language_instruction
stringclasses
3 values
observation.state
sequence
action
sequence
timestamp
float32
0
44.2
episode_index
int64
0
149
frame_index
int64
0
883
next.reward
float32
0
1
next.done
bool
2 classes
index
int64
0
76.3k
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0, 0, 0, 0, 0, 0, 0, 0.03297451511025429 ]
[ 0.09142857044935226, -0.0028571428265422583, 0.07428571581840515, 0.010714286006987095, 0.03750000149011612, 0, 1 ]
0
0
0
0
false
0
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0, 0, 0, 0, 0, 0, 0, 0.03297451511025429 ]
[ 0.28857141733169556, 0, 0.4399999976158142, 0.007499999832361937, 0.02678571455180645, 0, 1 ]
0.05
0
1
0
false
1
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09642727673053741, -0.20225603878498077, -0.01497974619269371, -2.4781620502471924, -0.011775695718824863, 2.298142433166504, 0.8459352850914001, 0.03297451511025429 ]
[ 0.28857141733169556, 0, 0.4399999976158142, 0.007499999832361937, 0.02678571455180645, 0, 1 ]
0.1
0
2
0
false
2
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0964154377579689, -0.20193611085414886, -0.014991072937846184, -2.478123664855957, -0.011382592841982841, 2.297729015350342, 0.8459347486495972, 0.03297451511025429 ]
[ 0.31142857670783997, 0, 0.488571435213089, 0.0053571430034935474, 0.03214285895228386, 0, 1 ]
0.15
0
3
0
false
3
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09639931470155716, -0.20226046442985535, -0.014991464093327522, -2.476224899291992, -0.011373729445040226, 2.2969040870666504, 0.8459327816963196, 0.03297451511025429 ]
[ 0.2971428632736206, 0, 0.5199999809265137, 0.010714286006987095, 0.04178571328520775, 0, 1 ]
0.2
0
4
0
false
4
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09638188779354095, -0.2028931975364685, -0.015005209483206272, -2.4724972248077393, -0.011381628923118114, 2.2961034774780273, 0.8459389805793762, 0.03297451511025429 ]
[ 0.3085714280605316, 0, 0.49714285135269165, 0.0010714285308495164, 0.05249999836087227, 0, 1 ]
0.25
0
5
0
false
5
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09638333320617676, -0.20419557392597198, -0.014996185898780823, -2.467156171798706, -0.01137708593159914, 2.2943248748779297, 0.8459380865097046, 0.03303689882159233 ]
[ 0.3285714387893677, 0, 0.488571435213089, 0, 0.05249999836087227, 0, 1 ]
0.3
0
6
0
false
6
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09638045728206635, -0.20540788769721985, -0.01501032616943121, -2.4615585803985596, -0.011379435658454895, 2.2911593914031982, 0.8459319472312927, 0.03303689882159233 ]
[ 0.3199999928474426, 0, 0.5028571486473083, 0.013928571715950966, 0.05464285612106323, 0, 1 ]
0.35
0
7
0
false
7
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09637823700904846, -0.20644806325435638, -0.015004286542534828, -2.454967975616455, -0.011373614892363548, 2.2862322330474854, 0.8459331393241882, 0.03303689882159233 ]
[ 0.3857142925262451, 0, 0.5485714077949524, 0.014999999664723873, 0.06321428716182709, 0, 1 ]
0.4
0
8
0
false
8
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09637990593910217, -0.20681434869766235, -0.01500577200204134, -2.448277711868286, -0.011375078931450844, 2.2821285724639893, 0.8459345698356628, 0.03303689882159233 ]
[ 0.4342857003211975, 0, 0.5942857265472412, 0.01607142947614193, 0.06642857193946838, 0, 1 ]
0.45
0
9
0
false
9
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09637302905321121, -0.20693887770175934, -0.015017177909612656, -2.441664695739746, -0.011349991895258427, 2.27889084815979, 0.8459338545799255, 0.0330999381840229 ]
[ 0.4828571379184723, -0.03142857179045677, 0.6428571343421936, 0.028928572311997414, 0.07392857223749161, 0, 1 ]
0.5
0
10
0
false
10
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09638028591871262, -0.20708201825618744, -0.01501063909381628, -2.4348602294921875, -0.011185792274773121, 2.276265859603882, 0.8459370732307434, 0.0330999381840229 ]
[ 0.5400000214576721, -0.07999999821186066, 0.6885714530944824, 0.04500000178813934, 0.0803571417927742, 0, 1 ]
0.55
0
11
0
false
11
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09637545049190521, -0.20719404518604279, -0.01502139586955309, -2.4272074699401855, -0.011046309024095535, 2.272322416305542, 0.8459336161613464, 0.0330999381840229 ]
[ 0.6428571343421936, -0.1371428519487381, 0.7114285826683044, 0.07178571075201035, 0.10607142746448517, 0, 1 ]
0.6
0
12
0
false
12
