laugustyniak commited on
Commit
a6cefe1
·
1 Parent(s): 2b62b2b
dataset_infos.json ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "political-advertising-pl": {
3
+ "description": "The shared task of CoNLL-2003 concerns language-independent named entity recognition. We will concentrate on\nfour types of named entities: persons, locations, organizations and names of miscellaneous entities that do\nnot belong to the previous three groups.\n\nThe CoNLL-2003 shared task data files contain four columns separated by a single space. Each word has been put on\na separate line and there is an empty line after each sentence. The first item on each line is a word, the second\na part-of-speech (POS) tag, the third a syntactic chunk tag and the fourth the named entity tag. The chunk tags\nand the named entity tags have the format I-TYPE which means that the word is inside a phrase of type TYPE. Only\nif two phrases of the same type immediately follow each other, the first word of the second phrase will have tag\nB-TYPE to show that it starts a new phrase. A word with tag O is not part of a phrase. Note the dataset uses IOB2\ntagging scheme, whereas the original dataset uses IOB1.\n\nFor more details see https://www.clips.uantwerpen.be/conll2003/ner/ and https://www.aclweb.org/anthology/W03-0419\n",
4
+ "citation": "@inproceedings{augustyniak-etal-2020-political,\n title = \"Political Advertising Dataset: the use case of the Polish 2020 Presidential Elections\",\n author = \"Augustyniak, Lukasz and\n Rajda, Krzysztof and\n Kajdanowicz, Tomasz and\n Bernaczyk, Micha{l}\",\n booktitle = \"Proceedings of the The Fourth Widening Natural Language Processing Workshop\",\n month = jul,\n year = \"2020\",\n address = \"Seattle, USA\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/2020.winlp-1.28\",\n pages = \"110--114\"",
5
+ "homepage": "https://github.com/laugustyniak/misinformation",
6
+ "license": "",
7
+ "features": {
8
+ "id": { "dtype": "string", "id": null, "_type": "Value" },
9
+ "tokens": {
10
+ "feature": { "dtype": "string", "id": null, "_type": "Value" },
11
+ "length": -1,
12
+ "id": null,
13
+ "_type": "Sequence"
14
+ },
15
+ "tags": {
16
+ "feature": {
17
+ "num_classes": 47,
18
+ "names": [
19
+ "O",
20
+ "B-DEFENSE_AND_SECURITY",
21
+ "I-DEFENSE_AND_SECURITY",
22
+ "B-EDUCATION",
23
+ "I-EDUCATION",
24
+ "B-FOREIGN_POLICY",
25
+ "I-FOREIGN_POLICY",
26
+ "B-HEALHCARE",
27
+ "I-HEALHCARE",
28
+ "B-IMMIGRATION",
29
+ "I-IMMIGRATION",
30
+ "B-INFRASTRUCTURE_AND_ENVIROMENT",
31
+ "I-INFRASTRUCTURE_AND_ENVIROMENT",
32
+ "B-POLITICAL_AND_LEGAL_SYSTEM",
33
+ "I-POLITICAL_AND_LEGAL_SYSTEM",
34
+ "B-SOCIETY",
35
+ "I-SOCIETY",
36
+ "B-WELFARE",
37
+ "I-WELFARE"
38
+ ],
39
+ "names_file": null,
40
+ "id": null,
41
+ "_type": "ClassLabel"
42
+ },
43
+ "length": -1,
44
+ "id": null,
45
+ "_type": "Sequence"
46
+ }
47
+ },
48
+ "post_processed": null,
49
+ "supervised_keys": null,
50
+ "task_templates": null,
51
+ "builder_name": "political_advertising_loader",
52
+ "config_name": "political_advertising_loader",
53
+ "version": {
54
+ "version_str": "1.0.0",
55
+ "description": null,
56
+ "major": 1,
57
+ "minor": 0,
58
+ "patch": 0
59
+ }
60
+ }
61
+ }
political_advertising_loader.py CHANGED
@@ -3,6 +3,8 @@ from pathlib import Path
3
  import datasets
4
  import pandas as pd
5
 
 
 
6
  _CITATION = """\
7
  @inproceedings{augustyniak-etal-2020-political,
8
  title = "Political Advertising Dataset: the use case of the Polish 2020 Presidential Elections",
@@ -99,6 +101,8 @@ class PoliticalAdvertisingDataset(datasets.GeneratorBasedBuilder):
99
  ]
100
 
101
  def _generate_examples(self, filepath: str):
 
 
102
  df = pd.read_json(filepath)
103
  for row_id, row in df.iterrows():
104
  yield row_id, {
 
3
  import datasets
4
  import pandas as pd
5
 
6
+ logger = datasets.logging.get_logger(__name__)
7
+
8
  _CITATION = """\
9
  @inproceedings{augustyniak-etal-2020-political,
10
  title = "Political Advertising Dataset: the use case of the Polish 2020 Presidential Elections",
 
101
  ]
102
 
103
  def _generate_examples(self, filepath: str):
104
+ logger.info("⏳ Generating examples from = %s", filepath)
105
+
106
  df = pd.read_json(filepath)
107
  for row_id, row in df.iterrows():
108
  yield row_id, {