parquet-converter
commited on
Commit
·
0c97286
1
Parent(s):
3cf237e
Update parquet files
Browse files- .gitattributes +1 -0
- dataset_infos.json +0 -1
- default/ler-train.parquet +3 -0
- dummy/.DS_Store +0 -0
- dummy/1.0.0/.DS_Store +0 -0
- dummy/1.0.0/dummy_data.zip +0 -0
- dummy/1.0.0/dummy_data/ler.conll +0 -8
- ler.py +0 -166
- ler.py.lock +0 -0
.gitattributes
CHANGED
@@ -14,3 +14,4 @@
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
|
|
|
14 |
*.pb filter=lfs diff=lfs merge=lfs -text
|
15 |
*.pt filter=lfs diff=lfs merge=lfs -text
|
16 |
*.pth filter=lfs diff=lfs merge=lfs -text
|
17 |
+
default/ler-train.parquet filter=lfs diff=lfs merge=lfs -text
|
dataset_infos.json
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
{"default": {"description": "We describe a dataset developed for Named Entity Recognition in German federal court decisions. \nIt consists of approx. 67,000 sentences with over 2 million tokens. \nThe resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: \nperson, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, \nordinance, European legal norm, regulation, contract, court decision, and legal literature. \nThe legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. \nThe dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, \nwas developed for training an NER service for German legal documents in the EU project Lynx.\n", "citation": "@inproceedings{leitner2019fine,\n author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},\n title = {{Fine-grained Named Entity Recognition in Legal Documents}},\n booktitle = {Semantic Systems. The Power of AI and Knowledge\n Graphs. Proceedings of the 15th International Conference\n (SEMANTiCS 2019)},\n year = 2019,\n editor = {Maribel Acosta and Philippe Cudr\u00e9-Mauroux and Maria\n Maleshkova and Tassilo Pellegrini and Harald Sack and York\n Sure-Vetter},\n keywords = {aip},\n publisher = {Springer},\n series = {Lecture Notes in Computer Science},\n number = {11702},\n address = {Karlsruhe, Germany},\n month = 9,\n note = {10/11 September 2019},\n pages = {272--287},\n pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}\n}\n", "homepage": "https://github.com/elenanereiss/Legal-Entity-Recognition", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 39, "names": ["O", "B-PER", "I-PER", "B-RR", "I-RR", "B-AN", "I-AN", "B-LD", "I-LD", "B-ST", "I-ST", "B-STR", "I-STR", "B-LDS", "I-LDS", "B-ORG", "I-ORG", "B-UN", "I-UN", "B-INN", "I-INN", "B-GRT", "I-GRT", "B-MRK", "I-MRK", "B-GS", "I-GS", "B-VO", "I-VO", "B-EUN", "I-EUN", "B-VS", "I-VS", "B-VT", "I-VT", "B-RS", "I-RS", "B-LIT", "I-LIT"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "tokens", "output": "ner_tags"}, "builder_name": "ler", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 38531395, "num_examples": 66723, "dataset_name": "ler"}}, "download_checksums": {"https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler.conll": {"num_bytes": 19692859, "checksum": "b05bf29720519d3d4a871677189035390607140887e871e30e8abc68ed01581f"}}, "download_size": 19692859, "post_processing_size": null, "dataset_size": 38531395, "size_in_bytes": 58224254}}
|
|
|
|
default/ler-train.parquet
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87c26bf3b30384c897060969f96a324101f1c65082c7b65b3dd2475b1891ffef
|
3 |
+
size 7061354
|
dummy/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
dummy/1.0.0/.DS_Store
DELETED
Binary file (6.15 kB)
|
|
dummy/1.0.0/dummy_data.zip
DELETED
Binary file (469 Bytes)
|
|
dummy/1.0.0/dummy_data/ler.conll
DELETED
@@ -1,8 +0,0 @@
|
|
1 |
-
Prozesskostenhilfe O
|
2 |
-
- O
|
3 |
-
Entschädigung O
|
4 |
-
für O
|
5 |
-
überlange O
|
6 |
-
Verfahrensdauer O
|
7 |
-
- O
|
8 |
-
Revisionsverfahren O
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ler.py
DELETED
@@ -1,166 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
"""Fine-grained Named Entity Recognition in Legal Documents"""
|
16 |
-
|
17 |
-
from __future__ import absolute_import, division, print_function
|
18 |
-
|
19 |
-
import datasets
|
20 |
-
|
21 |
-
_CITATION = """\
|
22 |
-
@inproceedings{leitner2019fine,
|
23 |
-
author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
|
24 |
-
title = {{Fine-grained Named Entity Recognition in Legal Documents}},
|
25 |
-
booktitle = {Semantic Systems. The Power of AI and Knowledge
|
26 |
-
Graphs. Proceedings of the 15th International Conference
|
27 |
-
(SEMANTiCS 2019)},
|
28 |
-
year = 2019,
|
29 |
-
editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
|
30 |
-
Maleshkova and Tassilo Pellegrini and Harald Sack and York
|
31 |
-
Sure-Vetter},
|
32 |
-
keywords = {aip},
|
33 |
-
publisher = {Springer},
|
34 |
-
series = {Lecture Notes in Computer Science},
|
35 |
-
number = {11702},
|
36 |
-
address = {Karlsruhe, Germany},
|
37 |
-
month = 9,
|
38 |
-
note = {10/11 September 2019},
|
39 |
-
pages = {272--287},
|
40 |
-
pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}
|
41 |
-
}
|
42 |
-
"""
|
43 |
-
|
44 |
-
_DESCRIPTION = """\
|
45 |
-
We describe a dataset developed for Named Entity Recognition in German federal court decisions.