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09637761861085892, -0.20721326768398285, -0.015100755728781223, -2.418273687362671, -0.010862729512155056, 2.2665252685546875, 0.8459202647209167, 0.0330999381840229 ]
[ 0.691428542137146, -0.17714285850524902, 0.7171428799629211, 0.09214285761117935, 0.13178572058677673, 0, 1 ]
0.65
0
13
0
false
13
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0963561087846756, -0.20717854797840118, -0.015577278099954128, -2.4081475734710693, -0.01010525319725275, 2.2600440979003906, 0.8458266854286194, 0.0330999381840229 ]
[ 0.7142857313156128, -0.17714285850524902, 0.6971428394317627, 0.09642857313156128, 0.1403571367263794, 0, 1 ]
0.7
0
14
0
false
14
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0962354764342308, -0.2070174217224121, -0.016392458230257034, -2.399553060531616, -0.008470813743770123, 2.2554047107696533, 0.8448944687843323, 0.0330999381840229 ]
[ 0.7314285635948181, -0.24571429193019867, 0.7200000286102295, 0.12107142806053162, 0.15642857551574707, 0, 1 ]
0.75
0
15
0
false
15
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09615664184093475, -0.2063015252351761, -0.018269289284944534, -2.388481855392456, -0.005578068550676107, 2.247988224029541, 0.8425770998001099, 0.03297451511025429 ]
[ 0.7742857336997986, -0.28285714983940125, 0.7228571176528931, 0.1339285671710968, 0.1735714226961136, 0, 1 ]
0.8
0
16
0
false
16
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09604155272245407, -0.2045852243900299, -0.020918725058436394, -2.3766863346099854, -0.0009628261905163527, 2.240663766860962, 0.8391143679618835, 0.03308023884892464 ]
[ 0.7657142877578735, -0.2800000011920929, 0.7285714149475098, 0.13821429014205933, 0.18000000715255737, 0, 1 ]
0.85
0
17
0
false
17
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09558762609958649, -0.20182158052921295, -0.02426232397556305, -2.3640964031219482, 0.005408564116805792, 2.232377767562866, 0.8327734470367432, 0.03308023884892464 ]
[ 0.7714285850524902, -0.2800000011920929, 0.7400000095367432, 0.1403571367263794, 0.17678570747375488, 0, 1 ]
0.9
0
18
0
false
18
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09530463814735413, -0.19836392998695374, -0.028545059263706207, -2.3504726886749268, 0.013493995182216167, 2.220698356628418, 0.8258223533630371, 0.03308023884892464 ]
[ 0.7942857146263123, -0.25999999046325684, 0.7314285635948181, 0.14142857491970062, 0.17678570747375488, 0, 1 ]
0.95
0
19
0
false
19
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09512224793434143, -0.1940944492816925, -0.033925920724868774, -2.33544921875, 0.022471705451607704, 2.2080135345458984, 0.8177868127822876, 0.03308023884892464 ]
[ 0.808571457862854, -0.24857142567634583, 0.7285714149475098, 0.13928571343421936, 0.1778571456670761, 0, 1 ]
1
0
20
0
false
20
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0943237841129303, -0.18926365673542023, -0.039225123822689056, -2.3195769786834717, 0.033297523856163025, 2.1952269077301025, 0.8089224100112915, 0.032975174486637115 ]
[ 0.8199999928474426, -0.23428571224212646, 0.7142857313156128, 0.1307142823934555, 0.18000000715255737, 0, 1 ]
1.05
0
21
0
false
21
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09395726025104523, -0.18402984738349915, -0.04499784857034683, -2.303121566772461, 0.044139351695775986, 2.1804752349853516, 0.801626443862915, 0.032975174486637115 ]
[ 0.8199999928474426, -0.2257142812013626, 0.668571412563324, 0.1307142823934555, 0.18642857670783997, 0, 1 ]
1.1
0
22
0
false
22
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09363511949777603, -0.1783684492111206, -0.050592802464962006, -2.286093235015869, 0.05496389418840408, 2.16682767868042, 0.7955358624458313, 0.032975174486637115 ]
[ 0.831428587436676, -0.20000000298023224, 0.6342856884002686, 0.12642857432365417, 0.1939285695552826, 0, 1 ]
1.15
0
23
0
false
23
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09341226518154144, -0.17178207635879517, -0.05586766079068184, -2.2689595222473145, 0.0637364313006401, 2.1543796062469482, 0.7907721400260925, 0.032975174486637115 ]
[ 0.8600000143051147, -0.1371428519487381, 0.5885714292526245, 0.11785714328289032, 0.20035713911056519, 0, 1 ]
1.2
0
24
0
false
24
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0931306853890419, -0.16412366926670074, -0.06053726747632027, -2.2511754035949707, 0.07260464876890182, 2.139852523803711, 0.7875575423240662, 0.032975174486637115 ]
[ 0.8942857384681702, -0.0714285746216774, 0.5314285755157471, 0.10178571194410324, 0.20678570866584778, 0, 1 ]
