Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
DOI:
Libraries:
Datasets
Dask
License:
image
imagewidth (px)
176
176
dataset_name
stringclasses
1 value
dataset_uid
stringclasses
1 value
phase_name
stringclasses
1 value
comparative
stringclasses
1 value
study_id
stringlengths
1
7
umie_id
stringlengths
14
20
mask
null
labels
stringclasses
4 values
alzheimers
2
MRI
0
02_0_00000_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1000
02_0_00001000_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1001
02_0_00001001_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1002
02_0_00001002_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1003
02_0_00001003_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1004
02_0_00001004_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1005
02_0_00001005_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1006
02_0_00001006_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1007
02_0_00001007_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1008
02_0_00001008_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1009
02_0_00001009_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
100
02_0_0000100_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1010
02_0_00001010_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1011
02_0_00001011_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1012
02_0_00001012_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1013
02_0_00001013_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1014
02_0_00001014_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1015
02_0_00001015_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1016
02_0_00001016_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1017
02_0_00001017_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1018
02_0_00001018_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1019
02_0_00001019_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
101
02_0_0000101_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1020
02_0_00001020_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1021
02_0_00001021_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1022
02_0_00001022_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1023
02_0_00001023_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1024
02_0_00001024_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1025
02_0_00001025_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1026
02_0_00001026_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1027
02_0_00001027_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1028
02_0_00001028_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1029
02_0_00001029_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
102
02_0_0000102_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1030
02_0_00001030_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1031
02_0_00001031_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1032
02_0_00001032_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1033
02_0_00001033_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1034
02_0_00001034_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1035
02_0_00001035_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1036
02_0_00001036_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1037
02_0_00001037_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1038
02_0_00001038_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1039
02_0_00001039_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
103
02_0_0000103_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1040
02_0_00001040_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1041
02_0_00001041_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1042
02_0_00001042_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1043
02_0_00001043_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1044
02_0_00001044_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1045
02_0_00001045_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1046
02_0_00001046_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1047
02_0_00001047_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1048
02_0_00001048_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1049
02_0_00001049_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
104
02_0_0000104_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1050
02_0_00001050_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1051
02_0_00001051_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1052
02_0_00001052_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1053
02_0_00001053_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1054
02_0_00001054_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1055
02_0_00001055_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1056
02_0_00001056_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1057
02_0_00001057_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1058
02_0_00001058_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1059
02_0_00001059_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
105
02_0_0000105_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1060
02_0_00001060_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1061
02_0_00001061_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1062
02_0_00001062_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1063
02_0_00001063_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1064
02_0_00001064_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1065
02_0_00001065_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1066
02_0_00001066_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1067
02_0_00001067_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1068
02_0_00001068_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1069
02_0_00001069_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
106
02_0_0000106_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1070
02_0_00001070_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1071
02_0_00001071_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1072
02_0_00001072_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1073
02_0_00001073_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1074
02_0_00001074_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1075
02_0_00001075_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1076
02_0_00001076_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1077
02_0_00001077_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1078
02_0_00001078_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1079
02_0_00001079_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
107
02_0_0000107_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1080
02_0_00001080_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1081
02_0_00001081_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1082
02_0_00001082_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1083
02_0_00001083_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1084
02_0_00001084_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1085
02_0_00001085_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1086
02_0_00001086_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1087
02_0_00001087_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1088
02_0_00001088_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
1089
02_0_00001089_00.png
null
"{\"NormalityDecriptor\": 1}"
alzheimers
2
MRI
108
02_0_0000108_00.png
null
"{\"NormalityDecriptor\": 1}"

Dataset Card for Dataset Name

UMIE (Unified Medical Imaging Ensemble) is currently the largest publicly available dataset of annotated radiological imaging, combining over 20 open-source datasets into a unified collection with standardized formatting and labeling based on the RadLex ontology.

Dataset Details

Dataset Description

UMIE datasets combine more than 20 open-source medical imaging datasets, containing over 1 million radiological images across multiple modalities (CT, MRI, and X-ray). The dataset is unique in its standardized approach to medical image data organization, using unified preprocessing pipelines and the RadLex ontology for consistent labeling across all included datasets.

