so-vits-svc / data_utils.py
ioritree's picture
Upload 42 files
1c4becd
raw
history blame
11.8 kB
import os
import sys
import string
import random
import numpy as np
import math
import json
from torch.utils.data import DataLoader
import torch
import utils
from modules import audio
sys.path.append('../..')
from utils import load_wav
class BaseDataset(torch.utils.data.Dataset):
def __init__(self, hparams, fileid_list_path):
self.hparams = hparams
self.fileid_list = self.get_fileid_list(fileid_list_path)
random.seed(hparams.train.seed)
random.shuffle(self.fileid_list)
if (hparams.data.n_speakers > 0):
self.spk2id = hparams.spk
def get_fileid_list(self, fileid_list_path):
fileid_list = []
with open(fileid_list_path, 'r') as f:
for line in f.readlines():
fileid_list.append(line.strip())
return fileid_list
def __len__(self):
return len(self.fileid_list)
class SingDataset(BaseDataset):
def __init__(self, hparams, data_dir, fileid_list_path):
BaseDataset.__init__(self, hparams, fileid_list_path)
self.hps = hparams
self.data_dir = data_dir
# self.__filter__()
def __filter__(self):
new_fileid_list= []
for wav_path in self.fileid_list:
# mel_path = wav_path + ".mel.npy"
# mel = np.load(mel_path)
# if mel.shape[0] < 60:
# print("skip short audio:", wav_path)
# continue
# if mel.shape[0] > 800:
# print("skip long audio:", wav_path)
# continue
# assert mel.shape[1] == 80
new_fileid_list.append(wav_path)
print("original length:", len(self.fileid_list))
print("filtered length:", len(new_fileid_list))
self.fileid_list = new_fileid_list
def interpolate_f0(self, data):
'''
对F0进行插值处理
'''
data = np.reshape(data, (data.size, 1))
vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
vuv_vector[data > 0.0] = 1.0
vuv_vector[data <= 0.0] = 0.0
ip_data = data
frame_number = data.size
last_value = 0.0
for i in range(frame_number):
if data[i] <= 0.0:
j = i + 1
for j in range(i + 1, frame_number):
if data[j] > 0.0:
break
if j < frame_number - 1:
if last_value > 0.0:
step = (data[j] - data[i - 1]) / float(j - i)
for k in range(i, j):
ip_data[k] = data[i - 1] + step * (k - i + 1)
else:
for k in range(i, j):
ip_data[k] = data[j]
else:
for k in range(i, frame_number):
ip_data[k] = last_value
else:
ip_data[i] = data[i]
last_value = data[i]
return ip_data, vuv_vector
def parse_label(self, pho, pitchid, dur, slur, gtdur):
phos = []
pitchs = []
durs = []
slurs = []
gtdurs = []
for index in range(len(pho.split())):
phos.append(npu.symbol_converter.ttsing_phone_to_int[pho.strip().split()[index]])
pitchs.append(0)
durs.append(0)
slurs.append(0)
gtdurs.append(float(gtdur.strip().split()[index]))
phos = np.asarray(phos, dtype=np.int32)
pitchs = np.asarray(pitchs, dtype=np.int32)
durs = np.asarray(durs, dtype=np.float32)
slurs = np.asarray(slurs, dtype=np.int32)
gtdurs = np.asarray(gtdurs, dtype=np.float32)
acc_duration = np.cumsum(gtdurs)
acc_duration = np.pad(acc_duration, (1, 0), 'constant', constant_values=(0,))
acc_duration_frames = np.ceil(acc_duration / (self.hps.data.hop_length / self.hps.data.sampling_rate))
gtdurs = acc_duration_frames[1:] - acc_duration_frames[:-1]
# new_phos = []
# new_gtdurs=[]
# for ph, dur in zip(phos, gtdurs):
# for i in range(int(dur)):
# new_phos.append(ph)
# new_gtdurs.append(1)
phos = torch.LongTensor(phos)
pitchs = torch.LongTensor(pitchs)
durs = torch.FloatTensor(durs)
slurs = torch.LongTensor(slurs)
gtdurs = torch.LongTensor(gtdurs)
return phos, pitchs, durs, slurs, gtdurs
def __getitem__(self, index):
wav_path = self.fileid_list[index]
spk = wav_path.split('/')[-2]
spkid = self.spk2id[spk]
wav = load_wav(wav_path,
raw_sr=self.hparams.data.sampling_rate,
target_sr=self.hparams.data.sampling_rate,
win_size=self.hparams.data.win_size,
hop_size=self.hparams.data.hop_length)
mel_path = wav_path + ".mel.npy"
if not os.path.exists(mel_path):
mel = audio.melspectrogram(wav, self.hparams.data).astype(np.float32).T
np.save(mel_path, mel)
else:
mel = np.load(mel_path)
if mel.shape[0] < 30:
print("skip short audio:", self.fileid_list[index])
return None
assert mel.shape[1] == 80
mel = torch.FloatTensor(mel).transpose(0, 1)
f0_path = wav_path + ".f0.npy"
f0 = np.load(f0_path)
assert abs(f0.shape[0]-mel.shape[1]) < 2, (f0.shape ,mel.shape)
sum_dur = min(f0.shape[0], mel.shape[1])
f0 = f0[:sum_dur]
mel = mel[:, :sum_dur]
f0, uv = self.interpolate_f0(f0)
f0 = f0.reshape([-1])
