ioritree commited on
Commit
1c4becd
·
1 Parent(s): 64f03f2

Upload 42 files

Browse files
.gitattributes CHANGED
@@ -8,7 +8,6 @@
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
11
- *.lz4 filter=lfs diff=lfs merge=lfs -text
12
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
13
  *.model filter=lfs diff=lfs merge=lfs -text
14
  *.msgpack filter=lfs diff=lfs merge=lfs -text
@@ -33,22 +32,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
- # Audio files - uncompressed
37
- *.pcm filter=lfs diff=lfs merge=lfs -text
38
- *.sam filter=lfs diff=lfs merge=lfs -text
39
- *.raw filter=lfs diff=lfs merge=lfs -text
40
- # Audio files - compressed
41
- *.aac filter=lfs diff=lfs merge=lfs -text
42
- *.flac filter=lfs diff=lfs merge=lfs -text
43
- *.mp3 filter=lfs diff=lfs merge=lfs -text
44
- *.ogg filter=lfs diff=lfs merge=lfs -text
45
- *.wav filter=lfs diff=lfs merge=lfs -text
46
- # Image files - uncompressed
47
- *.bmp filter=lfs diff=lfs merge=lfs -text
48
- *.gif filter=lfs diff=lfs merge=lfs -text
49
- *.png filter=lfs diff=lfs merge=lfs -text
50
- *.tiff filter=lfs diff=lfs merge=lfs -text
51
- # Image files - compressed
52
- *.jpg filter=lfs diff=lfs merge=lfs -text
53
- *.jpeg filter=lfs diff=lfs merge=lfs -text
54
- *.webp filter=lfs diff=lfs merge=lfs -text
 
8
  *.h5 filter=lfs diff=lfs merge=lfs -text
9
  *.joblib filter=lfs diff=lfs merge=lfs -text
10
  *.lfs.* filter=lfs diff=lfs merge=lfs -text
 
11
  *.mlmodel filter=lfs diff=lfs merge=lfs -text
12
  *.model filter=lfs diff=lfs merge=lfs -text
13
  *.msgpack filter=lfs diff=lfs merge=lfs -text
 
32
  *.zip filter=lfs diff=lfs merge=lfs -text
33
  *.zst filter=lfs diff=lfs merge=lfs -text
34
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2021 Jingyi Li
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.md ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ title: Sovits4.0 V2
3
+ emoji: 📚
4
+ colorFrom: blue
5
+ colorTo: purple
6
+ sdk: gradio
7
+ sdk_version: 3.19.1
8
+ app_file: app.py
9
+ pinned: false
10
+ ---
11
+
12
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import os
3
+
4
+ os.system("wget -P hubert/ https://huggingface.co/spaces/innnky/nanami/resolve/main/checkpoint_best_legacy_500.pt")
5
+ import gradio as gr
6
+ import librosa
7
+ import numpy as np
8
+ import soundfile
9
+ from inference.infer_tool import Svc
10
+ import logging
11
+
12
+ logging.getLogger('numba').setLevel(logging.WARNING)
13
+ logging.getLogger('markdown_it').setLevel(logging.WARNING)
14
+ logging.getLogger('urllib3').setLevel(logging.WARNING)
15
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
16
+
17
+ model = Svc("logs/44k/G_0.pth", "configs/config.json", cluster_model_path="logs/44k/kmeans_10000.pt")
18
+
19
+
20
+
21
+ def vc_fn(sid, input_audio, vc_transform, auto_f0,cluster_ratio, noise_scale):
22
+ if input_audio is None:
23
+ return "You need to upload an audio", None
24
+ sampling_rate, audio = input_audio
25
+ # print(audio.shape,sampling_rate)
26
+ duration = audio.shape[0] / sampling_rate
27
+ if duration > 45:
28
+ return "请上传小于45s的音频,需要转换长音频请本地进行转换", None
29
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
30
+ if len(audio.shape) > 1:
31
+ audio = librosa.to_mono(audio.transpose(1, 0))
32
+ if sampling_rate != 16000:
33
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
34
+ print(audio.shape)
35
+ out_wav_path = "temp.wav"
36
+ soundfile.write(out_wav_path, audio, 16000, format="wav")
37
+ print( cluster_ratio, auto_f0, noise_scale)
38
+ out_audio, out_sr = model.infer(sid, vc_transform, out_wav_path,
39
+ cluster_infer_ratio=cluster_ratio,
40
+ auto_predict_f0=auto_f0,
41
+ noice_scale=noise_scale
42
+ )
43
+ audio = out_audio.numpy()
44
+ rms = librosa.feature.rms(audio, frame_length=2048, hop_length=512)[0]
45
+ target_rms = 0.1
46
+ current_rms = np.mean(rms)
47
+ gain = target_rms / current_rms
48
+ audio *= gain
49
+ return "Success", (44100, audio)
50
+
51
+
52
+ app = gr.Blocks()
53
+ with app:
54
+ with gr.Tabs():
55
+ with gr.TabItem("Basic"):
56
+ gr.Markdown(value="""
57
+ sovits4.0 在线demo
58
+
59
+ 此demo为预训练底模在线demo,使用数据:云灏 即霜 辉宇·星AI 派蒙 绫地宁宁
60
+ """)
61
+ spks = list(model.spk2id.keys())
62
+ sid = gr.Dropdown(label="音色", choices=["nen", "yunhao","paimon", "huiyu","jishuang"], value="paimon")
63
+ vc_input3 = gr.Audio(label="上传音频(长度小于45秒)")
64
+ vc_transform = gr.Number(label="变调(整数,可以正负,半音数量,升高八度就是12)", value=0)
65
+ cluster_ratio = gr.Number(label="聚类模型混合比例,0-1之间,默认为0不启用聚类,能提升音色相似度,但会导致咬字下降(如果使用建议0.5左右)", value=0)
66
+ auto_f0 = gr.Checkbox(label="自动f0预测,配合聚类模型f0预测效果更好,会导致变调功能失效(仅限转换语音,歌声不要勾选此项会究极跑调)", value=False)
67
+ noise_scale = gr.Number(label="noise_scale 建议不要动,会影响音质,玄学参数", value=0.4)
68
+ vc_submit = gr.Button("转换", variant="primary")
69
+ vc_output1 = gr.Textbox(label="Output Message")
70
+ vc_output2 = gr.Audio(label="Output Audio")
71
+ vc_submit.click(vc_fn, [sid, vc_input3, vc_transform,auto_f0,cluster_ratio, noise_scale], [vc_output1, vc_output2])
72
+
73
+ app.launch()
74
+
75
+
76
+
cluster/__init__.py ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import torch
3
+ from sklearn.cluster import KMeans
4
+
5
+ def get_cluster_model(ckpt_path):
6
+ checkpoint = torch.load(ckpt_path)
7
+ kmeans_dict = {}
8
+ for spk, ckpt in checkpoint.items():
9
+ km = KMeans(ckpt["n_features_in_"])
10
+ km.__dict__["n_features_in_"] = ckpt["n_features_in_"]
11
+ km.__dict__["_n_threads"] = ckpt["_n_threads"]
12
+ km.__dict__["cluster_centers_"] = ckpt["cluster_centers_"]
13
+ kmeans_dict[spk] = km
14
+ return kmeans_dict
15
+
16
+ def get_cluster_result(model, x, speaker):
17
+ """
18
+ x: np.array [t, 256]
19
+ return cluster class result
20
+ """
21
+ return model[speaker].predict(x)
22
+
23
+ def get_cluster_center_result(model, x,speaker):
24
+ """x: np.array [t, 256]"""
25
+ predict = model[speaker].predict(x)
26
+ return model[speaker].cluster_centers_[predict]
27
+
28
+ def get_center(model, x,speaker):
29
+ return model[speaker].cluster_centers_[x]
cluster/train_cluster.py ADDED
@@ -0,0 +1,89 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from glob import glob
3
+ from pathlib import Path
4
+ import torch
5
+ import logging
6
+ import argparse
7
+ import torch
8
+ import numpy as np
9
+ from sklearn.cluster import KMeans, MiniBatchKMeans
10
+ import tqdm
11
+ logging.basicConfig(level=logging.INFO)
12
+ logger = logging.getLogger(__name__)
13
+ import time
14
+ import random
15
+
16
+ def train_cluster(in_dir, n_clusters, use_minibatch=True, verbose=False):
17
+
18
+ logger.info(f"Loading features from {in_dir}")
19
+ features = []
20
+ nums = 0
21
+ for path in tqdm.tqdm(in_dir.glob("*.soft.pt")):
22
+ features.append(torch.load(path).squeeze(0).numpy().T)
23
+ # print(features[-1].shape)
24
+ features = np.concatenate(features, axis=0)
25
+ print(nums, features.nbytes/ 1024**2, "MB , shape:",features.shape, features.dtype)
26
+ features = features.astype(np.float32)
27
+ logger.info(f"Clustering features of shape: {features.shape}")
28
+ t = time.time()
29
+ if use_minibatch:
30
+ kmeans = MiniBatchKMeans(n_clusters=n_clusters,verbose=verbose, batch_size=4096, max_iter=80).fit(features)
31
+ else:
32
+ kmeans = KMeans(n_clusters=n_clusters,verbose=verbose).fit(features)
33
+ print(time.time()-t, "s")
34
+
35
+ x = {
36
+ "n_features_in_": kmeans.n_features_in_,
37
+ "_n_threads": kmeans._n_threads,
38
+ "cluster_centers_": kmeans.cluster_centers_,
39
+ }
40
+ print("end")
41
+
42
+ return x
43
+
44
+
45
+ if __name__ == "__main__":
46
+
47
+ parser = argparse.ArgumentParser()
48
+ parser.add_argument('--dataset', type=Path, default="./dataset/44k",
49
+ help='path of training data directory')
50
+ parser.add_argument('--output', type=Path, default="logs/44k",
51
+ help='path of model output directory')
52
+
53
+ args = parser.parse_args()
54
+
55
+ checkpoint_dir = args.output
56
+ dataset = args.dataset
57
+ n_clusters = 10000
58
+
59
+ ckpt = {}
60
+ for spk in os.listdir(dataset):
61
+ if os.path.isdir(dataset/spk):
62
+ print(f"train kmeans for {spk}...")
63
+ in_dir = dataset/spk
64
+ x = train_cluster(in_dir, n_clusters, verbose=False)
65
+ ckpt[spk] = x
66
+
67
+ checkpoint_path = checkpoint_dir / f"kmeans_{n_clusters}.pt"
68
+ checkpoint_path.parent.mkdir(exist_ok=True, parents=True)
69
+ torch.save(
70
+ ckpt,
71
+ checkpoint_path,
72
+ )
73
+
74
+
75
+ # import cluster
76
+ # for spk in tqdm.tqdm(os.listdir("dataset")):
77
+ # if os.path.isdir(f"dataset/{spk}"):
78
+ # print(f"start kmeans inference for {spk}...")
79
+ # for feature_path in tqdm.tqdm(glob(f"dataset/{spk}/*.discrete.npy", recursive=True)):
80
+ # mel_path = feature_path.replace(".discrete.npy",".mel.npy")
81
+ # mel_spectrogram = np.load(mel_path)
82
+ # feature_len = mel_spectrogram.shape[-1]
83
+ # c = np.load(feature_path)
84
+ # c = utils.tools.repeat_expand_2d(torch.FloatTensor(c), feature_len).numpy()
85
+ # feature = c.T
86
+ # feature_class = cluster.get_cluster_result(feature, spk)
87
+ # np.save(feature_path.replace(".discrete.npy", ".discrete_class.npy"), feature_class)
88
+
89
+
configs/config.json ADDED
@@ -0,0 +1,106 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "train": {
3
+ "log_interval": 50,
4
+ "eval_interval": 1000,
5
+ "seed": 1234,
6
+ "port": 8001,
7
+ "epochs": 10000,
8
+ "learning_rate": 0.0002,
9
+ "betas": [
10
+ 0.8,
11
+ 0.99
12
+ ],
13
+ "eps": 1e-09,
14
+ "batch_size": 6,
15
+ "accumulation_steps": 1,
16
+ "fp16_run": false,
17
+ "lr_decay": 0.998,
18
+ "segment_size": 10240,
19
+ "init_lr_ratio": 1,
20
+ "warmup_epochs": 0,
21
+ "c_mel": 45,
22
+ "keep_ckpts":4
23
+ },
24
+ "data": {
25
+ "data_dir": "dataset",
26
+ "dataset_type": "SingDataset",
27
+ "collate_type": "SingCollate",
28
+ "training_filelist": "filelists/train-Copy1.txt",
29
+ "validation_filelist": "filelists/val-Copy1.txt",
30
+ "max_wav_value": 32768.0,
31
+ "sampling_rate": 44100,
32
+ "n_fft": 2048,
33
+ "fmin": 0,
34
+ "fmax": 22050,
35
+ "hop_length": 512,
36
+ "win_size": 2048,
37
+ "acoustic_dim": 80,
38
+ "c_dim": 256,
39
+ "min_level_db": -115,
40
+ "ref_level_db": 20,
41
+ "min_db": -115,
42
+ "max_abs_value": 4.0,
43
+ "n_speakers": 200
44
+ },
45
+ "model": {
46
+ "hidden_channels": 192,
47
+ "spk_channels": 192,
48
+ "filter_channels": 768,
49
+ "n_heads": 2,
50
+ "n_layers": 4,
51
+ "kernel_size": 3,
52
+ "p_dropout": 0.1,
53
+ "prior_hidden_channels": 192,
54
+ "prior_filter_channels": 768,
55
+ "prior_n_heads": 2,
56
+ "prior_n_layers": 4,
57
+ "prior_kernel_size": 3,
58
+ "prior_p_dropout": 0.1,
59
+ "resblock": "1",
60
+ "use_spectral_norm": false,
61
+ "resblock_kernel_sizes": [
62
+ 3,
63
+ 7,
64
+ 11
65
+ ],
66
+ "resblock_dilation_sizes": [
67
+ [
68
+ 1,
69
+ 3,
70
+ 5
71
+ ],
72
+ [
73
+ 1,
74
+ 3,
75
+ 5
76
+ ],
77
+ [
78
+ 1,
79
+ 3,
80
+ 5
81
+ ]
82
+ ],
83
+ "upsample_rates": [
84
+ 8,
85
+ 8,
86
+ 4,
87
+ 2
88
+ ],
89
+ "upsample_initial_channel": 256,
90
+ "upsample_kernel_sizes": [
91
+ 16,
92
+ 16,
93
+ 8,
94
+ 4
95
+ ],
96
+ "n_harmonic": 64,
97
+ "n_bands": 65
98
+ },
99
+ "spk": {
100
+ "jishuang": 0,
101
+ "huiyu": 1,
102
+ "nen": 2,
103
+ "paimon": 3,
104
+ "yunhao": 4
105
+ }
106
+ }
data_utils.py ADDED
@@ -0,0 +1,329 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import string
4
+ import random
5
+ import numpy as np
6
+ import math
7
+ import json
8
+ from torch.utils.data import DataLoader
9
+ import torch
10
+
11
+ import utils
12
+ from modules import audio
13
+
14
+ sys.path.append('../..')
15
+ from utils import load_wav
16
+
17
+
18
+ class BaseDataset(torch.utils.data.Dataset):
19
+
20
+ def __init__(self, hparams, fileid_list_path):
21
+ self.hparams = hparams
22
+ self.fileid_list = self.get_fileid_list(fileid_list_path)
23
+ random.seed(hparams.train.seed)
24
+ random.shuffle(self.fileid_list)
25
+ if (hparams.data.n_speakers > 0):
26
+ self.spk2id = hparams.spk
27
+
28
+ def get_fileid_list(self, fileid_list_path):
29
+ fileid_list = []
30
+ with open(fileid_list_path, 'r') as f:
31
+ for line in f.readlines():
32
+ fileid_list.append(line.strip())
33
+
34
+ return fileid_list
35
+
36
+ def __len__(self):
37
+ return len(self.fileid_list)
38
+
39
+
40
+ class SingDataset(BaseDataset):
41
+ def __init__(self, hparams, data_dir, fileid_list_path):
42
+ BaseDataset.__init__(self, hparams, fileid_list_path)
43
+ self.hps = hparams
44
+ self.data_dir = data_dir
45
+ # self.__filter__()
46
+
47
+ def __filter__(self):
48
+ new_fileid_list= []
49
+ for wav_path in self.fileid_list:
50
+ # mel_path = wav_path + ".mel.npy"
51
+ # mel = np.load(mel_path)
52
+ # if mel.shape[0] < 60:
53
+ # print("skip short audio:", wav_path)
54
+ # continue
55
+ # if mel.shape[0] > 800:
56
+ # print("skip long audio:", wav_path)
57
+ # continue
58
+ # assert mel.shape[1] == 80
59
+ new_fileid_list.append(wav_path)
60
+ print("original length:", len(self.fileid_list))
61
+ print("filtered length:", len(new_fileid_list))
62
+ self.fileid_list = new_fileid_list
63
+
64
+ def interpolate_f0(self, data):
65
+ '''
66
+ 对F0进行插值处理
67
+ '''
68
+ data = np.reshape(data, (data.size, 1))
69
+
70
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
71
+ vuv_vector[data > 0.0] = 1.0
72
+ vuv_vector[data <= 0.0] = 0.0
73
+
74
+ ip_data = data
75
+
76
+ frame_number = data.size
77
+ last_value = 0.0
78
+ for i in range(frame_number):
79
+ if data[i] <= 0.0:
80
+ j = i + 1
81
+ for j in range(i + 1, frame_number):
82
+ if data[j] > 0.0:
83
+ break
84
+ if j < frame_number - 1:
85
+ if last_value > 0.0:
86
+ step = (data[j] - data[i - 1]) / float(j - i)
87
+ for k in range(i, j):
88
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
89
+ else:
90
+ for k in range(i, j):
91
+ ip_data[k] = data[j]
92
+ else:
93
+ for k in range(i, frame_number):
94
+ ip_data[k] = last_value
95
+ else:
96
+ ip_data[i] = data[i]
97
+ last_value = data[i]
98
+
99
+ return ip_data, vuv_vector
100
+
101
+ def parse_label(self, pho, pitchid, dur, slur, gtdur):
102
+ phos = []
103
+ pitchs = []
104
+ durs = []
105
+ slurs = []
106
+ gtdurs = []
107
+
108
+ for index in range(len(pho.split())):
109
+ phos.append(npu.symbol_converter.ttsing_phone_to_int[pho.strip().split()[index]])
110
+ pitchs.append(0)
111
+ durs.append(0)
112
+ slurs.append(0)
113
+ gtdurs.append(float(gtdur.strip().split()[index]))
114
+
115
+ phos = np.asarray(phos, dtype=np.int32)
116
+ pitchs = np.asarray(pitchs, dtype=np.int32)
117
+ durs = np.asarray(durs, dtype=np.float32)
118
+ slurs = np.asarray(slurs, dtype=np.int32)
119
+ gtdurs = np.asarray(gtdurs, dtype=np.float32)
120
+
121
+ acc_duration = np.cumsum(gtdurs)
122
+ acc_duration = np.pad(acc_duration, (1, 0), 'constant', constant_values=(0,))
123
+ acc_duration_frames = np.ceil(acc_duration / (self.hps.data.hop_length / self.hps.data.sampling_rate))
124
+ gtdurs = acc_duration_frames[1:] - acc_duration_frames[:-1]
125
+
126
+ # new_phos = []
127
+ # new_gtdurs=[]
128
+ # for ph, dur in zip(phos, gtdurs):
129
+ # for i in range(int(dur)):
130
+ # new_phos.append(ph)
131
+ # new_gtdurs.append(1)
132
+
133
+ phos = torch.LongTensor(phos)
134
+ pitchs = torch.LongTensor(pitchs)
135
+ durs = torch.FloatTensor(durs)
136
+ slurs = torch.LongTensor(slurs)
137
+ gtdurs = torch.LongTensor(gtdurs)
138
+ return phos, pitchs, durs, slurs, gtdurs
139
+
140
+ def __getitem__(self, index):
141
+ wav_path = self.fileid_list[index]
142
+
143
+ spk = wav_path.split('/')[-2]
144
+ spkid = self.spk2id[spk]
145
+
146
+ wav = load_wav(wav_path,
147
+ raw_sr=self.hparams.data.sampling_rate,
148
+ target_sr=self.hparams.data.sampling_rate,
149
+ win_size=self.hparams.data.win_size,
150
+ hop_size=self.hparams.data.hop_length)
151
+
152
+ mel_path = wav_path + ".mel.npy"
153
+ if not os.path.exists(mel_path):
154
+ mel = audio.melspectrogram(wav, self.hparams.data).astype(np.float32).T
155
+ np.save(mel_path, mel)
156
+ else:
157
+ mel = np.load(mel_path)
158
+
159
+ if mel.shape[0] < 30:
160
+ print("skip short audio:", self.fileid_list[index])
161
+ return None
162
+ assert mel.shape[1] == 80
163
+ mel = torch.FloatTensor(mel).transpose(0, 1)
164
+
165
+ f0_path = wav_path + ".f0.npy"
166
+ f0 = np.load(f0_path)
167
+ assert abs(f0.shape[0]-mel.shape[1]) < 2, (f0.shape ,mel.shape)
168
+ sum_dur = min(f0.shape[0], mel.shape[1])
169
+ f0 = f0[:sum_dur]
170
+ mel = mel[:, :sum_dur]
171
+
172
+ f0, uv = self.interpolate_f0(f0)
173
+ f0 = f0.reshape([-1])
174
+ f0 = torch.FloatTensor(f0).reshape([1, -1])
175
+
176
+ uv = uv.reshape([-1])
177
+ uv = torch.FloatTensor(uv).reshape([1, -1])
178
+
179
+ wav = wav.reshape(-1)
180
+ if (wav.shape[0] != sum_dur * self.hparams.data.hop_length):
181
+ if (abs(wav.shape[0] - sum_dur * self.hparams.data.hop_length) > 3 * self.hparams.data.hop_length):
182
+ print("dataset error wav : ", wav.shape, sum_dur)
183
+ return None
184
+ if (wav.shape[0] > sum_dur * self.hparams.data.hop_length):
185
+ wav = wav[:sum_dur * self.hparams.data.hop_length]
186
+ else:
187
+ wav = np.concatenate([wav, np.zeros([sum_dur * self.hparams.data.hop_length - wav.shape[0]])], axis=0)
188
+ wav = torch.FloatTensor(wav).reshape([1, -1])
189
+
190
+ c_path = wav_path + ".soft.pt"
191
+ c = torch.load(c_path)
192
+ c = utils.repeat_expand_2d(c.squeeze(0), sum_dur)
193
+
194
+ assert f0.shape[1] == mel.shape[1]
195
+
196
+ if mel.shape[1] > 800:
197
+ start = random.randint(0, mel.shape[1]-800)
198
+ end = start + 790
199
+ mel = mel[:, start:end]
200
+ f0 = f0[:, start:end]
201
+ uv = uv[:, start:end]
202
+ c = c[:, start:end]
203
+ wav = wav[:, start*self.hparams.data.hop_length:end*self.hparams.data.hop_length]
204
+ return c, mel, f0, wav, spkid, uv
205
+
206
+
207
+ class SingCollate():
208
+
209
+ def __init__(self, hparams):
210
+ self.hparams = hparams
211
+ self.mel_dim = self.hparams.data.acoustic_dim
212
+
213
+ def __call__(self, batch):
214
+ batch = [b for b in batch if b is not None]
215
+
216
+ input_lengths, ids_sorted_decreasing = torch.sort(
217
+ torch.LongTensor([len(x[0]) for x in batch]),
218
+ dim=0, descending=True)
219
+
220
+ max_c_len = max([x[0].size(1) for x in batch])
221
+ max_mel_len = max([x[1].size(1) for x in batch])
222
+ max_f0_len = max([x[2].size(1) for x in batch])
223
+ max_wav_len = max([x[3].size(1) for x in batch])
224
+
225
+ c_lengths = torch.LongTensor(len(batch))
226
+ mel_lengths = torch.LongTensor(len(batch))
227
+ f0_lengths = torch.LongTensor(len(batch))
228
+ wav_lengths = torch.LongTensor(len(batch))
229
+
230
+ c_padded = torch.FloatTensor(len(batch), self.hparams.data.c_dim, max_mel_len)
231
+ mel_padded = torch.FloatTensor(len(batch), self.hparams.data.acoustic_dim, max_mel_len)
232
+ f0_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
233
+ uv_padded = torch.FloatTensor(len(batch), 1, max_f0_len)
234
+ wav_padded = torch.FloatTensor(len(batch), 1, max_wav_len)
235
+ spkids = torch.LongTensor(len(batch))
236
+
237
+ c_padded.zero_()
238
+ mel_padded.zero_()
239
+ f0_padded.zero_()
240
+ uv_padded.zero_()
241
+ wav_padded.zero_()
242
+
243
+ for i in range(len(ids_sorted_decreasing)):
244
+ row = batch[ids_sorted_decreasing[i]]
245
+
246
+ c = row[0]
247
+ c_padded[i, :, :c.size(1)] = c
248
+ c_lengths[i] = c.size(1)
249
+
250
+ mel = row[1]
251
+ mel_padded[i, :, :mel.size(1)] = mel
252
+ mel_lengths[i] = mel.size(1)
253
+
254
+ f0 = row[2]
255
+ f0_padded[i, :, :f0.size(1)] = f0
256
+ f0_lengths[i] = f0.size(1)
257
+
258
+ wav = row[3]
259
+ wav_padded[i, :, :wav.size(1)] = wav
260
+ wav_lengths[i] = wav.size(1)
261
+
262
+ spkids[i] = row[4]
263
+
264
+ uv = row[5]
265
+ uv_padded[i, :, :uv.size(1)] = uv
266
+
267
+
268
+ data_dict = {}
269
+
270
+ data_dict["c"] = c_padded
271
+ data_dict["mel"] = mel_padded
272
+ data_dict["f0"] = f0_padded
273
+ data_dict["uv"] = uv_padded
274
+ data_dict["wav"] = wav_padded
275
+
276
+ data_dict["c_lengths"] = c_lengths
277
+ data_dict["mel_lengths"] = mel_lengths
278
+ data_dict["f0_lengths"] = f0_lengths
279
+ data_dict["wav_lengths"] = wav_lengths
280
+ data_dict["spkid"] = spkids
281
+
282
+ return data_dict
283
+
284
+
285
+ class DatasetConstructor():
286
+
287
+ def __init__(self, hparams, num_replicas=1, rank=1):
288
+ self.hparams = hparams
289
+ self.num_replicas = num_replicas
290
+ self.rank = rank
291
+ self.dataset_function = {"SingDataset": SingDataset}
292
+ self.collate_function = {"SingCollate": SingCollate}
293
+ self._get_components()
294
+
295
+ def _get_components(self):
296
+ self._init_datasets()
297
+ self._init_collate()
298
+ self._init_data_loaders()
299
+
300
+ def _init_datasets(self):
301
+ self._train_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
302
+ self.hparams.data.data_dir,
303
+ self.hparams.data.training_filelist)
304
+ self._valid_dataset = self.dataset_function[self.hparams.data.dataset_type](self.hparams,
305
+ self.hparams.data.data_dir,
306
+ self.hparams.data.validation_filelist)
307
+
308
+ def _init_collate(self):
309
+ self._collate_fn = self.collate_function[self.hparams.data.collate_type](self.hparams)
310
+
311
+ def _init_data_loaders(self):
312
+ train_sampler = torch.utils.data.distributed.DistributedSampler(self._train_dataset,
313
+ num_replicas=self.num_replicas, rank=self.rank,
314
+ shuffle=True)
315
+
316
+ self.train_loader = DataLoader(self._train_dataset, num_workers=4, shuffle=False,
317
+ batch_size=self.hparams.train.batch_size, pin_memory=True,
318
+ drop_last=True, collate_fn=self._collate_fn, sampler=train_sampler)
319
+
320
+ self.valid_loader = DataLoader(self._valid_dataset, num_workers=1, shuffle=False,
321
+ batch_size=1, pin_memory=True,
322
+ drop_last=True, collate_fn=self._collate_fn)
323
+
324
+ def get_train_loader(self):
325
+ return self.train_loader
326
+
327
+ def get_valid_loader(self):
328
+ return self.valid_loader
329
+
filelists/test.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./dataset/44k/taffy/000562.wav
2
+ ./dataset/44k/nyaru/000011.wav
3
+ ./dataset/44k/nyaru/000008.wav
4
+ ./dataset/44k/taffy/000563.wav
filelists/train.txt ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ./dataset/44k/taffy/000549.wav
2
+ ./dataset/44k/nyaru/000004.wav
3
+ ./dataset/44k/nyaru/000006.wav
4
+ ./dataset/44k/taffy/000551.wav
5
+ ./dataset/44k/nyaru/000009.wav
6
+ ./dataset/44k/taffy/000561.wav
7
+ ./dataset/44k/nyaru/000001.wav
8
+ ./dataset/44k/taffy/000553.wav
9
+ ./dataset/44k/nyaru/000002.wav
10
+ ./dataset/44k/taffy/000560.wav
11
+ ./dataset/44k/taffy/000557.wav
12
+ ./dataset/44k/nyaru/000005.wav
13
+ ./dataset/44k/taffy/000554.wav
14
+ ./dataset/44k/taffy/000550.wav
15
+ ./dataset/44k/taffy/000559.wav
filelists/val.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ./dataset/44k/nyaru/000003.wav
2
+ ./dataset/44k/nyaru/000007.wav
3
+ ./dataset/44k/taffy/000558.wav
4
+ ./dataset/44k/taffy/000556.wav
hubert/__init__.py ADDED
File without changes
hubert/hubert_model.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
58
+ x, mask = self.encode(x)
59
+ x = self.proj(x)
60
+ logits = self.logits(x)
61
+ return logits, mask
62
+
63
+
64
+ class HubertSoft(Hubert):
65
+ def __init__(self):
66
+ super().__init__()
67
+
68
+ @torch.inference_mode()
69
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
70
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
71
+ x, _ = self.encode(wav)
72
+ return self.proj(x)
73
+
74
+
75
+ class FeatureExtractor(nn.Module):
76
+ def __init__(self):
77
+ super().__init__()
78
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
79
+ self.norm0 = nn.GroupNorm(512, 512)
80
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
81
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
82
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
83
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
84
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
85
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
86
+
87
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
88
+ x = t_func.gelu(self.norm0(self.conv0(x)))
89
+ x = t_func.gelu(self.conv1(x))
90
+ x = t_func.gelu(self.conv2(x))
91
+ x = t_func.gelu(self.conv3(x))
92
+ x = t_func.gelu(self.conv4(x))
93
+ x = t_func.gelu(self.conv5(x))
94
+ x = t_func.gelu(self.conv6(x))
95
+ return x
96
+
97
+
98
+ class FeatureProjection(nn.Module):
99
+ def __init__(self):
100
+ super().__init__()
101
+ self.norm = nn.LayerNorm(512)
102
+ self.projection = nn.Linear(512, 768)
103
+ self.dropout = nn.Dropout(0.1)
104
+
105
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
106
+ x = self.norm(x)
107
+ x = self.projection(x)
108
+ x = self.dropout(x)
109
+ return x
110
+
111
+
112
+ class PositionalConvEmbedding(nn.Module):
113
+ def __init__(self):
114
+ super().__init__()
115
+ self.conv = nn.Conv1d(
116
+ 768,
117
+ 768,
118
+ kernel_size=128,
119
+ padding=128 // 2,
120
+ groups=16,
121
+ )
122
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
123
+
124
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
125
+ x = self.conv(x.transpose(1, 2))
126
+ x = t_func.gelu(x[:, :, :-1])
127
+ return x.transpose(1, 2)
128
+
129
+
130
+ class TransformerEncoder(nn.Module):
131
+ def __init__(
132
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
133
+ ) -> None:
134
+ super(TransformerEncoder, self).__init__()
135
+ self.layers = nn.ModuleList(
136
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
137
+ )
138
+ self.num_layers = num_layers
139
+
140
+ def forward(
141
+ self,
142
+ src: torch.Tensor,
143
+ mask: torch.Tensor = None,
144
+ src_key_padding_mask: torch.Tensor = None,
145
+ output_layer: Optional[int] = None,
146
+ ) -> torch.Tensor:
147
+ output = src
148
+ for layer in self.layers[:output_layer]:
149
+ output = layer(
150
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
151
+ )
152
+ return output
153
+
154
+
155
+ def _compute_mask(
156
+ shape: Tuple[int, int],
157
+ mask_prob: float,
158
+ mask_length: int,
159
+ device: torch.device,
160
+ min_masks: int = 0,
161
+ ) -> torch.Tensor:
162
+ batch_size, sequence_length = shape
163
+
164
+ if mask_length < 1:
165
+ raise ValueError("`mask_length` has to be bigger than 0.")
