jmc255 commited on
Commit
a7ad084
·
1 Parent(s): c311c34
Files changed (1) hide show
  1. dataprocessingcopy.py +203 -0
dataprocessingcopy.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # -*- coding: utf-8 -*-
2
+ """dataprocessing.ipynb
3
+
4
+ Automatically generated by Colaboratory.
5
+
6
+ Original file is located at
7
+ https://colab.research.google.com/drive/10At7vh21OGTlE-Myv1NhAHi7l7NwBocQ
8
+ """
9
+
10
+ import pandas as pd
11
+ import numpy as np
12
+ import os
13
+ from zipfile import ZipFile
14
+ import re
15
+ import json
16
+ import base64
17
+
18
+ from google.colab import drive
19
+ drive.mount('/content/drive')
20
+
21
+ path = "/content/drive/MyDrive/Duke/huggingface_project/data"
22
+
23
+ df = pd.read_excel(path+"/questionnaire-data.xlsx", header=2)
24
+
25
+ df["vviq_score"] = np.sum(df.filter(like = "vviq"), axis = 1)
26
+ df["osiq_score"] = np.sum(df.filter(like = "osiq"), axis = 1)
27
+ df["treatment"] = np.where(df.vviq_score > 40, "control", "aphantasia")
28
+
29
+ df = df.rename(columns={
30
+ "Sub ID": "sub_id",
31
+ df.columns[5]: "art_ability",
32
+ df.columns[6]: "art_experience",
33
+ df.columns[9]: "difficult",
34
+ df.columns[10]: "diff_explanation"
35
+ })
36
+
37
+ df.columns = df.columns.str.lower()
38
+
39
+ df = df.drop(df.filter(like="unnamed").columns, axis = 1)
40
+
41
+ df = df.drop(df.filter(regex="(vviq|osiq)\d+").columns, axis = 1)
42
+
43
+ df[df.columns[df.dtypes == "object"]] = df[df.columns[df.dtypes == "object"]].astype("string")
44
+
45
+ df[df.columns] = df[df.columns].replace([np.nan,pd.NA, "nan","na","NA","n/a","N/A","N/a"], None)
46
+
47
+ data = {}
48
+ for ind, row in df.iterrows():
49
+ data[row["sub_id"]] = {
50
+ "subject_id": int(row["sub_id"]),
51
+ "treatment": row["treatment"],
52
+ "demographics": dict(df.iloc[ind][1:-1])
53
+ }
54
+ data[row["sub_id"]]["demographics"]["art_ability"] = int(data[row["sub_id"]]["demographics"]["art_ability"])
55
+ data[row["sub_id"]]["demographics"]["vviq_score"] = int(data[row["sub_id"]]["demographics"]["vviq_score"])
56
+ data[row["sub_id"]]["demographics"]["osiq_score"] = int(data[row["sub_id"]]["demographics"]["osiq_score"])
57
+
58
+ stored_images = {}
59
+ with ZipFile(path + "/Images.zip", "r") as zip:
60
+ for image_file in zip.namelist():
61
+ with zip.open(image_file, 'r') as fil:
62
+ im = fil.read()
63
+ im_encoded = base64.b64encode(im).decode("utf-8")
64
+ stored_images[image_file.removesuffix(".jpg")] = im_encoded
65
+
66
+ def get_sub_files(subject, file_list):
67
+ pattern = re.compile("^.*" + subject + "-[a-z]{3}\d-(kitchen|livingroom|bedroom).*")
68
+ sub_files = [f for f in file_list if pattern.match(f)]
69
+ sub = {
70
+ "kitchen": {
71
+ "perception": "",
72
+ "memory": ""
73
+ },
74
+ "livingroom": {
75
+ "perception": "",
76
+ "memory": ""
77
+ },
78
+ "bedroom": {
79
+ "perception": "",
80
+ "memory": ""
81
+ },
82
+ }
83
+
84
+ for fil in sub_files:
85
+ if "kitchen" in fil:
86
+ if "pic" in fil:
87
+ sub["kitchen"]["perception"] = fil
88
+ else:
89
+ sub["kitchen"]["memory"] = fil
90
+ elif "livingroom" in fil:
91
+ if "pic" in fil:
92
+ sub["livingroom"]["perception"] = fil
93
+ else:
94
+ sub["livingroom"]["memory"] = fil
95
+ else:
96
+ if "pic" in fil:
97
+ sub["bedroom"]["perception"] = fil
98
