File size: 4,110 Bytes
6e80c25
 
 
 
 
a6cefe1
 
6e80c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33c569c
e5d3ccb
 
 
33c569c
 
6e80c25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2dbac05
6e80c25
 
 
 
 
33c569c
 
6e80c25
 
33c569c
 
6e80c25
 
33c569c
 
6e80c25
 
 
33c569c
6e80c25
 
 
 
a6cefe1
0547960
2dbac05
6e80c25
 
2dbac05
1341e14
 
6e80c25
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
from pathlib import Path

import datasets
import pandas as pd

logger = datasets.logging.get_logger(__name__)

_CITATION = """\
@inproceedings{augustyniak-etal-2020-political,
    title = "Political Advertising Dataset: the use case of the Polish 2020 Presidential Elections",
    author = "Augustyniak, Lukasz  and
      Rajda, Krzysztof  and
      Kajdanowicz, Tomasz  and
      Bernaczyk, Micha{\l}",
    booktitle = "Proceedings of the The Fourth Widening Natural Language Processing Workshop",
    month = jul,
    year = "2020",
    address = "Seattle, USA",
    publisher = "Association for Computational Linguistics",
    url = "https://www.aclweb.org/anthology/2020.winlp-1.28",
    pages = "110--114"
}
"""

_DESCRIPTION = "Polish Political Advertising Dataset"

_HOMEPAGE = "https://github.com/laugustyniak/misinformation"

_URLS = {
    "train": "https://huggingface.co/datasets/laugustyniak/political-advertising-pl/resolve/main/train.parquet",
    "test": "https://huggingface.co/datasets/laugustyniak/political-advertising-pl/resolve/main/test.parquet",
    "validation": "https://huggingface.co/datasets/laugustyniak/political-advertising-pl/resolve/main/dev.parquet",
}

DATA_PATH = Path(".")


class PoliticalAdvertisingConfig(datasets.BuilderConfig):
    def __init__(self, **kwargs):
        super(PoliticalAdvertisingConfig, self).__init__(**kwargs)


class PoliticalAdvertisingDataset(datasets.GeneratorBasedBuilder):
    VERSION = datasets.Version("1.0.0")

    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="political-advertising-pl", version=VERSION)
    ]

    def _info(self):
        features = datasets.Features(
            {
                "id": datasets.Value("string"),
                "tokens": datasets.Sequence(datasets.Value("string")),
                "tags": datasets.Sequence(
                    datasets.features.ClassLabel(
                        names=[
                            "O",
                            "B-DEFENSE_AND_SECURITY",
                            "I-DEFENSE_AND_SECURITY",
                            "B-EDUCATION",
                            "I-EDUCATION",
                            "B-FOREIGN_POLICY",
                            "I-FOREIGN_POLICY",
                            "B-HEALHCARE",
                            "I-HEALHCARE",
                            "B-IMMIGRATION",
                            "I-IMMIGRATION",
                            "B-INFRASTRUCTURE_AND_ENVIROMENT",
                            "I-INFRASTRUCTURE_AND_ENVIROMENT",
                            "B-POLITICAL_AND_LEGAL_SYSTEM",
                            "I-POLITICAL_AND_LEGAL_SYSTEM",
                            "B-SOCIETY",
                            "I-SOCIETY",
                            "B-WELFARE",
                            "I-WELFARE",
                        ]
                    )
                ),
            }
        )

        return datasets.DatasetInfo(
            description=_DESCRIPTION,
            features=features,
            supervised_keys=None,
            homepage=_HOMEPAGE,
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        downloaded_files = dl_manager.download_and_extract(_URLS)

        return [
            datasets.SplitGenerator(
                name=datasets.Split.TRAIN,
                gen_kwargs={"filepath": downloaded_files["train"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.TEST,
                gen_kwargs={"filepath": downloaded_files["test"]},
            ),
            datasets.SplitGenerator(
                name=datasets.Split.VALIDATION,
                gen_kwargs={"filepath": downloaded_files["validation"]},
            ),
        ]

    def _generate_examples(self, filepath: str):
        logger.info("⏳ Generating examples from = %s", filepath)
        df = pd.read_parquet(filepath)

        for row_id, row in df.iterrows():
            yield row_id, {
                "id": str(row_id),
                "tokens": row.tokens,
                "tags": row.tags,
            }