animal-wildlife / README.md
lucabaggi's picture
docs(readme): document extraction script usage
dced0d3 verified
|
raw
history blame
5.03 kB
---
dataset_info:
features:
- name: image
dtype: image
- name: label
dtype:
class_label:
names:
'0': antelope
'1': badger
'2': bat
'3': bear
'4': bee
'5': beetle
'6': bison
'7': boar
'8': butterfly
'9': cat
'10': caterpillar
'11': chimpanzee
'12': cockroach
'13': cow
'14': coyote
'15': crab
'16': crow
'17': deer
'18': dog
'19': dolphin
'20': donkey
'21': dragonfly
'22': duck
'23': eagle
'24': elephant
'25': flamingo
'26': fly
'27': fox
'28': goat
'29': goldfish
'30': goose
'31': gorilla
'32': grasshopper
'33': hamster
'34': hare
'35': hedgehog
'36': hippopotamus
'37': hornbill
'38': horse
'39': hummingbird
'40': hyena
'41': jellyfish
'42': kangaroo
'43': koala
'44': ladybugs
'45': leopard
'46': lion
'47': lizard
'48': lobster
'49': mosquito
'50': moth
'51': mouse
'52': octopus
'53': okapi
'54': orangutan
'55': otter
'56': owl
'57': ox
'58': oyster
'59': panda
'60': parrot
'61': pelecaniformes
'62': penguin
'63': pig
'64': pigeon
'65': porcupine
'66': possum
'67': raccoon
'68': rat
'69': reindeer
'70': rhinoceros
'71': sandpiper
'72': seahorse
'73': seal
'74': shark
'75': sheep
'76': snake
'77': sparrow
'78': squid
'79': squirrel
'80': starfish
'81': swan
'82': tiger
'83': turkey
'84': turtle
'85': whale
'86': wolf
'87': wombat
'88': woodpecker
'89': zebra
splits:
- name: train
num_bytes: 468274895
num_examples: 3780
- name: test
num_bytes: 196855527.2
num_examples: 1620
download_size: 696316023
dataset_size: 665130422.2
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
- split: test
path: data/test-*
task_categories:
- image-classification
- image-segmentation
tags:
- animals
size_categories:
- n<1K
---
# Dataset Card for Dataset Name
This dataset is a port of the ["Animal Image Dataset"](https://www.kaggle.com/datasets/iamsouravbanerjee/animal-image-dataset-90-different-animals) that you can find on Kaggle.
The dataset contains 60 pictures for 90 types of animals, with various image sizes.
With respect to the original dataset, I created the train-test-split partitions (80%/20%) to make it compatible via HuggingFace `datasets`.
**Note**. At the time of writing, by looking at the Croissant ML Metadata, the original license of the data is `sc:CreativeWork`. If you believe this dataset violates any license, please
open an issue in the discussion tab, so I can take action as soon as possible.
## How to use this data
```python
from datasets import load_dataset
# for exploration
ds = load_dataset("lucabaggi/animal-wildlife", split="train")
# for training
ds = load_dataset("lucabaggi/animal-wildlife")
```
## How the data was generated
You can find the source code for the extraction pipeline [here](./extract.py). Note: partly generated with Claude3 and Codestral 😎😅 Please feel free to open an issue in the discussion sction if you wish to improve the code.
```
$ uv run --python=3.11 -- python -m extract --help
usage: extract.py [-h] [--destination-dir DESTINATION_DIR] [--split-ratio SPLIT_RATIO] [--random-seed RANDOM_SEED] [--remove-zip] zip_file
Reorganize dataset.
positional arguments:
zip_file Path to the zip file.
options:
-h, --help show this help message and exit
--destination-dir DESTINATION_DIR
Path to the destination directory.
--split-ratio SPLIT_RATIO
Ratio of data to be used for training.
--random-seed RANDOM_SEED
Random seed for reproducibility.
--remove-zip Whether to remove the source zip archive file after extraction.
```
Example usage:
1. Download the data from Kaggle. You can use Kaggle Python SDK, but that might require an API key if you use it locally.
2. Invoke the script:
```bash
uv run --python=3.11 -- python -m extract -- archive.zip
```
This will explode the contents of the zip archive into a `data` directory, splitting the train and test dataset in a 80%/20% ratio.
3. Upload to the hub:
```python
from datasets import load_dataset
ds = load_datset("imagefolder", data_dir="data")
ds.push_to_hub()
```