system HF staff commited on
Commit
3cf237e
·
1 Parent(s): 4e00e47

import from S3

Browse files
dataset_infos.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"default": {"description": "We describe a dataset developed for Named Entity Recognition in German federal court decisions. \nIt consists of approx. 67,000 sentences with over 2 million tokens. \nThe resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes: \nperson, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law, \nordinance, European legal norm, regulation, contract, court decision, and legal literature. \nThe legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions. \nThe dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format, \nwas developed for training an NER service for German legal documents in the EU project Lynx.\n", "citation": "@inproceedings{leitner2019fine,\n author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},\n title = {{Fine-grained Named Entity Recognition in Legal Documents}},\n booktitle = {Semantic Systems. The Power of AI and Knowledge\n Graphs. Proceedings of the 15th International Conference\n (SEMANTiCS 2019)},\n year = 2019,\n editor = {Maribel Acosta and Philippe Cudr\u00e9-Mauroux and Maria\n Maleshkova and Tassilo Pellegrini and Harald Sack and York\n Sure-Vetter},\n keywords = {aip},\n publisher = {Springer},\n series = {Lecture Notes in Computer Science},\n number = {11702},\n address = {Karlsruhe, Germany},\n month = 9,\n note = {10/11 September 2019},\n pages = {272--287},\n pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}\n}\n", "homepage": "https://github.com/elenanereiss/Legal-Entity-Recognition", "license": "", "features": {"id": {"dtype": "int32", "id": null, "_type": "Value"}, "tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "ner_tags": {"feature": {"num_classes": 39, "names": ["O", "B-PER", "I-PER", "B-RR", "I-RR", "B-AN", "I-AN", "B-LD", "I-LD", "B-ST", "I-ST", "B-STR", "I-STR", "B-LDS", "I-LDS", "B-ORG", "I-ORG", "B-UN", "I-UN", "B-INN", "I-INN", "B-GRT", "I-GRT", "B-MRK", "I-MRK", "B-GS", "I-GS", "B-VO", "I-VO", "B-EUN", "I-EUN", "B-VS", "I-VS", "B-VT", "I-VT", "B-RS", "I-RS", "B-LIT", "I-LIT"], "names_file": null, "id": null, "_type": "ClassLabel"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": {"input": "tokens", "output": "ner_tags"}, "builder_name": "ler", "config_name": "default", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 38531395, "num_examples": 66723, "dataset_name": "ler"}}, "download_checksums": {"https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler.conll": {"num_bytes": 19692859, "checksum": "b05bf29720519d3d4a871677189035390607140887e871e30e8abc68ed01581f"}}, "download_size": 19692859, "post_processing_size": null, "dataset_size": 38531395, "size_in_bytes": 58224254}}
dummy/.DS_Store ADDED
Binary file (6.15 kB). View file
 