This resource combines images from 12 open-source datasets, spanning X-ray, CT, and MRI modalities. The dataset includes images for both classification and segmentation tasks, with 40+ standardized labels and 15 annotation masks. We mapped all labels and masks to the RadLex ontology, ensuring consistency across datasets. UMIE datasets aim to facilitate the development of more robust and generalizable medical foundation models akin to those in general-purpose computer vision.

Due to redistribution restrictions of some opensource datasets, we release only a subset of UMIE datasets on Hugging Face. To reproduce our entire datasets, go to our repo on GitHub. In our repo, we collect the unified preprocessing pipeline that standardizes the heterogeneous source datasets into a common UMIE format, addressing challenges such as diverse file types, annotation styles, and labeling ontologies. The preprocessing scripts are modular and extensible, so that you can use existing preprocessing steps to easily incorporate new datasets.

  • Curated by: TheLion.AI

    Uses

    Direct Use

    • Training and evaluation of medical imaging AI models
    • Development of foundation models for medical imaging
    • Medical image classification and segmentation tasks
    • Research in medical computer vision
    • Benchmark dataset for medical imaging tasks

    Out-of-Scope Use

    Clinical diagnosis or medical decision-making without proper validation Applications requiring real-time processing without proper testing Use cases requiring additional modalities not included in the dataset

    Dataset Structure

    • Standardized file organization
    • Consistent image formats (converted from various sources including DICOM)
    • Unified mask formats
    • Labels following RadLex ontology
    • Unique identifiers across all datasets

    The dataset comprises of several opensource datasets. Each sub dataset is treated as a separate split. The dataset file tree looks as follows: [sub dataset ID]_[sub dataset name]->[phase name e.g."CT arterial"]->Images / Masks directory

    The information about individual imgs, such as whether it has a mask or labels is stored in a jsonl file. Each sub dataset has its own .jsonl file. You can check the json file to find which images come from the same study.

    Each image in the dataset has a unique identifier. If an image has a mask, mask has the same file name as its respective image.

    For a complete list of labels in UMIE check labels.py For a complete list of masks with their encoding check masks.py

    Dataset Creation

    Curation Rationale

    The dataset was created to address several key challenges in medical AI:

    • Lack of large-scale, standardized medical imaging datasets
    • Inconsistent formatting across existing datasets
    • Absence of common ontology for medical image annotation
    • Need for foundation models in medical imaging

    Although the number of opensource medical datasets is growing, we are lacking data formating and labeling standards. Due to the plethora of formating in the available data and lack of a common ontology for labeling, it used to be difficult to create a large-scale dataset of medical imaging. To fascilitate this process we created pipelines with reusable preprocessing steps to convert the data to a common format and a common labeling and masks ontology. This dataset collects the results of these pipelines. The pipelines are also available as opensource on our GitHub.

    Source Data

    The source data in UMIE datasets comes from opensource datasets. We provide a complete list of source datasets with links to their original source below. We did not collect any data ourselves.

    Data Collection and Processing

    The dataset combines images from 20+ open-source medical imaging datasets. Processing includes:

    • Standardized preprocessing pipelines
    • Conversion of various image formats (DICOM, PNG, etc.)
    • Mask extraction from various formats (XML, etc.)
    • Label standardization using RadLex ontology
    • Unique identifier assignment
    • Optional steps for handling missing annotations

    For preprocessing, we created custom pipelines with reusable steps, allowing to simplify the process to drag and drop. Refer to our GitHub repo for the exact code of the preprocessing pipelines.

    Who are the source data producers?