166
+
167
+ if mask_length > sequence_length:
168
+ raise ValueError(
169
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
170
+ )
171
+
172
+ # compute number of masked spans in batch
173
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
174
+ num_masked_spans = max(num_masked_spans, min_masks)
175
+
176
+ # make sure num masked indices <= sequence_length
177
+ if num_masked_spans * mask_length > sequence_length:
178
+ num_masked_spans = sequence_length // mask_length
179
+
180
+ # SpecAugment mask to fill
181
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
182
+
183
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
184
+ uniform_dist = torch.ones(
185
+ (batch_size, sequence_length - (mask_length - 1)), device=device
186
+ )
187
+
188
+ # get random indices to mask
189
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
190
+
191
+ # expand masked indices to masked spans
192
+ mask_indices = (
193
+ mask_indices.unsqueeze(dim=-1)
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ offsets = (
198
+ torch.arange(mask_length, device=device)[None, None, :]
199
+ .expand((batch_size, num_masked_spans, mask_length))
200
+ .reshape(batch_size, num_masked_spans * mask_length)
201
+ )
202
+ mask_idxs = mask_indices + offsets
203
+
204
+ # scatter indices to mask
205
+ mask = mask.scatter(1, mask_idxs, True)
206
+
207
+ return mask
208
+
209
+
210
+ def hubert_soft(
211
+ path: str,
212
+ ) -> HubertSoft:
213
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
214
+ Args:
215
+ path (str): path of a pretrained model
216
+ """
217
+ hubert = HubertSoft()
218
+ checkpoint = torch.load(path)
219
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
220
+ hubert.load_state_dict(checkpoint)
221
+ hubert.eval()
222
+ return hubert
hubert/hubert_model_onnx.py ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import random
3
+ from typing import Optional, Tuple
4
+
5
+ import torch
6
+ import torch.nn as nn
7
+ import torch.nn.functional as t_func
8
+ from torch.nn.modules.utils import consume_prefix_in_state_dict_if_present
9
+
10
+
11
+ class Hubert(nn.Module):
12
+ def __init__(self, num_label_embeddings: int = 100, mask: bool = True):
13
+ super().__init__()
14
+ self._mask = mask
15
+ self.feature_extractor = FeatureExtractor()
16
+ self.feature_projection = FeatureProjection()
17
+ self.positional_embedding = PositionalConvEmbedding()
18
+ self.norm = nn.LayerNorm(768)
19
+ self.dropout = nn.Dropout(0.1)
20
+ self.encoder = TransformerEncoder(
21
+ nn.TransformerEncoderLayer(
22
+ 768, 12, 3072, activation="gelu", batch_first=True
23
+ ),
24
+ 12,
25
+ )
26
+ self.proj = nn.Linear(768, 256)
27
+
28
+ self.masked_spec_embed = nn.Parameter(torch.FloatTensor(768).uniform_())
29
+ self.label_embedding = nn.Embedding(num_label_embeddings, 256)
30
+
31
+ def mask(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
32
+ mask = None
33
+ if self.training and self._mask:
34
+ mask = _compute_mask((x.size(0), x.size(1)), 0.8, 10, x.device, 2)
35
+ x[mask] = self.masked_spec_embed.to(x.dtype)
36
+ return x, mask
37
+
38
+ def encode(
39
+ self, x: torch.Tensor, layer: Optional[int] = None
40
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
41
+ x = self.feature_extractor(x)
42
+ x = self.feature_projection(x.transpose(1, 2))
43
+ x, mask = self.mask(x)
44
+ x = x + self.positional_embedding(x)
45
+ x = self.dropout(self.norm(x))
46
+ x = self.encoder(x, output_layer=layer)
47
+ return x, mask
48
+
49
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
50
+ logits = torch.cosine_similarity(
51
+ x.unsqueeze(2),
52
+ self.label_embedding.weight.unsqueeze(0).unsqueeze(0),
53
+ dim=-1,
54
+ )
55
+ return logits / 0.1
56
+
57
+
58
+ class HubertSoft(Hubert):
59
+ def __init__(self):
60
+ super().__init__()
61
+
62
+ def units(self, wav: torch.Tensor) -> torch.Tensor:
63
+ wav = t_func.pad(wav, ((400 - 320) // 2, (400 - 320) // 2))
64
+ x, _ = self.encode(wav)
65
+ return self.proj(x)
66
+
67
+ def forward(self, x):
68
+ return self.units(x)
69
+
70
+ class FeatureExtractor(nn.Module):
71
+ def __init__(self):
72
+ super().__init__()
73
+ self.conv0 = nn.Conv1d(1, 512, 10, 5, bias=False)
74
+ self.norm0 = nn.GroupNorm(512, 512)
75
+ self.conv1 = nn.Conv1d(512, 512, 3, 2, bias=False)
76
+ self.conv2 = nn.Conv1d(512, 512, 3, 2, bias=False)
77
+ self.conv3 = nn.Conv1d(512, 512, 3, 2, bias=False)
78
+ self.conv4 = nn.Conv1d(512, 512, 3, 2, bias=False)
79
+ self.conv5 = nn.Conv1d(512, 512, 2, 2, bias=False)
80
+ self.conv6 = nn.Conv1d(512, 512, 2, 2, bias=False)
81
+
82
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
83
+ x = t_func.gelu(self.norm0(self.conv0(x)))
84
+ x = t_func.gelu(self.conv1(x))
85
+ x = t_func.gelu(self.conv2(x))
86
+ x = t_func.gelu(self.conv3(x))
87
+ x = t_func.gelu(self.conv4(x))
88
+ x = t_func.gelu(self.conv5(x))
89
+ x = t_func.gelu(self.conv6(x))
90
+ return x
91
+
92
+
93
+ class FeatureProjection(nn.Module):
94
+ def __init__(self):
95
+ super().__init__()
96
+ self.norm = nn.LayerNorm(512)
97
+ self.projection = nn.Linear(512, 768)
98
+ self.dropout = nn.Dropout(0.1)
99
+
100
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
101
+ x = self.norm(x)
102
+ x = self.projection(x)
103
+ x = self.dropout(x)
104
+ return x
105
+
106
+
107
+ class PositionalConvEmbedding(nn.Module):
108
+ def __init__(self):
109
+ super().__init__()
110
+ self.conv = nn.Conv1d(
111
+ 768,
112
+ 768,
113
+ kernel_size=128,
114
+ padding=128 // 2,
115
+ groups=16,
116
+ )
117
+ self.conv = nn.utils.weight_norm(self.conv, name="weight", dim=2)
118
+
119
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
120
+ x = self.conv(x.transpose(1, 2))
121
+ x = t_func.gelu(x[:, :, :-1])
122
+ return x.transpose(1, 2)
123
+
124
+
125
+ class TransformerEncoder(nn.Module):
126
+ def __init__(
127
+ self, encoder_layer: nn.TransformerEncoderLayer, num_layers: int
128
+ ) -> None:
129
+ super(TransformerEncoder, self).__init__()
130
+ self.layers = nn.ModuleList(
131
+ [copy.deepcopy(encoder_layer) for _ in range(num_layers)]
132
+ )
133
+ self.num_layers = num_layers
134
+
135
+ def forward(
136
+ self,
137
+ src: torch.Tensor,
138
+ mask: torch.Tensor = None,
139
+ src_key_padding_mask: torch.Tensor = None,
140
+ output_layer: Optional[int] = None,
141
+ ) -> torch.Tensor:
142
+ output = src
143
+ for layer in self.layers[:output_layer]:
144
+ output = layer(
145
+ output, src_mask=mask, src_key_padding_mask=src_key_padding_mask
146
+ )
147
+ return output
148
+
149
+
150
+ def _compute_mask(
151
+ shape: Tuple[int, int],
152
+ mask_prob: float,
153
+ mask_length: int,
154
+ device: torch.device,
155
+ min_masks: int = 0,
156
+ ) -> torch.Tensor:
157
+ batch_size, sequence_length = shape
158
+
159
+ if mask_length < 1:
160
+ raise ValueError("`mask_length` has to be bigger than 0.")
161
+
162
+ if mask_length > sequence_length:
163
+ raise ValueError(
164
+ f"`mask_length` has to be smaller than `sequence_length`, but got `mask_length`: {mask_length} and `sequence_length`: {sequence_length}`"
165
+ )
166
+
167
+ # compute number of masked spans in batch
168
+ num_masked_spans = int(mask_prob * sequence_length / mask_length + random.random())
169
+ num_masked_spans = max(num_masked_spans, min_masks)
170
+
171
+ # make sure num masked indices <= sequence_length
172
+ if num_masked_spans * mask_length > sequence_length:
173
+ num_masked_spans = sequence_length // mask_length
174
+
175
+ # SpecAugment mask to fill
176
+ mask = torch.zeros((batch_size, sequence_length), device=device, dtype=torch.bool)
177
+
178
+ # uniform distribution to sample from, make sure that offset samples are < sequence_length
179
+ uniform_dist = torch.ones(
180
+ (batch_size, sequence_length - (mask_length - 1)), device=device
181
+ )
182
+
183
+ # get random indices to mask
184
+ mask_indices = torch.multinomial(uniform_dist, num_masked_spans)
185
+
186
+ # expand masked indices to masked spans
187
+ mask_indices = (
188
+ mask_indices.unsqueeze(dim=-1)
189
+ .expand((batch_size, num_masked_spans, mask_length))
190
+ .reshape(batch_size, num_masked_spans * mask_length)
191
+ )
192
+ offsets = (
193
+ torch.arange(mask_length, device=device)[None, None, :]
194
+ .expand((batch_size, num_masked_spans, mask_length))
195
+ .reshape(batch_size, num_masked_spans * mask_length)
196
+ )
197
+ mask_idxs = mask_indices + offsets
198
+
199
+ # scatter indices to mask
200
+ mask = mask.scatter(1, mask_idxs, True)
201
+
202
+ return mask
203
+
204
+
205
+ def hubert_soft(
206
+ path: str,
207
+ ) -> HubertSoft:
208
+ r"""HuBERT-Soft from `"A Comparison of Discrete and Soft Speech Units for Improved Voice Conversion"`.
209
+ Args:
210
+ path (str): path of a pretrained model
211
+ """
212
+ hubert = HubertSoft()
213
+ checkpoint = torch.load(path)
214
+ consume_prefix_in_state_dict_if_present(checkpoint, "module.")
215
+ hubert.load_state_dict(checkpoint)
216
+ hubert.eval()
217
+ return hubert
hubert/put_hubert_ckpt_here ADDED
File without changes
hubert/whisper_phone_asr.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7f1d742befacdd04c7d6037ea8ac70c256c5971912289b0bce328684643a3036
3
+ size 17406081
inference/__init__.py ADDED
File without changes
inference/chunks_temp.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"info": "temp_dict"}
inference/infer_tool.py ADDED
@@ -0,0 +1,243 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import io
3
+ import json
4
+ import logging
5
+ import os
6
+ import time
7
+ from pathlib import Path
8
+ from inference import slicer
9
+
10
+ import librosa
11
+ import numpy as np
12
+ # import onnxruntime
13
+ import parselmouth
14
+ import soundfile
15
+ import torch
16
+ import torchaudio
17
+
18
+ import cluster
19
+ from hubert import hubert_model
20
+ import utils
21
+ from models import SynthesizerTrn
22
+
23
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
24
+
25
+
26
+ def read_temp(file_name):
27
+ if not os.path.exists(file_name):
28
+ with open(file_name, "w") as f:
29
+ f.write(json.dumps({"info": "temp_dict"}))
30
+ return {}
31
+ else:
32
+ try:
33
+ with open(file_name, "r") as f:
34
+ data = f.read()
35
+ data_dict = json.loads(data)
36
+ if os.path.getsize(file_name) > 50 * 1024 * 1024:
37
+ f_name = file_name.replace("\\", "/").split("/")[-1]
38
+ print(f"clean {f_name}")
39
+ for wav_hash in list(data_dict.keys()):
40
+ if int(time.time()) - int(data_dict[wav_hash]["time"]) > 14 * 24 * 3600:
41
+ del data_dict[wav_hash]
42
+ except Exception as e:
43
+ print(e)
44
+ print(f"{file_name} error,auto rebuild file")
45
+ data_dict = {"info": "temp_dict"}
46
+ return data_dict
47
+
48
+
49
+ def write_temp(file_name, data):
50
+ with open(file_name, "w") as f:
51
+ f.write(json.dumps(data))
52
+
53
+
54
+ def timeit(func):
55
+ def run(*args, **kwargs):
56
+ t = time.time()
57
+ res = func(*args, **kwargs)
58
+ print('executing \'%s\' costed %.3fs' % (func.__name__, time.time() - t))
59
+ return res
60
+
61
+ return run
62
+
63
+
64
+ def format_wav(audio_path):
65
+ if Path(audio_path).suffix == '.wav':
66
+ return
67
+ raw_audio, raw_sample_rate = librosa.load(audio_path, mono=True, sr=None)
68
+ soundfile.write(Path(audio_path).with_suffix(".wav"), raw_audio, raw_sample_rate)
69
+
70
+
71
+ def get_end_file(dir_path, end):
72
+ file_lists = []
73
+ for root, dirs, files in os.walk(dir_path):
74
+ files = [f for f in files if f[0] != '.']
75
+ dirs[:] = [d for d in dirs if d[0] != '.']
76
+ for f_file in files:
77
+ if f_file.endswith(end):
78
+ file_lists.append(os.path.join(root, f_file).replace("\\", "/"))
79
+ return file_lists
80
+
81
+
82
+ def get_md5(content):
83
+ return hashlib.new("md5", content).hexdigest()
84
+
85
+ def fill_a_to_b(a, b):
86
+ if len(a) < len(b):
87
+ for _ in range(0, len(b) - len(a)):
88
+ a.append(a[0])
89
+
90
+ def mkdir(paths: list):
91
+ for path in paths:
92
+ if not os.path.exists(path):
93
+ os.mkdir(path)
94
+
95
+ def pad_array(arr, target_length):
96
+ current_length = arr.shape[0]
97
+ if current_length >= target_length:
98
+ return arr
99
+ else:
100
+ pad_width = target_length - current_length
101
+ pad_left = pad_width // 2
102
+ pad_right = pad_width - pad_left
103
+ padded_arr = np.pad(arr, (pad_left, pad_right), 'constant', constant_values=(0, 0))
104
+ return padded_arr
105
+
106
+
107
+ class Svc(object):
108
+ def __init__(self, net_g_path, config_path,
109
+ device=None,
110
+ cluster_model_path="logs/44k/kmeans_10000.pt"):
111
+ self.net_g_path = net_g_path
112
+ if device is None:
113
+ self.dev = torch.device("cuda" if torch.cuda.is_available() else "cpu")
114
+ else:
115
+ self.dev = torch.device(device)
116
+ self.net_g_ms = None
117
+ self.hps_ms = utils.get_hparams_from_file(config_path)
118
+ self.target_sample = self.hps_ms.data.sampling_rate
119
+ self.hop_size = self.hps_ms.data.hop_length
120
+ self.spk2id = self.hps_ms.spk
121
+ # 加载hubert
122
+ self.hubert_model = utils.get_hubert_model().to(self.dev)
123
+ self.load_model()
124
+ if os.path.exists(cluster_model_path):
125
+ self.cluster_model = cluster.get_cluster_model(cluster_model_path)
126
+
127
+ def load_model(self):
128
+ # 获取模型配置
129
+ self.net_g_ms = SynthesizerTrn(
130
+ self.hps_ms
131
+ )
132
+ _ = utils.load_checkpoint(self.net_g_path, self.net_g_ms, None)
133
+ if "half" in self.net_g_path and torch.cuda.is_available():
134
+ _ = self.net_g_ms.half().eval().to(self.dev)
135
+ else:
136
+ _ = self.net_g_ms.eval().to(self.dev)
137
+
138
+
139
+
140
+ def get_unit_f0(self, in_path, tran, cluster_infer_ratio, speaker):
141
+
142
+ wav, sr = librosa.load(in_path, sr=self.target_sample)
143
+
144
+ f0 = utils.compute_f0_parselmouth(wav, sampling_rate=self.target_sample, hop_length=self.hop_size)
145
+ f0, uv = utils.interpolate_f0(f0)
146
+ f0 = torch.FloatTensor(f0)
147
+ uv = torch.FloatTensor(uv)
148
+ f0 = f0 * 2 ** (tran / 12)
149
+ f0 = f0.unsqueeze(0).to(self.dev)
150
+ uv = uv.unsqueeze(0).to(self.dev)
151
+
152
+ wav16k = librosa.resample(wav, orig_sr=self.target_sample, target_sr=16000)
153
+ wav16k = torch.from_numpy(wav16k).to(self.dev)
154
+ c = utils.get_hubert_content(self.hubert_model, wav_16k_tensor=wav16k)
155
+ c = utils.repeat_expand_2d(c.squeeze(0), f0.shape[1])
156
+
157
+ if cluster_infer_ratio !=0:
158
+ cluster_c = cluster.get_cluster_center_result(self.cluster_model, c.cpu().numpy().T, speaker).T
159
+ cluster_c = torch.FloatTensor(cluster_c).to(self.dev)
160
+ c = cluster_infer_ratio * cluster_c + (1 - cluster_infer_ratio) * c
161
+
162
+ c = c.unsqueeze(0)
163
+ return c, f0, uv
164
+
165
+ def infer(self, speaker, tran, raw_path,
166
+ cluster_infer_ratio=0,
167
+ auto_predict_f0=False,
168
+ noice_scale=0.4):
169
+ speaker_id = self.spk2id[speaker]
170
+ sid = torch.LongTensor([int(speaker_id)]).to(self.dev).unsqueeze(0)
171
+ c, f0, uv = self.get_unit_f0(raw_path, tran, cluster_infer_ratio, speaker)
172
+ if "half" in self.net_g_path and torch.cuda.is_available():
173
+ c = c.half()
174
+ with torch.no_grad():
175
+ start = time.time()
176
+ audio = self.net_g_ms.infer(c, f0=f0, g=sid, uv=uv, predict_f0=auto_predict_f0, noice_scale=noice_scale)[0][0,0].data.float()
177
+ use_time = time.time() - start
178
+ print("vits use time:{}".format(use_time))
179
+ return audio, audio.shape[-1]
180
+
181
+ def slice_inference(self,raw_audio_path, spk, tran, slice_db,cluster_infer_ratio, auto_predict_f0,noice_scale, pad_seconds=0.5):
182
+ wav_path = raw_audio_path
183
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
184
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
185
+
186
+ audio = []
187
+ for (slice_tag, data) in audio_data:
188
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
189
+ # padd
190
+ pad_len = int(audio_sr * pad_seconds)
191
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
192
+ length = int(np.ceil(len(data) / audio_sr * self.target_sample))
193
+ raw_path = io.BytesIO()
194
+ soundfile.write(raw_path, data, audio_sr, format="wav")
195
+ raw_path.seek(0)
196
+ if slice_tag:
197
+ print('jump empty segment')
198
+ _audio = np.zeros(length)
199
+ else:
200
+ out_audio, out_sr = self.infer(spk, tran, raw_path,
201
+ cluster_infer_ratio=cluster_infer_ratio,
202
+ auto_predict_f0=auto_predict_f0,
203
+ noice_scale=noice_scale
204
+ )
205
+ _audio = out_audio.cpu().numpy()
206
+
207
+ pad_len = int(self.target_sample * pad_seconds)
208
+ _audio = _audio[pad_len:-pad_len]
209
+ audio.extend(list(_audio))
210
+ return np.array(audio)
211
+
212
+
213
+ class RealTimeVC:
214
+ def __init__(self):
215
+ self.last_chunk = None
216
+ self.last_o = None
217
+ self.chunk_len = 16000 # 区块长度
218
+ self.pre_len = 3840 # 交叉淡化长度,640的倍数
219
+
220
+ """输入输出都是1维numpy 音频波形数组"""
221
+
222
+ def process(self, svc_model, speaker_id, f_pitch_change, input_wav_path):
223
+ import maad
224
+ audio, sr = torchaudio.load(input_wav_path)
225
+ audio = audio.cpu().numpy()[0]
226
+ temp_wav = io.BytesIO()
227
+ if self.last_chunk is None:
228
+ input_wav_path.seek(0)
229
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, input_wav_path)
230
+ audio = audio.cpu().numpy()
231
+ self.last_chunk = audio[-self.pre_len:]
232
+ self.last_o = audio
233
+ return audio[-self.chunk_len:]
234
+ else:
235
+ audio = np.concatenate([self.last_chunk, audio])
236
+ soundfile.write(temp_wav, audio, sr, format="wav")
237
+ temp_wav.seek(0)
238
+ audio, sr = svc_model.infer(speaker_id, f_pitch_change, temp_wav)
239
+ audio = audio.cpu().numpy()
240
+ ret = maad.util.crossfade(self.last_o, audio, self.pre_len)
241
+ self.last_chunk = audio[-self.pre_len:]
242
+ self.last_o = audio
243
+ return ret[self.chunk_len:2 * self.chunk_len]
inference/infer_tool_grad.py ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import hashlib
2
+ import json
3
+ import logging
4
+ import os
5
+ import time
6
+ from pathlib import Path
7
+ import io
8
+ import librosa
9
+ import maad
10
+ import numpy as np
11
+ from inference import slicer
12
+ import parselmouth
13
+ import soundfile
14
+ import torch
15
+ import torchaudio
16
+
17
+ from hubert import hubert_model
18
+ import utils
19
+ from models import SynthesizerTrn
20
+ logging.getLogger('numba').setLevel(logging.WARNING)
21
+ logging.getLogger('matplotlib').setLevel(logging.WARNING)
22
+
23
+ def resize2d_f0(x, target_len):
24
+ source = np.array(x)
25
+ source[source < 0.001] = np.nan
26
+ target = np.interp(np.arange(0, len(source) * target_len, len(source)) / target_len, np.arange(0, len(source)),
27
+ source)
28
+ res = np.nan_to_num(target)
29
+ return res
30
+
31
+ def get_f0(x, p_len,f0_up_key=0):
32
+
33
+ time_step = 160 / 16000 * 1000
34
+ f0_min = 50
35
+ f0_max = 1100
36
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
37
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
38
+
39
+ f0 = parselmouth.Sound(x, 16000).to_pitch_ac(
40
+ time_step=time_step / 1000, voicing_threshold=0.6,
41
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
42
+
43
+ pad_size=(p_len - len(f0) + 1) // 2
44
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
45
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
46
+
47
+ f0 *= pow(2, f0_up_key / 12)
48
+ f0_mel = 1127 * np.log(1 + f0 / 700)
49
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (f0_mel_max - f0_mel_min) + 1
50
+ f0_mel[f0_mel <= 1] = 1
51
+ f0_mel[f0_mel > 255] = 255
52
+ f0_coarse = np.rint(f0_mel).astype(np.int)
53
+ return f0_coarse, f0
54
+
55
+ def clean_pitch(input_pitch):
56
+ num_nan = np.sum(input_pitch == 1)
57
+ if num_nan / len(input_pitch) > 0.9:
58
+ input_pitch[input_pitch != 1] = 1
59
+ return input_pitch
60
+
61
+
62
+ def plt_pitch(input_pitch):
63
+ input_pitch = input_pitch.astype(float)
64
+ input_pitch[input_pitch == 1] = np.nan
65
+ return input_pitch
66
+
67
+
68
+ def f0_to_pitch(ff):
69
+ f0_pitch = 69 + 12 * np.log2(ff / 440)
70
+ return f0_pitch
71
+
72
+
73
+ def fill_a_to_b(a, b):
74
+ if len(a) < len(b):
75
+ for _ in range(0, len(b) - len(a)):
76
+ a.append(a[0])
77
+
78
+
79
+ def mkdir(paths: list):
80
+ for path in paths:
81
+ if not os.path.exists(path):
82
+ os.mkdir(path)
83
+
84
+
85
+ class VitsSvc(object):
86
+ def __init__(self):
87
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
88
+ self.SVCVITS = None
89
+ self.hps = None
90
+ self.speakers = None
91
+ self.hubert_soft = utils.get_hubert_model()
92
+
93
+ def set_device(self, device):
94
+ self.device = torch.device(device)
95
+ self.hubert_soft.to(self.device)
96
+ if self.SVCVITS != None:
97
+ self.SVCVITS.to(self.device)
98
+
99
+ def loadCheckpoint(self, path):
100
+ self.hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
101
+ self.SVCVITS = SynthesizerTrn(
102
+ self.hps.data.filter_length // 2 + 1,
103
+ self.hps.train.segment_size // self.hps.data.hop_length,
104
+ **self.hps.model)
105
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", self.SVCVITS, None)
106
+ _ = self.SVCVITS.eval().to(self.device)
107
+ self.speakers = self.hps.spk
108
+
109
+ def get_units(self, source, sr):
110
+ source = source.unsqueeze(0).to(self.device)
111
+ with torch.inference_mode():
112
+ units = self.hubert_soft.units(source)
113
+ return units
114
+
115
+
116
+ def get_unit_pitch(self, in_path, tran):
117
+ source, sr = torchaudio.load(in_path)
118
+ source = torchaudio.functional.resample(source, sr, 16000)
119
+ if len(source.shape) == 2 and source.shape[1] >= 2:
120
+ source = torch.mean(source, dim=0).unsqueeze(0)
121
+ soft = self.get_units(source, sr).squeeze(0).cpu().numpy()
122
+ f0_coarse, f0 = get_f0(source.cpu().numpy()[0], soft.shape[0]*2, tran)
123
+ return soft, f0
124
+
125
+ def infer(self, speaker_id, tran, raw_path):
126
+ speaker_id = self.speakers[speaker_id]
127
+ sid = torch.LongTensor([int(speaker_id)]).to(self.device).unsqueeze(0)
128
+ soft, pitch = self.get_unit_pitch(raw_path, tran)
129
+ f0 = torch.FloatTensor(clean_pitch(pitch)).unsqueeze(0).to(self.device)
130
+ stn_tst = torch.FloatTensor(soft)
131
+ with torch.no_grad():
132
+ x_tst = stn_tst.unsqueeze(0).to(self.device)
133
+ x_tst = torch.repeat_interleave(x_tst, repeats=2, dim=1).transpose(1, 2)
134
+ audio = self.SVCVITS.infer(x_tst, f0=f0, g=sid)[0,0].data.float()
135
+ return audio, audio.shape[-1]
136
+
137
+ def inference(self,srcaudio,chara,tran,slice_db):
138
+ sampling_rate, audio = srcaudio
139
+ audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
140
+ if len(audio.shape) > 1:
141
+ audio = librosa.to_mono(audio.transpose(1, 0))
142
+ if sampling_rate != 16000:
143
+ audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
144
+ soundfile.write("tmpwav.wav", audio, 16000, format="wav")
145
+ chunks = slicer.cut("tmpwav.wav", db_thresh=slice_db)
146
+ audio_data, audio_sr = slicer.chunks2audio("tmpwav.wav", chunks)
147
+ audio = []
148
+ for (slice_tag, data) in audio_data:
149
+ length = int(np.ceil(len(data) / audio_sr * self.hps.data.sampling_rate))
150
+ raw_path = io.BytesIO()
151
+ soundfile.write(raw_path, data, audio_sr, format="wav")
152
+ raw_path.seek(0)
153
+ if slice_tag:
154
+ _audio = np.zeros(length)
155
+ else:
156
+ out_audio, out_sr = self.infer(chara, tran, raw_path)
157
+ _audio = out_audio.cpu().numpy()
158
+ audio.extend(list(_audio))
159
+ audio = (np.array(audio) * 32768.0).astype('int16')
160
+ return (self.hps.data.sampling_rate,audio)
inference/slicer.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import librosa
2
+ import torch
3
+ import torchaudio
4
+
5
+
6
+ class Slicer:
7
+ def __init__(self,
8
+ sr: int,
9
+ threshold: float = -40.,
10
+ min_length: int = 5000,
11
+ min_interval: int = 300,
12
+ hop_size: int = 20,
13
+ max_sil_kept: int = 5000):
14
+ if not min_length >= min_interval >= hop_size:
15
+ raise ValueError('The following condition must be satisfied: min_length >= min_interval >= hop_size')
16
+ if not max_sil_kept >= hop_size:
17
+ raise ValueError('The following condition must be satisfied: max_sil_kept >= hop_size')
18
+ min_interval = sr * min_interval / 1000
19
+ self.threshold = 10 ** (threshold / 20.)