f0 = torch.FloatTensor(f0).reshape([1, -1])
uv = uv.reshape([-1])
uv = torch.FloatTensor(uv).reshape([1, -1])
wav = wav.reshape(-1)
if (wav.shape[0] != sum_dur * self.hparams.data.hop_length):
if (abs(wav.shape[0] - sum_dur * self.hparams.data.hop_length) > 3 * self.hparams.data.hop_length):
print("dataset error wav : ", wav.shape, sum_dur)
return None
if (wav.shape[0] > sum_dur * self.hparams.data.hop_length):
wav = wav[:sum_dur * self.hparams.data.hop_length]
else:
wav = np.concatenate([wav, np.zeros([sum_dur * self.hparams.data.hop_length - wav.shape[0]])], axis=0)
wav = torch.FloatTensor(wav).reshape([1, -1])
c_path = wav_path + ".soft.pt"
c = torch.load(c_path)
c = utils.repeat_expand_2d(c.squeeze(0), sum_dur)
assert f0.shape[1] == mel.shape[1]
if mel.shape[1] > 800:
start = random.randint(0, mel.shape[1]-800)
end = start + 790
mel = mel[:, start:end]
f0 = f0[:, start:end]
uv = uv[:, start:end]
c = c[:, start:end]
wav = wav[:, start*self.hparams.data.hop_length:end*self.hparams.data.hop_length]
return c, mel, f0, wav, spkid, uv
class SingCollate():
def __init__(self, hparams):
self.hparams = hparams
self.mel_dim = self.hparams.data.acoustic_dim
def __call__(self, batch):
batch = [b for b in batch if b is not None]
input_lengths, ids_sorted_decreasing = torch.sort(
torch.LongTensor([len(x[0]) for x in batch]),
dim=0, descending=True)
max_c_len = max([x[0].size(1) for x in batch])
max_mel_len = max([x[1].size(1) for x in batch])
max_f0_len = max([x[2].size(1) for x in batch])
max_wav_len = max([x[3].size(1) for x in batch])
c_lengths = torch.LongTensor(len(batch))
mel_lengths = torch.LongTensor(len(batch))
f0_lengths = torch.LongTensor(len(batch))
wav_lengths = torch.LongTensor(len(batch))
c_padded = torch.FloatTensor(len(batch), self.hparams.data.c_dim, max_mel_len)
mel_padded = torch.FloatTensor(len(batch), self.hparams.data.acoustic_dim, max_mel_len)
f0_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
uv_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
spkids = torch.LongTensor(len(batch))
c_padded.zero_()
mel_padded.zero_()
f0_padded.zero_()
uv_padded.zero_()
wav_padded.zero_()
for i in range(len(ids_sorted_decreasing)):
row = batch[ids_sorted_decreasing[i]]
c = row[0]
c_padded[i, :, :c.size(1)] = c
c_lengths[i] = c.size(1)
mel = row[1]
mel_padded[i, :, :mel.size(1)] = mel
mel_lengths[i] = mel.size(1)
f0 = row[2]
f0_padded[i, :, :f0.size(1)] = f0
f0_lengths[i] = f0.size(1)
wav = row[3]
wav_padded[i, :, :wav.size(1)] = wav
wav_lengths[i] = wav.size(1)
spkids[i] = row[4]
uv = row[5]
uv_padded[i, :, :uv.size(1)] = uv
data_dict = {}
data_dict["c"] = c_padded
data_dict["mel"] = mel_padded
data_dict["f0"] = f0_padded
data_dict["uv"] = uv_padded
data_dict["wav"] = wav_padded
data_dict["c_lengths"] = c_lengths
data_dict["mel_lengths"] = mel_lengths
data_dict["f0_lengths"] = f0_lengths
data_dict["wav_lengths"] = wav_lengths
data_dict["spkid"] = spkids
return data_dict
class DatasetConstructor():
def __init__(self, hparams, num_replicas=1, rank=1):
self.hparams = hparams
self.num_replicas = num_replicas
self.rank = rank
self.dataset_function = {"SingDataset": SingDataset}
self.collate_function = {"SingCollate": SingCollate}
self._get_components()
def _get_components(self):
self._init_datasets()
self._init_collate()
self._init_data_loaders()
def _init_datasets(self):
self._train_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
self.hparams.data.data_dir,
self.hparams.data.training_filelist)
self._valid_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
self.hparams.data.data_dir,
self.hparams.data.validation_filelist)
def _init_collate(self):
self._collate_fn = self.collate_function[self.hparams.data.collate_type](self.hparams)
def _init_data_loaders(self):
train_sampler = torch.utils.data.distributed.DistributedSampler(self._train_dataset,
num_replicas=self.num_replicas, rank=self.rank,
shuffle=True)
self.train_loader = DataLoader(self._train_dataset, num_workers=4, shuffle=False,
batch_size=self.hparams.train.batch_size, pin_memory=True,
drop_last=True, collate_fn=self._collate_fn, sampler=train_sampler)
self.valid_loader = DataLoader(self._valid_dataset, num_workers=1, shuffle=False,
batch_size=1, pin_memory=True,
drop_last=True, collate_fn=self._collate_fn)
def get_train_loader(self):
return self.train_loader
def get_valid_loader(self):
return self.valid_loader