|
46 |
-
It consists of approx. 67,000 sentences with over 2 million tokens.
|
47 |
-
The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes:
|
48 |
-
person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law,
|
49 |
-
ordinance, European legal norm, regulation, contract, court decision, and legal literature.
|
50 |
-
The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions.
|
51 |
-
The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format,
|
52 |
-
was developed for training an NER service for German legal documents in the EU project Lynx.
|
53 |
-
"""
|
54 |
-
|
55 |
-
_URL = "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler.conll"
|
56 |
-
|
57 |
-
|
58 |
-
class Ler(datasets.GeneratorBasedBuilder):
|
59 |
-
"""
|
60 |
-
We describe a dataset developed for Named Entity Recognition in German federal court decisions.
|
61 |
-
It consists of approx. 67,000 sentences with over 2 million tokens.
|
62 |
-
The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes:
|
63 |
-
person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law,
|
64 |
-
ordinance, European legal norm, regulation, contract, court decision, and legal literature.
|
65 |
-
The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions.
|
66 |
-
The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format,
|
67 |
-
was developed for training an NER service for German legal documents in the EU project Lynx.
|
68 |
-
"""
|
69 |
-
VERSION = datasets.Version("1.0.0")
|
70 |
-
|
71 |
-
def _info(self):
|
72 |
-
return datasets.DatasetInfo(
|
73 |
-
# This is the description that will appear on the datasets page.
|
74 |
-
description=_DESCRIPTION,
|
75 |
-
# This defines the different columns of the dataset and their types
|
76 |
-
features=datasets.Features(
|
77 |
-
{
|
78 |
-
"id": datasets.Value("int32"),
|
79 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
80 |
-
"ner_tags": datasets.Sequence(
|
81 |
-
datasets.ClassLabel(
|
82 |
-
names=[
|
83 |
-
"O",
|
84 |
-
"B-PER",
|
85 |
-
"I-PER",
|
86 |
-
"B-RR",
|
87 |
-
"I-RR",
|
88 |
-
"B-AN",
|
89 |
-
"I-AN",
|
90 |
-
"B-LD",
|
91 |
-
"I-LD",
|
92 |
-
"B-ST",
|
93 |
-
"I-ST",
|
94 |
-
"B-STR",
|
95 |
-
"I-STR",
|
96 |
-
"B-LDS",
|
97 |
-
"I-LDS",
|
98 |
-
"B-ORG",
|
99 |
-
"I-ORG",
|
100 |
-
"B-UN",
|
101 |
-
"I-UN",
|
102 |
-
"B-INN",
|
103 |
-
"I-INN",
|
104 |
-
"B-GRT",
|
105 |
-
"I-GRT",
|
106 |
-
"B-MRK",
|
107 |
-
"I-MRK",
|
108 |
-
"B-GS",
|
109 |
-
"I-GS",
|
110 |
-
"B-VO",
|
111 |
-
"I-VO",
|
112 |
-
"B-EUN",
|
113 |
-
"I-EUN",
|
114 |
-
"B-VS",
|
115 |
-
"I-VS",
|
116 |
-
"B-VT",
|
117 |
-
"I-VT",
|
118 |
-
"B-RS",
|
119 |
-
"I-RS",
|
120 |
-
"B-LIT",
|
121 |
-
"I-LIT",
|
122 |
-
]
|
123 |
-
)
|
124 |
-
),
|
125 |
-
}
|
126 |
-
),
|
127 |
-
# If there's a common (input, target) tuple from the features,
|
128 |
-
# specify them here. They'll be used if as_supervised=True in
|
129 |
-
# builder.as_dataset.
|
130 |
-
supervised_keys=datasets.info.SupervisedKeysData(input="tokens", output="ner_tags"),
|
131 |
-
# Homepage of the dataset for documentation
|
132 |
-
homepage="https://github.com/elenanereiss/Legal-Entity-Recognition",
|
133 |
-
citation=_CITATION,
|
134 |
-
)
|
135 |
-
|
136 |
-
def _split_generators(self, dl_manager):
|
137 |
-
"""Returns SplitGenerators."""
|
138 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
139 |
-
# download and extract URLs
|
140 |
-
dl_file = dl_manager.download(_URL)
|
141 |
-
return [
|
142 |
-
datasets.SplitGenerator(
|
143 |
-
name=datasets.Split.TRAIN,
|
144 |
-
# These kwargs will be passed to _generate_examples
|
145 |
-
gen_kwargs={"filepath": dl_file},
|
146 |
-
),
|
147 |
-
]
|
148 |
-
|
149 |
-
def _generate_examples(self, filepath):
|
150 |
-
""" Yields examples. """
|
151 |
-
with open(filepath, "r", encoding="utf-8") as f:
|
152 |
-
guid = 0
|
153 |
-
tokens = []
|
154 |
-
ner_tags = []
|
155 |
-
for line in f:
|
156 |
-
if line == "" or line == "\n":
|
157 |
-
if tokens:
|
158 |
-
yield guid, {"id": guid, "tokens": tokens, "ner_tags": ner_tags}
|
159 |
-
guid += 1
|
160 |
-
tokens = []
|
161 |
-
ner_tags = []
|
162 |
-
else:
|
163 |
-
# conll2002 tokens are space separated
|
164 |
-
splits = line.split(" ")
|
165 |
-
tokens.append(splits[0])
|
166 |
-
ner_tags.append(splits[1].rstrip())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
ler.py.lock
DELETED
File without changes
|