dummy/1.0.0/.DS_Store ADDED
Binary file (6.15 kB). View file
 
dummy/1.0.0/dummy_data.zip ADDED
Binary file (469 Bytes). View file
 
dummy/1.0.0/dummy_data/ler.conll ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ Prozesskostenhilfe O
2
+ - O
3
+ Entschädigung O
4
+ für O
5
+ überlange O
6
+ Verfahrensdauer O
7
+ - O
8
+ Revisionsverfahren O
ler.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Fine-grained Named Entity Recognition in Legal Documents"""
16
+
17
+ from __future__ import absolute_import, division, print_function
18
+
19
+ import datasets
20
+
21
+ _CITATION = """\
22
+ @inproceedings{leitner2019fine,
23
+ author = {Elena Leitner and Georg Rehm and Julian Moreno-Schneider},
24
+ title = {{Fine-grained Named Entity Recognition in Legal Documents}},
25
+ booktitle = {Semantic Systems. The Power of AI and Knowledge
26
+ Graphs. Proceedings of the 15th International Conference
27
+ (SEMANTiCS 2019)},
28
+ year = 2019,
29
+ editor = {Maribel Acosta and Philippe Cudré-Mauroux and Maria
30
+ Maleshkova and Tassilo Pellegrini and Harald Sack and York
31
+ Sure-Vetter},
32
+ keywords = {aip},
33
+ publisher = {Springer},
34
+ series = {Lecture Notes in Computer Science},
35
+ number = {11702},
36
+ address = {Karlsruhe, Germany},
37
+ month = 9,
38
+ note = {10/11 September 2019},
39
+ pages = {272--287},
40
+ pdf = {https://link.springer.com/content/pdf/10.1007%2F978-3-030-33220-4_20.pdf}
41
+ }
42
+ """
43
+
44
+ _DESCRIPTION = """\
45
+ We describe a dataset developed for Named Entity Recognition in German federal court decisions.
46
+ It consists of approx. 67,000 sentences with over 2 million tokens.
47
+ The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes:
48
+ person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law,
49
+ ordinance, European legal norm, regulation, contract, court decision, and legal literature.
50
+ The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions.
51
+ The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format,
52
+ was developed for training an NER service for German legal documents in the EU project Lynx.
53
+ """
54
+
55
+ _URL = "https://raw.githubusercontent.com/elenanereiss/Legal-Entity-Recognition/master/data/ler.conll"
56
+
57
+
58
+ class Ler(datasets.GeneratorBasedBuilder):
59
+ """
60
+ We describe a dataset developed for Named Entity Recognition in German federal court decisions.
61
+ It consists of approx. 67,000 sentences with over 2 million tokens.
62
+ The resource contains 54,000 manually annotated entities, mapped to 19 fine-grained semantic classes:
63
+ person, judge, lawyer, country, city, street, landscape, organization, company, institution, court, brand, law,
64
+ ordinance, European legal norm, regulation, contract, court decision, and legal literature.
65
+ The legal documents were, furthermore, automatically annotated with more than 35,000 TimeML-based time expressions.
66
+ The dataset, which is available under a CC-BY 4.0 license in the CoNNL-2002 format,
67
+ was developed for training an NER service for German legal documents in the EU project Lynx.
68
+ """
69
+ VERSION = datasets.Version("1.0.0")
70
+
71
+ def _info(self):
72
+ return datasets.DatasetInfo(
73
+ # This is the description that will appear on the datasets page.
74
+ description=_DESCRIPTION,
75
+ # This defines the different columns of the dataset and their types
76
+ features=datasets.Features(
77
+ {
78
+ "id": datasets.Value("int32"),
79
+ "tokens": datasets.Sequence(datasets.Value("string")),
80
+ "ner_tags": datasets.Sequence(
81
+ datasets.ClassLabel(
82
+ names=[
83
+ "O",
84
+ "B-PER",
85
+ "I-PER",
86
+ "B-RR",
87
+ "I-RR",
88
+ "B-AN",
89
+ "I-AN",
90
+ "B-LD",
91
+ "I-LD",
92
+ "B-ST",
93
+ "I-ST",
94
+ "B-STR",
95
+ "I-STR",
96
+ "B-LDS",
97
+ "I-LDS",
98
+ "B-ORG",
99
+ "I-ORG",
100
+ "B-UN",
101
+ "I-UN",
102
+ "B-INN",
103
+ "I-INN",
104
+ "B-GRT",
105
+ "I-GRT",
106
+ "B-MRK",
107
+ "I-MRK",
108
+ "B-GS",
109
+ "I-GS",
110
+ "B-VO",
111
+ "I-VO",
112
+ "B-EUN",
113
+ "I-EUN",
114
+ "B-VS",
115
+ "I-VS",
116
+ "B-VT",
117
+ "I-VT",
118
+ "B-RS",
119
+ "I-RS",
120
+ "B-LIT",
121
+ "I-LIT",
122
+ ]
123
+ )
124
+ ),
125
+ }
126
+ ),
127
+ # If there's a common (input, target) tuple from the features,
128
+ # specify them here. They'll be used if as_supervised=True in
129
+ # builder.as_dataset.
130
+ supervised_keys=datasets.info.SupervisedKeysData(input="tokens", output="ner_tags"),
131
+ # Homepage of the dataset for documentation
132
+ homepage="https://github.com/elenanereiss/Legal-Entity-Recognition",
133
+ citation=_CITATION,
134
+ )
135
+
136
+ def _split_generators(self, dl_manager):
137
+ """Returns SplitGenerators."""
138
+ # dl_manager is a datasets.download.DownloadManager that can be used to
139
+ # download and extract URLs
140
+ dl_file = dl_manager.download(_URL)
141
+ return [
142
+ datasets.SplitGenerator(
143
+ name=datasets.Split.TRAIN,
144
+ # These kwargs will be passed to _generate_examples
145
+ gen_kwargs={"filepath": dl_file},
146
+ ),
147
+ ]
148
+
149
+ def _generate_examples(self, filepath):
150
+ """ Yields examples. """
151
+ with open(filepath, "r", encoding="utf-8") as f:
152
+ guid = 0
153
+ tokens = []
154
+ ner_tags = []
155
+ for line in f:
156
+ if line == "" or line == "\n":
157
+ if tokens:
158
+ yield guid, {"id": guid, "tokens": tokens, "ner_tags": ner_tags}
159
+ guid += 1
160
+ tokens = []
161
+ ner_tags = []
162
+ else:
163
+ # conll2002 tokens are space separated
164
+ splits = line.split(" ")
165
+ tokens.append(splits[0])
166
+ ner_tags.append(splits[1].rstrip())
ler.py.lock ADDED
File without changes