20
+ self.hop_size = round(sr * hop_size / 1000)
21
+ self.win_size = min(round(min_interval), 4 * self.hop_size)
22
+ self.min_length = round(sr * min_length / 1000 / self.hop_size)
23
+ self.min_interval = round(min_interval / self.hop_size)
24
+ self.max_sil_kept = round(sr * max_sil_kept / 1000 / self.hop_size)
25
+
26
+ def _apply_slice(self, waveform, begin, end):
27
+ if len(waveform.shape) > 1:
28
+ return waveform[:, begin * self.hop_size: min(waveform.shape[1], end * self.hop_size)]
29
+ else:
30
+ return waveform[begin * self.hop_size: min(waveform.shape[0], end * self.hop_size)]
31
+
32
+ # @timeit
33
+ def slice(self, waveform):
34
+ if len(waveform.shape) > 1:
35
+ samples = librosa.to_mono(waveform)
36
+ else:
37
+ samples = waveform
38
+ if samples.shape[0] <= self.min_length:
39
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
40
+ rms_list = librosa.feature.rms(y=samples, frame_length=self.win_size, hop_length=self.hop_size).squeeze(0)
41
+ sil_tags = []
42
+ silence_start = None
43
+ clip_start = 0
44
+ for i, rms in enumerate(rms_list):
45
+ # Keep looping while frame is silent.
46
+ if rms < self.threshold:
47
+ # Record start of silent frames.
48
+ if silence_start is None:
49
+ silence_start = i
50
+ continue
51
+ # Keep looping while frame is not silent and silence start has not been recorded.
52
+ if silence_start is None:
53
+ continue
54
+ # Clear recorded silence start if interval is not enough or clip is too short
55
+ is_leading_silence = silence_start == 0 and i > self.max_sil_kept
56
+ need_slice_middle = i - silence_start >= self.min_interval and i - clip_start >= self.min_length
57
+ if not is_leading_silence and not need_slice_middle:
58
+ silence_start = None
59
+ continue
60
+ # Need slicing. Record the range of silent frames to be removed.
61
+ if i - silence_start <= self.max_sil_kept:
62
+ pos = rms_list[silence_start: i + 1].argmin() + silence_start
63
+ if silence_start == 0:
64
+ sil_tags.append((0, pos))
65
+ else:
66
+ sil_tags.append((pos, pos))
67
+ clip_start = pos
68
+ elif i - silence_start <= self.max_sil_kept * 2:
69
+ pos = rms_list[i - self.max_sil_kept: silence_start + self.max_sil_kept + 1].argmin()
70
+ pos += i - self.max_sil_kept
71
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
72
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
73
+ if silence_start == 0:
74
+ sil_tags.append((0, pos_r))
75
+ clip_start = pos_r
76
+ else:
77
+ sil_tags.append((min(pos_l, pos), max(pos_r, pos)))
78
+ clip_start = max(pos_r, pos)
79
+ else:
80
+ pos_l = rms_list[silence_start: silence_start + self.max_sil_kept + 1].argmin() + silence_start
81
+ pos_r = rms_list[i - self.max_sil_kept: i + 1].argmin() + i - self.max_sil_kept
82
+ if silence_start == 0:
83
+ sil_tags.append((0, pos_r))
84
+ else:
85
+ sil_tags.append((pos_l, pos_r))
86
+ clip_start = pos_r
87
+ silence_start = None
88
+ # Deal with trailing silence.
89
+ total_frames = rms_list.shape[0]
90
+ if silence_start is not None and total_frames - silence_start >= self.min_interval:
91
+ silence_end = min(total_frames, silence_start + self.max_sil_kept)
92
+ pos = rms_list[silence_start: silence_end + 1].argmin() + silence_start
93
+ sil_tags.append((pos, total_frames + 1))
94
+ # Apply and return slices.
95
+ if len(sil_tags) == 0:
96
+ return {"0": {"slice": False, "split_time": f"0,{len(waveform)}"}}
97
+ else:
98
+ chunks = []
99
+ # 第一段静音并非从头开始,补上有声片段
100
+ if sil_tags[0][0]:
101
+ chunks.append(
102
+ {"slice": False, "split_time": f"0,{min(waveform.shape[0], sil_tags[0][0] * self.hop_size)}"})
103
+ for i in range(0, len(sil_tags)):
104
+ # 标识有声片段(跳过第一段)
105
+ if i:
106
+ chunks.append({"slice": False,
107
+ "split_time": f"{sil_tags[i - 1][1] * self.hop_size},{min(waveform.shape[0], sil_tags[i][0] * self.hop_size)}"})
108
+ # 标识所有静音片段
109
+ chunks.append({"slice": True,
110
+ "split_time": f"{sil_tags[i][0] * self.hop_size},{min(waveform.shape[0], sil_tags[i][1] * self.hop_size)}"})
111
+ # 最后一段静音并非结尾,补上结尾片段
112
+ if sil_tags[-1][1] * self.hop_size < len(waveform):
113
+ chunks.append({"slice": False, "split_time": f"{sil_tags[-1][1] * self.hop_size},{len(waveform)}"})
114
+ chunk_dict = {}
115
+ for i in range(len(chunks)):
116
+ chunk_dict[str(i)] = chunks[i]
117
+ return chunk_dict
118
+
119
+
120
+ def cut(audio_path, db_thresh=-30, min_len=5000):
121
+ audio, sr = librosa.load(audio_path, sr=None)
122
+ slicer = Slicer(
123
+ sr=sr,
124
+ threshold=db_thresh,
125
+ min_length=min_len
126
+ )
127
+ chunks = slicer.slice(audio)
128
+ return chunks
129
+
130
+
131
+ def chunks2audio(audio_path, chunks):
132
+ chunks = dict(chunks)
133
+ audio, sr = torchaudio.load(audio_path)
134
+ if len(audio.shape) == 2 and audio.shape[1] >= 2:
135
+ audio = torch.mean(audio, dim=0).unsqueeze(0)
136
+ audio = audio.cpu().numpy()[0]
137
+ result = []
138
+ for k, v in chunks.items():
139
+ tag = v["split_time"].split(",")
140
+ if tag[0] != tag[1]:
141
+ result.append((v["slice"], audio[int(tag[0]):int(tag[1])]))
142
+ return result, sr
inference_main.py ADDED
@@ -0,0 +1,101 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import io
2
+ import logging
3
+ import time
4
+ from pathlib import Path
5
+
6
+ import librosa
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ import soundfile
10
+
11
+ from inference import infer_tool
12
+ from inference import slicer
13
+ from inference.infer_tool import Svc
14
+
15
+ logging.getLogger('numba').setLevel(logging.WARNING)
16
+ chunks_dict = infer_tool.read_temp("inference/chunks_temp.json")
17
+
18
+
19
+
20
+ def main():
21
+ import argparse
22
+
23
+ parser = argparse.ArgumentParser(description='sovits4 inference')
24
+
25
+ # 一定要设置的部分
26
+ parser.add_argument('-m', '--model_path', type=str, default="/Volumes/Extend/下载/cvecG_23000.pth", help='模型路径')
27
+ parser.add_argument('-c', '--config_path', type=str, default="configs/config.json", help='配置文件路径')
28
+ parser.add_argument('-n', '--clean_names', type=str, nargs='+', default=["君の知らない物語-src.wav"], help='wav文件名列表,放在raw文件夹下')
29
+ parser.add_argument('-t', '--trans', type=int, nargs='+', default=[-5], help='音高调整,支持正负(半音)')
30
+ parser.add_argument('-s', '--spk_list', type=str, nargs='+', default=['yunhao'], help='合成目标说话人名称')
31
+
32
+ # 可选项部分
33
+ parser.add_argument('-a', '--auto_predict_f0', action='store_true', default=False,
34
+ help='语音转换自动预测音高,转换歌声时不要打开这个会严重跑调')
35
+ parser.add_argument('-cm', '--cluster_model_path', type=str, default="logs/44k/kmeans_10000.pt", help='聚类模型路径,如果没有训练聚类则随便填')
36
+ parser.add_argument('-cr', '--cluster_infer_ratio', type=float, default=0, help='聚类方案占比,范围0-1,若没有训练聚类模型则填0即可')
37
+
38
+ # 不用动的部分
39
+ parser.add_argument('-sd', '--slice_db', type=int, default=-40, help='默认-40,嘈杂的音频可以-30,干声保留呼吸可以-50')
40
+ parser.add_argument('-d', '--device', type=str, default=None, help='推理设备,None则为自动选择cpu和gpu')
41
+ parser.add_argument('-ns', '--noice_scale', type=float, default=0.4, help='噪音级别,会影响咬字和音质,较为玄学')
42
+ parser.add_argument('-p', '--pad_seconds', type=float, default=0.5, help='推理音频pad秒数,由于未知原因开头结尾会有异响,pad一小段静音段后就不会出现')
43
+ parser.add_argument('-wf', '--wav_format', type=str, default='flac', help='音频输出格式')
44
+
45
+ args = parser.parse_args()
46
+
47
+ svc_model = Svc(args.model_path, args.config_path, args.device, args.cluster_model_path)
48
+ infer_tool.mkdir(["raw", "results"])
49
+ clean_names = args.clean_names
50
+ trans = args.trans
51
+ spk_list = args.spk_list
52
+ slice_db = args.slice_db
53
+ wav_format = args.wav_format
54
+ auto_predict_f0 = args.auto_predict_f0
55
+ cluster_infer_ratio = args.cluster_infer_ratio
56
+ noice_scale = args.noice_scale
57
+ pad_seconds = args.pad_seconds
58
+
59
+ infer_tool.fill_a_to_b(trans, clean_names)
60
+ for clean_name, tran in zip(clean_names, trans):
61
+ raw_audio_path = f"raw/{clean_name}"
62
+ if "." not in raw_audio_path:
63
+ raw_audio_path += ".wav"
64
+ infer_tool.format_wav(raw_audio_path)
65
+ wav_path = Path(raw_audio_path).with_suffix('.wav')
66
+ chunks = slicer.cut(wav_path, db_thresh=slice_db)
67
+ audio_data, audio_sr = slicer.chunks2audio(wav_path, chunks)
68
+
69
+ for spk in spk_list:
70
+ audio = []
71
+ for (slice_tag, data) in audio_data:
72
+ print(f'#=====segment start, {round(len(data) / audio_sr, 3)}s======')
73
+
74
+ length = int(np.ceil(len(data) / audio_sr * svc_model.target_sample))
75
+ if slice_tag:
76
+ print('jump empty segment')
77
+ _audio = np.zeros(length)
78
+ else:
79
+ # padd
80
+ pad_len = int(audio_sr * pad_seconds)
81
+ data = np.concatenate([np.zeros([pad_len]), data, np.zeros([pad_len])])
82
+ raw_path = io.BytesIO()
83
+ soundfile.write(raw_path, data, audio_sr, format="wav")
84
+ raw_path.seek(0)
85
+ out_audio, out_sr = svc_model.infer(spk, tran, raw_path,
86
+ cluster_infer_ratio=cluster_infer_ratio,
87
+ auto_predict_f0=auto_predict_f0,
88
+ noice_scale=noice_scale
89
+ )
90
+ _audio = out_audio.cpu().numpy()
91
+ pad_len = int(svc_model.target_sample * pad_seconds)
92
+ _audio = _audio[pad_len:-pad_len]
93
+
94
+ audio.extend(list(infer_tool.pad_array(_audio, length)))
95
+ key = "auto" if auto_predict_f0 else f"{tran}key"
96
+ cluster_name = "" if cluster_infer_ratio == 0 else f"_{cluster_infer_ratio}"
97
+ res_path = f'./results/{clean_name}_{key}_{spk}{cluster_name}.{wav_format}'
98
+ soundfile.write(res_path, audio, svc_model.target_sample, format=wav_format)
99
+
100
+ if __name__ == '__main__':
101
+ main()
logs/44k/put_pretrained_model_here ADDED
File without changes
models.py ADDED
@@ -0,0 +1,1060 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sys
2
+ import copy
3
+ import math
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
8
+ from torch.nn.utils import weight_norm, remove_weight_norm, spectral_norm
9
+
10
+
11
+ sys.path.append('../..')
12
+ import modules.commons as commons
13
+ import modules.modules as modules
14
+ import modules.attentions as attentions
15
+
16
+ from modules.commons import init_weights, get_padding
17
+
18
+ from modules.ddsp import mlp, gru, scale_function, remove_above_nyquist, upsample
19
+ from modules.ddsp import harmonic_synth, amp_to_impulse_response, fft_convolve
20
+ from modules.ddsp import resample
21
+ import utils
22
+
23
+ from modules.stft import TorchSTFT
24
+
25
+ import torch.distributions as D
26
+
27
+ from modules.losses import (
28
+ generator_loss,
29
+ discriminator_loss,
30
+ feature_loss,
31
+ kl_loss
32
+ )
33
+
34
+ LRELU_SLOPE = 0.1
35
+
36
+
37
+ class PostF0Decoder(nn.Module):
38
+ def __init__(self, in_channels, filter_channels, kernel_size, p_dropout, spk_channels=0):
39
+ super().__init__()
40
+
41
+ self.in_channels = in_channels
42
+ self.filter_channels = filter_channels
43
+ self.kernel_size = kernel_size
44
+ self.p_dropout = p_dropout
45
+ self.gin_channels = spk_channels
46
+
47
+ self.drop = nn.Dropout(p_dropout)
48
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size, padding=kernel_size // 2)
49
+ self.norm_1 = modules.LayerNorm(filter_channels)
50
+ self.conv_2 = nn.Conv1d(filter_channels, filter_channels, kernel_size, padding=kernel_size // 2)
51
+ self.norm_2 = modules.LayerNorm(filter_channels)
52
+ self.proj = nn.Conv1d(filter_channels, 1, 1)
53
+
54
+ if spk_channels != 0:
55
+ self.cond = nn.Conv1d(spk_channels, in_channels, 1)
56
+
57
+ def forward(self, x, x_mask, g=None):
58
+ x = torch.detach(x)
59
+ if g is not None:
60
+ g = torch.detach(g)
61
+ x = x + self.cond(g)
62
+ x = self.conv_1(x * x_mask)
63
+ x = torch.relu(x)
64
+ x = self.norm_1(x)
65
+ x = self.drop(x)
66
+ x = self.conv_2(x * x_mask)
67
+ x = torch.relu(x)
68
+ x = self.norm_2(x)
69
+ x = self.drop(x)
70
+ x = self.proj(x * x_mask)
71
+ return x * x_mask
72
+
73
+
74
+ class TextEncoder(nn.Module):
75
+ def __init__(self,
76
+ c_dim,
77
+ out_channels,
78
+ hidden_channels,
79
+ filter_channels,
80
+ n_heads,
81
+ n_layers,
82
+ kernel_size,
83
+ p_dropout):
84
+ super().__init__()
85
+ self.out_channels = out_channels
86
+ self.hidden_channels = hidden_channels
87
+ self.filter_channels = filter_channels
88
+ self.n_heads = n_heads
89
+ self.n_layers = n_layers
90
+ self.kernel_size = kernel_size
91
+ self.p_dropout = p_dropout
92
+
93
+ self.pre_net = torch.nn.Linear(c_dim, hidden_channels)
94
+
95
+ self.encoder = attentions.Encoder(
96
+ hidden_channels,
97
+ filter_channels,
98
+ n_heads,
99
+ n_layers,
100
+ kernel_size,
101
+ p_dropout)
102
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
103
+
104
+ def forward(self, x, x_lengths):
105
+ x = x.transpose(1,-1)
106
+ x = self.pre_net(x)
107
+ x = torch.transpose(x, 1, -1) # [b, h, t]
108
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
109
+ x = self.encoder(x * x_mask, x_mask)
110
+ x = self.proj(x) * x_mask
111
+ return x, x_mask
112
+
113
+
114
+ def pad_v2(input_ele, mel_max_length=None):
115
+ if mel_max_length:
116
+ max_len = mel_max_length
117
+ else:
118
+ max_len = max([input_ele[i].size(0) for i in range(len(input_ele))])
119
+
120
+ out_list = list()
121
+ for i, batch in enumerate(input_ele):
122
+ if len(batch.shape) == 1:
123
+ one_batch_padded = F.pad(
124
+ batch, (0, max_len - batch.size(0)), "constant", 0.0
125
+ )
126
+ elif len(batch.shape) == 2:
127
+ one_batch_padded = F.pad(
128
+ batch, (0, 0, 0, max_len - batch.size(0)), "constant", 0.0
129
+ )
130
+ out_list.append(one_batch_padded)
131
+ out_padded = torch.stack(out_list)
132
+ return out_padded
133
+
134
+
135
+ class LengthRegulator(nn.Module):
136
+ """ Length Regulator """
137
+
138
+ def __init__(self):
139
+ super(LengthRegulator, self).__init__()
140
+
141
+ def LR(self, x, duration, max_len):
142
+ x = torch.transpose(x, 1, 2)
143
+ output = list()
144
+ mel_len = list()
145
+ for batch, expand_target in zip(x, duration):
146
+ expanded = self.expand(batch, expand_target)
147
+ output.append(expanded)
148
+ mel_len.append(expanded.shape[0])
149
+
150
+ if max_len is not None:
151
+ output = pad_v2(output, max_len)
152
+ else:
153
+ output = pad_v2(output)
154
+ output = torch.transpose(output, 1, 2)
155
+ return output, torch.LongTensor(mel_len)
156
+
157
+ def expand(self, batch, predicted):
158
+ predicted = torch.squeeze(predicted)
159
+ out = list()
160
+
161
+ for i, vec in enumerate(batch):
162
+ expand_size = predicted[i].item()
163
+ state_info_index = torch.unsqueeze(torch.arange(0, expand_size), 1).float()
164
+ state_info_length = torch.unsqueeze(torch.Tensor([expand_size] * expand_size), 1).float()
165
+ state_info = torch.cat([state_info_index, state_info_length], 1).to(vec.device)
166
+ new_vec = vec.expand(max(int(expand_size), 0), -1)
167
+ new_vec = torch.cat([new_vec, state_info], 1)
168
+ out.append(new_vec)
169
+ out = torch.cat(out, 0)
170
+ return out
171
+
172
+ def forward(self, x, duration, max_len):
173
+ output, mel_len = self.LR(x, duration, max_len)
174
+ return output, mel_len
175
+
176
+
177
+ class PriorDecoder(nn.Module):
178
+ def __init__(self,
179
+ out_bn_channels,
180
+ hidden_channels,
181
+ filter_channels,
182
+ n_heads,
183
+ n_layers,
184
+ kernel_size,
185
+ p_dropout,
186
+ n_speakers=0,
187
+ spk_channels=0):
188
+ super().__init__()
189
+ self.out_bn_channels = out_bn_channels
190
+ self.hidden_channels = hidden_channels
191
+ self.filter_channels = filter_channels
192
+ self.n_heads = n_heads
193
+ self.n_layers = n_layers
194
+ self.kernel_size = kernel_size
195
+ self.p_dropout = p_dropout
196
+ self.spk_channels = spk_channels
197
+
198
+ self.prenet = nn.Conv1d(hidden_channels , hidden_channels, 3, padding=1)
199
+ self.decoder = attentions.FFT(
200
+ hidden_channels,
201
+ filter_channels,
202
+ n_heads,
203
+ n_layers,
204
+ kernel_size,
205
+ p_dropout)
206
+ self.proj = nn.Conv1d(hidden_channels, out_bn_channels, 1)
207
+
208
+ if n_speakers != 0:
209
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
210
+
211
+ def forward(self, x, x_lengths, spk_emb=None):
212
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
213
+
214
+ x = self.prenet(x) * x_mask
215
+
216
+ if (spk_emb is not None):
217
+ x = x + self.cond(spk_emb)
218
+
219
+ x = self.decoder(x * x_mask, x_mask)
220
+
221
+ bn = self.proj(x) * x_mask
222
+
223
+ return bn, x_mask
224
+
225
+
226
+ class Decoder(nn.Module):
227
+ def __init__(self,
228
+ out_channels,
229
+ hidden_channels,
230
+ filter_channels,
231
+ n_heads,
232
+ n_layers,
233
+ kernel_size,
234
+ p_dropout,
235
+ n_speakers=0,
236
+ spk_channels=0,
237
+ in_channels=None):
238
+ super().__init__()
239
+ self.out_channels = out_channels
240
+ self.hidden_channels = hidden_channels
241
+ self.filter_channels = filter_channels
242
+ self.n_heads = n_heads
243
+ self.n_layers = n_layers
244
+ self.kernel_size = kernel_size
245
+ self.p_dropout = p_dropout
246
+ self.spk_channels = spk_channels
247
+
248
+ self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1)
249
+ self.decoder = attentions.FFT(
250
+ hidden_channels,
251
+ filter_channels,
252
+ n_heads,
253
+ n_layers,
254
+ kernel_size,
255
+ p_dropout)
256
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
257
+
258
+ if n_speakers != 0:
259
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
260
+
261
+ def forward(self, x, x_lengths, spk_emb=None):
262
+ x = torch.detach(x)
263
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
264
+
265
+ x = self.prenet(x) * x_mask
266
+
267
+ if (spk_emb is not None):
268
+ x = x + self.cond(spk_emb)
269
+
270
+ x = self.decoder(x * x_mask, x_mask)
271
+
272
+ x = self.proj(x) * x_mask
273
+
274
+ return x, x_mask
275
+
276
+ class F0Decoder(nn.Module):
277
+ def __init__(self,
278
+ out_channels,
279
+ hidden_channels,
280
+ filter_channels,
281
+ n_heads,
282
+ n_layers,
283
+ kernel_size,
284
+ p_dropout,
285
+ n_speakers=0,
286
+ spk_channels=0,
287
+ in_channels=None):
288
+ super().__init__()
289
+ self.out_channels = out_channels
290
+ self.hidden_channels = hidden_channels
291
+ self.filter_channels = filter_channels
292
+ self.n_heads = n_heads
293
+ self.n_layers = n_layers
294
+ self.kernel_size = kernel_size
295
+ self.p_dropout = p_dropout
296
+ self.spk_channels = spk_channels
297
+
298
+ self.prenet = nn.Conv1d(in_channels if in_channels is not None else hidden_channels, hidden_channels, 3, padding=1)
299
+ self.decoder = attentions.FFT(
300
+ hidden_channels,
301
+ filter_channels,
302
+ n_heads,
303
+ n_layers,
304
+ kernel_size,
305
+ p_dropout)
306
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
307
+ self.f0_prenet = nn.Conv1d(1, hidden_channels , 3, padding=1)
308
+
309
+ if n_speakers != 0:
310
+ self.cond = nn.Conv1d(spk_channels, hidden_channels, 1)
311
+
312
+ def forward(self, x, norm_f0, x_lengths, spk_emb=None):
313
+ x = torch.detach(x)
314
+ x += self.f0_prenet(norm_f0)
315
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
316
+
317
+ x = self.prenet(x) * x_mask
318
+
319
+ if (spk_emb is not None):
320
+ x = x + self.cond(spk_emb)
321
+
322
+ x = self.decoder(x * x_mask, x_mask)
323
+
324
+ x = self.proj(x) * x_mask
325
+
326
+ return x, x_mask
327
+
328
+
329
+ class ConvReluNorm(nn.Module):
330
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
331
+ super().__init__()
332
+ self.in_channels = in_channels
333
+ self.hidden_channels = hidden_channels
334
+ self.out_channels = out_channels
335
+ self.kernel_size = kernel_size
336
+ self.n_layers = n_layers
337
+ self.p_dropout = p_dropout
338
+ assert n_layers > 1, "Number of layers should be larger than 0."
