license: mit
task_categories:
- question-answering
pretty_name: Every Prompt
size_categories:
- 1M<n<10M
multilinguality:
- multilingual
Every Prompt
Every Prompt is a data-driven approach to mining instructions from the web. It contains over a million FAQs and HowTos from around the world in a structured format. It also has basic pre-processing to calculate the length of the useful text and identify the language of that text with the help of GCLD3
It relies on the Web Data Commons dataset (from October 2022) to find the seed list of sites with HowTo and FAQPage items. The general pipeline looks like this:
- Download 1.6TB of structured data from webdatacommons to identify the pages with the structured data we need (wget/parallel). That gives us 1,985,925 seed pages
- Crawls the seed pages and tries to extract structured data using extruct package. That left around 1,358,638 pages which are alive and well-formed.
- Extracts only the relevant structured data of the HowTo/FAQPage type with the help of jmespath. That boils down to 1,266,926 json documents.
- Extracts the textual information out of the structure to identify the text's language, the textual data's length, and the text/data ratio.
You can use the resulting dataset by filtering for the language and amount of the text. You need to convert the structured data into instructions yourself. You'll need to apply extra cleansing/evaluation of the instructions you've got because, you know, the internet is still full of crap.
Caveat emptor: the format of the FAQs and HowTo's in the dataset might vary greatly. Account for that. To understand potential pitfalls, look at the jmespath expression at the export_structured_data.py
.
Detailed stats (with breakdown by language and data type)
language | FAQPage count | FAQPage text length | HowTo count | HowTo text length | items count | text length |
---|---|---|---|---|---|---|
en | 592730 | 1186748927 | 29017 | 77135350 | 621747 | 1263884277 |
de | 83184 | 213931486 | 3370 | 13905977 | 86554 | 227837463 |
es | 63237 | 113906536 | 6466 | 30517773 | 69703 | 144424309 |
fr | 65081 | 141638675 | 3672 | 21632272 | 68753 | 163270947 |
ja | 55439 | 46231152 | 1402 | 1678468 | 56841 | 47909620 |
ru | 41271 | 70947161 | 2403 | 12805308 | 43674 | 83752469 |
nl | 34066 | 102719276 | 2007 | 11078079 | 36073 | 113797355 |
it | 23076 | 43968063 | 2465 | 13696136 | 25541 | 57664199 |
vi | 23115 | 38603954 | 720 | 3224051 | 23835 | 41828005 |
zh | 22496 | 21111729 | 1112 | 1513344 | 23608 | 22625073 |
pl | 19424 | 41446645 | 306 | 419787 | 19730 | 41866432 |
fa | 17263 | 31294557 | 1819 | 1915117 | 19082 | 33209674 |
tr | 13619 | 20040069 | 722 | 418695 | 14341 | 20458764 |
und | 12256 | 1032156 | 322 | 8941 | 12578 | 1041097 |
pt | 10784 | 26163387 | 1775 | 8295306 | 12559 | 34458693 |
ro | 10536 | 16405628 | 75 | 89946 | 10611 | 16495574 |
id | 8256 | 14353165 | 1871 | 13055561 | 10127 | 27408726 |