1.25
0
25
0
false
25
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09251336753368378, -0.15576866269111633, -0.06404649466276169, -2.2333974838256836, 0.08009177446365356, 2.1258609294891357, 0.7859886288642883, 0.03309140354394913 ]
[ 0.9200000166893005, 0, 0.4714285731315613, 0.0835714265704155, 0.207857146859169, 0, 1 ]
1.3
0
26
0
false
26
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09217924624681473, -0.1484704166650772, -0.06638697534799576, -2.2189934253692627, 0.08584248274564743, 2.1160888671875, 0.7857230305671692, 0.03309140354394913 ]
[ 0.8742856979370117, 0, 0.3514285683631897, 0.07071428745985031, 0.18964286148548126, 0, 1 ]
1.35
0
27
0
false
27
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09214308857917786, -0.13769735395908356, -0.06892614811658859, -2.2006866931915283, 0.09226566553115845, 2.102264165878296, 0.7857121229171753, 0.03309140354394913 ]
[ 0.8371428847312927, 0, 0.24285714328289032, 0.04821428656578064, 0.16178570687770844, 0, 1 ]
1.4
0
28
0
false
28
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09212763607501984, -0.12516385316848755, -0.07041933387517929, -2.182053327560425, 0.09649642556905746, 2.0906858444213867, 0.7857154607772827, 0.032975830137729645 ]
[ 0.7742857336997986, 0, 0.16857142746448517, 0.04821428656578064, 0.14678572118282318, 0, 1 ]
1.45
0
29
0
false
29
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0921170562505722, -0.11148183792829514, -0.07095562666654587, -2.1637840270996094, 0.09775475412607193, 2.081190586090088, 0.7857053875923157, 0.032975830137729645 ]
[ 0.7371428608894348, 0.05428571254014969, 0.10571428388357162, 0.034285712987184525, 0.13500000536441803, 0, 1 ]
1.5
0
30
0
false
30
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09218692779541016, -0.09692850708961487, -0.07088758051395416, -2.146963119506836, 0.09778359532356262, 2.0752742290496826, 0.7857067584991455, 0.032975830137729645 ]
[ 0.691428542137146, 0.07428571581840515, 0.07428571581840515, 0.029999999329447746, 0.11999999731779099, 0, 1 ]
1.55
0
31
0
false
31
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0922074168920517, -0.08180665969848633, -0.0708393082022667, -2.1311047077178955, 0.0977846309542656, 2.0694568157196045, 0.7857032418251038, 0.032975830137729645 ]
[ 0.6142857074737549, 0.06285714358091354, 0.025714285671710968, 0.03642857074737549, 0.09964285790920258, 0, 1 ]
1.6
0
32
0
false
32
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09225495904684067, -0.0671951174736023, -0.07075522840023041, -2.1172962188720703, 0.09778259694576263, 2.066988945007324, 0.7857102155685425, 0.032975830137729645 ]
[ 0.5571428537368774, 0.04857143014669418, 0, 0.03857142850756645, 0.08250000327825546, 0, 1 ]
1.65
0
33
0
false
33
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09237204492092133, -0.0529572032392025, -0.07056429982185364, -2.1054282188415527, 0.09778127074241638, 2.0664658546447754, 0.7857022881507874, 0.033092059195041656 ]
[ 0.5028571486473083, 0.017142856493592262, 0.03999999910593033, 0.055714286863803864, 0.07071428745985031, 0, 1 ]
1.7
0
34
0
false
34
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09248743206262589, -0.04039749503135681, -0.07013968378305435, -2.0956363677978516, 0.09778127074241638, 2.066474676132202, 0.7857072949409485, 0.033092059195041656 ]
[ 0.49714285135269165, 0.014285714365541935, 0.10000000149011612, 0.07178571075201035, 0.07928571105003357, 0, 1 ]
1.75
0
35
0
false
35
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09254796802997589, -0.028934691101312637, -0.06965730339288712, -2.087526798248291, 0.09777934104204178, 2.0665063858032227, 0.7857112288475037, 0.033092059195041656 ]
[ 0.4942857027053833, 0.051428571343421936, 0.14571428298950195, 0.07607142627239227, 0.08571428805589676, 0, 1 ]
1.8
0
36
0
false
36
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09256549179553986, -0.01944628916680813, -0.0694003775715828, -2.080782413482666, 0.09778723120689392, 2.066646099090576, 0.7857096195220947, 0.033092059195041656 ]
[ 0.49714285135269165, 0.10571428388357162, 0.24285714328289032, 0.08464285731315613, 0.1007142886519432, 0, 1 ]
1.85
0
37
0
false
37
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09256713092327118, -0.011309130117297173, -0.06927740573883057, -2.0751233100891113, 0.09783874452114105, 2.0667214393615723, 0.7857118248939514, 0.033092059195041656 ]
[ 0.4828571379184723, 0.1599999964237213, 0.28857141733169556, 0.09000000357627869, 0.09964285790920258, 0.004285714123398066, 1 ]