339
+
340
+ self.conv_layers = nn.ModuleList()
341
+ self.norm_layers = nn.ModuleList()
342
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
343
+ self.norm_layers.append(LayerNorm(hidden_channels))
344
+ self.relu_drop = nn.Sequential(
345
+ nn.ReLU(),
346
+ nn.Dropout(p_dropout))
347
+ for _ in range(n_layers - 1):
348
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
349
+ self.norm_layers.append(LayerNorm(hidden_channels))
350
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
351
+ self.proj.weight.data.zero_()
352
+ self.proj.bias.data.zero_()
353
+
354
+ def forward(self, x):
355
+ x = self.conv_layers[0](x)
356
+ x = self.norm_layers[0](x)
357
+ x = self.relu_drop(x)
358
+
359
+ for i in range(1, self.n_layers):
360
+ x_ = self.conv_layers[i](x)
361
+ x_ = self.norm_layers[i](x_)
362
+ x_ = self.relu_drop(x_)
363
+ x = (x + x_) / 2
364
+ x = self.proj(x)
365
+ return x
366
+
367
+
368
+ class PosteriorEncoder(nn.Module):
369
+ def __init__(self,
370
+ hps,
371
+ in_channels,
372
+ out_channels,
373
+ hidden_channels,
374
+ kernel_size,
375
+ dilation_rate,
376
+ n_layers):
377
+ super().__init__()
378
+ self.in_channels = in_channels
379
+ self.out_channels = out_channels
380
+ self.hidden_channels = hidden_channels
381
+ self.kernel_size = kernel_size
382
+ self.dilation_rate = dilation_rate
383
+ self.n_layers = n_layers
384
+
385
+ self.pre = nn.Conv1d(in_channels, hidden_channels, 1)
386
+ self.enc = modules.WN(hidden_channels, kernel_size, dilation_rate, n_layers, n_speakers=hps.data.n_speakers, spk_channels=hps.model.spk_channels)
387
+ # self.enc = ConvReluNorm(hidden_channels,
388
+ # hidden_channels,
389
+ # hidden_channels,
390
+ # kernel_size,
391
+ # n_layers,
392
+ # 0.1)
393
+ self.proj = nn.Conv1d(hidden_channels, out_channels * 2, 1)
394
+
395
+ def forward(self, x, x_lengths, g=None):
396
+ x_mask = torch.unsqueeze(commons.sequence_mask(x_lengths, x.size(2)), 1).to(x.dtype)
397
+ x = self.pre(x) * x_mask
398
+ x = self.enc(x, x_mask, g=g)
399
+ stats = self.proj(x) * x_mask
400
+ return stats, x_mask
401
+
402
+
403
+ class ResBlock3(torch.nn.Module):
404
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
405
+ super(ResBlock3, self).__init__()
406
+ self.convs = nn.ModuleList([
407
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
408
+ padding=get_padding(kernel_size, dilation[0])))
409
+ ])
410
+ self.convs.apply(init_weights)
411
+
412
+ def forward(self, x, x_mask=None):
413
+ for c in self.convs:
414
+ xt = F.leaky_relu(x, LRELU_SLOPE)
415
+ if x_mask is not None:
416
+ xt = xt * x_mask
417
+ xt = c(xt)
418
+ x = xt + x
419
+ if x_mask is not None:
420
+ x = x * x_mask
421
+ return x
422
+
423
+ def remove_weight_norm(self):
424
+ for l in self.convs:
425
+ remove_weight_norm(l)
426
+
427
+
428
+ class Generator_Harm(torch.nn.Module):
429
+ def __init__(self, hps):
430
+ super(Generator_Harm, self).__init__()
431
+ self.hps = hps
432
+
433
+ self.prenet = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1)
434
+
435
+ self.net = ConvReluNorm(hps.model.hidden_channels,
436
+ hps.model.hidden_channels,
437
+ hps.model.hidden_channels,
438
+ hps.model.kernel_size,
439
+ 8,
440
+ hps.model.p_dropout)
441
+
442
+ # self.rnn = nn.LSTM(input_size=hps.model.hidden_channels,
443
+ # hidden_size=hps.model.hidden_channels,
444
+ # num_layers=1,
445
+ # bias=True,
446
+ # batch_first=True,
447
+ # dropout=0.5,
448
+ # bidirectional=True)
449
+ self.postnet = Conv1d(hps.model.hidden_channels, hps.model.n_harmonic + 1, 3, padding=1)
450
+
451
+ def forward(self, f0, harm, mask):
452
+ pitch = f0.transpose(1, 2)
453
+ harm = self.prenet(harm)
454
+
455
+ harm = self.net(harm) * mask
456
+ # harm = harm.transpose(1, 2)
457
+ # harm, (hs, hc) = self.rnn(harm)
458
+ # harm = harm.transpose(1, 2)
459
+
460
+ harm = self.postnet(harm)
461
+ harm = harm.transpose(1, 2)
462
+ param = harm
463
+
464
+ param = scale_function(param)
465
+ total_amp = param[..., :1]
466
+ amplitudes = param[..., 1:]
467
+ amplitudes = remove_above_nyquist(
468
+ amplitudes,
469
+ pitch,
470
+ self.hps.data.sampling_rate,
471
+ )
472
+ amplitudes /= amplitudes.sum(-1, keepdim=True)
473
+ amplitudes *= total_amp
474
+
475
+ amplitudes = upsample(amplitudes, self.hps.data.hop_length)
476
+ pitch = upsample(pitch, self.hps.data.hop_length)
477
+
478
+ n_harmonic = amplitudes.shape[-1]
479
+ omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
480
+ omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
481
+ signal_harmonics = (torch.sin(omegas) * amplitudes)
482
+ signal_harmonics = signal_harmonics.transpose(1, 2)
483
+ return signal_harmonics
484
+
485
+
486
+ class Generator(torch.nn.Module):
487
+ def __init__(self, hps, initial_channel, resblock, resblock_kernel_sizes, resblock_dilation_sizes, upsample_rates,
488
+ upsample_initial_channel, upsample_kernel_sizes, n_speakers=0, spk_channels=0):
489
+ super(Generator, self).__init__()
490
+ self.num_kernels = len(resblock_kernel_sizes)
491
+ self.num_upsamples = len(upsample_rates)
492
+ self.conv_pre = Conv1d(initial_channel, upsample_initial_channel, 7, 1, padding=3)
493
+ self.upsample_rates = upsample_rates
494
+ self.n_speakers = n_speakers
495
+
496
+ resblock = modules.ResBlock1 if resblock == '1' else modules.R
497
+
498
+ self.downs = nn.ModuleList()
499
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
500
+ i = len(upsample_rates) - 1 - i
501
+ u = upsample_rates[i]
502
+ k = upsample_kernel_sizes[i]
503
+ # print("down: ",upsample_initial_channel//(2**(i+1))," -> ", upsample_initial_channel//(2**i))
504
+ self.downs.append(weight_norm(
505
+ Conv1d(hps.model.n_harmonic + 2, hps.model.n_harmonic + 2,
506
+ k, u, padding=k // 2)))
507
+
508
+ self.resblocks_downs = nn.ModuleList()
509
+ for i in range(len(self.downs)):
510
+ j = len(upsample_rates) - 1 - i
511
+ self.resblocks_downs.append(ResBlock3(hps.model.n_harmonic + 2, 3, (1, 3)))
512
+
513
+ self.concat_pre = Conv1d(upsample_initial_channel + hps.model.n_harmonic + 2, upsample_initial_channel, 3, 1,
514
+ padding=1)
515
+ self.concat_conv = nn.ModuleList()
516
+ for i in range(len(upsample_rates)):
517
+ ch = upsample_initial_channel // (2 ** (i + 1))
518
+ self.concat_conv.append(Conv1d(ch + hps.model.n_harmonic + 2, ch, 3, 1, padding=1, bias=False))
519
+
520
+ self.ups = nn.ModuleList()
521
+ for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
522
+ self.ups.append(weight_norm(
523
+ ConvTranspose1d(upsample_initial_channel // (2 ** i), upsample_initial_channel // (2 ** (i + 1)),
524
+ k, u, padding=(k - u) // 2)))
525
+
526
+ self.resblocks = nn.ModuleList()
527
+ for i in range(len(self.ups)):
528
+ ch = upsample_initial_channel // (2 ** (i + 1))
529
+ for j, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
530
+ self.resblocks.append(resblock(ch, k, d))
531
+
532
+ self.conv_post = Conv1d(ch, 1, 7, 1, padding=3, bias=False)
533
+ self.ups.apply(init_weights)
534
+
535
+ if self.n_speakers != 0:
536
+ self.cond = nn.Conv1d(spk_channels, upsample_initial_channel, 1)
537
+
538
+ def forward(self, x, ddsp, g=None):
539
+
540
+ x = self.conv_pre(x)
541
+
542
+ if g is not None:
543
+ x = x + self.cond(g)
544
+
545
+ se = ddsp
546
+ res_features = [se]
547
+ for i in range(self.num_upsamples):
548
+ in_size = se.size(2)
549
+ se = self.downs[i](se)
550
+ se = self.resblocks_downs[i](se)
551
+ up_rate = self.upsample_rates[self.num_upsamples - 1 - i]
552
+ se = se[:, :, : in_size // up_rate]
553
+ res_features.append(se)
554
+
555
+ x = torch.cat([x, se], 1)
556
+ x = self.concat_pre(x)
557
+
558
+ for i in range(self.num_upsamples):
559
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
560
+ in_size = x.size(2)
561
+ x = self.ups[i](x)
562
+ # 保证维度正确,丢掉多余通道
563
+ x = x[:, :, : in_size * self.upsample_rates[i]]
564
+
565
+ x = torch.cat([x, res_features[self.num_upsamples - 1 - i]], 1)
566
+ x = self.concat_conv[i](x)
567
+
568
+ xs = None
569
+ for j in range(self.num_kernels):
570
+ if xs is None:
571
+ xs = self.resblocks[i * self.num_kernels + j](x)
572
+ else:
573
+ xs += self.resblocks[i * self.num_kernels + j](x)
574
+ x = xs / self.num_kernels
575
+
576
+ x = F.leaky_relu(x)
577
+ x = self.conv_post(x)
578
+ x = torch.tanh(x)
579
+
580
+ return x
581
+
582
+ def remove_weight_norm(self):
583
+ print('Removing weight norm...')
584
+ for l in self.ups:
585
+ remove_weight_norm(l)
586
+ for l in self.resblocks:
587
+ l.remove_weight_norm()
588
+
589
+
590
+ class Generator_Noise(torch.nn.Module):
591
+ def __init__(self, hps):
592
+ super(Generator_Noise, self).__init__()
593
+ self.hps = hps
594
+ self.win_size = hps.data.win_size
595
+ self.hop_size = hps.data.hop_length
596
+ self.fft_size = hps.data.n_fft
597
+ self.istft_pre = Conv1d(hps.model.hidden_channels, hps.model.hidden_channels, 3, padding=1)
598
+
599
+ self.net = ConvReluNorm(hps.model.hidden_channels,
600
+ hps.model.hidden_channels,
601
+ hps.model.hidden_channels,
602
+ hps.model.kernel_size,
603
+ 8,
604
+ hps.model.p_dropout)
605
+
606
+ self.istft_amplitude = torch.nn.Conv1d(hps.model.hidden_channels, self.fft_size // 2 + 1, 1, 1)
607
+ self.window = torch.hann_window(self.win_size)
608
+
609
+ def forward(self, x, mask):
610
+ istft_x = x
611
+ istft_x = self.istft_pre(istft_x)
612
+
613
+ istft_x = self.net(istft_x) * mask
614
+
615
+ amp = self.istft_amplitude(istft_x).unsqueeze(-1)
616
+ phase = (torch.rand(amp.shape) * 2 * 3.14 - 3.14).to(amp)
617
+
618
+ real = amp * torch.cos(phase)
619
+ imag = amp * torch.sin(phase)
620
+ spec = torch.cat([real, imag], 3)
621
+ istft_x = torch.istft(spec, self.fft_size, self.hop_size, self.win_size, self.window.to(amp), True,
622
+ length=x.shape[2] * self.hop_size, return_complex=False)
623
+
624
+ return istft_x.unsqueeze(1)
625
+
626
+
627
+ class LayerNorm(nn.Module):
628
+ def __init__(self, channels, eps=1e-5):
629
+ super().__init__()
630
+ self.channels = channels
631
+ self.eps = eps
632
+
633
+ self.gamma = nn.Parameter(torch.ones(channels))
634
+ self.beta = nn.Parameter(torch.zeros(channels))
635
+
636
+ def forward(self, x):
637
+ x = x.transpose(1, -1)
638
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
639
+ return x.transpose(1, -1)
640
+
641
+
642
+ class DiscriminatorP(torch.nn.Module):
643
+ def __init__(self, period, kernel_size=5, stride=3, use_spectral_norm=False):
644
+ super(DiscriminatorP, self).__init__()
645
+ self.period = period
646
+ self.use_spectral_norm = use_spectral_norm
647
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
648
+ self.convs = nn.ModuleList([
649
+ norm_f(Conv2d(1, 32, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
650
+ norm_f(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
651
+ norm_f(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
652
+ norm_f(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(get_padding(kernel_size, 1), 0))),
653
+ norm_f(Conv2d(1024, 1024, (kernel_size, 1), 1, padding=(get_padding(kernel_size, 1), 0))),
654
+ ])
655
+ self.conv_post = norm_f(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0)))
656
+
657
+ def forward(self, x):
658
+ fmap = []
659
+
660
+ # 1d to 2d
661
+ b, c, t = x.shape
662
+ if t % self.period != 0: # pad first
663
+ n_pad = self.period - (t % self.period)
664
+ x = F.pad(x, (0, n_pad), "reflect")
665
+ t = t + n_pad
666
+ x = x.view(b, c, t // self.period, self.period)
667
+
668
+ for l in self.convs:
669
+ x = l(x)
670
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
671
+ fmap.append(x)
672
+ x = self.conv_post(x)
673
+ fmap.append(x)
674
+ x = torch.flatten(x, 1, -1)
675
+
676
+ return x, fmap
677
+
678
+
679
+ class DiscriminatorS(torch.nn.Module):
680
+ def __init__(self, use_spectral_norm=False):
681
+ super(DiscriminatorS, self).__init__()
682
+ norm_f = weight_norm if use_spectral_norm == False else spectral_norm
683
+ self.convs = nn.ModuleList([
684
+ norm_f(Conv1d(1, 16, 15, 1, padding=7)),
685
+ norm_f(Conv1d(16, 64, 41, 4, groups=4, padding=20)),
686
+ norm_f(Conv1d(64, 256, 41, 4, groups=16, padding=20)),
687
+ norm_f(Conv1d(256, 1024, 41, 4, groups=64, padding=20)),
688
+ norm_f(Conv1d(1024, 1024, 41, 4, groups=256, padding=20)),
689
+ norm_f(Conv1d(1024, 1024, 5, 1, padding=2)),
690
+ ])
691
+ self.conv_post = norm_f(Conv1d(1024, 1, 3, 1, padding=1))
692
+
693
+ def forward(self, x):
694
+ fmap = []
695
+
696
+ for l in self.convs:
697
+ x = l(x)
698
+ x = F.leaky_relu(x, modules.LRELU_SLOPE)
699
+ fmap.append(x)
700
+ x = self.conv_post(x)
701
+ fmap.append(x)
702
+ x = torch.flatten(x, 1, -1)
703
+
704
+ return x, fmap
705
+
706
+
707
+ class MultiFrequencyDiscriminator(nn.Module):
708
+ def __init__(self,
709
+ hop_lengths=[128, 256, 512],
710
+ hidden_channels=[256, 512, 512],
711
+ domain='double', mel_scale=True):
712
+ super(MultiFrequencyDiscriminator, self).__init__()
713
+
714
+ self.stfts = nn.ModuleList([
715
+ TorchSTFT(fft_size=x * 4, hop_size=x, win_size=x * 4,
716
+ normalized=True, domain=domain, mel_scale=mel_scale)
717
+ for x in hop_lengths])
718
+
719
+ self.domain = domain
720
+ if domain == 'double':
721
+ self.discriminators = nn.ModuleList([
722
+ BaseFrequenceDiscriminator(2, c)
723
+ for x, c in zip(hop_lengths, hidden_channels)])
724
+ else:
725
+ self.discriminators = nn.ModuleList([
726
+ BaseFrequenceDiscriminator(1, c)
727
+ for x, c in zip(hop_lengths, hidden_channels)])
728
+
729
+ def forward(self, x):
730
+ scores, feats = list(), list()
731
+ for stft, layer in zip(self.stfts, self.discriminators):
732
+ # print(stft)
733
+ mag, phase = stft.transform(x.squeeze())
734
+ if self.domain == 'double':
735
+ mag = torch.stack(torch.chunk(mag, 2, dim=1), dim=1)
736
+ else:
737
+ mag = mag.unsqueeze(1)
738
+
739
+ score, feat = layer(mag)
740
+ scores.append(score)
741
+ feats.append(feat)
742
+ return scores, feats
743
+
744
+
745
+ class BaseFrequenceDiscriminator(nn.Module):
746
+ def __init__(self, in_channels, hidden_channels=512):
747
+ super(BaseFrequenceDiscriminator, self).__init__()
748
+
749
+ self.discriminator = nn.ModuleList()
750
+ self.discriminator += [
751
+ nn.Sequential(
752
+ nn.ReflectionPad2d((1, 1, 1, 1)),
753
+ nn.utils.weight_norm(nn.Conv2d(
754
+ in_channels, hidden_channels // 32,
755
+ kernel_size=(3, 3), stride=(1, 1)))
756
+ ),
757
+ nn.Sequential(
758
+ nn.LeakyReLU(0.2, True),
759
+ nn.ReflectionPad2d((1, 1, 1, 1)),
760
+ nn.utils.weight_norm(nn.Conv2d(
761
+ hidden_channels // 32, hidden_channels // 16,
762
+ kernel_size=(3, 3), stride=(2, 2)))
763
+ ),
764
+ nn.Sequential(
765
+ nn.LeakyReLU(0.2, True),
766
+ nn.ReflectionPad2d((1, 1, 1, 1)),
767
+ nn.utils.weight_norm(nn.Conv2d(
768
+ hidden_channels // 16, hidden_channels // 8,
769
+ kernel_size=(3, 3), stride=(1, 1)))
770
+ ),
771
+ nn.Sequential(
772
+ nn.LeakyReLU(0.2, True),
773
+ nn.ReflectionPad2d((1, 1, 1, 1)),
774
+ nn.utils.weight_norm(nn.Conv2d(
775
+ hidden_channels // 8, hidden_channels // 4,
776
+ kernel_size=(3, 3), stride=(2, 2)))
777
+ ),
778
+ nn.Sequential(
779
+ nn.LeakyReLU(0.2, True),
780
+ nn.ReflectionPad2d((1, 1, 1, 1)),
781
+ nn.utils.weight_norm(nn.Conv2d(
782
+ hidden_channels // 4, hidden_channels // 2,
783
+ kernel_size=(3, 3), stride=(1, 1)))
784
+ ),
785
+ nn.Sequential(
786
+ nn.LeakyReLU(0.2, True),
787
+ nn.ReflectionPad2d((1, 1, 1, 1)),
788
+ nn.utils.weight_norm(nn.Conv2d(
789
+ hidden_channels // 2, hidden_channels,
790
+ kernel_size=(3, 3), stride=(2, 2)))
791
+ ),
792
+ nn.Sequential(
793
+ nn.LeakyReLU(0.2, True),
794
+ nn.ReflectionPad2d((1, 1, 1, 1)),
795
+ nn.utils.weight_norm(nn.Conv2d(
796
+ hidden_channels, 1,
797
+ kernel_size=(3, 3), stride=(1, 1)))
798
+ )
799
+ ]
800
+
801
+ def forward(self, x):
802
+ hiddens = []
803
+ for layer in self.discriminator:
804
+ x = layer(x)
805
+ hiddens.append(x)
806
+ return x, hiddens[-1]
807
+
808
+
809
+ class Discriminator(torch.nn.Module):
810
+ def __init__(self, hps, use_spectral_norm=False):
811
+ super(Discriminator, self).__init__()
812
+ periods = [2, 3, 5, 7, 11]
813
+
814
+ discs = [DiscriminatorS(use_spectral_norm=use_spectral_norm)]
815
+ discs = discs + [DiscriminatorP(i, use_spectral_norm=use_spectral_norm) for i in periods]
816
+ self.discriminators = nn.ModuleList(discs)
817
+ # self.disc_multfrequency = MultiFrequencyDiscriminator(hop_lengths=[int(hps.data.sampling_rate * 2.5 / 1000),
818
+ # int(hps.data.sampling_rate * 5 / 1000),
819
+ # int(hps.data.sampling_rate * 7.5 / 1000),
820
+ # int(hps.data.sampling_rate * 10 / 1000),
821
+ # int(hps.data.sampling_rate * 12.5 / 1000),
822
+ # int(hps.data.sampling_rate * 15 / 1000)],
823
+ # hidden_channels=[256, 256, 256, 256, 256])
824
+
825
+ def forward(self, y, y_hat):
826
+ y_d_rs = []
827
+ y_d_gs = []
828
+ fmap_rs = []
829
+ fmap_gs = []
830
+ for i, d in enumerate(self.discriminators):
831
+ y_d_r, fmap_r = d(y)
832
+ y_d_g, fmap_g = d(y_hat)
833
+ y_d_rs.append(y_d_r)
834
+ y_d_gs.append(y_d_g)
835
+ fmap_rs.append(fmap_r)
836
+ fmap_gs.append(fmap_g)
837
+ # scores_r, fmaps_r = self.disc_multfrequency(y)
838
+ # scores_g, fmaps_g = self.disc_multfrequency(y_hat)
839
+ # for i in range(len(scores_r)):
840
+ # y_d_rs.append(scores_r[i])
841
+ # y_d_gs.append(scores_g[i])
842
+ # fmap_rs.append(fmaps_r[i])
843
+ # fmap_gs.append(fmaps_g[i])
844
+ return y_d_rs, y_d_gs, fmap_rs, fmap_gs
845
+
846
+
847
+ class SynthesizerTrn(nn.Module):
848
+ """
849
+ Model
850
+ """
851
+
852
+ def __init__(self, hps):
853
+ super().__init__()
854
+ self.hps = hps
855
+
856
+ self.text_encoder = TextEncoder(
857
+ hps.data.c_dim,
858
+ hps.model.prior_hidden_channels,
859
+ hps.model.prior_hidden_channels,
860
+ hps.model.prior_filter_channels,
861
+ hps.model.prior_n_heads,
862
+ hps.model.prior_n_layers,
863
+ hps.model.prior_kernel_size,
864
+ hps.model.prior_p_dropout)
865
+
866
+ self.decoder = PriorDecoder(
867
+ hps.model.hidden_channels * 2,
868
+ hps.model.prior_hidden_channels,
869
+ hps.model.prior_filter_channels,
870
+ hps.model.prior_n_heads,
871
+ hps.model.prior_n_layers,
872
+ hps.model.prior_kernel_size,
873
+ hps.model.prior_p_dropout,
874
+ n_speakers=hps.data.n_speakers,
875
+ spk_channels=hps.model.spk_channels
876
+ )
877
+
878
+ self.f0_decoder = F0Decoder(
879
+ 1,
880
+ hps.model.prior_hidden_channels,
881
+ hps.model.prior_filter_channels,
882
+ hps.model.prior_n_heads,
883
+ hps.model.prior_n_layers,
884
+ hps.model.prior_kernel_size,
885
+ hps.model.prior_p_dropout,
886
+ n_speakers=hps.data.n_speakers,
887
+ spk_channels=hps.model.spk_channels
888
+ )
889
+
890
+ self.mel_decoder = Decoder(
891
+ hps.data.acoustic_dim,
892
+ hps.model.prior_hidden_channels,
893
+ hps.model.prior_filter_channels,
894
+ hps.model.prior_n_heads,
895
+ hps.model.prior_n_layers,
896
+ hps.model.prior_kernel_size,
897
+ hps.model.prior_p_dropout,
898
+ n_speakers=hps.data.n_speakers,
899
+ spk_channels=hps.model.spk_channels
900
+ )
901
+
902
+ self.posterior_encoder = PosteriorEncoder(
903
+ hps,
904
+ hps.data.acoustic_dim,
905
+ hps.model.hidden_channels,
906
+ hps.model.hidden_channels, 3, 1, 8)
907
+
908
+ self.dropout = nn.Dropout(0.2)
909
+
910
+ self.LR = LengthRegulator()
911
+
912
+ self.dec = Generator(hps,
913
+ hps.model.hidden_channels,
914
+ hps.model.resblock,
915
+ hps.model.resblock_kernel_sizes,
916
+ hps.model.resblock_dilation_sizes,
917
+ hps.model.upsample_rates,
918
+ hps.model.upsample_initial_channel,
919
+ hps.model.upsample_kernel_sizes,
920
+ n_speakers=hps.data.n_speakers,
921
+ spk_channels=hps.model.spk_channels)
922
+
923
+ self.dec_harm = Generator_Harm(hps)
924
+
925
+ self.dec_noise = Generator_Noise(hps)
926
+
927
+ self.f0_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1)
928
+ self.energy_prenet = nn.Conv1d(1, hps.model.prior_hidden_channels , 3, padding=1)
929
+ self.mel_prenet = nn.Conv1d(hps.data.acoustic_dim, hps.model.prior_hidden_channels , 3, padding=1)
930
+
931
+ if hps.data.n_speakers > 1:
932
+ self.emb_spk = nn.Embedding(hps.data.n_speakers, hps.model.spk_channels)
933
+ self.flow = modules.ResidualCouplingBlock(hps.model.prior_hidden_channels, hps.model.hidden_channels, 5, 1, 4,n_speakers=hps.data.n_speakers, gin_channels=hps.model.spk_channels)
934
+
935
+ def forward(self, c, c_lengths, F0, uv, mel, bn_lengths, spk_id=None):
936
+ if self.hps.data.n_speakers > 0:
937
+ g = self.emb_spk(spk_id).unsqueeze(-1) # [b, h, 1]
938
+ else:
939
+ g = None
940
+
941
+ # Encoder
942
+ decoder_input, x_mask = self.text_encoder(c, c_lengths)
943
+
944
+ LF0 = 2595. * torch.log10(1. + F0 / 700.)
945
+ LF0 = LF0 / 500
946
+ norm_f0 = utils.normalize_f0(LF0,x_mask, uv.squeeze(1),random_scale=True)
947
+ pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, bn_lengths, spk_emb=g)
948
+ # print(pred_lf0)
949
+ loss_f0 = F.mse_loss(pred_lf0, LF0)
950
+
951
+ # aam
952
+ predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), bn_lengths, spk_emb=g)
953
+
954
+ predict_energy = predict_mel.detach().sum(1).unsqueeze(1) / self.hps.data.acoustic_dim
955
+
956
+ decoder_input = decoder_input + \
957
+ self.f0_prenet(LF0) + \
958
+ self.energy_prenet(predict_energy) + \
959
+ self.mel_prenet(predict_mel.detach())
960
+ decoder_output, predict_bn_mask = self.decoder(decoder_input, bn_lengths, spk_emb=g)
961
+
962
+ prior_info = decoder_output
963
+ m_p = prior_info[:, :self.hps.model.hidden_channels, :]
964
+ logs_p = prior_info[:, self.hps.model.hidden_channels:, :]
965
+
966
+ # posterior
967
+ posterior, y_mask = self.posterior_encoder(mel, bn_lengths,g=g)
968
+
969
+ m_q = posterior[:, :self.hps.model.hidden_channels, :]
970
+ logs_q = posterior[:, self.hps.model.hidden_channels:, :]
971
+ z = (m_q + torch.randn_like(m_q) * torch.exp(logs_q)) * y_mask
972
+ z_p = self.flow(z, y_mask, g=g)
973
+
974
+ # kl loss
975
+ loss_kl = kl_loss(z_p, logs_q, m_p, logs_p, y_mask)
976
+
977
+ p_z = z
978
+ p_z = self.dropout(p_z)
979
+
980
+ pitch = upsample(F0.transpose(1, 2), self.hps.data.hop_length)
981
+ omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
982
+ sin = torch.sin(omega).transpose(1, 2)
983
+
984
+ # dsp synthesize
985
+ noise_x = self.dec_noise(p_z, y_mask)
986
+ harm_x = self.dec_harm(F0, p_z, y_mask)
987
+
988
+ # dsp waveform
989
+ dsp_o = torch.cat([harm_x, noise_x], axis=1)
990
+
991
+ decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1)
992
+
993
+ # dsp based HiFiGAN vocoder
994
+ x_slice, ids_slice = commons.rand_slice_segments(p_z, bn_lengths,
995
+ self.hps.train.segment_size // self.hps.data.hop_length)
996
+ F0_slice = commons.slice_segments(F0, ids_slice, self.hps.train.segment_size // self.hps.data.hop_length)
997
+ dsp_slice = commons.slice_segments(dsp_o, ids_slice * self.hps.data.hop_length, self.hps.train.segment_size)
998
+ condition_slice = commons.slice_segments(decoder_condition, ids_slice * self.hps.data.hop_length,
999
+ self.hps.train.segment_size)
1000
+ o = self.dec(x_slice, condition_slice.detach(), g=g)
1001
+
1002
+ return o, ids_slice, LF0 * predict_bn_mask, dsp_slice.sum(1), loss_kl, \
1003
+ predict_mel, predict_bn_mask, pred_lf0, loss_f0, norm_f0
1004
+
1005
+ def infer(self, c, g=None, f0=None,uv=None, predict_f0=False, noice_scale=0.3):
1006
+ if len(g.shape) == 2:
1007
+ g = g.squeeze(0)
1008
+ if len(f0.shape) == 2:
1009
+ f0 = f0.unsqueeze(0)
1010
+ g = self.emb_spk(g).unsqueeze(-1) # [b, h, 1]
1011
+
1012
+ c_lengths = (torch.ones(c.size(0)) * c.size(-1)).to(c.device)
1013
+
1014
+ # Encoder
1015
+ decoder_input, x_mask = self.text_encoder(c, c_lengths)
1016
+ y_lengths = c_lengths
1017
+
1018
+ LF0 = 2595. * torch.log10(1. + f0 / 700.)