ko | 8348 | 7624222 | 616 | 1533830 | 8964 | 9158052 |
sv | 8007 | 15926376 | 390 | 638054 | 8397 | 16564430 |
ar | 6950 | 10240266 | 1241 | 7517175 | 8191 | 17757441 |
da | 7691 | 15277244 | 408 | 450176 | 8099 | 15727420 |
cs | 7546 | 13201121 | 480 | 2471544 | 8026 | 15672665 |
fi | 7767 | 14468764 | 199 | 170138 | 7966 | 14638902 |
hi | 4517 | 4307716 | 683 | 4294129 | 5200 | 8601845 |
hu | 4866 | 10639836 | 125 | 61118 | 4991 | 10700954 |
el | 4600 | 10555382 | 103 | 55576 | 4703 | 10610958 |
no | 4357 | 8426887 | 179 | 354796 | 4536 | 8781683 |
uk | 4401 | 6925331 | 90 | 37285 | 4491 | 6962616 |
iw | 4056 | 7723904 | 36 | 35305 | 4092 | 7759209 |
bg | 3620 | 10154727 | 41 | 31268 | 3661 | 10185995 |
sk | 2639 | 4394140 | 65 | 32527 | 2704 | 4426667 |
th | 1877 | 3823867 | 613 | 3171583 | 2490 | 6995450 |
mr | 2002 | 2274197 | 57 | 75906 | 2059 | 2350103 |
mt | 1886 | 3761332 | 14 | 5443 | 1900 | 3766775 |
cy | 1524 | 3171667 | 25 | 11641 | 1549 | 3183308 |
bs | 1366 | 2031881 | 34 | 23298 | 1400 | 2055179 |
et | 1299 | 1694117 | 5 | 2005 | 1304 | 1696122 |
ms | 989 | 1927545 | 174 | 720492 | 1163 | 2648037 |
ca | 1068 | 1614073 | 62 | 34072 | 1130 | 1648145 |
lt | 1056 | 2272916 | 44 | 57169 | 1100 | 2330085 |
ne | 966 | 771410 | 29 | 28569 | 995 | 799979 |
hr | 796 | 1394174 | 15 | 10191 | 811 | 1404365 |
fy | 743 | 633705 | 24 | 5823 | 767 | 639528 |
lb | 703 | 1133527 | 18 | 3985 | 721 | 1137512 |
gl | 628 | 1159618 | 34 | 9049 | 662 | 1168667 |
mn | 644 | 1174921 | 11 | 3592 | 655 | 1178513 |
la | 635 | 363380 | 13 | 2009 | 648 | 365389 |
af | 577 | 444351 | 38 | 14403 | 615 | 458754 |
sl | 451 | 1708497 | 50 | 50361 | 501 | 1758858 |
ht | 455 | 223768 | 13 | 4406 | 468 | 228174 |
lv | 317 | 1017694 | 32 | 31983 | 349 | 1049677 |
gd | 273 | 295170 | 52 | 20374 | 325 | 315544 |
sr | 287 | 367782 | 23 | 5177 | 310 | 372959 |
co | 288 | 284629 | 12 | 3530 | 300 | 288159 |
az | 268 | 273548 | 9 | 13011 | 277 | 286559 |
fil | 210 | 165520 | 63 | 77100 | 273 | 242620 |
jv | 244 | 153411 | 14 | 75932 | 258 | 229343 |
sn | 239 | 175459 | 10 | 8890 | 249 | 184349 |
bn | 190 | 301199 | 42 | 23451 | 232 | 324650 |
ga | 198 | 263174 | 30 | 12905 | 228 | 276079 |
mg | 201 | 53082 | 18 | 6141 | 219 | 59223 |
hi-Latn | 194 | 250495 | 4 | 33091 | 198 | 283586 |
hmn | 173 | 793850 | 16 | 5902 | 189 | 799752 |
ka | 162 | 262305 | 8 | 3427 | 170 | 265732 |
ig | 136 | 129243 | 10 | 2941 | 146 | 132184 |
is | 139 | 236415 | 4 | 1277 | 143 | 237692 |
ta | 129 | 155042 | 12 | 4079 | 141 | 159121 |
kk | 102 | 152629 | 28 | 11885 | 130 | 164514 |
eu | 118 | 130847 | 10 | 3522 | 128 | 134369 |
eo | 121 | 69071 | 6 | 1885 | 127 | 70956 |
ur | 93 | 259680 | 33 | 20499 | 126 | 280179 |
so | 112 | 203877 | 6 | 2151 | 118 | 206028 |
tg | 99 | 73437 | 16 | 5539 | 115 | 78976 |
mk | 29 | 62730 | 84 | 391780 | 113 | 454510 |
be | 100 | 88386 | 8 | 2193 | 108 | 90579 |
sm | 100 | 1309239 | 8 | 2778 | 108 | 1312017 |