    The source data comes from various medical institutions and public medical imaging repositories, including:

    Below you can find citations and links to the original sources of the datasets. We list only the datasets present on HuggingFace. Since not all source datasets in UMIE allow redistribution, some datasets requires downloading the data from source location and then use our pipelines on GitHub to preprocess it to UMIE format. 0. KITS 23

    @misc{heller2023kits21,
          title={The KiTS21 Challenge: Automatic segmentation of kidneys, renal tumors, and renal cysts in corticomedullary-phase CT}, 
          author={Nicholas Heller and Fabian Isensee and Dasha Trofimova and Resha Tejpaul and Zhongchen Zhao and Huai Chen and Lisheng Wang and Alex Golts and Daniel Khapun and Daniel Shats and Yoel Shoshan and Flora Gilboa-Solomon and Yasmeen George and Xi Yang and Jianpeng Zhang and Jing Zhang and Yong Xia and Mengran Wu and Zhiyang Liu and Ed Walczak and Sean McSweeney and Ranveer Vasdev and Chris Hornung and Rafat Solaiman and Jamee Schoephoerster and Bailey Abernathy and David Wu and Safa Abdulkadir and Ben Byun and Justice Spriggs and Griffin Struyk and Alexandra Austin and Ben Simpson and Michael Hagstrom and Sierra Virnig and John French and Nitin Venkatesh and Sarah Chan and Keenan Moore and Anna Jacobsen and Susan Austin and Mark Austin and Subodh Regmi and Nikolaos Papanikolopoulos and Christopher Weight},
          year={2023},
          eprint={2307.01984},
          archivePrefix={arXiv},
          primaryClass={cs.CV}
    }
    
    1. CoronaHack
    2. Alzheimers Dataset
    3. Brain Tumor Classification
    4. COVID-19 Detection X-Ray
    5. Finding and Measuring Lungs in CT Data
    6. Brain CT Images with Intracranial Hemorrhage Masks
    7. Liver and Liver Tumor Segmentation
    8. Brain MRI Images for Brain Tumor Detection
    9. Knee Osteoarthritis Dataset with Severity Grading
    10. Chest X-ray 14
    @inproceedings{wang2017chestx,
      title={Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases},
      author={Wang, Xiaosong and Peng, Yifan and Lu, Le and Lu, Zhiyong and Bagheri, Mohammadhadi and Summers, Ronald M},
      booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
      pages={2097--2106},
      year={2017}
    }
    

    Due to the licencing restrictions, we were not able to publish on Hugging Face all the datasets that UMIE supports. Some datasets do not allow for redistributing tghe data in the modified format. To replicate our complete dataset, go to our GitHub Repo and use the preprocessing pipelines for the datasets listed below: 10. Brain Tumor Progression

    @article{schmainda2018data,
      title={Data from brain-tumor-progression},
      author={Schmainda, Kathleen and Prah, Melissa},
      journal={The Cancer Imaging Archive},
      volume={21},
      year={2018}
    }
    
    1. COCA- Coronary Calcium and chest CTs
    2. BrainMetShare

    Annotations [optional]

    Annotation process

    • Original annotations from source datasets are preserved
    • Labels and masks are mapped to RadLex ontology IDs
    • Consultation with radiologists for proper ontology mapping
    • Multi-label classification approach where necessary

    Who are the annotators?

    Original annotations come from the source datasets' creators. The mapping to RadLex ontology was performed by the UMIE team in consultation with radiologists.

    Personal and Sensitive Information

    The dataset follows the distribution model of ImageNet — instead of redistributing the data directly, it provides:

    • Instructions for downloading from original sources
    • Preprocessing scripts for standardization
    • Direct distribution only for datasets that allow redistribution

    Bias, Risks, and Limitations

    • Dataset quality depends on original source data quality
    • Potential biases from source dataset collections
    • Some labels may use more general RadLex IDs due to ontology limitations
    • Varying levels of annotation detail across source datasets

    Recommendations

    • Validate model performance on independent test sets before clinical use
    • Consider potential biases in source datasets
    • Review RadLex ID mappings for specific use cases
    • Check original dataset licenses for usage restrictions

    Citation [optional]

    If there is a paper or blog post introducing the dataset, the APA and Bibtex information for that should go in this section. -->

    Dataset Card Authors

    Barbara Klaudel, Aleksander Obuchowski, Andrzej Komor, Piotr Frąckowski, Kacper Rogala, Kacper Knitter

    Dataset Card Contact

    Barbara Klaudel (team leader) LinkedIn

Downloads last month
80