|
--- |
|
license: cc-by-nc-4.0 |
|
pipeline_tag: image-segmentation |
|
tags: |
|
- remote sensing |
|
- sentinel2 |
|
- landsat |
|
- floods |
|
--- |
|
|
|
# *WorldFloodsv2* dataset |
|
|
|
This repository contains the *WorldFloodsv2* dataset released with the publication: |
|
|
|
> E. Portalés-Julià, G. Mateo-García, C. Purcell, and L. Gómez-Chova [Global flood extent segmentation in optical satellite images](https://www.nature.com/articles/s41598-023-47595-7). _Scientific Reports 13, 20316_ (2023). DOI: 10.1038/s41598-023-47595-7. |
|
|
|
|
|
The [*WorldFloodsv2* database](https://www.nature.com/articles/s41598-023-47595-7) contains 509 pairs of Sentinel-2 images and flood segmentation masks. Splitted in train, val and test sets. |
|
It requires approximately 76GB of hard-disk storage. |
|
|
|
|
|
<img src="worldfloods_v2.png" alt="licence" width="65%"/> |
|
|
|
## Download the dataset |
|
|
|
``` |
|
huggingface-cli download --cache-dir /path/to/cachedir --local-dir /path/to/localdir/WorldFloodsv2 --repo-type dataset isp-uv-es/WorldFloodsv2 |
|
``` |
|
|
|
## Explore the dataset |
|
|
|
The [exploring *WorldFloodsv2*](https://spaceml-org.github.io/ml4floods/content/prep/exploring_worldfloods.html) tutorial in the [ml4floods](https://github.com/spaceml-org/ml4floods) package shows how to |
|
process the dataset and plot the images and masks. |
|
|
|
## Licence |
|
|
|
The *WorldFloods* database and all pre-trained models are released under a [Creative Commons non-commercial licence](https://creativecommons.org/licenses/by-nc/4.0/legalcode.txt) |
|
|
|
## Cite |
|
|
|
If you find this work useful, please cite: |
|
|
|
``` |
|
@article{portales-julia_global_2023, |
|
title = {Global flood extent segmentation in optical satellite images}, |
|
volume = {13}, |
|
issn = {2045-2322}, |
|
doi = {10.1038/s41598-023-47595-7}, |
|
number = {1}, |
|
urldate = {2023-11-30}, |
|
journal = {Scientific Reports}, |
|
author = {Portalés-Julià, Enrique and Mateo-García, Gonzalo and Purcell, Cormac and Gómez-Chova, Luis}, |
|
month = nov, |
|
year = {2023}, |
|
pages = {20316}, |
|
} |
|
``` |
|
|