1019
+ LF0 = LF0 / 500
1020
+
1021
+ if predict_f0:
1022
+ norm_f0 = utils.normalize_f0(LF0, x_mask, uv.squeeze(1))
1023
+ pred_lf0, predict_bn_mask = self.f0_decoder(decoder_input, norm_f0, y_lengths, spk_emb=g)
1024
+ pred_f0 = 700 * ( torch.pow(10, pred_lf0 * 500 / 2595) - 1)
1025
+ f0 = pred_f0
1026
+ LF0 = pred_lf0
1027
+
1028
+ # aam
1029
+ predict_mel, predict_bn_mask = self.mel_decoder(decoder_input + self.f0_prenet(LF0), y_lengths, spk_emb=g)
1030
+ predict_energy = predict_mel.sum(1).unsqueeze(1) / self.hps.data.acoustic_dim
1031
+
1032
+ decoder_input = decoder_input + \
1033
+ self.f0_prenet(LF0) + \
1034
+ self.energy_prenet(predict_energy) + \
1035
+ self.mel_prenet(predict_mel)
1036
+ decoder_output, y_mask = self.decoder(decoder_input, y_lengths, spk_emb=g)
1037
+
1038
+ prior_info = decoder_output
1039
+
1040
+ m_p = prior_info[:, :self.hps.model.hidden_channels, :]
1041
+ logs_p = prior_info[:, self.hps.model.hidden_channels:, :]
1042
+ z_p = m_p + torch.randn_like(m_p) * torch.exp(logs_p) * noice_scale
1043
+ z = self.flow(z_p, y_mask, g=g, reverse=True)
1044
+
1045
+ prior_z = z
1046
+
1047
+ noise_x = self.dec_noise(prior_z, y_mask)
1048
+
1049
+ harm_x = self.dec_harm(f0, prior_z, y_mask)
1050
+
1051
+ pitch = upsample(f0.transpose(1, 2), self.hps.data.hop_length)
1052
+ omega = torch.cumsum(2 * math.pi * pitch / self.hps.data.sampling_rate, 1)
1053
+ sin = torch.sin(omega).transpose(1, 2)
1054
+
1055
+ decoder_condition = torch.cat([harm_x, noise_x, sin], axis=1)
1056
+
1057
+ # dsp based HiFiGAN vocoder
1058
+ o = self.dec(prior_z, decoder_condition, g=g)
1059
+
1060
+ return o, harm_x.sum(1).unsqueeze(1), noise_x, f0
modules/__init__.py ADDED
File without changes
modules/attentions.py ADDED
@@ -0,0 +1,349 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import torch
5
+ from torch import nn
6
+ from torch.nn import functional as F
7
+
8
+ import modules.commons as commons
9
+ import modules.modules as modules
10
+ from modules.modules import LayerNorm
11
+
12
+
13
+ class FFT(nn.Module):
14
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers=1, kernel_size=1, p_dropout=0.,
15
+ proximal_bias=False, proximal_init=True, **kwargs):
16
+ super().__init__()
17
+ self.hidden_channels = hidden_channels
18
+ self.filter_channels = filter_channels
19
+ self.n_heads = n_heads
20
+ self.n_layers = n_layers
21
+ self.kernel_size = kernel_size
22
+ self.p_dropout = p_dropout
23
+ self.proximal_bias = proximal_bias
24
+ self.proximal_init = proximal_init
25
+
26
+ self.drop = nn.Dropout(p_dropout)
27
+ self.self_attn_layers = nn.ModuleList()
28
+ self.norm_layers_0 = nn.ModuleList()
29
+ self.ffn_layers = nn.ModuleList()
30
+ self.norm_layers_1 = nn.ModuleList()
31
+ for i in range(self.n_layers):
32
+ self.self_attn_layers.append(
33
+ MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias,
34
+ proximal_init=proximal_init))
35
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
36
+ self.ffn_layers.append(
37
+ FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
38
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
39
+
40
+ def forward(self, x, x_mask):
41
+ """
42
+ x: decoder input
43
+ h: encoder output
44
+ """
45
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
46
+ x = x * x_mask
47
+ for i in range(self.n_layers):
48
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
49
+ y = self.drop(y)
50
+ x = self.norm_layers_0[i](x + y)
51
+
52
+ y = self.ffn_layers[i](x, x_mask)
53
+ y = self.drop(y)
54
+ x = self.norm_layers_1[i](x + y)
55
+ x = x * x_mask
56
+ return x
57
+
58
+
59
+ class Encoder(nn.Module):
60
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., window_size=4, **kwargs):
61
+ super().__init__()
62
+ self.hidden_channels = hidden_channels
63
+ self.filter_channels = filter_channels
64
+ self.n_heads = n_heads
65
+ self.n_layers = n_layers
66
+ self.kernel_size = kernel_size
67
+ self.p_dropout = p_dropout
68
+ self.window_size = window_size
69
+
70
+ self.drop = nn.Dropout(p_dropout)
71
+ self.attn_layers = nn.ModuleList()
72
+ self.norm_layers_1 = nn.ModuleList()
73
+ self.ffn_layers = nn.ModuleList()
74
+ self.norm_layers_2 = nn.ModuleList()
75
+ for i in range(self.n_layers):
76
+ self.attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, window_size=window_size))
77
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
78
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout))
79
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
80
+
81
+ def forward(self, x, x_mask):
82
+ attn_mask = x_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
83
+ x = x * x_mask
84
+ for i in range(self.n_layers):
85
+ y = self.attn_layers[i](x, x, attn_mask)
86
+ y = self.drop(y)
87
+ x = self.norm_layers_1[i](x + y)
88
+
89
+ y = self.ffn_layers[i](x, x_mask)
90
+ y = self.drop(y)
91
+ x = self.norm_layers_2[i](x + y)
92
+ x = x * x_mask
93
+ return x
94
+
95
+
96
+ class Decoder(nn.Module):
97
+ def __init__(self, hidden_channels, filter_channels, n_heads, n_layers, kernel_size=1, p_dropout=0., proximal_bias=False, proximal_init=True, **kwargs):
98
+ super().__init__()
99
+ self.hidden_channels = hidden_channels
100
+ self.filter_channels = filter_channels
101
+ self.n_heads = n_heads
102
+ self.n_layers = n_layers
103
+ self.kernel_size = kernel_size
104
+ self.p_dropout = p_dropout
105
+ self.proximal_bias = proximal_bias
106
+ self.proximal_init = proximal_init
107
+
108
+ self.drop = nn.Dropout(p_dropout)
109
+ self.self_attn_layers = nn.ModuleList()
110
+ self.norm_layers_0 = nn.ModuleList()
111
+ self.encdec_attn_layers = nn.ModuleList()
112
+ self.norm_layers_1 = nn.ModuleList()
113
+ self.ffn_layers = nn.ModuleList()
114
+ self.norm_layers_2 = nn.ModuleList()
115
+ for i in range(self.n_layers):
116
+ self.self_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout, proximal_bias=proximal_bias, proximal_init=proximal_init))
117
+ self.norm_layers_0.append(LayerNorm(hidden_channels))
118
+ self.encdec_attn_layers.append(MultiHeadAttention(hidden_channels, hidden_channels, n_heads, p_dropout=p_dropout))
119
+ self.norm_layers_1.append(LayerNorm(hidden_channels))
120
+ self.ffn_layers.append(FFN(hidden_channels, hidden_channels, filter_channels, kernel_size, p_dropout=p_dropout, causal=True))
121
+ self.norm_layers_2.append(LayerNorm(hidden_channels))
122
+
123
+ def forward(self, x, x_mask, h, h_mask):
124
+ """
125
+ x: decoder input
126
+ h: encoder output
127
+ """
128
+ self_attn_mask = commons.subsequent_mask(x_mask.size(2)).to(device=x.device, dtype=x.dtype)
129
+ encdec_attn_mask = h_mask.unsqueeze(2) * x_mask.unsqueeze(-1)
130
+ x = x * x_mask
131
+ for i in range(self.n_layers):
132
+ y = self.self_attn_layers[i](x, x, self_attn_mask)
133
+ y = self.drop(y)
134
+ x = self.norm_layers_0[i](x + y)
135
+
136
+ y = self.encdec_attn_layers[i](x, h, encdec_attn_mask)
137
+ y = self.drop(y)
138
+ x = self.norm_layers_1[i](x + y)
139
+
140
+ y = self.ffn_layers[i](x, x_mask)
141
+ y = self.drop(y)
142
+ x = self.norm_layers_2[i](x + y)
143
+ x = x * x_mask
144
+ return x
145
+
146
+
147
+ class MultiHeadAttention(nn.Module):
148
+ def __init__(self, channels, out_channels, n_heads, p_dropout=0., window_size=None, heads_share=True, block_length=None, proximal_bias=False, proximal_init=False):
149
+ super().__init__()
150
+ assert channels % n_heads == 0
151
+
152
+ self.channels = channels
153
+ self.out_channels = out_channels
154
+ self.n_heads = n_heads
155
+ self.p_dropout = p_dropout
156
+ self.window_size = window_size
157
+ self.heads_share = heads_share
158
+ self.block_length = block_length
159
+ self.proximal_bias = proximal_bias
160
+ self.proximal_init = proximal_init
161
+ self.attn = None
162
+
163
+ self.k_channels = channels // n_heads
164
+ self.conv_q = nn.Conv1d(channels, channels, 1)
165
+ self.conv_k = nn.Conv1d(channels, channels, 1)
166
+ self.conv_v = nn.Conv1d(channels, channels, 1)
167
+ self.conv_o = nn.Conv1d(channels, out_channels, 1)
168
+ self.drop = nn.Dropout(p_dropout)
169
+
170
+ if window_size is not None:
171
+ n_heads_rel = 1 if heads_share else n_heads
172
+ rel_stddev = self.k_channels**-0.5
173
+ self.emb_rel_k = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
174
+ self.emb_rel_v = nn.Parameter(torch.randn(n_heads_rel, window_size * 2 + 1, self.k_channels) * rel_stddev)
175
+
176
+ nn.init.xavier_uniform_(self.conv_q.weight)
177
+ nn.init.xavier_uniform_(self.conv_k.weight)
178
+ nn.init.xavier_uniform_(self.conv_v.weight)
179
+ if proximal_init:
180
+ with torch.no_grad():
181
+ self.conv_k.weight.copy_(self.conv_q.weight)
182
+ self.conv_k.bias.copy_(self.conv_q.bias)
183
+
184
+ def forward(self, x, c, attn_mask=None):
185
+ q = self.conv_q(x)
186
+ k = self.conv_k(c)
187
+ v = self.conv_v(c)
188
+
189
+ x, self.attn = self.attention(q, k, v, mask=attn_mask)
190
+
191
+ x = self.conv_o(x)
192
+ return x
193
+
194
+ def attention(self, query, key, value, mask=None):
195
+ # reshape [b, d, t] -> [b, n_h, t, d_k]
196
+ b, d, t_s, t_t = (*key.size(), query.size(2))
197
+ query = query.view(b, self.n_heads, self.k_channels, t_t).transpose(2, 3)
198
+ key = key.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
199
+ value = value.view(b, self.n_heads, self.k_channels, t_s).transpose(2, 3)
200
+
201
+ scores = torch.matmul(query / math.sqrt(self.k_channels), key.transpose(-2, -1))
202
+ if self.window_size is not None:
203
+ assert t_s == t_t, "Relative attention is only available for self-attention."
204
+ key_relative_embeddings = self._get_relative_embeddings(self.emb_rel_k, t_s)
205
+ rel_logits = self._matmul_with_relative_keys(query /math.sqrt(self.k_channels), key_relative_embeddings)
206
+ scores_local = self._relative_position_to_absolute_position(rel_logits)
207
+ scores = scores + scores_local
208
+ if self.proximal_bias:
209
+ assert t_s == t_t, "Proximal bias is only available for self-attention."
210
+ scores = scores + self._attention_bias_proximal(t_s).to(device=scores.device, dtype=scores.dtype)
211
+ if mask is not None:
212
+ scores = scores.masked_fill(mask == 0, -1e4)
213
+ if self.block_length is not None:
214
+ assert t_s == t_t, "Local attention is only available for self-attention."
215
+ block_mask = torch.ones_like(scores).triu(-self.block_length).tril(self.block_length)
216
+ scores = scores.masked_fill(block_mask == 0, -1e4)
217
+ p_attn = F.softmax(scores, dim=-1) # [b, n_h, t_t, t_s]
218
+ p_attn = self.drop(p_attn)
219
+ output = torch.matmul(p_attn, value)
220
+ if self.window_size is not None:
221
+ relative_weights = self._absolute_position_to_relative_position(p_attn)
222
+ value_relative_embeddings = self._get_relative_embeddings(self.emb_rel_v, t_s)
223
+ output = output + self._matmul_with_relative_values(relative_weights, value_relative_embeddings)
224
+ output = output.transpose(2, 3).contiguous().view(b, d, t_t) # [b, n_h, t_t, d_k] -> [b, d, t_t]
225
+ return output, p_attn
226
+
227
+ def _matmul_with_relative_values(self, x, y):
228
+ """
229
+ x: [b, h, l, m]
230
+ y: [h or 1, m, d]
231
+ ret: [b, h, l, d]
232
+ """
233
+ ret = torch.matmul(x, y.unsqueeze(0))
234
+ return ret
235
+
236
+ def _matmul_with_relative_keys(self, x, y):
237
+ """
238
+ x: [b, h, l, d]
239
+ y: [h or 1, m, d]
240
+ ret: [b, h, l, m]
241
+ """
242
+ ret = torch.matmul(x, y.unsqueeze(0).transpose(-2, -1))
243
+ return ret
244
+
245
+ def _get_relative_embeddings(self, relative_embeddings, length):
246
+ max_relative_position = 2 * self.window_size + 1
247
+ # Pad first before slice to avoid using cond ops.
248
+ pad_length = max(length - (self.window_size + 1), 0)
249
+ slice_start_position = max((self.window_size + 1) - length, 0)
250
+ slice_end_position = slice_start_position + 2 * length - 1
251
+ if pad_length > 0:
252
+ padded_relative_embeddings = F.pad(
253
+ relative_embeddings,
254
+ commons.convert_pad_shape([[0, 0], [pad_length, pad_length], [0, 0]]))
255
+ else:
256
+ padded_relative_embeddings = relative_embeddings
257
+ used_relative_embeddings = padded_relative_embeddings[:,slice_start_position:slice_end_position]
258
+ return used_relative_embeddings
259
+
260
+ def _relative_position_to_absolute_position(self, x):
261
+ """
262
+ x: [b, h, l, 2*l-1]
263
+ ret: [b, h, l, l]
264
+ """
265
+ batch, heads, length, _ = x.size()
266
+ # Concat columns of pad to shift from relative to absolute indexing.
267
+ x = F.pad(x, commons.convert_pad_shape([[0,0],[0,0],[0,0],[0,1]]))
268
+
269
+ # Concat extra elements so to add up to shape (len+1, 2*len-1).
270
+ x_flat = x.view([batch, heads, length * 2 * length])
271
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0,0],[0,0],[0,length-1]]))
272
+
273
+ # Reshape and slice out the padded elements.
274
+ x_final = x_flat.view([batch, heads, length+1, 2*length-1])[:, :, :length, length-1:]
275
+ return x_final
276
+
277
+ def _absolute_position_to_relative_position(self, x):
278
+ """
279
+ x: [b, h, l, l]
280
+ ret: [b, h, l, 2*l-1]
281
+ """
282
+ batch, heads, length, _ = x.size()
283
+ # padd along column
284
+ x = F.pad(x, commons.convert_pad_shape([[0, 0], [0, 0], [0, 0], [0, length-1]]))
285
+ x_flat = x.view([batch, heads, length**2 + length*(length -1)])
286
+ # add 0's in the beginning that will skew the elements after reshape
287
+ x_flat = F.pad(x_flat, commons.convert_pad_shape([[0, 0], [0, 0], [length, 0]]))
288
+ x_final = x_flat.view([batch, heads, length, 2*length])[:,:,:,1:]
289
+ return x_final
290
+
291
+ def _attention_bias_proximal(self, length):
292
+ """Bias for self-attention to encourage attention to close positions.
293
+ Args:
294
+ length: an integer scalar.
295
+ Returns:
296
+ a Tensor with shape [1, 1, length, length]
297
+ """
298
+ r = torch.arange(length, dtype=torch.float32)
299
+ diff = torch.unsqueeze(r, 0) - torch.unsqueeze(r, 1)
300
+ return torch.unsqueeze(torch.unsqueeze(-torch.log1p(torch.abs(diff)), 0), 0)
301
+
302
+
303
+ class FFN(nn.Module):
304
+ def __init__(self, in_channels, out_channels, filter_channels, kernel_size, p_dropout=0., activation=None, causal=False):
305
+ super().__init__()
306
+ self.in_channels = in_channels
307
+ self.out_channels = out_channels
308
+ self.filter_channels = filter_channels
309
+ self.kernel_size = kernel_size
310
+ self.p_dropout = p_dropout
311
+ self.activation = activation
312
+ self.causal = causal
313
+
314
+ if causal:
315
+ self.padding = self._causal_padding
316
+ else:
317
+ self.padding = self._same_padding
318
+
319
+ self.conv_1 = nn.Conv1d(in_channels, filter_channels, kernel_size)
320
+ self.conv_2 = nn.Conv1d(filter_channels, out_channels, kernel_size)
321
+ self.drop = nn.Dropout(p_dropout)
322
+
323
+ def forward(self, x, x_mask):
324
+ x = self.conv_1(self.padding(x * x_mask))
325
+ if self.activation == "gelu":
326
+ x = x * torch.sigmoid(1.702 * x)
327
+ else:
328
+ x = torch.relu(x)
329
+ x = self.drop(x)
330
+ x = self.conv_2(self.padding(x * x_mask))
331
+ return x * x_mask
332
+
333
+ def _causal_padding(self, x):
334
+ if self.kernel_size == 1:
335
+ return x
336
+ pad_l = self.kernel_size - 1
337
+ pad_r = 0
338
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
339
+ x = F.pad(x, commons.convert_pad_shape(padding))
340
+ return x
341
+
342
+ def _same_padding(self, x):
343
+ if self.kernel_size == 1:
344
+ return x
345
+ pad_l = (self.kernel_size - 1) // 2
346
+ pad_r = self.kernel_size // 2
347
+ padding = [[0, 0], [0, 0], [pad_l, pad_r]]
348
+ x = F.pad(x, commons.convert_pad_shape(padding))
349
+ return x
modules/audio.py ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ from numpy import linalg as LA
3
+ import librosa
4
+ from scipy.io import wavfile
5
+ import soundfile as sf
6
+ import librosa.filters
7
+
8
+
9
+ def load_wav(wav_path, raw_sr, target_sr=16000, win_size=800, hop_size=200):
10
+ audio = librosa.core.load(wav_path, sr=raw_sr)[0]
11
+ if raw_sr != target_sr:
12
+ audio = librosa.core.resample(audio,
13
+ raw_sr,
14
+ target_sr,
15
+ res_type='kaiser_best')
16
+ target_length = (audio.size // hop_size +
17
+ win_size // hop_size) * hop_size
18
+ pad_len = (target_length - audio.size) // 2
19
+ if audio.size % 2 == 0:
20
+ audio = np.pad(audio, (pad_len, pad_len), mode='reflect')
21
+ else:
22
+ audio = np.pad(audio, (pad_len, pad_len + 1), mode='reflect')
23
+ return audio
24
+
25
+
26
+ def save_wav(wav, path, sample_rate, norm=False):
27
+ if norm:
28
+ wav *= 32767 / max(0.01, np.max(np.abs(wav)))
29
+ wavfile.write(path, sample_rate, wav.astype(np.int16))
30
+ else:
31
+ sf.write(path, wav, sample_rate)
32
+
33
+
34
+ _mel_basis = None
35
+ _inv_mel_basis = None
36
+
37
+
38
+ def _build_mel_basis(hparams):
39
+ assert hparams.fmax <= hparams.sampling_rate // 2
40
+ return librosa.filters.mel(hparams.sampling_rate,
41
+ hparams.n_fft,
42
+ n_mels=hparams.acoustic_dim,
43
+ fmin=hparams.fmin,
44
+ fmax=hparams.fmax)
45
+
46
+
47
+ def _linear_to_mel(spectogram, hparams):
48
+ global _mel_basis
49
+ if _mel_basis is None:
50
+ _mel_basis = _build_mel_basis(hparams)
51
+ return np.dot(_mel_basis, spectogram)
52
+
53
+
54
+ def _mel_to_linear(mel_spectrogram, hparams):
55
+ global _inv_mel_basis
56
+ if _inv_mel_basis is None:
57
+ _inv_mel_basis = np.linalg.pinv(_build_mel_basis(hparams))
58
+ return np.maximum(1e-10, np.dot(_inv_mel_basis, mel_spectrogram))
59
+
60
+
61
+ def _stft(y, hparams):
62
+ return librosa.stft(y=y,
63
+ n_fft=hparams.n_fft,
64
+ hop_length=hparams.hop_length,
65
+ win_length=hparams.win_size)
66
+
67
+
68
+ def _amp_to_db(x, hparams):
69
+ min_level = np.exp(hparams.min_level_db / 20 * np.log(10))
70
+ return 20 * np.log10(np.maximum(min_level, x))
71
+
72
+ def _normalize(S, hparams):
73
+ return hparams.max_abs_value * np.clip(((S - hparams.min_db) /
74
+ (-hparams.min_db)), 0, 1)
75
+
76
+ def _db_to_amp(x):
77
+ return np.power(10.0, (x) * 0.05)
78
+
79
+
80
+ def _stft(y, hparams):
81
+ return librosa.stft(y=y,
82
+ n_fft=hparams.n_fft,
83
+ hop_length=hparams.hop_length,
84
+ win_length=hparams.win_size)
85
+
86
+
87
+ def _istft(y, hparams):
88
+ return librosa.istft(y,
89
+ hop_length=hparams.hop_length,
90
+ win_length=hparams.win_size)
91
+
92
+
93
+ def melspectrogram(wav, hparams):
94
+ D = _stft(wav, hparams)
95
+ S = _amp_to_db(_linear_to_mel(np.abs(D), hparams),
96
+ hparams) - hparams.ref_level_db
97
+ return _normalize(S, hparams)
98
+
99
+
modules/commons.py ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ import torch
4
+ from torch import nn
5
+ from torch.nn import functional as F
6
+
7
+ def slice_pitch_segments(x, ids_str, segment_size=4):
8
+ ret = torch.zeros_like(x[:, :segment_size])
9
+ for i in range(x.size(0)):
10
+ idx_str = ids_str[i]
11
+ idx_end = idx_str + segment_size
12
+ ret[i] = x[i, idx_str:idx_end]
13
+ return ret
14
+
15
+ def rand_slice_segments_with_pitch(x, pitch, x_lengths=None, segment_size=4):
16
+ b, d, t = x.size()
17
+ if x_lengths is None:
18
+ x_lengths = t
19
+ ids_str_max = x_lengths - segment_size + 1
20
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
21
+ ret = slice_segments(x, ids_str, segment_size)
22
+ ret_pitch = slice_pitch_segments(pitch, ids_str, segment_size)
23
+ return ret, ret_pitch, ids_str
24
+
25
+ def init_weights(m, mean=0.0, std=0.01):
26
+ classname = m.__class__.__name__
27
+ if classname.find("Conv") != -1:
28
+ m.weight.data.normal_(mean, std)
29
+
30
+
31
+ def get_padding(kernel_size, dilation=1):
32
+ return int((kernel_size*dilation - dilation)/2)
33
+
34
+
35
+ def convert_pad_shape(pad_shape):
36
+ l = pad_shape[::-1]
37
+ pad_shape = [item for sublist in l for item in sublist]
38
+ return pad_shape
39
+
40
+
41
+ def intersperse(lst, item):
42
+ result = [item] * (len(lst) * 2 + 1)
43
+ result[1::2] = lst
44
+ return result
45
+
46
+
47
+ def kl_divergence(m_p, logs_p, m_q, logs_q):
48
+ """KL(P||Q)"""
49
+ kl = (logs_q - logs_p) - 0.5
50
+ kl += 0.5 * (torch.exp(2. * logs_p) + ((m_p - m_q)**2)) * torch.exp(-2. * logs_q)
51
+ return kl
52
+
53
+
54
+ def rand_gumbel(shape):
55
+ """Sample from the Gumbel distribution, protect from overflows."""
