = _get_model([fn_obj]) x = np.zeros((128, 4)) y = np.ones((128, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(fn_obj.accumulator), 128.) model.evaluate(x, y) self.assertEqual(self.evaluate(fn_obj.accumulator), 128.) def test_reset_states_true_negatives(self): tn_obj = metrics.TrueNegatives() model = _get_model([tn_obj]) x = np.zeros((128, 4)) y = np.zeros((128, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(tn_obj.accumulator), 128.) model.evaluate(x, y) self.assertEqual(self.evaluate(tn_obj.accumulator), 128.) def test_reset_states_true_positives(self): tp_obj = metrics.TruePositives() model = _get_model([tp_obj]) x = np.ones((128, 4)) y = np.ones((128, 1)) model.evaluate(x, y) self.assertEqual(self.evaluate(tp_obj.accumulator), 128.) model.evaluate(x, y) self.assertEqual(self.evaluate(tp_obj.accumulator), 128.) def test_reset_states_precision(self): p_obj = metrics.Precision() model = _get_model([p_obj]) x = np.concatenate((np.ones((64, 4)), np.ones((64, 4)))) y = np.concatenate((np.ones((64, 1)), np.zeros((64, 1)))) model.evaluate(x, y) self.assertEqual(self.evaluate(p_obj.true_positives), 64.) self.assertEqual(self.evaluate(p_obj.false_positives), 64.) model.evaluate(x, y) self.assertEqual(self.evaluate(p_obj.true_positives), 64.) self.assertEqual(self.evaluate(p_obj.false_positives), 64.) def test_reset_states_recall(self): r_obj = metrics.Recall() model = _get_model([r_obj]) x = np.concatenate((np.ones((64, 4)), np.zeros((64, 4)))) y = np.concatenate((np.ones((64, 1)), np.ones((64, 1)))) model.evaluate(x, y) self.assertEqual(self.evaluate(r_obj.true_positives), 64.) self.assertEqual(self.evaluate(r_obj.false_negatives), 64.) model.evaluate(x, y) self.assertEqual(self.evaluate(r_obj.true_positives), 64.) self.assertEqual(self.evaluate(r_obj.false_negatives), 64.) def test_reset_states_auc(self): auc_obj = metrics.AUC(num_thresholds=3) model = _get_model([auc_obj]) x = np.concatenate((np.ones((32, 4)), np.zeros((32, 4)), np.zeros( (32, 4)), np.ones((32, 4)))) y = np.concatenate((np.ones((32, 1)), np.zeros((32, 1)), np.ones( (32, 1)), np.zeros((32, 1)))) for _ in range(2): model.evaluate(x, y) self.assertEqual(self.evaluate(auc_obj.true_positives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.false_positives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.false_negatives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.true_negatives[1]), 32.) def test_reset_states_auc_manual_thresholds(self): auc_obj = metrics.AUC(thresholds=[0.5]) model = _get_model([auc_obj]) x = np.concatenate((np.ones((32, 4)), np.zeros((32, 4)), np.zeros( (32, 4)), np.ones((32, 4)))) y = np.concatenate((np.ones((32, 1)), np.zeros((32, 1)), np.ones( (32, 1)), np.zeros((32, 1)))) for _ in range(2): model.evaluate(x, y) self.assertEqual(self.evaluate(auc_obj.true_positives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.false_positives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.false_negatives[1]), 32.) self.assertEqual(self.evaluate(auc_obj.true_negatives[1]), 32.) if __name__ == '__main__': test.main()
StarcoderdataPython
4832377
<gh_stars>0 from kubernetes import client, config, watch class ClusterApi(object): def __init__(self, namespace): config.load_kube_config() self.core = client.CoreV1Api() self.batch = client.BatchV1Api() self.namespace = namespace def create_persistent_volume_claim(self, name, storage_size_in_g, access_modes=["ReadWriteMany"], storage_class_name="glusterfs-storage"): pvc = client.V1PersistentVolumeClaim() pvc.metadata = client.V1ObjectMeta(name=name) storage_size = "{}Gi".format(storage_size_in_g) resources = client.V1ResourceRequirements(requests={"storage": storage_size}) pvc.spec = client.V1PersistentVolumeClaimSpec(access_modes=access_modes, resources=resources, storage_class_name=storage_class_name) return self.core.create_namespaced_persistent_volume_claim(self.namespace, pvc) def delete_persistent_volume_claim(self, name): self.core.delete_namespaced_persistent_volume_claim(name, self.namespace, client.V1DeleteOptions()) def create_secret(self, name, string_value_dict): body = client.V1Secret(string_data=string_value_dict, metadata={'name': name}) return self.core.create_namespaced_secret(namespace=self.namespace, body=body) def delete_secret(self, name): self.core.delete_namespaced_secret(name, self.namespace, body=client.V1DeleteOptions()) def create_job(self, name, batch_job_spec): body = client.V1Job( metadata=client.V1ObjectMeta(name=name), spec=batch_job_spec.create()) return self.batch.create_namespaced_job(self.namespace, body) def wait_for_jobs(self, job_names): waiting_for_job_names = set(job_names) failed_job_names = [] w = watch.Watch() for event in w.stream(self.batch.list_namespaced_job, self.namespace): job = event['object'] job_name = job.metadata.name if job.status.succeeded: waiting_for_job_names.remove(job_name) elif job.status.failed: waiting_for_job_names.remove(job_name) failed_job_names.append(job_name) if not waiting_for_job_names: w.stop() if failed_job_names: raise ValueError("Failed jobs: {}".format(','.join(failed_job_names))) else: print("Jobs complete: {}".format(','.join(job_names))) def delete_job(self, name, propagation_policy='Background'): body = client.V1DeleteOptions(propagation_policy=propagation_policy) self.batch.delete_namespaced_job(name, self.namespace, body=body) def create_config_map(self, name, data): body = client.V1ConfigMap( metadata=client.V1ObjectMeta(name=name), data=data ) return self.core.create_namespaced_config_map(self.namespace, body) def delete_config_map(self, name): self.core.delete_namespaced_config_map(name, self.namespace, body=client.V1DeleteOptions()) class Container(object): def __init__(self, name, image_name, command, args, working_dir, env_dict, requested_cpu, requested_memory, volumes): self.name = name self.image_name = image_name self.command = command self.args = args self.working_dir = working_dir self.env_dict = env_dict self.requested_cpu = requested_cpu self.requested_memory = requested_memory self.volumes = volumes def create_env(self): environment_variables = [] for key, value in self.env_dict.items(): environment_variables.append(client.V1EnvVar(name=key, value=value)) return environment_variables def create_volume_mounts(self): return [volume.create_volume_mount() for volume in self.volumes] def create_volumes(self): return [volume.create_volume() for volume in self.volumes] def create_resource_requirements(self): return client.V1ResourceRequirements( requests={ "memory": self.requested_memory, "cpu": self.requested_cpu }) def create(self): return client.V1Container( name=self.name, image=self.image_name, working_dir=self.working_dir, command=[self.command], args=self.args, resources=self.create_resource_requirements(), env=self.create_env(), volume_mounts=self.create_volume_mounts() ) class VolumeBase(object): def __init__(self, name, mount_path): self.name = name self.mount_path = mount_path def create_volume_mount(self): return client.V1VolumeMount( name=self.name, mount_path=self.mount_path) class SecretVolume(VolumeBase): def __init__(self, name, mount_path, secret_name): super(SecretVolume, self).__init__(name, mount_path) self.secret_name = secret_name def create_volume(self): return client.V1Volume( name=self.name, secret=self.create_secret()) def create_secret(self): return client.V1SecretVolumeSource(secret_name=self.secret_name) class PersistentClaimVolume(VolumeBase): def __init__(self, name, mount_path, volume_claim_name): super(PersistentClaimVolume, self).__init__(name, mount_path) self.volume_claim_name = volume_claim_name def create_volume(self): return client.V1Volume( name=self.name, persistent_volume_claim=self.create_volume_source()) def create_volume_source(self): return client.V1PersistentVolumeClaimVolumeSource(claim_name=self.volume_claim_name) class ConfigMapVolume(VolumeBase): def __init__(self, name, mount_path, config_map_name, source_key, source_path): super(ConfigMapVolume, self).__init__(name, mount_path) self.config_map_name = config_map_name self.source_key = source_key self.source_path = source_path def create_volume(self): return client.V1Volume( name=self.name, config_map=self.create_config_map()) def create_config_map(self): items = [client.V1KeyToPath(key=self.source_key, path=self.source_path)] return client.V1ConfigMapVolumeSource(name=self.config_map_name, items=items) class BatchJobSpec(object): def __init__(self, name, container): self.name = name self.pod_restart_policy = "Never" self.container = container def create(self): job_spec_name = "{}spec".format(self.name) return client.V1JobSpec( template=client.V1PodTemplateSpec( metadata=client.V1ObjectMeta(name=job_spec_name), spec=self.create_pod_spec() ) ) def create_pod_spec(self): return client.V1PodSpec( containers=self.create_containers(), volumes=self.create_volumes(), restart_policy="Never" ) def create_containers(self): container = self.container.create() return [container] def create_volumes(self): return self.container.create_volumes()
StarcoderdataPython
3393185
<reponame>skitazaki/python-school-ja<filename>src/cmdline-3.py<gh_stars>0 from pprint import pprint import settings pprint(dir(settings)) pprint({'DEBUG': settings.DEBUG}) pprint(settings.DATABASES['default'])
StarcoderdataPython