1.9
0
38
0
false
38
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09260855615139008, -0.006223048083484173, -0.06913493573665619, -2.0714197158813477, 0.09826146811246872, 2.066729784011841, 0.7857154607772827, 0.033092059195041656 ]
[ 0.4657142758369446, 0.2314285784959793, 0.334285706281662, 0.0835714265704155, 0.09857142716646194, 0.0010714285308495164, 1 ]
1.95
0
39
0
false
39
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09271370619535446, -0.0013311199145391583, -0.06875930726528168, -2.0672295093536377, 0.09979380667209625, 2.066716432571411, 0.7857133746147156, 0.033092059195041656 ]
[ 0.46857142448425293, 0.3199999928474426, 0.37714284658432007, 0.0835714265704155, 0.10607142746448517, 0.011785713955760002, 1 ]
2
0
40
0
false
40
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09301590174436569, 0.001765669323503971, -0.06814279407262802, -2.063884735107422, 0.10281594097614288, 2.0667030811309814, 0.7857096791267395, 0.033092059195041656 ]
[ 0.5, 0.37714284658432007, 0.4342857003211975, 0.07178571075201035, 0.11571428924798965, 0.01607142947614193, 1 ]
2.05
0
41
0
false
41
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09354466199874878, 0.0037585985846817493, -0.06703663617372513, -2.0612587928771973, 0.10792361199855804, 2.06667423248291, 0.7857096195220947, 0.032976485788822174 ]
[ 0.508571445941925, 0.39714285731315613, 0.4571428596973419, 0.06321428716182709, 0.12107142806053162, 0.01607142947614193, 1 ]
2.1
0
42
0
false
42
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09431051462888718, 0.004729634616523981, -0.06537386775016785, -2.058990478515625, 0.11333123594522476, 2.0666301250457764, 0.7857094407081604, 0.033092059195041656 ]
[ 0.5257142782211304, 0.4057142734527588, 0.4228571355342865, 0.061071429401636124, 0.12642857432365417, 0.018214285373687744, 1 ]
2.15
0
43
0
false
43
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09511319547891617, 0.005163960158824921, -0.06267835199832916, -2.056365489959717, 0.11802882701158524, 2.066253662109375, 0.7857068181037903, 0.033092059195041656 ]
[ 0.488571435213089, 0.37714284658432007, 0.4057142734527588, 0.07928571105003357, 0.1274999976158142, 0.025714285671710968, 1 ]
2.2
0
44
0
false
44
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09571407735347748, 0.005470019765198231, -0.05855182185769081, -2.0532429218292236, 0.12082172930240631, 2.065744638442993, 0.7857052087783813, 0.033092059195041656 ]
[ 0.4942857027053833, 0.37142857909202576, 0.38285714387893677, 0.0771428570151329, 0.12857143580913544, 0.02678571455180645, 1 ]
2.25
0
45
0
false
45
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09615236520767212, 0.005785015411674976, -0.05353866145014763, -2.050220012664795, 0.12246620655059814, 2.0653932094573975, 0.7857062816619873, 0.033092059195041656 ]
[ 0.47999998927116394, 0.3400000035762787, 0.3742857277393341, 0.08464285731315613, 0.12428571283817291, 0.023571427911520004, 1 ]
2.3
0
46
0
false
46
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09623739123344421, 0.006094228010624647, -0.047842465341091156, -2.0478596687316895, 0.1243535503745079, 2.0651841163635254, 0.7857084274291992, 0.033092059195041656 ]
[ 0.46857142448425293, 0.3171428442001343, 0.3742857277393341, 0.09107142686843872, 0.11785714328289032, 0.02250000089406967, 1 ]
2.35
0
47
0
false
47
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0964241772890091, 0.006577686872333288, -0.04230092093348503, -2.045811176300049, 0.12634143233299255, 2.065113067626953, 0.7857102751731873, 0.033092059195041656 ]
[ 0.46857142448425293, 0.3142857253551483, 0.39714285731315613, 0.08892857283353806, 0.11142857372760773, 0.02250000089406967, 1 ]
2.4
0
48
0
false
48
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09662481397390366, 0.007000097073614597, -0.037152573466300964, -2.0439836978912354, 0.12881067395210266, 2.064767837524414, 0.7857038974761963, 0.033092059195041656 ]
[ 0.49714285135269165, 0.3285714387893677, 0.4457142949104309, 0.0835714265704155, 0.10928571224212646, 0.020357143133878708, 1 ]
2.45
0
49
0
false
49
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09653645753860474, 0.006822261027991772, -0.0333334244787693, -2.0423386096954346, 0.12932699918746948, 2.0627074241638184, 0.7857005596160889, 0.033092059195041656 ]
[ 0.5485714077949524, 0.3400000035762787, 0.5971428751945496, 0.08250000327825546, 0.12857143580913544, 0.013928571715950966, 1 ]