56
+ uniform_samples = torch.rand(shape) * 0.99998 + 0.00001
57
+ return -torch.log(-torch.log(uniform_samples))
58
+
59
+
60
+ def rand_gumbel_like(x):
61
+ g = rand_gumbel(x.size()).to(dtype=x.dtype, device=x.device)
62
+ return g
63
+
64
+
65
+ def slice_segments(x, ids_str, segment_size=4):
66
+ ret = torch.zeros_like(x[:, :, :segment_size])
67
+ for i in range(x.size(0)):
68
+ idx_str = ids_str[i]
69
+ idx_end = idx_str + segment_size
70
+ ret[i] = x[i, :, idx_str:idx_end]
71
+ return ret
72
+
73
+
74
+ def rand_slice_segments(x, x_lengths=None, segment_size=4):
75
+ b, d, t = x.size()
76
+ if x_lengths is None:
77
+ x_lengths = t
78
+ ids_str_max = x_lengths - segment_size + 1
79
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
80
+ ret = slice_segments(x, ids_str, segment_size)
81
+ return ret, ids_str
82
+
83
+
84
+ def rand_spec_segments(x, x_lengths=None, segment_size=4):
85
+ b, d, t = x.size()
86
+ if x_lengths is None:
87
+ x_lengths = t
88
+ ids_str_max = x_lengths - segment_size
89
+ ids_str = (torch.rand([b]).to(device=x.device) * ids_str_max).to(dtype=torch.long)
90
+ ret = slice_segments(x, ids_str, segment_size)
91
+ return ret, ids_str
92
+
93
+
94
+ def get_timing_signal_1d(
95
+ length, channels, min_timescale=1.0, max_timescale=1.0e4):
96
+ position = torch.arange(length, dtype=torch.float)
97
+ num_timescales = channels // 2
98
+ log_timescale_increment = (
99
+ math.log(float(max_timescale) / float(min_timescale)) /
100
+ (num_timescales - 1))
101
+ inv_timescales = min_timescale * torch.exp(
102
+ torch.arange(num_timescales, dtype=torch.float) * -log_timescale_increment)
103
+ scaled_time = position.unsqueeze(0) * inv_timescales.unsqueeze(1)
104
+ signal = torch.cat([torch.sin(scaled_time), torch.cos(scaled_time)], 0)
105
+ signal = F.pad(signal, [0, 0, 0, channels % 2])
106
+ signal = signal.view(1, channels, length)
107
+ return signal
108
+
109
+
110
+ def add_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4):
111
+ b, channels, length = x.size()
112
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
113
+ return x + signal.to(dtype=x.dtype, device=x.device)
114
+
115
+
116
+ def cat_timing_signal_1d(x, min_timescale=1.0, max_timescale=1.0e4, axis=1):
117
+ b, channels, length = x.size()
118
+ signal = get_timing_signal_1d(length, channels, min_timescale, max_timescale)
119
+ return torch.cat([x, signal.to(dtype=x.dtype, device=x.device)], axis)
120
+
121
+
122
+ def subsequent_mask(length):
123
+ mask = torch.tril(torch.ones(length, length)).unsqueeze(0).unsqueeze(0)
124
+ return mask
125
+
126
+
127
+ @torch.jit.script
128
+ def fused_add_tanh_sigmoid_multiply(input_a, input_b, n_channels):
129
+ n_channels_int = n_channels[0]
130
+ in_act = input_a + input_b
131
+ t_act = torch.tanh(in_act[:, :n_channels_int, :])
132
+ s_act = torch.sigmoid(in_act[:, n_channels_int:, :])
133
+ acts = t_act * s_act
134
+ return acts
135
+
136
+
137
+ def convert_pad_shape(pad_shape):
138
+ l = pad_shape[::-1]
139
+ pad_shape = [item for sublist in l for item in sublist]
140
+ return pad_shape
141
+
142
+
143
+ def shift_1d(x):
144
+ x = F.pad(x, convert_pad_shape([[0, 0], [0, 0], [1, 0]]))[:, :, :-1]
145
+ return x
146
+
147
+
148
+ def sequence_mask(length, max_length=None):
149
+ if max_length is None:
150
+ max_length = length.max()
151
+ x = torch.arange(max_length, dtype=length.dtype, device=length.device)
152
+ return x.unsqueeze(0) < length.unsqueeze(1)
153
+
154
+
155
+ def generate_path(duration, mask):
156
+ """
157
+ duration: [b, 1, t_x]
158
+ mask: [b, 1, t_y, t_x]
159
+ """
160
+ device = duration.device
161
+
162
+ b, _, t_y, t_x = mask.shape
163
+ cum_duration = torch.cumsum(duration, -1)
164
+
165
+ cum_duration_flat = cum_duration.view(b * t_x)
166
+ path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
167
+ path = path.view(b, t_x, t_y)
168
+ path = path - F.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
169
+ path = path.unsqueeze(1).transpose(2,3) * mask
170
+ return path
171
+
172
+
173
+ def clip_grad_value_(parameters, clip_value, norm_type=2):
174
+ if isinstance(parameters, torch.Tensor):
175
+ parameters = [parameters]
176
+ parameters = list(filter(lambda p: p.grad is not None, parameters))
177
+ norm_type = float(norm_type)
178
+ if clip_value is not None:
179
+ clip_value = float(clip_value)
180
+
181
+ total_norm = 0
182
+ for p in parameters:
183
+ param_norm = p.grad.data.norm(norm_type)
184
+ total_norm += param_norm.item() ** norm_type
185
+ if clip_value is not None:
186
+ p.grad.data.clamp_(min=-clip_value, max=clip_value)
187
+ total_norm = total_norm ** (1. / norm_type)
188
+ return total_norm
modules/ddsp.py ADDED
@@ -0,0 +1,189 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ from torch.nn import functional as F
4
+ import torch.fft as fft
5
+ import numpy as np
6
+ import librosa as li
7
+ import math
8
+ from scipy.signal import get_window
9
+
10
+ def safe_log(x):
11
+ return torch.log(x + 1e-7)
12
+
13
+
14
+ @torch.no_grad()
15
+ def mean_std_loudness(dataset):
16
+ mean = 0
17
+ std = 0
18
+ n = 0
19
+ for _, _, l in dataset:
20
+ n += 1
21
+ mean += (l.mean().item() - mean) / n
22
+ std += (l.std().item() - std) / n
23
+ return mean, std
24
+
25
+
26
+ def multiscale_fft(signal, scales, overlap):
27
+ stfts = []
28
+ for s in scales:
29
+ S = torch.stft(
30
+ signal,
31
+ s,
32
+ int(s * (1 - overlap)),
33
+ s,
34
+ torch.hann_window(s).to(signal),
35
+ True,
36
+ normalized=True,
37
+ return_complex=True,
38
+ ).abs()
39
+ stfts.append(S)
40
+ return stfts
41
+
42
+
43
+ def resample(x, factor: int):
44
+ batch, frame, channel = x.shape
45
+ x = x.permute(0, 2, 1).reshape(batch * channel, 1, frame)
46
+
47
+ window = torch.hann_window(
48
+ factor * 2,
49
+ dtype=x.dtype,
50
+ device=x.device,
51
+ ).reshape(1, 1, -1)
52
+ y = torch.zeros(x.shape[0], x.shape[1], factor * x.shape[2]).to(x)
53
+ y[..., ::factor] = x
54
+ y[..., -1:] = x[..., -1:]
55
+ y = torch.nn.functional.pad(y, [factor, factor])
56
+ y = torch.nn.functional.conv1d(y, window)[..., :-1]
57
+
58
+ y = y.reshape(batch, channel, factor * frame).permute(0, 2, 1)
59
+
60
+ return y
61
+
62
+
63
+ def upsample(signal, factor):
64
+ signal = signal.permute(0, 2, 1)
65
+ signal = nn.functional.interpolate(signal, size=signal.shape[-1] * factor)
66
+ return signal.permute(0, 2, 1)
67
+
68
+
69
+ def remove_above_nyquist(amplitudes, pitch, sampling_rate):
70
+ n_harm = amplitudes.shape[-1]
71
+ pitches = pitch * torch.arange(1, n_harm + 1).to(pitch)
72
+ aa = (pitches < sampling_rate / 2).float() + 1e-4
73
+ return amplitudes * aa
74
+
75
+
76
+ def scale_function(x):
77
+ return 2 * torch.sigmoid(x)**(math.log(10)) + 1e-7
78
+
79
+
80
+ def extract_loudness(signal, sampling_rate, block_size, n_fft=2048):
81
+ S = li.stft(
82
+ signal,
83
+ n_fft=n_fft,
84
+ hop_length=block_size,
85
+ win_length=n_fft,
86
+ center=True,
87
+ )
88
+ S = np.log(abs(S) + 1e-7)
89
+ f = li.fft_frequencies(sampling_rate, n_fft)
90
+ a_weight = li.A_weighting(f)
91
+
92
+ S = S + a_weight.reshape(-1, 1)
93
+
94
+ S = np.mean(S, 0)[..., :-1]
95
+
96
+ return S
97
+
98
+
99
+ def extract_pitch(signal, sampling_rate, block_size):
100
+ length = signal.shape[-1] // block_size
101
+ f0 = crepe.predict(
102
+ signal,
103
+ sampling_rate,
104
+ step_size=int(1000 * block_size / sampling_rate),
105
+ verbose=1,
106
+ center=True,
107
+ viterbi=True,
108
+ )
109
+ f0 = f0[1].reshape(-1)[:-1]
110
+
111
+ if f0.shape[-1] != length:
112
+ f0 = np.interp(
113
+ np.linspace(0, 1, length, endpoint=False),
114
+ np.linspace(0, 1, f0.shape[-1], endpoint=False),
115
+ f0,
116
+ )
117
+
118
+ return f0
119
+
120
+
121
+ def mlp(in_size, hidden_size, n_layers):
122
+ channels = [in_size] + (n_layers) * [hidden_size]
123
+ net = []
124
+ for i in range(n_layers):
125
+ net.append(nn.Linear(channels[i], channels[i + 1]))
126
+ net.append(nn.LayerNorm(channels[i + 1]))
127
+ net.append(nn.LeakyReLU())
128
+ return nn.Sequential(*net)
129
+
130
+
131
+ def gru(n_input, hidden_size):
132
+ return nn.GRU(n_input * hidden_size, hidden_size, batch_first=True)
133
+
134
+
135
+ def harmonic_synth(pitch, amplitudes, sampling_rate):
136
+ n_harmonic = amplitudes.shape[-1]
137
+ omega = torch.cumsum(2 * math.pi * pitch / sampling_rate, 1)
138
+ omegas = omega * torch.arange(1, n_harmonic + 1).to(omega)
139
+ signal = (torch.sin(omegas) * amplitudes).sum(-1, keepdim=True)
140
+ return signal
141
+
142
+
143
+ def amp_to_impulse_response(amp, target_size):
144
+ amp = torch.stack([amp, torch.zeros_like(amp)], -1)
145
+ amp = torch.view_as_complex(amp)
146
+ amp = fft.irfft(amp)
147
+
148
+ filter_size = amp.shape[-1]
149
+
150
+ amp = torch.roll(amp, filter_size // 2, -1)
151
+ win = torch.hann_window(filter_size, dtype=amp.dtype, device=amp.device)
152
+
153
+ amp = amp * win
154
+
155
+ amp = nn.functional.pad(amp, (0, int(target_size) - int(filter_size)))
156
+ amp = torch.roll(amp, -filter_size // 2, -1)
157
+
158
+ return amp
159
+
160
+
161
+ def fft_convolve(signal, kernel):
162
+ signal = nn.functional.pad(signal, (0, signal.shape[-1]))
163
+ kernel = nn.functional.pad(kernel, (kernel.shape[-1], 0))
164
+
165
+ output = fft.irfft(fft.rfft(signal) * fft.rfft(kernel))
166
+ output = output[..., output.shape[-1] // 2:]
167
+
168
+ return output
169
+
170
+
171
+ def init_kernels(win_len, win_inc, fft_len, win_type=None, invers=False):
172
+ if win_type == 'None' or win_type is None:
173
+ window = np.ones(win_len)
174
+ else:
175
+ window = get_window(win_type, win_len, fftbins=True)#**0.5
176
+
177
+ N = fft_len
178
+ fourier_basis = np.fft.rfft(np.eye(N))[:win_len]
179
+ real_kernel = np.real(fourier_basis)
180
+ imag_kernel = np.imag(fourier_basis)
181
+ kernel = np.concatenate([real_kernel, imag_kernel], 1).T
182
+
183
+ if invers :
184
+ kernel = np.linalg.pinv(kernel).T
185
+
186
+ kernel = kernel*window
187
+ kernel = kernel[:, None, :]
188
+ return torch.from_numpy(kernel.astype(np.float32)), torch.from_numpy(window[None,:,None].astype(np.float32))
189
+
modules/losses.py ADDED
@@ -0,0 +1,61 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import modules.commons as commons
5
+
6
+
7
+ def feature_loss(fmap_r, fmap_g):
8
+ loss = 0
9
+ for dr, dg in zip(fmap_r, fmap_g):
10
+ for rl, gl in zip(dr, dg):
11
+ rl = rl.float().detach()
12
+ gl = gl.float()
13
+ loss += torch.mean(torch.abs(rl - gl))
14
+
15
+ return loss * 2
16
+
17
+
18
+ def discriminator_loss(disc_real_outputs, disc_generated_outputs):
19
+ loss = 0
20
+ r_losses = []
21
+ g_losses = []
22
+ for dr, dg in zip(disc_real_outputs, disc_generated_outputs):
23
+ dr = dr.float()
24
+ dg = dg.float()
25
+ r_loss = torch.mean((1-dr)**2)
26
+ g_loss = torch.mean(dg**2)
27
+ loss += (r_loss + g_loss)
28
+ r_losses.append(r_loss.item())
29
+ g_losses.append(g_loss.item())
30
+
31
+ return loss, r_losses, g_losses
32
+
33
+
34
+ def generator_loss(disc_outputs):
35
+ loss = 0
36
+ gen_losses = []
37
+ for dg in disc_outputs:
38
+ dg = dg.float()
39
+ l = torch.mean((1-dg)**2)
40
+ gen_losses.append(l)
41
+ loss += l
42
+
43
+ return loss, gen_losses
44
+
45
+
46
+ def kl_loss(z_p, logs_q, m_p, logs_p, z_mask):
47
+ """
48
+ z_p, logs_q: [b, h, t_t]
49
+ m_p, logs_p: [b, h, t_t]
50
+ """
51
+ z_p = z_p.float()
52
+ logs_q = logs_q.float()
53
+ m_p = m_p.float()
54
+ logs_p = logs_p.float()
55
+ z_mask = z_mask.float()
56
+ #print(logs_p)
57
+ kl = logs_p - logs_q - 0.5
58
+ kl += 0.5 * ((z_p - m_p)**2) * torch.exp(-2. * logs_p)
59
+ kl = torch.sum(kl * z_mask)
60
+ l = kl / torch.sum(z_mask)
61
+ return l
modules/mel_processing.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import os
3
+ import random
4
+ import torch
5
+ from torch import nn
6
+ import torch.nn.functional as F
7
+ import torch.utils.data
8
+ import numpy as np
9
+ import librosa
10
+ import librosa.util as librosa_util
11
+ from librosa.util import normalize, pad_center, tiny
12
+ from scipy.signal import get_window
13
+ from scipy.io.wavfile import read
14
+ from librosa.filters import mel as librosa_mel_fn
15
+
16
+ MAX_WAV_VALUE = 32768.0
17
+
18
+
19
+ def dynamic_range_compression_torch(x, C=1, clip_val=1e-5):
20
+ """
21
+ PARAMS
22
+ ------
23
+ C: compression factor
24
+ """
25
+ return torch.log(torch.clamp(x, min=clip_val) * C)
26
+
27
+
28
+ def dynamic_range_decompression_torch(x, C=1):
29
+ """
30
+ PARAMS
31
+ ------
32
+ C: compression factor used to compress
33
+ """
34
+ return torch.exp(x) / C
35
+
36
+
37
+ def spectral_normalize_torch(magnitudes):
38
+ output = dynamic_range_compression_torch(magnitudes)
39
+ return output
40
+
41
+
42
+ def spectral_de_normalize_torch(magnitudes):
43
+ output = dynamic_range_decompression_torch(magnitudes)
44
+ return output
45
+
46
+
47
+ mel_basis = {}
48
+ hann_window = {}
49
+
50
+
51
+ def spectrogram_torch(y, n_fft, sampling_rate, hop_size, win_size, center=False):
52
+ if torch.min(y) < -1.:
53
+ print('min value is ', torch.min(y))
54
+ if torch.max(y) > 1.:
55
+ print('max value is ', torch.max(y))
56
+
57
+ global hann_window
58
+ dtype_device = str(y.dtype) + '_' + str(y.device)
59
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
60
+ if wnsize_dtype_device not in hann_window:
61
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
62
+
63
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
64
+ y = y.squeeze(1)
65
+
66
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
67
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
68
+
69
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
70
+ return spec
71
+
72
+
73
+ def spec_to_mel_torch(spec, n_fft, num_mels, sampling_rate, fmin, fmax):
74
+ global mel_basis
75
+ dtype_device = str(spec.dtype) + '_' + str(spec.device)
76
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
77
+ if fmax_dtype_device not in mel_basis:
78
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
79
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=spec.dtype, device=spec.device)
80
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
81
+ spec = spectral_normalize_torch(spec)
82
+ return spec
83
+
84
+
85
+ def mel_spectrogram_torch(y, n_fft, num_mels, sampling_rate, hop_size, win_size, fmin, fmax, center=False):
86
+ if torch.min(y) < -1.:
87
+ print('min value is ', torch.min(y))
88
+ if torch.max(y) > 1.:
89
+ print('max value is ', torch.max(y))
90
+
91
+ global mel_basis, hann_window
92
+ dtype_device = str(y.dtype) + '_' + str(y.device)
93
+ fmax_dtype_device = str(fmax) + '_' + dtype_device
94
+ wnsize_dtype_device = str(win_size) + '_' + dtype_device
95
+ if fmax_dtype_device not in mel_basis:
96
+ mel = librosa_mel_fn(sr=sampling_rate, n_fft=n_fft, n_mels=num_mels, fmin=fmin, fmax=fmax)
97
+ mel_basis[fmax_dtype_device] = torch.from_numpy(mel).to(dtype=y.dtype, device=y.device)
98
+ if wnsize_dtype_device not in hann_window:
99
+ hann_window[wnsize_dtype_device] = torch.hann_window(win_size).to(dtype=y.dtype, device=y.device)
100
+
101
+ y = torch.nn.functional.pad(y.unsqueeze(1), (int((n_fft-hop_size)/2), int((n_fft-hop_size)/2)), mode='reflect')
102
+ y = y.squeeze(1)
103
+
104
+ spec = torch.stft(y, n_fft, hop_length=hop_size, win_length=win_size, window=hann_window[wnsize_dtype_device],
105
+ center=center, pad_mode='reflect', normalized=False, onesided=True, return_complex=False)
106
+
107
+ spec = torch.sqrt(spec.pow(2).sum(-1) + 1e-6)
108
+
109
+ spec = torch.matmul(mel_basis[fmax_dtype_device], spec)
110
+ spec = spectral_normalize_torch(spec)
111
+
112
+ return spec
modules/modules.py ADDED
@@ -0,0 +1,453 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import copy
2
+ import math
3
+ import numpy as np
4
+ import scipy
5
+ import torch
6
+ from torch import nn
7
+ from torch.nn import functional as F
8
+ from torch.autograd import Function
9
+ from typing import Any, Optional, Tuple
10
+
11
+ from torch.nn import Conv1d, ConvTranspose1d, AvgPool1d, Conv2d
12
+ from torch.nn.utils import weight_norm, remove_weight_norm
13
+
14
+ import modules.commons as commons
15
+ from modules.commons import init_weights, get_padding
16
+ from modules.transforms import piecewise_rational_quadratic_transform
17
+
18
+ LRELU_SLOPE = 0.1
19
+
20
+
21
+ class LayerNorm(nn.Module):
22
+ def __init__(self, channels, eps=1e-5):
23
+ super().__init__()
24
+ self.channels = channels
25
+ self.eps = eps
26
+
27
+ self.gamma = nn.Parameter(torch.ones(channels))
28
+ self.beta = nn.Parameter(torch.zeros(channels))
29
+
30
+ def forward(self, x):
31
+ x = x.transpose(1, -1)
32
+ x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps)
33
+ return x.transpose(1, -1)
34
+
35
+
36
+ class ConvReluNorm(nn.Module):
37
+ def __init__(self, in_channels, hidden_channels, out_channels, kernel_size, n_layers, p_dropout):
38
+ super().__init__()
39
+ self.in_channels = in_channels
40
+ self.hidden_channels = hidden_channels
41
+ self.out_channels = out_channels
42
+ self.kernel_size = kernel_size
43
+ self.n_layers = n_layers
44
+ self.p_dropout = p_dropout
45
+ assert n_layers > 1, "Number of layers should be larger than 0."
46
+
47
+ self.conv_layers = nn.ModuleList()
48
+ self.norm_layers = nn.ModuleList()
49
+ self.conv_layers.append(nn.Conv1d(in_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
50
+ self.norm_layers.append(LayerNorm(hidden_channels))
51
+ self.relu_drop = nn.Sequential(
52
+ nn.ReLU(),
53
+ nn.Dropout(p_dropout))
54
+ for _ in range(n_layers - 1):
55
+ self.conv_layers.append(nn.Conv1d(hidden_channels, hidden_channels, kernel_size, padding=kernel_size // 2))
56
+ self.norm_layers.append(LayerNorm(hidden_channels))
57
+ self.proj = nn.Conv1d(hidden_channels, out_channels, 1)
58
+ self.proj.weight.data.zero_()
59
+ self.proj.bias.data.zero_()
60
+
61
+ def forward(self, x, x_mask):
62
+ x_org = x
63
+ for i in range(self.n_layers):
64
+ x = self.conv_layers[i](x * x_mask)
65
+ x = self.norm_layers[i](x)
66
+ x = self.relu_drop(x)
67
+ x = x_org + self.proj(x)
68
+ return x * x_mask
69
+
70
+
71
+ class DDSConv(nn.Module):
72
+ """
73
+ Dialted and Depth-Separable Convolution
74
+ """
75
+
76
+ def __init__(self, channels, kernel_size, n_layers, p_dropout=0.):
77
+ super().__init__()
78
+ self.channels = channels
79
+ self.kernel_size = kernel_size
80
+ self.n_layers = n_layers
81
+ self.p_dropout = p_dropout
82
+
83
+ self.drop = nn.Dropout(p_dropout)
84
+ self.convs_sep = nn.ModuleList()
85
+ self.convs_1x1 = nn.ModuleList()
86
+ self.norms_1 = nn.ModuleList()
87
+ self.norms_2 = nn.ModuleList()
88
+ for i in range(n_layers):
89
+ dilation = kernel_size ** i
90
+ padding = (kernel_size * dilation - dilation) // 2
91
+ self.convs_sep.append(nn.Conv1d(channels, channels, kernel_size,
92
+ groups=channels, dilation=dilation, padding=padding
93
+ ))
94
+ self.convs_1x1.append(nn.Conv1d(channels, channels, 1))
95
+ self.norms_1.append(LayerNorm(channels))
96
+ self.norms_2.append(LayerNorm(channels))
97
+
98
+ def forward(self, x, x_mask, g=None):
99
+ if g is not None:
100
+ x = x + g
101
+ for i in range(self.n_layers):
102
+ y = self.convs_sep[i](x * x_mask)
103
+ y = self.norms_1[i](y)
104
+ y = F.gelu(y)
105
+ y = self.convs_1x1[i](y)
106
+ y = self.norms_2[i](y)
107
+ y = F.gelu(y)
108
+ y = self.drop(y)
109
+ x = x + y
110
+ return x * x_mask
111
+
112
+
113
+ class WN(torch.nn.Module):
114
+ def __init__(self, hidden_channels, kernel_size, dilation_rate, n_layers, n_speakers=0, spk_channels=0,
115
+ p_dropout=0):
116
+ super(WN, self).__init__()
117
+ assert (kernel_size % 2 == 1)
118
+ self.hidden_channels = hidden_channels
119
+ self.kernel_size = kernel_size,
120
+ self.dilation_rate = dilation_rate
121
+ self.n_layers = n_layers
122
+ self.n_speakers = n_speakers
123
+ self.spk_channels = spk_channels
124
+ self.p_dropout = p_dropout
125
+
126
+ self.in_layers = torch.nn.ModuleList()
127
+ self.res_skip_layers = torch.nn.ModuleList()
128
+ self.drop = nn.Dropout(p_dropout)
129
+
130
+ if n_speakers > 0:
131
+ cond_layer = torch.nn.Conv1d(spk_channels, 2 * hidden_channels * n_layers, 1)
132
+ self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name='weight')
133
+
134
+ for i in range(n_layers):
135
+ dilation = dilation_rate ** i
136
+ padding = int((kernel_size * dilation - dilation) / 2)
137
+ in_layer = torch.nn.Conv1d(hidden_channels, 2 * hidden_channels, kernel_size,
138
+ dilation=dilation, padding=padding)
139
+ in_layer = torch.nn.utils.weight_norm(in_layer, name='weight')
140
+ self.in_layers.append(in_layer)
141
+
142
+ # last one is not necessary
143
+ if i < n_layers - 1:
144
+ res_skip_channels = 2 * hidden_channels
145
+ else:
146
+ res_skip_channels = hidden_channels
147
+
148
+ res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1)
149
+ res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name='weight')
150
+ self.res_skip_layers.append(res_skip_layer)
151
+
152
+ def forward(self, x, x_mask, g=None, **kwargs):
153
+ output = torch.zeros_like(x)
154
+ n_channels_tensor = torch.IntTensor([self.hidden_channels])
155
+
156
+ if g is not None:
157
+ g = self.cond_layer(g)
158
+
159
+ for i in range(self.n_layers):
160
+ x_in = self.in_layers[i](x)
161
+ if g is not None:
162
+ cond_offset = i * 2 * self.hidden_channels
163
+ g_l = g[:, cond_offset:cond_offset + 2 * self.hidden_channels, :]
164
+ else:
165
+ g_l = torch.zeros_like(x_in)
166
+
167
+ acts = commons.fused_add_tanh_sigmoid_multiply(
168
+ x_in,
169
+ g_l,
170
+ n_channels_tensor)
171
+ acts = self.drop(acts)
172
+
173
+ res_skip_acts = self.res_skip_layers[i](acts)
174
+ if i < self.n_layers - 1:
175
+ res_acts = res_skip_acts[:, :self.hidden_channels, :]
176
+ x = (x + res_acts) * x_mask
177
+ output = output + res_skip_acts[:, self.hidden_channels:, :]
178
+ else:
179
+ output = output + res_skip_acts
180
+ return output * x_mask
181
+
182
+ def remove_weight_norm(self):
183
+ if self.n_speakers > 0:
184
+ torch.nn.utils.remove_weight_norm(self.cond_layer)
185
+ for l in self.in_layers:
186
+ torch.nn.utils.remove_weight_norm(l)
187
+ for l in self.res_skip_layers:
188
+ torch.nn.utils.remove_weight_norm(l)
189
+
190
+
191
+ class ResBlock1(torch.nn.Module):
192
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
193
+ super(ResBlock1, self).__init__()
194
+ self.convs1 = nn.ModuleList([
195
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
196
+ padding=get_padding(kernel_size, dilation[0]))),
197
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
198
+ padding=get_padding(kernel_size, dilation[1]))),
199
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[2],
200
+ padding=get_padding(kernel_size, dilation[2])))
201
+ ])
202
+ self.convs1.apply(init_weights)
203
+
204
+ self.convs2 = nn.ModuleList([
205
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
206
+ padding=get_padding(kernel_size, 1))),
207
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
208
+ padding=get_padding(kernel_size, 1))),
209
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=1,
210
+ padding=get_padding(kernel_size, 1)))
211
+ ])
212
+ self.convs2.apply(init_weights)
213
+
214
+ def forward(self, x, x_mask=None):
215
+ for c1, c2 in zip(self.convs1, self.convs2):
216
+ xt = F.leaky_relu(x, LRELU_SLOPE)
217
+ if x_mask is not None:
218
+ xt = xt * x_mask
219
+ xt = c1(xt)
220
+ xt = F.leaky_relu(xt, LRELU_SLOPE)
221
+ if x_mask is not None:
222
+ xt = xt * x_mask
223
+ xt = c2(xt)
224
+ x = xt + x
225
+ if x_mask is not None:
226
+ x = x * x_mask
227
+ return x
228
+
229
+ def remove_weight_norm(self):
230
+ for l in self.convs1:
231
+ remove_weight_norm(l)
232
+ for l in self.convs2:
233
+ remove_weight_norm(l)
234
+
235
+
236
+ class ResBlock2(torch.nn.Module):
237
+ def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
238
+ super(ResBlock2, self).__init__()
239
+ self.convs = nn.ModuleList([
240
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[0],
241
+ padding=get_padding(kernel_size, dilation[0]))),
242
+ weight_norm(Conv1d(channels, channels, kernel_size, 1, dilation=dilation[1],
243
+ padding=get_padding(kernel_size, dilation[1])))
244
+ ])
245
+ self.convs.apply(init_weights)
246
+
247
+ def forward(self, x, x_mask=None):
248
+ for c in self.convs:
249
+ xt = F.leaky_relu(x, LRELU_SLOPE)
250
+ if x_mask is not None:
251
+ xt = xt * x_mask
252
+ xt = c(xt)
253
+ x = xt + x
254
+ if x_mask is not None:
255
+ x = x * x_mask
256
+ return x
257
+
258
+ def remove_weight_norm(self):
259
+ for l in self.convs:
260
+ remove_weight_norm(l)
261
+
262
+
263
+ class Log(nn.Module):
264
+ def forward(self, x, x_mask, reverse=False, **kwargs):
265
+ if not reverse:
266
+ y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask
267
+ logdet = torch.sum(-y, [1, 2])
268
+ return y, logdet
269
+ else:
270
+ x = torch.exp(x) * x_mask
271
+ return x
272
+
273
+
274
+ class Flip(nn.Module):
275
+ def forward(self, x, *args, reverse=False, **kwargs):
276
+ x = torch.flip(x, [1])
277
+ if not reverse:
278
+ logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device)
279
+ return x, logdet
280
+ else:
281
+ return x
282
+
283
+
284
+ class ElementwiseAffine(nn.Module):
285
+ def __init__(self, channels):
286
+ super().__init__()
287
+ self.channels = channels
288
+ self.m = nn.Parameter(torch.zeros(channels, 1))
289
+ self.logs = nn.Parameter(torch.zeros(channels, 1))
290
+
291
+ def forward(self, x, x_mask, reverse=False, **kwargs):
292
+ if not reverse:
293
+ y = self.m + torch.exp(self.logs) * x
294
+ y = y * x_mask
295
+ logdet = torch.sum(self.logs * x_mask, [1, 2])
296
+ return y, logdet
297
+ else:
298
+ x = (x - self.m) * torch.exp(-self.logs) * x_mask
299
+ return x
300
+
301
+
302
+ class ResidualCouplingLayer(nn.Module):
303
+ def __init__(self,
304
+ channels,
305
+ hidden_channels,
306
+ kernel_size,
307
+ dilation_rate,
308
+ n_layers,
309
+ p_dropout=0,
310
+ n_speakers=0,
311
+ spk_channels=0,
312
+ mean_only=False):
313
+ assert channels % 2 == 0, "channels should be divisible by 2"
314
+ super().__init__()
315
+ self.channels = channels
316
+ self.hidden_channels = hidden_channels
317
+ self.kernel_size = kernel_size
318
+ self.dilation_rate = dilation_rate
319
+ self.n_layers = n_layers
320
+ self.half_channels = channels // 2
321
+ self.mean_only = mean_only
322
+
323
+ self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1)
324
+ self.enc = WN(hidden_channels, kernel_size, dilation_rate, n_layers, p_dropout=p_dropout, n_speakers=n_speakers,
325
+ spk_channels=spk_channels)
326
+ self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1)
327
+ self.post.weight.data.zero_()
328
+ self.post.bias.data.zero_()
329
+
330
+ def forward(self, x, x_mask, g=None, reverse=False):
331
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
332
+ h = self.pre(x0) * x_mask
333
+ h = self.enc(h, x_mask, g=g)
334
+ stats = self.post(h) * x_mask
335
+ if not self.mean_only:
336
+ m, logs = torch.split(stats, [self.half_channels] * 2, 1)
337
+ else:
338
+ m = stats
339
+ logs = torch.zeros_like(m)
340
+
341
+ if not reverse:
342
+ x1 = m + x1 * torch.exp(logs) * x_mask
343
+ x = torch.cat([x0, x1], 1)
344
+ logdet = torch.sum(logs, [1, 2])
345
+ return x, logdet
346
+ else:
347
+ x1 = (x1 - m) * torch.exp(-logs) * x_mask
348
+ x = torch.cat([x0, x1], 1)
349
+ return x
350
+
351
+
352
+ class ResidualCouplingBlock(nn.Module):
353
+ def __init__(self,
354
+ channels,
355
+ hidden_channels,
356
+ kernel_size,
357
+ dilation_rate,
358
+ n_layers,
359
+ n_flows=4,
360
+ n_speakers=0,
361
+ gin_channels=0):
362
+ super().__init__()
363
+ self.channels = channels
364
+ self.hidden_channels = hidden_channels
365
+ self.kernel_size = kernel_size
366
+ self.dilation_rate = dilation_rate
367
+ self.n_layers = n_layers
368
+ self.n_flows = n_flows
369
+ self.gin_channels = gin_channels
370
+
371
+ self.flows = nn.ModuleList()
372
+ for i in range(n_flows):
373
+ self.flows.append(ResidualCouplingLayer(channels, hidden_channels, kernel_size, dilation_rate, n_layers,
374
+ n_speakers=n_speakers, spk_channels=gin_channels, mean_only=True))
375
+ self.flows.append(Flip())
376
+
377
+ def forward(self, x, x_mask, g=None, reverse=False):
378
+ if not reverse:
379
+ for flow in self.flows:
380
+ x, _ = flow(x, x_mask, g=g, reverse=reverse)
381
+ else:
382
+ for flow in reversed(self.flows):
383
+ x = flow(x, x_mask, g=g, reverse=reverse)
384
+ return x
385
+
386
+
387
+ class ConvFlow(nn.Module):
388
+ def __init__(self, in_channels, filter_channels, kernel_size, n_layers, num_bins=10, tail_bound=5.0):
389
+ super().__init__()
390
+ self.in_channels = in_channels
391
+ self.filter_channels = filter_channels
392
+ self.kernel_size = kernel_size
393
+ self.n_layers = n_layers
394
+ self.num_bins = num_bins
395
+ self.tail_bound = tail_bound
396
+ self.half_channels = in_channels // 2
397
+
398
+ self.pre = nn.Conv1d(self.half_channels, filter_channels, 1)
399
+ self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.)