+ else:
99
+ sub["bedroom"]["memory"] = fil
100
+ return sub
101
+
102
+ with ZipFile(path + "/Aphantasia-Drawings.zip", "r") as zip:
103
+ files = zip.namelist()
104
+ aphan_subs = list({f.split("/")[0] for f in files})
105
+ aphantasia_drawing_dataset = {}
106
+ for s in aphan_subs:
107
+ if int(s[3:]) in data.keys():
108
+ data[int(s[3:])]["drawings"] = get_sub_files(s, files)
109
+ else:
110
+ data[int(s[3:])] = {"drawings": get_sub_files(s,files)}
111
+
112
+ with ZipFile(path + "/Control-Drawings.zip", "r") as zip:
113
+ files = zip.namelist()
114
+ cntrl_subs = list({f.split("/")[0] for f in files})
115
+ full_control = {}
116
+ for s in cntrl_subs:
117
+ if int(s[3:]) in data.keys():
118
+ data[int(s[3:])]["drawings"] = get_sub_files(s, files)
119
+ else:
120
+ data[int(s[3:])] = {"drawings": get_sub_files(s,files)}
121
+
122
+ stored_images["kitchen"] = stored_images.pop('high_sun_ajwbpqrwvknlvpeh')
123
+ stored_images["bedroom"] = stored_images.pop('low_sun_acqsqjhtcbxeomux')
124
+ stored_images["livingroom"] = stored_images.pop('low_sun_byqgoskwpvsbllvy')
125
+
126
+ def extract_images(subject, treatment):
127
+ images_bytes = {
128
+ "kitchen": {
129
+ "perception": "",
130
+ "memory": ""
131
+ },
132
+ "livingroom": {
133
+ "perception": "",
134
+ "memory": ""
135
+ },
136
+ "bedroom": {
137
+ "perception": "",
138
+ "memory": ""
139
+ }
140
+ }
141
+ for room in ["kitchen", "livingroom", "bedroom"]:
142
+ paths = data[subject]["drawings"].get(room).values()
143
+ paths = [p for p in paths if p != ""]
144
+ if treatment == "aphantasia":
145
+ with ZipFile(path + "/Aphantasia-Drawings.zip", "r") as zip:
146
+ for filename in paths:
147
+ with zip.open(filename, 'r') as fil:
148
+ im = fil.read()
149
+ im_encoded = base64.b64encode(im).decode("utf-8")
150
+ if "mem" in filename:
151
+ images_bytes[room]["memory"] = im_encoded
152
+ else:
153
+ images_bytes[room]["perception"] = im_encoded
154
+ else:
155
+ with ZipFile(path + "/Control-Drawings.zip", "r") as zip:
156
+ for filename in paths:
157
+ with zip.open(filename, 'r') as fil:
158
+ im = fil.read()
159
+ im_encoded = base64.b64encode(im).decode("utf-8")
160
+ if "mem" in filename:
161
+ images_bytes[room]["memory"] = im_encoded
162
+ else:
163
+ images_bytes[room]["perception"] = im_encoded
164
+
165
+ return images_bytes
166
+
167
+ missing = []
168
+ for i in data.keys():
169
+ if "drawings" in data[i] and "treatment" in data[i]:
170
+ data[i]["drawings"] = extract_images(i,data[i]["treatment"])
171
+ else:
172
+ missing.append(i)
173
+
174
+ for num in missing:
175
+ data.pop(num, None)
176
+
177
+ for sub in data.keys():
178
+ data[sub]["image"] = stored_images
179
+
180
+ subject_data_path = path + "/clean_data.json"
181
+
182
+ #with open(subject_data_path, "w", encoding="utf-8") as sub_data:
183
+ #json.dump(data, sub_data, indent=2)
184
+
185
+ type(data)
186
+
187
+ da = pd.DataFrame(data)
188
+
189
+
190
+
191
+
192
+
193
+ flattened_data = []
194
+
195
+ for key, value in data.items():
196
+ flattened_subject = pd.json_normalize(value, sep='_')
197
+ flattened_data.append(flattened_subject)
198
+
199
+
200
+ da = pd.concat(flattened_data, ignore_index=True)
201
+
202
+ # Save the DataFrame to a Parquet file
203
+ da.to_parquet(path + 'data.parquet')