2.5
0
50
0
false
50
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09650807082653046, 0.0066971625201404095, -0.03156537935137749, -2.040616989135742, 0.1299510896205902, 2.0609519481658936, 0.7856436967849731, 0.032976485788822174 ]
[ 0.5371428728103638, 0.3142857253551483, 0.6742857098579407, 0.07821428775787354, 0.1339285671710968, 0.011785713955760002, 1 ]
2.55
0
51
0
false
51
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09650270640850067, 0.006576339714229107, -0.030580271035432816, -2.037799596786499, 0.1314782202243805, 2.0584938526153564, 0.7852343916893005, 0.033086150884628296 ]
[ 0.5314285755157471, 0.3171428442001343, 0.7828571200370789, 0.06321428716182709, 0.12964285910129547, 0.006428571417927742, 1 ]
2.6
0
52
0
false
52
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09654305875301361, 0.00614703306928277, -0.029859034344553947, -2.0340158939361572, 0.1340940296649933, 2.053868293762207, 0.784905195236206, 0.033086150884628296 ]
[ 0.5428571701049805, 0.33714285492897034, 0.8028571605682373, 0.046071428805589676, 0.12964285910129547, 0.004285714123398066, 1 ]
2.65
0
53
0
false
53
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09658738225698471, 0.005907165352255106, -0.028390998020768166, -2.027761697769165, 0.13672567903995514, 2.0462160110473633, 0.7849041223526001, 0.033086150884628296 ]
[ 0.5714285969734192, 0.3628571331501007, 0.8285714387893677, 0.03750000149011612, 0.1371428519487381, 0.0053571430034935474, 1 ]
2.7
0
54
0
false
54
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09664610773324966, 0.005423637572675943, -0.026070909574627876, -2.019411325454712, 0.13735118508338928, 2.037299633026123, 0.7848979830741882, 0.033086150884628296 ]
[ 0.5857142806053162, 0.38285714387893677, 0.822857141494751, 0.034285712987184525, 0.1435714215040207, 0.009642857126891613, 1 ]
2.75
0
55
0
false
55
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0966748371720314, 0.005424024071544409, -0.02300899662077427, -2.0080406665802, 0.1373700648546219, 2.025435209274292, 0.7849113345146179, 0.033086150884628296 ]
[ 0.5799999833106995, 0.4114285707473755, 0.8114285469055176, 0.031071428209543228, 0.14678572118282318, 0.011785713955760002, 1 ]
2.8
0
56
0
false
56
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09671667963266373, 0.005649296101182699, -0.019480714574456215, -1.9951672554016113, 0.13737429678440094, 2.0148160457611084, 0.7850736379623413, 0.033086150884628296 ]
[ 0.6228571534156799, 0.45428571105003357, 0.7457143068313599, 0.019285714253783226, 0.1639285683631897, 0.018214285373687744, 1 ]
2.85
0
57
0
false
57
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0968034639954567, 0.006378233898431063, -0.015697749331593513, -1.9816596508026123, 0.13737498223781586, 2.0037310123443604, 0.7855332493782043, 0.033086150884628296 ]
[ 0.6428571343421936, 0.49142858386039734, 0.7028571367263794, 0.009642857126891613, 0.1703571379184723, 0.019285714253783226, 1 ]
2.9
0
58
0
false
58
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09693621098995209, 0.007270231377333403, -0.011703463271260262, -1.9686704874038696, 0.13737556338310242, 1.992989420890808, 0.7862481474876404, 0.03295678645372391 ]
[ 0.691428542137146, 0.5314285755157471, 0.645714282989502, 0, 0.1735714226961136, 0.011785713955760002, 1 ]
2.95
0
59
0
false
59
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09701196849346161, 0.008644468151032925, -0.007342081051319838, -1.955790400505066, 0.13737022876739502, 1.9814958572387695, 0.7869442701339722, 0.03308286517858505 ]
[ 0.7371428608894348, 0.5600000023841858, 0.645714282989502, 0, 0.17464286088943481, 0.004285714123398066, 1 ]
3
0
60
0
false
60
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09716435521841049, 0.010765690356492996, -0.0027926424518227577, -1.943908452987671, 0.1373603790998459, 1.971336007118225, 0.7877312898635864, 0.03308286517858505 ]
[ 0.7714285850524902, 0.5885714292526245, 0.6428571343421936, 0, 0.17249999940395355, 0, 1 ]
3.05
0
61
0
false
61
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09737268835306168, 0.014004554599523544, 0.002177875954657793, -1.9325450658798218, 0.1373487114906311, 1.9639513492584229, 0.7897677421569824, 0.03308286517858505 ]
[ 0.7400000095367432, 0.5714285969734192, 0.6399999856948853, 0, 0.16500000655651093, 0, 1 ]
3.1
0
62
0
false
62