400
+ self.proj = nn.Conv1d(filter_channels, self.half_channels * (num_bins * 3 - 1), 1)
401
+ self.proj.weight.data.zero_()
402
+ self.proj.bias.data.zero_()
403
+
404
+ def forward(self, x, x_mask, g=None, reverse=False):
405
+ x0, x1 = torch.split(x, [self.half_channels] * 2, 1)
406
+ h = self.pre(x0)
407
+ h = self.convs(h, x_mask, g=g)
408
+ h = self.proj(h) * x_mask
409
+
410
+ b, c, t = x0.shape
411
+ h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?]
412
+
413
+ unnormalized_widths = h[..., :self.num_bins] / math.sqrt(self.filter_channels)
414
+ unnormalized_heights = h[..., self.num_bins:2 * self.num_bins] / math.sqrt(self.filter_channels)
415
+ unnormalized_derivatives = h[..., 2 * self.num_bins:]
416
+
417
+ x1, logabsdet = piecewise_rational_quadratic_transform(x1,
418
+ unnormalized_widths,
419
+ unnormalized_heights,
420
+ unnormalized_derivatives,
421
+ inverse=reverse,
422
+ tails='linear',
423
+ tail_bound=self.tail_bound
424
+ )
425
+
426
+ x = torch.cat([x0, x1], 1) * x_mask
427
+ logdet = torch.sum(logabsdet * x_mask, [1, 2])
428
+ if not reverse:
429
+ return x, logdet
430
+ else:
431
+ return x
432
+
433
+
434
+ class ResStack(nn.Module):
435
+ def __init__(self, channel, kernel_size=3, base=3, nums=4):
436
+ super(ResStack, self).__init__()
437
+
438
+ self.layers = nn.ModuleList([
439
+ nn.Sequential(
440
+ nn.LeakyReLU(),
441
+ nn.utils.weight_norm(nn.Conv1d(channel, channel,
442
+ kernel_size=kernel_size, dilation=base ** i, padding=base ** i)),
443
+ nn.LeakyReLU(),
444
+ nn.utils.weight_norm(nn.Conv1d(channel, channel,
445
+ kernel_size=kernel_size, dilation=1, padding=1)),
446
+ )
447
+ for i in range(nums)
448
+ ])
449
+
450
+ def forward(self, x):
451
+ for layer in self.layers:
452
+ x = x + layer(x)
453
+ return x
modules/stft.py ADDED
@@ -0,0 +1,512 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from librosa.util import pad_center, tiny
2
+ from scipy.signal import get_window
3
+ from torch import Tensor
4
+ from torch.autograd import Variable
5
+ from typing import Optional, Tuple
6
+
7
+ import librosa
8
+ import librosa.util as librosa_util
9
+ import math
10
+ import numpy as np
11
+ import scipy
12
+ import torch
13
+ import torch.nn.functional as F
14
+ import warnings
15
+
16
+
17
+ def create_fb_matrix(
18
+ n_freqs: int,
19
+ f_min: float,
20
+ f_max: float,
21
+ n_mels: int,
22
+ sample_rate: int,
23
+ norm: Optional[str] = None
24
+ ) -> Tensor:
25
+ r"""Create a frequency bin conversion matrix.
26
+
27
+ Args:
28
+ n_freqs (int): Number of frequencies to highlight/apply
29
+ f_min (float): Minimum frequency (Hz)
30
+ f_max (float): Maximum frequency (Hz)
31
+ n_mels (int): Number of mel filterbanks
32
+ sample_rate (int): Sample rate of the audio waveform
33
+ norm (Optional[str]): If 'slaney', divide the triangular mel weights by the width of the mel band
34
+ (area normalization). (Default: ``None``)
35
+
36
+ Returns:
37
+ Tensor: Triangular filter banks (fb matrix) of size (``n_freqs``, ``n_mels``)
38
+ meaning number of frequencies to highlight/apply to x the number of filterbanks.
39
+ Each column is a filterbank so that assuming there is a matrix A of
40
+ size (..., ``n_freqs``), the applied result would be
41
+ ``A * create_fb_matrix(A.size(-1), ...)``.
42
+ """
43
+
44
+ if norm is not None and norm != "slaney":
45
+ raise ValueError("norm must be one of None or 'slaney'")
46
+
47
+ # freq bins
48
+ # Equivalent filterbank construction by Librosa
49
+ all_freqs = torch.linspace(0, sample_rate // 2, n_freqs)
50
+
51
+ # calculate mel freq bins
52
+ # hertz to mel(f) is 2595. * math.log10(1. + (f / 700.))
53
+ m_min = 2595.0 * math.log10(1.0 + (f_min / 700.0))
54
+ m_max = 2595.0 * math.log10(1.0 + (f_max / 700.0))
55
+ m_pts = torch.linspace(m_min, m_max, n_mels + 2)
56
+ # mel to hertz(mel) is 700. * (10**(mel / 2595.) - 1.)
57
+ f_pts = 700.0 * (10 ** (m_pts / 2595.0) - 1.0)
58
+ # calculate the difference between each mel point and each stft freq point in hertz
59
+ f_diff = f_pts[1:] - f_pts[:-1] # (n_mels + 1)
60
+ slopes = f_pts.unsqueeze(0) - all_freqs.unsqueeze(1) # (n_freqs, n_mels + 2)
61
+ # create overlapping triangles
62
+ down_slopes = (-1.0 * slopes[:, :-2]) / f_diff[:-1] # (n_freqs, n_mels)
63
+ up_slopes = slopes[:, 2:] / f_diff[1:] # (n_freqs, n_mels)
64
+ fb = torch.min(down_slopes, up_slopes)
65
+ fb = torch.clamp(fb, 1e-6, 1)
66
+
67
+ if norm is not None and norm == "slaney":
68
+ # Slaney-style mel is scaled to be approx constant energy per channel
69
+ enorm = 2.0 / (f_pts[2:n_mels + 2] - f_pts[:n_mels])
70
+ fb *= enorm.unsqueeze(0)
71
+ return fb
72
+
73
+
74
+ def lfilter(
75
+ waveform: Tensor,
76
+ a_coeffs: Tensor,
77
+ b_coeffs: Tensor,
78
+ clamp: bool = True,
79
+ ) -> Tensor:
80
+ r"""Perform an IIR filter by evaluating difference equation.
81
+
82
+ Args:
83
+ waveform (Tensor): audio waveform of dimension of ``(..., time)``. Must be normalized to -1 to 1.
84
+ a_coeffs (Tensor): denominator coefficients of difference equation of dimension of ``(n_order + 1)``.
85
+ Lower delays coefficients are first, e.g. ``[a0, a1, a2, ...]``.
86
+ Must be same size as b_coeffs (pad with 0's as necessary).
87
+ b_coeffs (Tensor): numerator coefficients of difference equation of dimension of ``(n_order + 1)``.
88
+ Lower delays coefficients are first, e.g. ``[b0, b1, b2, ...]``.
89
+ Must be same size as a_coeffs (pad with 0's as necessary).
90
+ clamp (bool, optional): If ``True``, clamp the output signal to be in the range [-1, 1] (Default: ``True``)
91
+
92
+ Returns:
93
+ Tensor: Waveform with dimension of ``(..., time)``.
94
+ """
95
+ # pack batch
96
+ shape = waveform.size()
97
+ waveform = waveform.reshape(-1, shape[-1])
98
+
99
+ assert (a_coeffs.size(0) == b_coeffs.size(0))
100
+ assert (len(waveform.size()) == 2)
101
+ assert (waveform.device == a_coeffs.device)
102
+ assert (b_coeffs.device == a_coeffs.device)
103
+
104
+ device = waveform.device
105
+ dtype = waveform.dtype
106
+ n_channel, n_sample = waveform.size()
107
+ n_order = a_coeffs.size(0)
108
+ n_sample_padded = n_sample + n_order - 1
109
+ assert (n_order > 0)
110
+
111
+ # Pad the input and create output
112
+ padded_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
113
+ padded_waveform[:, (n_order - 1):] = waveform
114
+ padded_output_waveform = torch.zeros(n_channel, n_sample_padded, dtype=dtype, device=device)
115
+
116
+ # Set up the coefficients matrix
117
+ # Flip coefficients' order
118
+ a_coeffs_flipped = a_coeffs.flip(0)
119
+ b_coeffs_flipped = b_coeffs.flip(0)
120
+
121
+ # calculate windowed_input_signal in parallel
122
+ # create indices of original with shape (n_channel, n_order, n_sample)
123
+ window_idxs = torch.arange(n_sample, device=device).unsqueeze(0) + torch.arange(n_order, device=device).unsqueeze(1)
124
+ window_idxs = window_idxs.repeat(n_channel, 1, 1)
125
+ window_idxs += (torch.arange(n_channel, device=device).unsqueeze(-1).unsqueeze(-1) * n_sample_padded)
126
+ window_idxs = window_idxs.long()
127
+ # (n_order, ) matmul (n_channel, n_order, n_sample) -> (n_channel, n_sample)
128
+ input_signal_windows = torch.matmul(b_coeffs_flipped, torch.take(padded_waveform, window_idxs))
129
+
130
+ input_signal_windows.div_(a_coeffs[0])
131
+ a_coeffs_flipped.div_(a_coeffs[0])
132
+ for i_sample, o0 in enumerate(input_signal_windows.t()):
133
+ windowed_output_signal = padded_output_waveform[:, i_sample:(i_sample + n_order)]
134
+ o0.addmv_(windowed_output_signal, a_coeffs_flipped, alpha=-1)
135
+ padded_output_waveform[:, i_sample + n_order - 1] = o0
136
+
137
+ output = padded_output_waveform[:, (n_order - 1):]
138
+
139
+ if clamp:
140
+ output = torch.clamp(output, min=-1., max=1.)
141
+
142
+ # unpack batch
143
+ output = output.reshape(shape[:-1] + output.shape[-1:])
144
+
145
+ return output
146
+
147
+
148
+
149
+ def biquad(
150
+ waveform: Tensor,
151
+ b0: float,
152
+ b1: float,
153
+ b2: float,
154
+ a0: float,
155
+ a1: float,
156
+ a2: float
157
+ ) -> Tensor:
158
+ r"""Perform a biquad filter of input tensor. Initial conditions set to 0.
159
+ https://en.wikipedia.org/wiki/Digital_biquad_filter
160
+
161
+ Args:
162
+ waveform (Tensor): audio waveform of dimension of `(..., time)`
163
+ b0 (float): numerator coefficient of current input, x[n]
164
+ b1 (float): numerator coefficient of input one time step ago x[n-1]
165
+ b2 (float): numerator coefficient of input two time steps ago x[n-2]
166
+ a0 (float): denominator coefficient of current output y[n], typically 1
167
+ a1 (float): denominator coefficient of current output y[n-1]
168
+ a2 (float): denominator coefficient of current output y[n-2]
169
+
170
+ Returns:
171
+ Tensor: Waveform with dimension of `(..., time)`
172
+ """
173
+
174
+ device = waveform.device
175
+ dtype = waveform.dtype
176
+
177
+ output_waveform = lfilter(
178
+ waveform,
179
+ torch.tensor([a0, a1, a2], dtype=dtype, device=device),
180
+ torch.tensor([b0, b1, b2], dtype=dtype, device=device)
181
+ )
182
+ return output_waveform
183
+
184
+
185
+
186
+ def _dB2Linear(x: float) -> float:
187
+ return math.exp(x * math.log(10) / 20.0)
188
+
189
+
190
+ def highpass_biquad(
191
+ waveform: Tensor,
192
+ sample_rate: int,
193
+ cutoff_freq: float,
194
+ Q: float = 0.707
195
+ ) -> Tensor:
196
+ r"""Design biquad highpass filter and perform filtering. Similar to SoX implementation.
197
+
198
+ Args:
199
+ waveform (Tensor): audio waveform of dimension of `(..., time)`
200
+ sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
201
+ cutoff_freq (float): filter cutoff frequency
202
+ Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
203
+
204
+ Returns:
205
+ Tensor: Waveform dimension of `(..., time)`
206
+ """
207
+ w0 = 2 * math.pi * cutoff_freq / sample_rate
208
+ alpha = math.sin(w0) / 2. / Q
209
+
210
+ b0 = (1 + math.cos(w0)) / 2
211
+ b1 = -1 - math.cos(w0)
212
+ b2 = b0
213
+ a0 = 1 + alpha
214
+ a1 = -2 * math.cos(w0)
215
+ a2 = 1 - alpha
216
+ return biquad(waveform, b0, b1, b2, a0, a1, a2)
217
+
218
+
219
+
220
+ def lowpass_biquad(
221
+ waveform: Tensor,
222
+ sample_rate: int,
223
+ cutoff_freq: float,
224
+ Q: float = 0.707
225
+ ) -> Tensor:
226
+ r"""Design biquad lowpass filter and perform filtering. Similar to SoX implementation.
227
+
228
+ Args:
229
+ waveform (torch.Tensor): audio waveform of dimension of `(..., time)`
230
+ sample_rate (int): sampling rate of the waveform, e.g. 44100 (Hz)
231
+ cutoff_freq (float): filter cutoff frequency
232
+ Q (float, optional): https://en.wikipedia.org/wiki/Q_factor (Default: ``0.707``)
233
+
234
+ Returns:
235
+ Tensor: Waveform of dimension of `(..., time)`
236
+ """
237
+ w0 = 2 * math.pi * cutoff_freq / sample_rate
238
+ alpha = math.sin(w0) / 2 / Q
239
+
240
+ b0 = (1 - math.cos(w0)) / 2
241
+ b1 = 1 - math.cos(w0)
242
+ b2 = b0
243
+ a0 = 1 + alpha
244
+ a1 = -2 * math.cos(w0)
245
+ a2 = 1 - alpha
246
+ return biquad(waveform, b0, b1, b2, a0, a1, a2)
247
+
248
+
249
+ def window_sumsquare(window, n_frames, hop_length=200, win_length=800,
250
+ n_fft=800, dtype=np.float32, norm=None):
251
+ """
252
+ # from librosa 0.6
253
+ Compute the sum-square envelope of a window function at a given hop length.
254
+
255
+ This is used to estimate modulation effects induced by windowing
256
+ observations in short-time fourier transforms.
257
+
258
+ Parameters
259
+ ----------
260
+ window : string, tuple, number, callable, or list-like
261
+ Window specification, as in `get_window`
262
+
263
+ n_frames : int > 0
264
+ The number of analysis frames
265
+
266
+ hop_length : int > 0
267
+ The number of samples to advance between frames
268
+
269
+ win_length : [optional]
270
+ The length of the window function. By default, this matches `n_fft`.
271
+
272
+ n_fft : int > 0
273
+ The length of each analysis frame.
274
+
275
+ dtype : np.dtype
276
+ The data type of the output
277
+
278
+ Returns
279
+ -------
280
+ wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
281
+ The sum-squared envelope of the window function
282
+ """
283
+ if win_length is None:
284
+ win_length = n_fft
285
+
286
+ n = n_fft + hop_length * (n_frames - 1)
287
+ x = np.zeros(n, dtype=dtype)
288
+
289
+ # Compute the squared window at the desired length
290
+ win_sq = get_window(window, win_length, fftbins=True)
291
+ win_sq = librosa_util.normalize(win_sq, norm=norm)**2
292
+ win_sq = librosa_util.pad_center(win_sq, n_fft)
293
+
294
+ # Fill the envelope
295
+ for i in range(n_frames):
296
+ sample = i * hop_length
297
+ x[sample:min(n, sample + n_fft)] += win_sq[:max(0, min(n_fft, n - sample))]
298
+ return x
299
+
300
+
301
+ class MelScale(torch.nn.Module):
302
+ r"""Turn a normal STFT into a mel frequency STFT, using a conversion
303
+ matrix. This uses triangular filter banks.
304
+
305
+ User can control which device the filter bank (`fb`) is (e.g. fb.to(spec_f.device)).
306
+
307
+ Args:
308
+ n_mels (int, optional): Number of mel filterbanks. (Default: ``128``)
309
+ sample_rate (int, optional): Sample rate of audio signal. (Default: ``16000``)
310
+ f_min (float, optional): Minimum frequency. (Default: ``0.``)
311
+ f_max (float or None, optional): Maximum frequency. (Default: ``sample_rate // 2``)
312
+ n_stft (int, optional): Number of bins in STFT. Calculated from first input
313
+ if None is given. See ``n_fft`` in :class:`Spectrogram`. (Default: ``None``)
314
+ """
315
+ __constants__ = ['n_mels', 'sample_rate', 'f_min', 'f_max']
316
+
317
+ def __init__(self,
318
+ n_mels: int = 128,
319
+ sample_rate: int = 24000,
320
+ f_min: float = 0.,
321
+ f_max: Optional[float] = None,
322
+ n_stft: Optional[int] = None) -> None:
323
+ super(MelScale, self).__init__()
324
+ self.n_mels = n_mels
325
+ self.sample_rate = sample_rate
326
+ self.f_max = f_max if f_max is not None else float(sample_rate // 2)
327
+ self.f_min = f_min
328
+
329
+ assert f_min <= self.f_max, 'Require f_min: %f < f_max: %f' % (f_min, self.f_max)
330
+
331
+ fb = torch.empty(0) if n_stft is None else create_fb_matrix(
332
+ n_stft, self.f_min, self.f_max, self.n_mels, self.sample_rate)
333
+ self.register_buffer('fb', fb)
334
+
335
+ def forward(self, specgram: Tensor) -> Tensor:
336
+ r"""
337
+ Args:
338
+ specgram (Tensor): A spectrogram STFT of dimension (..., freq, time).
339
+
340
+ Returns:
341
+ Tensor: Mel frequency spectrogram of size (..., ``n_mels``, time).
342
+ """
343
+
344
+ # pack batch
345
+ shape = specgram.size()
346
+ specgram = specgram.reshape(-1, shape[-2], shape[-1])
347
+
348
+ if self.fb.numel() == 0:
349
+ tmp_fb = create_fb_matrix(specgram.size(1), self.f_min, self.f_max, self.n_mels, self.sample_rate)
350
+ # Attributes cannot be reassigned outside __init__ so workaround
351
+ self.fb.resize_(tmp_fb.size())
352
+ self.fb.copy_(tmp_fb)
353
+
354
+ # (channel, frequency, time).transpose(...) dot (frequency, n_mels)
355
+ # -> (channel, time, n_mels).transpose(...)
