aphantasia_drawing_dataset / dataprocessingcopy.py
jmc255's picture
My commit
a7ad084
raw
history blame
5.97 kB
# -*- coding: utf-8 -*-
"""dataprocessing.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/10At7vh21OGTlE-Myv1NhAHi7l7NwBocQ
"""
import pandas as pd
import numpy as np
import os
from zipfile import ZipFile
import re
import json
import base64
from google.colab import drive
drive.mount('/content/drive')
path = "/content/drive/MyDrive/Duke/huggingface_project/data"
df = pd.read_excel(path+"/questionnaire-data.xlsx", header=2)
df["vviq_score"] = np.sum(df.filter(like = "vviq"), axis = 1)
df["osiq_score"] = np.sum(df.filter(like = "osiq"), axis = 1)
df["treatment"] = np.where(df.vviq_score > 40, "control", "aphantasia")
df = df.rename(columns={
"Sub ID": "sub_id",
df.columns[5]: "art_ability",
df.columns[6]: "art_experience",
df.columns[9]: "difficult",
df.columns[10]: "diff_explanation"
})
df.columns = df.columns.str.lower()
df = df.drop(df.filter(like="unnamed").columns, axis = 1)
df = df.drop(df.filter(regex="(vviq|osiq)\d+").columns, axis = 1)
df[df.columns[df.dtypes == "object"]] = df[df.columns[df.dtypes == "object"]].astype("string")
df[df.columns] = df[df.columns].replace([np.nan,pd.NA, "nan","na","NA","n/a","N/A","N/a"], None)
data = {}
for ind, row in df.iterrows():
data[row["sub_id"]] = {
"subject_id": int(row["sub_id"]),
"treatment": row["treatment"],
"demographics": dict(df.iloc[ind][1:-1])
}
data[row["sub_id"]]["demographics"]["art_ability"] = int(data[row["sub_id"]]["demographics"]["art_ability"])
data[row["sub_id"]]["demographics"]["vviq_score"] = int(data[row["sub_id"]]["demographics"]["vviq_score"])
data[row["sub_id"]]["demographics"]["osiq_score"] = int(data[row["sub_id"]]["demographics"]["osiq_score"])
stored_images = {}
with ZipFile(path + "/Images.zip", "r") as zip:
for image_file in zip.namelist():
with zip.open(image_file, 'r') as fil:
im = fil.read()
im_encoded = base64.b64encode(im).decode("utf-8")
stored_images[image_file.removesuffix(".jpg")] = im_encoded
def get_sub_files(subject, file_list):
pattern = re.compile("^.*" + subject + "-[a-z]{3}\d-(kitchen|livingroom|bedroom).*")
sub_files = [f for f in file_list if pattern.match(f)]
sub = {
"kitchen": {
"perception": "",
"memory": ""
},
"livingroom": {
"perception": "",
"memory": ""
},
"bedroom": {
"perception": "",
"memory": ""
},
}
for fil in sub_files:
if "kitchen" in fil:
if "pic" in fil:
sub["kitchen"]["perception"] = fil
else:
sub["kitchen"]["memory"] = fil
elif "livingroom" in fil:
if "pic" in fil:
sub["livingroom"]["perception"] = fil
else:
sub["livingroom"]["memory"] = fil
else:
if "pic" in fil:
sub["bedroom"]["perception"] = fil
else:
sub["bedroom"]["memory"] = fil
return sub
with ZipFile(path + "/Aphantasia-Drawings.zip", "r") as zip:
files = zip.namelist()
aphan_subs = list({f.split("/")[0] for f in files})
aphantasia_drawing_dataset = {}
for s in aphan_subs:
if int(s[3:]) in data.keys():
data[int(s[3:])]["drawings"] = get_sub_files(s, files)
else:
data[int(s[3:])] = {"drawings": get_sub_files(s,files)}
with ZipFile(path + "/Control-Drawings.zip", "r") as zip:
files = zip.namelist()
cntrl_subs = list({f.split("/")[0] for f in files})
full_control = {}
for s in cntrl_subs:
if int(s[3:]) in data.keys():
data[int(s[3:])]["drawings"] = get_sub_files(s, files)
else:
data[int(s[3:])] = {"drawings": get_sub_files(s,files)}
stored_images["kitchen"] = stored_images.pop('high_sun_ajwbpqrwvknlvpeh')
stored_images["bedroom"] = stored_images.pop('low_sun_acqsqjhtcbxeomux')
stored_images["livingroom"] = stored_images.pop('low_sun_byqgoskwpvsbllvy')
def extract_images(subject, treatment):
images_bytes = {
"kitchen": {
"perception": "",
"memory": ""
},
"livingroom": {
"perception": "",
"memory": ""
},
"bedroom": {
"perception": "",
"memory": ""
}
}
for room in ["kitchen", "livingroom", "bedroom"]:
paths = data[subject]["drawings"].get(room).values()
paths = [p for p in paths if p != ""]
if treatment == "aphantasia":
with ZipFile(path + "/Aphantasia-Drawings.zip", "r") as zip:
for filename in paths:
with zip.open(filename, 'r') as fil:
im = fil.read()
im_encoded = base64.b64encode(im).decode("utf-8")
if "mem" in filename:
images_bytes[room]["memory"] = im_encoded
else:
images_bytes[room]["perception"] = im_encoded
else:
with ZipFile(path + "/Control-Drawings.zip", "r") as zip:
for filename in paths:
with zip.open(filename, 'r') as fil:
im = fil.read()
im_encoded = base64.b64encode(im).decode("utf-8")
if "mem" in filename:
images_bytes[room]["memory"] = im_encoded
else:
images_bytes[room]["perception"] = im_encoded
return images_bytes
missing = []
for i in data.keys():
if "drawings" in data[i] and "treatment" in data[i]:
data[i]["drawings"] = extract_images(i,data[i]["treatment"])
else:
missing.append(i)
for num in missing:
data.pop(num, None)
for sub in data.keys():
data[sub]["image"] = stored_images
subject_data_path = path + "/clean_data.json"
#with open(subject_data_path, "w", encoding="utf-8") as sub_data:
#json.dump(data, sub_data, indent=2)
type(data)
da = pd.DataFrame(data)
flattened_data = []
for key, value in data.items():
flattened_subject = pd.json_normalize(value, sep='_')
flattened_data.append(flattened_subject)
da = pd.concat(flattened_data, ignore_index=True)
# Save the DataFrame to a Parquet file
da.to_parquet(path + 'data.parquet')