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09744878858327866, 0.017384346574544907, 0.0066154529340565205, -1.9234760999679565, 0.13734813034534454, 1.959570288658142, 0.7914554476737976, 0.03308286517858505 ]
[ 0.7228571176528931, 0.6000000238418579, 0.6228571534156799, 0, 0.1607142835855484, 0, 1 ]
3.15
0
63
0
false
63
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0977826714515686, 0.02167402021586895, 0.011354662477970123, -1.9119690656661987, 0.13730795681476593, 1.9524619579315186, 0.792482852935791, 0.03297188878059387 ]
[ 0.7171428799629211, 0.6228571534156799, 0.6200000047683716, -0.009642857126891613, 0.16178570687770844, 0, 1 ]
3.2
0
64
0
false
64
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09824895858764648, 0.025718988850712776, 0.01564418524503708, -1.8995038270950317, 0.13731826841831207, 1.9433685541152954, 0.7924938797950745, 0.03297188878059387 ]
[ 0.7028571367263794, 0.6228571534156799, 0.6171428561210632, -0.012857142835855484, 0.1607142835855484, 0, 1 ]
3.25
0
65
0
false
65
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09847801178693771, 0.02964208833873272, 0.020165827125310898, -1.8877031803131104, 0.13731950521469116, 1.9364951848983765, 0.7925498485565186, 0.03297188878059387 ]
[ 0.6828571557998657, 0.6828571557998657, 0.6600000262260437, -0.03642857074737549, 0.16285714507102966, 0, 1 ]
3.3
0
66
0
false
66
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0989520400762558, 0.0338268056511879, 0.024145931005477905, -1.8757944107055664, 0.13731731474399567, 1.930185079574585, 0.7926093339920044, 0.03297188878059387 ]
[ 0.6600000262260437, 0.6942856907844543, 0.6857143044471741, -0.04285714402794838, 0.16178570687770844, 0, 1 ]
3.35
0
67
0
false
67
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.09951037913560867, 0.038169875741004944, 0.02846122719347477, -1.8641276359558105, 0.1373065859079361, 1.9249340295791626, 0.7928275465965271, 0.03297188878059387 ]
[ 0.645714282989502, 0.7257142663002014, 0.7371428608894348, -0.061071429401636124, 0.15535713732242584, -0.003214285708963871, 1 ]
3.4
0
68
0
false
68
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.0999981164932251, 0.041869763284921646, 0.03298511356115341, -1.852855920791626, 0.13731494545936584, 1.9197843074798584, 0.7935461401939392, 0.03309008851647377 ]
[ 0.6371428370475769, 0.7457143068313599, 0.7342857122421265, -0.07392857223749161, 0.15321429073810577, -0.004285714123398066, 1 ]
3.45
0
69
0
false
69
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10110459476709366, 0.04568003490567207, 0.03754742816090584, -1.8416019678115845, 0.13726890087127686, 1.913732647895813, 0.7962881922721863, 0.03309008851647377 ]
[ 0.6171428561210632, 0.7485714554786682, 0.7314285635948181, -0.0835714265704155, 0.14464285969734192, -0.006428571417927742, 1 ]
3.5
0
70
0
false
70
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10290669649839401, 0.049165282398462296, 0.04281378537416458, -1.8306341171264648, 0.1369686871767044, 1.9081168174743652, 0.80155348777771, 0.03309008851647377 ]
[ 0.6085714101791382, 0.7599999904632568, 0.7142857313156128, -0.09107142686843872, 0.14142857491970062, -0.0053571430034935474, 1 ]
3.55
0
71
0
false
71
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10434474050998688, 0.05212117359042168, 0.04927710071206093, -1.8200184106826782, 0.13615891337394714, 1.9042572975158691, 0.8084395527839661, 0.03309008851647377 ]
[ 0.6085714101791382, 0.7657142877578735, 0.6828571557998657, -0.09214285761117935, 0.14142857491970062, -0.003214285708963871, 1 ]
3.6
0
72
0
false
72
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1053135097026825, 0.05457392707467079, 0.05676446482539177, -1.8101333379745483, 0.13558846712112427, 1.9013601541519165, 0.8163173794746399, 0.03309008851647377 ]
[ 0.6142857074737549, 0.7685714364051819, 0.6399999856948853, -0.10178571194410324, 0.13821429014205933, -0.0010714285308495164, 1 ]
3.65
0
73
0
false
73
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10584238171577454, 0.057134535163640976, 0.06482687592506409, -1.800439476966858, 0.13489511609077454, 1.8985563516616821, 0.8247748017311096, 0.03309008851647377 ]
[ 0.6085714101791382, 0.7571428418159485, 0.5771428346633911, -0.10821428894996643, 0.13285714387893677, -0.003214285708963871, 1 ]
3.7
0
74
0
false
74
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10646702349185944, 0.05935422703623772, 0.07137227058410645, -1.7929558753967285, 0.13435232639312744, 1.8965007066726685, 0.831810712814331, 0.03309008851647377 ]