uz | 93 | 116820 | 7 | 2987 | 100 | 119807 |
zu | 84 | 136023 | 9 | 2744 | 93 | 138767 |
haw | 81 | 59685 | 6 | 822 | 87 | 60507 |
sq | 74 | 120593 | 12 | 6205 | 86 | 126798 |
ny | 78 | 19403 | 6 | 2046 | 84 | 21449 |
hy | 66 | 81675 | 10 | 3613 | 76 | 85288 |
ha | 44 | 84457 | 19 | 68032 | 63 | 152489 |
ru-Latn | 60 | 40266 | 1 | 61 | 61 | 40327 |
el-Latn | 57 | 55657 | 4 | 342 | 61 | 55999 |
zh-Latn | 58 | 27522 | 1 | 66 | 59 | 27588 |
sd | 52 | 51341 | 7 | 2044 | 59 | 53385 |
su | 50 | 17291 | 7 | 2358 | 57 | 19649 |
ku | 47 | 23147 | 6 | 1998 | 53 | 25145 |
bg-Latn | 48 | 15419 | 1 | 414 | 49 | 15833 |
st | 25 | 65162 | 19 | 6346 | 44 | 71508 |
yo | 37 | 103685 | 6 | 1790 | 43 | 105475 |
ceb | 41 | 72950 | 1 | 107 | 42 | 73057 |
ky | 30 | 23062 | 10 | 3679 | 40 | 26741 |
te | 32 | 42803 | 7 | 2558 | 39 | 45361 |
yi | 32 | 227267 | 7 | 2443 | 39 | 229710 |
mi | 26 | 10132 | 11 | 2915 | 37 | 13047 |
gu | 25 | 37857 | 10 | 4608 | 35 | 42465 |
ja-Latn | 33 | 17560 | 2 | 88 | 35 | 17648 |
sw | 26 | 17579 | 8 | 2726 | 34 | 20305 |
xh | 28 | 46466 | 4 | 1409 | 32 | 47875 |
ml | 16 | 33198 | 6 | 2721 | 22 | 35919 |
ps | 10 | 7671 | 12 | 2642 | 22 | 10313 |
am | 6 | 8017 | 8 | 1987 | 14 | 10004 |
kn | 5 | 22197 | 9 | 3523 | 14 | 25720 |
km | 7 | 8936 | 6 | 1879 | 13 | 10815 |
pa | 10 | 26617 | 3 | 1100 | 13 | 27717 |
si | 5 | 24000 | 5 | 1722 | 10 | 25722 |
lo | 1 | 6204 | 7 | 2115 | 8 | 8319 |
my | 3 | 14663 | 3 | 1179 | 6 | 15842 |
Recreating the results
- Clone the repo without the LFS files.
- Install requirements from
requirements.txt
. - Install
pv
andparallel
. - Run
bin/get_seed_urls.sh
to filter urls of interest out of 1.6TB of compressed data. Don't worry about disk space. Worry about the traffic. That will take around 5h on decent connection. - Run scrapy spider like this
scrapy crawl webdatacommons_org -s WEB_DATA_COMMONS=web_data_commons_urls_sample.txt -L INFO -o webdatacommons.jsonlines
withWEB_DATA_COMMONS
pointing to the list of seed URLs from step 4. That might take up to a few weeks. - Run
python bin/extract_relevant_structured_data.py --num-threads 12 webdatacommons.jsonlines relevant.jsonlines.bz2
. That's fast, probably around 30 minutes. - Run
python bin/export_structured_data.py relevant.jsonlines.bz2 extruct_out.jsonlines.bz2
to obtain the final version of the dataset. - Optionally you can calculate the resulting stats like that:
python bin/get_stats.py extruct_out.jsonlines.bz2 every_prompt_stats.csv
Advices
If you want to recreate the results:
- Get yourself a server or VPS with enough space (80GB should be enough).
- Look at the code. You'd probably want to make changes here and there.
- All the python scripts have extra parameters to control the number of threads and the chunk size. Both accept compressed input and output files with the help of smart_open lib.
License
Code of the project has an MIT license.
Copyright: Dmytro Chaplynskyi, lang-uk project, 2023