[ 0.6028571724891663, 0.7457143068313599, 0.5314285755157471, -0.11142857372760773, 0.12964285910129547, -0.0053571430034935474, 1 ]
3.75
0
75
0
false
75
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10717632621526718, 0.06225411593914032, 0.0791555717587471, -1.7845474481582642, 0.1334918886423111, 1.895037055015564, 0.8400999903678894, 0.03309008851647377 ]
[ 0.5885714292526245, 0.7200000286102295, 0.47428572177886963, -0.11678571254014969, 0.12107142806053162, -0.012857142835855484, 1 ]
3.8
0
76
0
false
76
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10770291835069656, 0.06549594551324844, 0.08709041029214859, -1.776697039604187, 0.13250695168972015, 1.894667148590088, 0.8487683534622192, 0.03296729177236557 ]
[ 0.5771428346633911, 0.6942856907844543, 0.4514285624027252, -0.11892857402563095, 0.11678571254014969, -0.020357143133878708, 1 ]
3.85
0
77
0
false
77
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.10900245606899261, 0.06900656223297119, 0.09422735124826431, -1.7698547840118408, 0.13176210224628448, 1.8946510553359985, 0.8567994236946106, 0.0330907478928566 ]
[ 0.5742856860160828, 0.6828571557998657, 0.4285714328289032, -0.11892857402563095, 0.11678571254014969, -0.019285714253783226, 1 ]
3.9
0
78
0
false
78
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.11011944711208344, 0.07304541766643524, 0.10109341889619827, -1.7634600400924683, 0.13054843246936798, 1.8946489095687866, 0.8653297424316406, 0.0330907478928566 ]
[ 0.545714259147644, 0.6399999856948853, 0.36000001430511475, -0.11892857402563095, 0.10607142746448517, -0.02250000089406967, 1 ]
3.95
0
79
0
false
79
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.11126398295164108, 0.07673811912536621, 0.10742074996232986, -1.75836181640625, 0.12978287041187286, 1.8946675062179565, 0.874850332736969, 0.0330907478928566 ]
[ 0.5314285755157471, 0.6257143020629883, 0.33142855763435364, -0.11892857402563095, 0.09749999642372131, -0.023571427911520004, 1 ]
4
0
80
0
false
80
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1122492179274559, 0.0805894210934639, 0.11336258053779602, -1.7532821893692017, 0.1289588063955307, 1.894686222076416, 0.8848357796669006, 0.0330907478928566 ]
[ 0.5485714077949524, 0.6257143020629883, 0.2971428632736206, -0.12642857432365417, 0.09535714238882065, -0.025714285671710968, 1 ]
4.05
0
81
0
false
81
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.11425093561410904, 0.08473100513219833, 0.11802971363067627, -1.748285174369812, 0.12834423780441284, 1.8947546482086182, 0.894415020942688, 0.0330907478928566 ]
[ 0.5571428537368774, 0.6257143020629883, 0.3028571307659149, -0.12642857432365417, 0.09749999642372131, -0.024642856791615486, 1 ]
4.1
0
82
0
false
82
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.11661798506975174, 0.08923320472240448, 0.12206072360277176, -1.743855595588684, 0.1279119849205017, 1.8949414491653442, 0.903148353099823, 0.0330907478928566 ]
[ 0.508571445941925, 0.5828571319580078, 0.2971428632736206, -0.11678571254014969, 0.09214285761117935, -0.02678571455180645, 1 ]
4.15
0
83
0
false
83
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.11844819039106369, 0.09428320080041885, 0.12607181072235107, -1.739365816116333, 0.12712682783603668, 1.8952094316482544, 0.9117531776428223, 0.0330907478928566 ]
[ 0.4714285731315613, 0.5514285564422607, 0.30571427941322327, -0.1103571429848671, 0.08785714209079742, -0.03214285895228386, 1 ]
4.2
0
84
0
false
84
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.12018054723739624, 0.09942934662103653, 0.129608154296875, -1.7352055311203003, 0.12691156566143036, 1.8956066370010376, 0.9193463325500488, 0.03297320380806923 ]
[ 0.40857142210006714, 0.5028571486473083, 0.31142857670783997, -0.09749999642372131, 0.08250000327825546, -0.03214285895228386, 1 ]
4.25
0
85
0
false
85
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1218385398387909, 0.10399792343378067, 0.13284868001937866, -1.7317965030670166, 0.12686693668365479, 1.8959882259368896, 0.9265884160995483, 0.033086806535720825 ]
[ 0.3857142925262451, 0.48571428656578064, 0.322857141494751, -0.09321428835391998, 0.07928571105003357, -0.031071428209543228, 1 ]
4.3
0
86
0
false
86
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.12298822402954102, 0.1072845384478569, 0.13555876910686493, -1.7290555238723755, 0.12686409056186676, 1.8960031270980835, 0.9327208995819092, 0.033086806535720825 ]
[ 0.4285714328289032, 0.5028571486473083, 0.3142857253551483, -0.10607142746448517, 0.0803571417927742, -0.031071428209543228, 1 ]
4.35
0
87
0
false
87
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.12435255199670792, 0.11089611798524857, 0.13858537375926971, -1.7257345914840698, 0.12687891721725464, 1.8960130214691162, 0.9397205114364624, 0.033086806535720825 ]
[ 0.43142858147621155, 0.488571435213089, 0.33714285492897034, -0.1039285734295845, 0.0835714265704155, -0.028928572311997414, 1 ]
4.4
0
88
0
false
88
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1268347203731537, 0.11339816451072693, 0.14015880227088928, -1.7229747772216797, 0.1268838495016098, 1.8960267305374146, 0.94608074426651, 0.032976485788822174 ]
[ 0.4114285707473755, 0.4628571569919586, 0.3514285683631897, -0.10285714268684387, 0.07500000298023224, -0.03214285895228386, 1 ]
4.45
0
89
0
false
89
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1296626478433609, 0.11465411633253098, 0.14089585840702057, -1.7216389179229736, 0.126873180270195, 1.8962957859039307, 0.9515776038169861, 0.032976485788822174 ]
[ 0.3799999952316284, 0.41999998688697815, 0.36571428179740906, -0.09857142716646194, 0.07607142627239227, -0.03750000149011612, 1 ]
4.5
0
90
0
false
90
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1324392855167389, 0.1156904473900795, 0.14133644104003906, -1.7208253145217896, 0.1268831491470337, 1.896580696105957, 0.9567781090736389, 0.032976485788822174 ]
[ 0.26571428775787354, 0.2971428632736206, 0.36571428179740906, -0.07928571105003357, 0.06750000268220901, -0.05464285612106323, 1 ]
4.55
0
91
0
false
91
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.13504548370838165, 0.1166854277253151, 0.14173567295074463, -1.719986915588379, 0.12687785923480988, 1.896945834159851, 0.9616709351539612, 0.033011291176080704 ]
[ 0.09428571164608002, 0.05428571254014969, 0.46857142448425293, -0.039642855525016785, 0.05464285612106323, -0.06750000268220901, 1 ]
4.6
0
92
0
false
92
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1367178112268448, 0.11695659905672073, 0.14175158739089966, -1.7188862562179565, 0.1264156997203827, 1.8969494104385376, 0.9662364721298218, 0.033011291176080704 ]
[ 0, -0.008571428246796131, 0.6057142615318298, -0.020357143133878708, 0.03750000149011612, -0.06428571790456772, 1 ]
4.65
0
93
0
false
93
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1373002976179123, 0.11689141392707825, 0.14177711308002472, -1.7177395820617676, 0.12640374898910522, 1.8968738317489624, 0.9698522686958313, 0.033011291176080704 ]
[ 0, -0.22285714745521545, 0.677142858505249, 0, 0.02142857201397419, -0.062142856419086456, 1 ]
4.7
0
94
0
false
94
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.13730335235595703, 0.1162877306342125, 0.14171791076660156, -1.7158695459365845, 0.12643198668956757, 1.895455241203308, 0.9733688235282898, 0.033092714846134186 ]
[ -0.017142856493592262, -0.4114285707473755, 0.7428571581840515, 0.04178571328520775, 0.01607142947614193, -0.05464285612106323, 1 ]
4.75
0
95
0
false
95
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.1370697021484375, 0.11511360108852386, 0.14125384390354156, -1.712767481803894, 0.12645865976810455, 1.8929460048675537, 0.9763694405555725, 0.033092714846134186 ]
[ -0.09142857044935226, -0.7428571581840515, 0.668571412563324, 0.12321428209543228, 0, -0.04714285582304001, 1 ]
4.8
0
96
0
false
96
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.13641595840454102, 0.11338520050048828, 0.13995689153671265, -1.7072901725769043, 0.12683779001235962, 1.8885868787765503, 0.9777266383171082, 0.033092714846134186 ]
[ -0.1257142871618271, -0.7542856931686401, 0.5400000214576721, 0.1339285671710968, 0, -0.04178571328520775, 1 ]
4.85
0
97
0
false
97
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.13493667542934418, 0.1114230826497078, 0.13795246183872223, -1.698427677154541, 0.12703832983970642, 1.881751298904419, 0.9777541160583496, 0.033092714846134186 ]
[ -0.2314285784959793, -0.7742857336997986, 0.4514285624027252, 0.1639285683631897, 0, -0.018214285373687744, 1 ]
4.9
0
98
0
false
98
tf.Tensor(b'make coffee', shape=(), dtype=string)
[ 0.13167309761047363, 0.10849464684724808, 0.13508340716362, -1.6882803440093994, 0.12851287424564362, 1.871046781539917, 0.9777568578720093, 0.033092714846134186 ]
[ -0.19428572058677673, -0.831428587436676, 0.3514285683631897, 0.16285714507102966, 0, -0.002142857061699033, 1 ]
4.95
0
99
0
false
99
README.md exists but content is empty.
Downloads last month
67