356
+ mel_specgram = torch.matmul(specgram.transpose(1, 2), self.fb).transpose(1, 2)
357
+
358
+ # unpack batch
359
+ mel_specgram = mel_specgram.reshape(shape[:-2] + mel_specgram.shape[-2:])
360
+
361
+ return mel_specgram
362
+
363
+
364
+ class TorchSTFT(torch.nn.Module):
365
+ def __init__(self, fft_size, hop_size, win_size,
366
+ normalized=False, domain='linear',
367
+ mel_scale=False, ref_level_db=20, min_level_db=-100):
368
+ super().__init__()
369
+ self.fft_size = fft_size
370
+ self.hop_size = hop_size
371
+ self.win_size = win_size
372
+ self.ref_level_db = ref_level_db
373
+ self.min_level_db = min_level_db
374
+ self.window = torch.hann_window(win_size)
375
+ self.normalized = normalized
376
+ self.domain = domain
377
+ self.mel_scale = MelScale(n_mels=(fft_size // 2 + 1),
378
+ n_stft=(fft_size // 2 + 1)) if mel_scale else None
379
+
380
+ def transform(self, x):
381
+ x_stft = torch.stft(x.to(torch.float32), self.fft_size, self.hop_size, self.win_size,
382
+ self.window.type_as(x), normalized=self.normalized)
383
+ real = x_stft[..., 0]
384
+ imag = x_stft[..., 1]
385
+ mag = torch.clamp(real ** 2 + imag ** 2, min=1e-7)
386
+ mag = torch.sqrt(mag)
387
+ phase = torch.atan2(imag, real)
388
+
389
+ if self.mel_scale is not None:
390
+ mag = self.mel_scale(mag)
391
+
392
+ if self.domain == 'log':
393
+ mag = 20 * torch.log10(mag) - self.ref_level_db
394
+ mag = torch.clamp((mag - self.min_level_db) / -self.min_level_db, 0, 1)
395
+ return mag, phase
396
+ elif self.domain == 'linear':
397
+ return mag, phase
398
+ elif self.domain == 'double':
399
+ log_mag = 20 * torch.log10(mag) - self.ref_level_db
400
+ log_mag = torch.clamp((log_mag - self.min_level_db) / -self.min_level_db, 0, 1)
401
+ return torch.cat((mag, log_mag), dim=1), phase
402
+
403
+ def complex(self, x):
404
+ x_stft = torch.stft(x, self.fft_size, self.hop_size, self.win_size,
405
+ self.window.type_as(x), normalized=self.normalized)
406
+ real = x_stft[..., 0]
407
+ imag = x_stft[..., 1]
408
+ return real, imag
409
+
410
+
411
+
412
+ class STFT(torch.nn.Module):
413
+ """adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
414
+ def __init__(self, filter_length=800, hop_length=200, win_length=800,
415
+ window='hann'):
416
+ super(STFT, self).__init__()
417
+ self.filter_length = filter_length
418
+ self.hop_length = hop_length
419
+ self.win_length = win_length
420
+ self.window = window
421
+ self.forward_transform = None
422
+ scale = self.filter_length / self.hop_length
423
+ fourier_basis = np.fft.fft(np.eye(self.filter_length))
424
+
425
+ cutoff = int((self.filter_length / 2 + 1))
426
+ fourier_basis = np.vstack([np.real(fourier_basis[:cutoff, :]),
427
+ np.imag(fourier_basis[:cutoff, :])])
428
+
429
+ forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
430
+ inverse_basis = torch.FloatTensor(
431
+ np.linalg.pinv(scale * fourier_basis).T[:, None, :])
432
+
433
+ if window is not None:
434
+ assert(filter_length >= win_length)
435
+ # get window and zero center pad it to filter_length
436
+ fft_window = get_window(window, win_length, fftbins=True)
437
+ fft_window = pad_center(fft_window, filter_length)
438
+ fft_window = torch.from_numpy(fft_window).float()
439
+
440
+ # window the bases
441
+ forward_basis *= fft_window
442
+ inverse_basis *= fft_window
443
+
444
+ self.register_buffer('forward_basis', forward_basis.float())
445
+ self.register_buffer('inverse_basis', inverse_basis.float())
446
+
447
+ def transform(self, input_data):
448
+ num_batches = input_data.size(0)
449
+ num_samples = input_data.size(1)
450
+
451
+ self.num_samples = num_samples
452
+
453
+ # similar to librosa, reflect-pad the input
454
+ input_data = input_data.view(num_batches, 1, num_samples)
455
+ input_data = F.pad(
456
+ input_data.unsqueeze(1),
457
+ (int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
458
+ mode='reflect')
459
+ input_data = input_data.squeeze(1)
460
+
461
+ forward_transform = F.conv1d(
462
+ input_data,
463
+ Variable(self.forward_basis, requires_grad=False),
464
+ stride=self.hop_length,
465
+ padding=0)
466
+
467
+ cutoff = int((self.filter_length / 2) + 1)
468
+ real_part = forward_transform[:, :cutoff, :]
469
+ imag_part = forward_transform[:, cutoff:, :]
470
+
471
+ magnitude = torch.sqrt(real_part**2 + imag_part**2)
472
+ phase = torch.autograd.Variable(
473
+ torch.atan2(imag_part.data, real_part.data))
474
+
475
+ return magnitude, phase
476
+
477
+ def inverse(self, magnitude, phase):
478
+ recombine_magnitude_phase = torch.cat(
479
+ [magnitude*torch.cos(phase), magnitude*torch.sin(phase)], dim=1)
480
+
481
+ inverse_transform = F.conv_transpose1d(
482
+ recombine_magnitude_phase,
483
+ Variable(self.inverse_basis, requires_grad=False),
484
+ stride=self.hop_length,
485
+ padding=0)
486
+
487
+ if self.window is not None:
488
+ window_sum = window_sumsquare(
489
+ self.window, magnitude.size(-1), hop_length=self.hop_length,
490
+ win_length=self.win_length, n_fft=self.filter_length,
491
+ dtype=np.float32)
492
+ # remove modulation effects
493
+ approx_nonzero_indices = torch.from_numpy(
494
+ np.where(window_sum > tiny(window_sum))[0])
495
+ window_sum = torch.autograd.Variable(
496
+ torch.from_numpy(window_sum), requires_grad=False)
497
+ window_sum = window_sum.cuda() if magnitude.is_cuda else window_sum
498
+ inverse_transform[:, :, approx_nonzero_indices] /= window_sum[approx_nonzero_indices]
499
+
500
+ # scale by hop ratio
501
+ inverse_transform *= float(self.filter_length) / self.hop_length
502
+
503
+ inverse_transform = inverse_transform[:, :, int(self.filter_length/2):]
504
+ inverse_transform = inverse_transform[:, :, :-int(self.filter_length/2):]
505
+
506
+ return inverse_transform
507
+
508
+ def forward(self, input_data):
509
+ self.magnitude, self.phase = self.transform(input_data)
510
+ reconstruction = self.inverse(self.magnitude, self.phase)
511
+ return reconstruction
512
+
modules/transforms.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torch.nn import functional as F
3
+
4
+ import numpy as np
5
+
6
+
7
+ DEFAULT_MIN_BIN_WIDTH = 1e-3
8
+ DEFAULT_MIN_BIN_HEIGHT = 1e-3
9
+ DEFAULT_MIN_DERIVATIVE = 1e-3
10
+
11
+
12
+ def piecewise_rational_quadratic_transform(inputs,
13
+ unnormalized_widths,
14
+ unnormalized_heights,
15
+ unnormalized_derivatives,
16
+ inverse=False,
17
+ tails=None,
18
+ tail_bound=1.,
19
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
20
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
21
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
22
+
23
+ if tails is None:
24
+ spline_fn = rational_quadratic_spline
25
+ spline_kwargs = {}
26
+ else:
27
+ spline_fn = unconstrained_rational_quadratic_spline
28
+ spline_kwargs = {
29
+ 'tails': tails,
30
+ 'tail_bound': tail_bound
31
+ }
32
+
33
+ outputs, logabsdet = spline_fn(
34
+ inputs=inputs,
35
+ unnormalized_widths=unnormalized_widths,
36
+ unnormalized_heights=unnormalized_heights,
37
+ unnormalized_derivatives=unnormalized_derivatives,
38
+ inverse=inverse,
39
+ min_bin_width=min_bin_width,
40
+ min_bin_height=min_bin_height,
41
+ min_derivative=min_derivative,
42
+ **spline_kwargs
43
+ )
44
+ return outputs, logabsdet
45
+
46
+
47
+ def searchsorted(bin_locations, inputs, eps=1e-6):
48
+ bin_locations[..., -1] += eps
49
+ return torch.sum(
50
+ inputs[..., None] >= bin_locations,
51
+ dim=-1
52
+ ) - 1
53
+
54
+
55
+ def unconstrained_rational_quadratic_spline(inputs,
56
+ unnormalized_widths,
57
+ unnormalized_heights,
58
+ unnormalized_derivatives,
59
+ inverse=False,
60
+ tails='linear',
61
+ tail_bound=1.,
62
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
63
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
64
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
65
+ inside_interval_mask = (inputs >= -tail_bound) & (inputs <= tail_bound)
66
+ outside_interval_mask = ~inside_interval_mask
67
+
68
+ outputs = torch.zeros_like(inputs)
69
+ logabsdet = torch.zeros_like(inputs)
70
+
71
+ if tails == 'linear':
72
+ unnormalized_derivatives = F.pad(unnormalized_derivatives, pad=(1, 1))
73
+ constant = np.log(np.exp(1 - min_derivative) - 1)
74
+ unnormalized_derivatives[..., 0] = constant
75
+ unnormalized_derivatives[..., -1] = constant
76
+
77
+ outputs[outside_interval_mask] = inputs[outside_interval_mask]
78
+ logabsdet[outside_interval_mask] = 0
79
+ else:
80
+ raise RuntimeError('{} tails are not implemented.'.format(tails))
81
+
82
+ outputs[inside_interval_mask], logabsdet[inside_interval_mask] = rational_quadratic_spline(
83
+ inputs=inputs[inside_interval_mask],
84
+ unnormalized_widths=unnormalized_widths[inside_interval_mask, :],
85
+ unnormalized_heights=unnormalized_heights[inside_interval_mask, :],
86
+ unnormalized_derivatives=unnormalized_derivatives[inside_interval_mask, :],
87
+ inverse=inverse,
88
+ left=-tail_bound, right=tail_bound, bottom=-tail_bound, top=tail_bound,
89
+ min_bin_width=min_bin_width,
90
+ min_bin_height=min_bin_height,
91
+ min_derivative=min_derivative
92
+ )
93
+
94
+ return outputs, logabsdet
95
+
96
+ def rational_quadratic_spline(inputs,
97
+ unnormalized_widths,
98
+ unnormalized_heights,
99
+ unnormalized_derivatives,
100
+ inverse=False,
101
+ left=0., right=1., bottom=0., top=1.,
102
+ min_bin_width=DEFAULT_MIN_BIN_WIDTH,
103
+ min_bin_height=DEFAULT_MIN_BIN_HEIGHT,
104
+ min_derivative=DEFAULT_MIN_DERIVATIVE):
105
+ if torch.min(inputs) < left or torch.max(inputs) > right:
106
+ raise ValueError('Input to a transform is not within its domain')
107
+
108
+ num_bins = unnormalized_widths.shape[-1]
109
+
110
+ if min_bin_width * num_bins > 1.0:
111
+ raise ValueError('Minimal bin width too large for the number of bins')
112
+ if min_bin_height * num_bins > 1.0:
113
+ raise ValueError('Minimal bin height too large for the number of bins')
114
+
115
+ widths = F.softmax(unnormalized_widths, dim=-1)
116
+ widths = min_bin_width + (1 - min_bin_width * num_bins) * widths
117
+ cumwidths = torch.cumsum(widths, dim=-1)
118
+ cumwidths = F.pad(cumwidths, pad=(1, 0), mode='constant', value=0.0)
119
+ cumwidths = (right - left) * cumwidths + left
120
+ cumwidths[..., 0] = left
121
+ cumwidths[..., -1] = right
122
+ widths = cumwidths[..., 1:] - cumwidths[..., :-1]
123
+
124
+ derivatives = min_derivative + F.softplus(unnormalized_derivatives)
125
+
126
+ heights = F.softmax(unnormalized_heights, dim=-1)
127
+ heights = min_bin_height + (1 - min_bin_height * num_bins) * heights
128
+ cumheights = torch.cumsum(heights, dim=-1)
129
+ cumheights = F.pad(cumheights, pad=(1, 0), mode='constant', value=0.0)
130
+ cumheights = (top - bottom) * cumheights + bottom
131
+ cumheights[..., 0] = bottom
132
+ cumheights[..., -1] = top
133
+ heights = cumheights[..., 1:] - cumheights[..., :-1]
134
+
135
+ if inverse:
136
+ bin_idx = searchsorted(cumheights, inputs)[..., None]
137
+ else:
138
+ bin_idx = searchsorted(cumwidths, inputs)[..., None]
139
+
140
+ input_cumwidths = cumwidths.gather(-1, bin_idx)[..., 0]
141
+ input_bin_widths = widths.gather(-1, bin_idx)[..., 0]
142
+
143
+ input_cumheights = cumheights.gather(-1, bin_idx)[..., 0]
144
+ delta = heights / widths
145
+ input_delta = delta.gather(-1, bin_idx)[..., 0]
146
+
147
+ input_derivatives = derivatives.gather(-1, bin_idx)[..., 0]
148
+ input_derivatives_plus_one = derivatives[..., 1:].gather(-1, bin_idx)[..., 0]
149
+
150
+ input_heights = heights.gather(-1, bin_idx)[..., 0]
151
+
152
+ if inverse:
153
+ a = (((inputs - input_cumheights) * (input_derivatives
154
+ + input_derivatives_plus_one
155
+ - 2 * input_delta)
156
+ + input_heights * (input_delta - input_derivatives)))
157
+ b = (input_heights * input_derivatives
158
+ - (inputs - input_cumheights) * (input_derivatives
159
+ + input_derivatives_plus_one
160
+ - 2 * input_delta))
161
+ c = - input_delta * (inputs - input_cumheights)
162
+
163
+ discriminant = b.pow(2) - 4 * a * c
164
+ assert (discriminant >= 0).all()
165
+
166
+ root = (2 * c) / (-b - torch.sqrt(discriminant))
167
+ outputs = root * input_bin_widths + input_cumwidths
168
+
169
+ theta_one_minus_theta = root * (1 - root)
170
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
171
+ * theta_one_minus_theta)
172
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * root.pow(2)
173
+ + 2 * input_delta * theta_one_minus_theta
174
+ + input_derivatives * (1 - root).pow(2))
175
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
176
+
177
+ return outputs, -logabsdet
178
+ else:
179
+ theta = (inputs - input_cumwidths) / input_bin_widths
180
+ theta_one_minus_theta = theta * (1 - theta)
181
+
182
+ numerator = input_heights * (input_delta * theta.pow(2)
183
+ + input_derivatives * theta_one_minus_theta)
184
+ denominator = input_delta + ((input_derivatives + input_derivatives_plus_one - 2 * input_delta)
185
+ * theta_one_minus_theta)
186
+ outputs = input_cumheights + numerator / denominator
187
+
188
+ derivative_numerator = input_delta.pow(2) * (input_derivatives_plus_one * theta.pow(2)
189
+ + 2 * input_delta * theta_one_minus_theta
190
+ + input_derivatives * (1 - theta).pow(2))
191
+ logabsdet = torch.log(derivative_numerator) - 2 * torch.log(denominator)
192
+
193
+ return outputs, logabsdet
onnx_export.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from torchaudio.models.wav2vec2.utils import import_fairseq_model
3
+ from fairseq import checkpoint_utils
4
+ from onnxexport.model_onnx import SynthesizerTrn
5
+ import utils
6
+
7
+ def get_hubert_model():
8
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
9
+ print("load model(s) from {}".format(vec_path))
10
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
11
+ [vec_path],
12
+ suffix="",
13
+ )
14
+ model = models[0]
15
+ model.eval()
16
+ return model
17
+
18
+
19
+ def main(HubertExport, NetExport):
20
+ path = "SoVits4.0"
21
+
22
+ '''if HubertExport:
23
+ device = torch.device("cpu")
24
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
25
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
26
+ [vec_path],
27
+ suffix="",
28
+ )
29
+ original = models[0]
30
+ original.eval()
31
+ model = original
32
+ test_input = torch.rand(1, 1, 16000)
33
+ model(test_input)
34
+ torch.onnx.export(model,
35
+ test_input,
36
+ "hubert4.0.onnx",
37
+ export_params=True,
38
+ opset_version=16,
39
+ do_constant_folding=True,
40
+ input_names=['source'],
41
+ output_names=['embed'],
42
+ dynamic_axes={
43
+ 'source':
44
+ {
45
+ 2: "sample_length"
46
+ },
47
+ }
48
+ )'''
49
+ if NetExport:
50
+ device = torch.device("cpu")
51
+ hps = utils.get_hparams_from_file(f"checkpoints/{path}/config.json")
52
+ SVCVITS = SynthesizerTrn(
53
+ hps.data.filter_length // 2 + 1,
54
+ hps.train.segment_size // hps.data.hop_length,
55
+ **hps.model)
56
+ _ = utils.load_checkpoint(f"checkpoints/{path}/model.pth", SVCVITS, None)
57
+ _ = SVCVITS.eval().to(device)
58
+ for i in SVCVITS.parameters():
59
+ i.requires_grad = False
60
+ test_hidden_unit = torch.rand(1, 10, 256)
61
+ test_pitch = torch.rand(1, 10)
62
+ test_mel2ph = torch.LongTensor([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]).unsqueeze(0)
63
+ test_uv = torch.ones(1, 10, dtype=torch.float32)
64
+ test_noise = torch.randn(1, 192, 10)
65
+ test_sid = torch.LongTensor([0])
66
+ input_names = ["c", "f0", "mel2ph", "uv", "noise", "sid"]
67
+ output_names = ["audio", ]
68
+ SVCVITS.eval()
69
+ torch.onnx.export(SVCVITS,
70
+ (
71
+ test_hidden_unit.to(device),
72
+ test_pitch.to(device),
73
+ test_mel2ph.to(device),
74
+ test_uv.to(device),
75
+ test_noise.to(device),
76
+ test_sid.to(device)
77
+ ),
78
+ f"checkpoints/{path}/model.onnx",
79
+ dynamic_axes={
80
+ "c": [0, 1],
81
+ "f0": [1],
82
+ "mel2ph": [1],
83
+ "uv": [1],
84
+ "noise": [2],
85
+ },
86
+ do_constant_folding=False,
87
+ opset_version=16,
88
+ verbose=False,
89
+ input_names=input_names,
90
+ output_names=output_names)
91
+
92
+
93
+ if __name__ == '__main__':
94
+ main(False, True)
preprocess_flist_config.py ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import re
4
+
5
+ from tqdm import tqdm
6
+ from random import shuffle
7
+ import json
8
+ import wave
9
+
10
+ config_template = json.load(open("configs/config.json"))
11
+
12
+ pattern = re.compile(r'^[\.a-zA-Z0-9_\/]+$')
13
+
14
+ def get_wav_duration(file_path):
15
+ with wave.open(file_path, 'rb') as wav_file:
16
+ # 获取音频帧数
17
+ n_frames = wav_file.getnframes()
18
+ # 获取采样率
19
+ framerate = wav_file.getframerate()
20
+ # 计算时长(秒)
21
+ duration = n_frames / float(framerate)
22
+ return duration
23
+
24
+ if __name__ == "__main__":
25
+ parser = argparse.ArgumentParser()
26
+ parser.add_argument("--train_list", type=str, default="./filelists/train.txt", help="path to train list")
27
+ parser.add_argument("--val_list", type=str, default="./filelists/val.txt", help="path to val list")
28
+ parser.add_argument("--test_list", type=str, default="./filelists/test.txt", help="path to test list")
29
+ parser.add_argument("--source_dir", type=str, default="./dataset/44k", help="path to source dir")
30
+ args = parser.parse_args()
31
+
32
+ train = []
33
+ val = []
34
+ test = []
35
+ idx = 0
36
+ spk_dict = {}
37
+ spk_id = 0
38
+ for speaker in tqdm(os.listdir(args.source_dir)):
39
+ spk_dict[speaker] = spk_id
40
+ spk_id += 1
41
+ wavs = ["/".join([args.source_dir, speaker, i]) for i in os.listdir(os.path.join(args.source_dir, speaker))]
42
+ new_wavs = []
43
+ for file in wavs:
44
+ if not file.endswith("wav"):
45
+ continue
46
+ if not pattern.match(file):
47
+ print(f"warning:文件名{file}中包含非字母数字下划线,可能会导致错误。(也可能不会)")
48
+ if get_wav_duration(file) < 0.3:
49
+ print("skip too short audio:", file)
50
+ continue
51
+ new_wavs.append(file)
52
+ wavs = new_wavs
53
+ shuffle(wavs)
54
+ train += wavs[2:-2]
55
+ val += wavs[:2]
56
+ test += wavs[-2:]
57
+
58
+ shuffle(train)
59
+ shuffle(val)
60
+ shuffle(test)
61
+
62
+ print("Writing", args.train_list)
63
+ with open(args.train_list, "w") as f:
64
+ for fname in tqdm(train):
65
+ wavpath = fname
66
+ f.write(wavpath + "\n")
67
+
68
+ print("Writing", args.val_list)
69
+ with open(args.val_list, "w") as f:
70
+ for fname in tqdm(val):
71
+ wavpath = fname
72
+ f.write(wavpath + "\n")
73
+
74
+ print("Writing", args.test_list)
75
+ with open(args.test_list, "w") as f:
76
+ for fname in tqdm(test):
77
+ wavpath = fname
78
+ f.write(wavpath + "\n")
79
+
80
+ config_template["spk"] = spk_dict
81
+ print("Writing configs/config.json")
82
+ with open("configs/config.json", "w") as f:
83
+ json.dump(config_template, f, indent=2)
preprocess_hubert_f0.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import multiprocessing
3
+ import os
4
+ import argparse
5
+ from random import shuffle
6
+
7
+ import torch
8
+ from glob import glob
9
+ from tqdm import tqdm
10
+
11
+ import utils
12
+ import logging
13
+ logging.getLogger('numba').setLevel(logging.WARNING)
14
+ import librosa
15
+ import numpy as np
16
+
17
+ hps = utils.get_hparams_from_file("configs/config.json")
18
+ sampling_rate = hps.data.sampling_rate
19
+ hop_length = hps.data.hop_length
20
+
21
+
22
+ def process_one(filename, hmodel):
23
+ # print(filename)
24
+ wav, sr = librosa.load(filename, sr=sampling_rate)
25
+ soft_path = filename + ".soft.pt"
26
+ if not os.path.exists(soft_path):
27
+ devive = torch.device("cuda" if torch.cuda.is_available() else "cpu")
28
+ wav16k = librosa.resample(wav, orig_sr=sampling_rate, target_sr=16000)
29
+ wav16k = torch.from_numpy(wav16k).to(devive)
30
+ c = utils.get_hubert_content(hmodel, wav_16k_tensor=wav16k)
31
+ torch.save(c.cpu(), soft_path)
32
+ f0_path = filename + ".f0.npy"
33
+ if not os.path.exists(f0_path):
34
+ f0 = utils.compute_f0_dio(wav, sampling_rate=sampling_rate, hop_length=hop_length)
35
+ np.save(f0_path, f0)
36
+
37
+
38
+ def process_batch(filenames):
39
+ print("Loading hubert for content...")
40
+ device = "cuda" if torch.cuda.is_available() else "cpu"
41
+ hmodel = utils.get_hubert_model().to(device)
42
+ print("Loaded hubert.")
43
+ for filename in tqdm(filenames):
44
+ process_one(filename, hmodel)
45
+
46
+
47
+ if __name__ == "__main__":
48
+ parser = argparse.ArgumentParser()
49
+ parser.add_argument("--in_dir", type=str, default="dataset/44k", help="path to input dir")
50
+
51
+ args = parser.parse_args()
52
+ filenames = glob(f'{args.in_dir}/*/*.wav', recursive=True) # [:10]
53
+ shuffle(filenames)
54
+ multiprocessing.set_start_method('spawn',force=True)
55
+
56
+ num_processes = 1
57
+ chunk_size = int(math.ceil(len(filenames) / num_processes))
58
+ chunks = [filenames[i:i + chunk_size] for i in range(0, len(filenames), chunk_size)]
59
+ print([len(c) for c in chunks])
60
+ processes = [multiprocessing.Process(target=process_batch, args=(chunk,)) for chunk in chunks]
61
+ for p in processes:
62
+ p.start()
requirements.txt ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Flask
2
+ Flask_Cors
3
+ gradio
4
+ numpy==1.22.4
5
+ pyworld==0.3.2
6
+ scipy==1.7.3
7
+ SoundFile==0.12.1
8
+ torch==1.13.1
9
+ torchaudio==0.13.1
10
+ tqdm
11
+ scikit-maad
12
+ praat-parselmouth
13
+ onnx
14
+ onnxsim
15
+ onnxoptimizer
16
+ fairseq==0.12.2
17
+ librosa==0.8.1
resample.py ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import argparse
3
+ import librosa
4
+ import numpy as np
5
+ from multiprocessing import Pool, cpu_count
6
+ from scipy.io import wavfile
7
+ from tqdm import tqdm
8
+
9
+
10
+ def process(item):
11
+ spkdir, wav_name, args = item
12
+ # speaker 's5', 'p280', 'p315' are excluded,
13
+ speaker = spkdir.replace("\\", "/").split("/")[-1]
14
+ wav_path = os.path.join(args.in_dir, speaker, wav_name)
15
+ if os.path.exists(wav_path) and '.wav' in wav_path:
16
+ os.makedirs(os.path.join(args.out_dir2, speaker), exist_ok=True)
17
+ wav, sr = librosa.load(wav_path, sr=None)
18
+ wav, _ = librosa.effects.trim(wav, top_db=20)
19
+ peak = np.abs(wav).max()
20
+ if peak > 1.0:
21
+ wav = 0.98 * wav / peak
22
+ wav2 = librosa.resample(wav, orig_sr=sr, target_sr=args.sr2)
23
+ wav2 /= max(wav2.max(), -wav2.min())
24
+ save_name = wav_name
25
+ save_path2 = os.path.join(args.out_dir2, speaker, save_name)
26
+ wavfile.write(
27
+ save_path2,
28
+ args.sr2,
29
+ (wav2 * np.iinfo(np.int16).max).astype(np.int16)
30
+ )
31
+
32
+
33
+
34
+ if __name__ == "__main__":
35
+ parser = argparse.ArgumentParser()
36
+ parser.add_argument("--sr2", type=int, default=44100, help="sampling rate")
37
+ parser.add_argument("--in_dir", type=str, default="./dataset_raw", help="path to source dir")
38
+ parser.add_argument("--out_dir2", type=str, default="./dataset/44k", help="path to target dir")
39
+ args = parser.parse_args()
40
+ processs = cpu_count()-2 if cpu_count() >4 else 1
41
+ pool = Pool(processes=processs)
42
+
43
+ for speaker in os.listdir(args.in_dir):
44
+ spk_dir = os.path.join(args.in_dir, speaker)
45
+ if os.path.isdir(spk_dir):
46
+ print(spk_dir)
47
+ for _ in tqdm(pool.imap_unordered(process, [(spk_dir, i, args) for i in os.listdir(spk_dir) if i.endswith("wav")])):
48
+ pass
spec_gen.py ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from data_utils import TextAudioSpeakerLoader
2
+ import json
3
+ from tqdm import tqdm
4
+
5
+ from utils import HParams
6
+
7
+ config_path = 'configs/config.json'
8
+ with open(config_path, "r") as f:
9
+ data = f.read()
10
+ config = json.loads(data)
11
+ hps = HParams(**config)
12
+
13
+ train_dataset = TextAudioSpeakerLoader("filelists/train.txt", hps)
14
+ test_dataset = TextAudioSpeakerLoader("filelists/test.txt", hps)
15
+ eval_dataset = TextAudioSpeakerLoader("filelists/val.txt", hps)
16
+
17
+ for _ in tqdm(train_dataset):
18
+ pass
19
+ for _ in tqdm(eval_dataset):
20
+ pass
21
+ for _ in tqdm(test_dataset):
22
+ pass
train.py ADDED
@@ -0,0 +1,435 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import sys
3
+ import json
4
+ import argparse
5
+ import itertools
6
+ import math
7
+ import time
8
+ import logging
9
+
10
+ import torch
11
+ from torch import nn, optim
12
+ from torch.nn import functional as F
13
+ from torch.utils.data import DataLoader
14
+ from torch.utils.tensorboard import SummaryWriter
15
+ import torch.multiprocessing as mp
16
+ import torch.distributed as dist
17
+ from torch.nn.parallel import DistributedDataParallel as DDP
18
+ from torch.cuda.amp import autocast, GradScaler
19
+
20
+ sys.path.append('../..')
21
+ import modules.commons as commons
22
+ import utils
23
+
24
+ from data_utils import DatasetConstructor
25
+
26
+ from models import (
27
+ SynthesizerTrn,
28
+ Discriminator
29
+ )
30
+
31
+ from modules.losses import (
32
+ generator_loss,
33
+ discriminator_loss,
34
+ feature_loss,
35
+ kl_loss,
36
+ )
37
+ from modules.mel_processing import mel_spectrogram_torch, spec_to_mel_torch, spectrogram_torch
38
+
39
+ torch.backends.cudnn.benchmark = True
40
+ global_step = 0
41
+ use_cuda = torch.cuda.is_available()
42
+ print("use_cuda, ", use_cuda)
43
+
44
+ numba_logger = logging.getLogger('numba')
45
+ numba_logger.setLevel(logging.WARNING)
46
+
47
+
48
+ def main():
49
+ """Assume Single Node Multi GPUs Training Only"""
50
+
51
+ hps = utils.get_hparams()
52
+ os.environ['MASTER_ADDR'] = 'localhost'
53
+ os.environ['MASTER_PORT'] = str(hps.train.port)
54
+
55
+ if (torch.cuda.is_available()):
56
+ n_gpus = torch.cuda.device_count()
57
+ mp.spawn(run, nprocs=n_gpus, args=(n_gpus, hps,))
58
+ else:
59
+ cpurun(0, 1, hps)
60
+
61
+
62
+ def run(rank, n_gpus, hps):
63
+ global global_step
64
+ if rank == 0:
65
+ logger = utils.get_logger(hps.model_dir)
66
+ logger.info(hps.train)
67
+ logger.info(hps.data)
68
+ logger.info(hps.model)
69
+ utils.check_git_hash(hps.model_dir)
70
+ writer = SummaryWriter(log_dir=hps.model_dir)
71
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
72
+
73
+ dist.init_process_group(backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
74
+ torch.manual_seed(hps.train.seed)
75
+ torch.cuda.set_device(rank)
76
+ dataset_constructor = DatasetConstructor(hps, num_replicas=n_gpus, rank=rank)
77
+
78
+ train_loader = dataset_constructor.get_train_loader()
79
+ if rank == 0:
80
+ valid_loader = dataset_constructor.get_valid_loader()
81
+
82
+ net_g = SynthesizerTrn(hps).cuda(rank)
83
+ net_d = Discriminator(hps, hps.model.use_spectral_norm).cuda(rank)
84
+
85
+ optim_g = torch.optim.AdamW(
86
+ net_g.parameters(),
87
+ hps.train.learning_rate,
88
+ betas=hps.train.betas,
89
+ eps=hps.train.eps)
90
+ optim_d = torch.optim.AdamW(
91
+ net_d.parameters(),
92
+ hps.train.learning_rate,
93
+ betas=hps.train.betas,
94
+ eps=hps.train.eps)
95
+ net_g = DDP(net_g, device_ids=[rank], find_unused_parameters=True)
96
+ net_d = DDP(net_d, device_ids=[rank], find_unused_parameters=True)
97
+ skip_optimizer = True
98
+ try:
99
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
100
+ optim_g, skip_optimizer)
101
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
102
+ optim_d, skip_optimizer)
103
+ global_step = (epoch_str - 1) * len(train_loader)
104
+ except:
105
+ print("load old checkpoint failed...")
106
+ epoch_str = 1
107
+ global_step = 0
108
+ if skip_optimizer:
109
+ epoch_str = 1
110
+ global_step = 0
111
+
112
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
113
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
114
+
115
+ for epoch in range(epoch_str, hps.train.epochs + 1):
116
+ if rank == 0:
117
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d],
118
+ [train_loader, valid_loader], logger, [writer, writer_eval])
119
+ else:
120
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d],
121
+ [train_loader, None], None, None)
122
+ scheduler_g.step()
123
+ scheduler_d.step()
124
+
125
+
126
+ def cpurun(rank, n_gpus, hps):
127
+ global global_step
128
+ if rank == 0:
129
+ logger = utils.get_logger(hps.model_dir)
130
+ logger.info(hps.train)
131
+ logger.info(hps.data)
132
+ logger.info(hps.model)
133
+ utils.check_git_hash(hps.model_dir)
134
+ writer = SummaryWriter(log_dir=hps.model_dir)
135
+ writer_eval = SummaryWriter(log_dir=os.path.join(hps.model_dir, "eval"))
136
+ torch.manual_seed(hps.train.seed)
137
+ dataset_constructor = DatasetConstructor(hps, num_replicas=n_gpus, rank=rank)
138
+
139
+ train_loader = dataset_constructor.get_train_loader()
140
+ if rank == 0:
141
+ valid_loader = dataset_constructor.get_valid_loader()
142
+
143
+ net_g = SynthesizerTrn(hps)
144
+ net_d = Discriminator(hps, hps.model.use_spectral_norm)
145
+
146
+ optim_g = torch.optim.AdamW(
147
+ net_g.parameters(),
148
+ hps.train.learning_rate,
149
+ betas=hps.train.betas,
150
+ eps=hps.train.eps)
151
+ optim_d = torch.optim.AdamW(
152
+ net_d.parameters(),
153
+ hps.train.learning_rate,
154
+ betas=hps.train.betas,
155
+ eps=hps.train.eps)
156
+ skip_optimizer = True
157
+ try:
158
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "G_*.pth"), net_g,
159
+ optim_g, skip_optimizer)
160
+ _, _, _, epoch_str = utils.load_checkpoint(utils.latest_checkpoint_path(hps.model_dir, "D_*.pth"), net_d,
161
+ optim_d, skip_optimizer)
162
+ global_step = (epoch_str - 1) * len(train_loader)
163
+ except:
164
+ print("load old checkpoint failed...")
165
+ epoch_str = 1
166
+ global_step = 0
167
+ if skip_optimizer:
168
+ epoch_str = 1
169
+ global_step = 0
170
+ scheduler_g = torch.optim.lr_scheduler.ExponentialLR(optim_g, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
171
+ scheduler_d = torch.optim.lr_scheduler.ExponentialLR(optim_d, gamma=hps.train.lr_decay, last_epoch=epoch_str - 2)
172
+
173
+ for epoch in range(epoch_str, hps.train.epochs + 1):
174
+ train_and_evaluate(rank, epoch, hps, [net_g, net_d], [optim_g, optim_d], [scheduler_g, scheduler_d],
175
+ [train_loader, valid_loader], logger, [writer, writer_eval])
176
+
177
+ scheduler_g.step()
178
+ scheduler_d.step()
179
+
180
+
181
+ def train_and_evaluate(rank, epoch, hps, nets, optims, schedulers, loaders, logger, writers):
182
+ net_g, net_d = nets
183
+ optim_g, optim_d = optims
184
+ scheduler_g, scheduler_d = schedulers
185
+ train_loader, eval_loader = loaders
186
+ if writers is not None:
187
+ writer, writer_eval = writers
188
+
189
+ train_loader.sampler.set_epoch(epoch)
190
+ global global_step
191
+
192
+ net_g.train()
193
+ net_d.train()
194
+ for batch_idx, data_dict in enumerate(train_loader):
195
+
196
+ c = data_dict["c"]
197
+ mel = data_dict["mel"]
198
+ f0 = data_dict["f0"]
199
+ uv = data_dict["uv"]
200
+ wav = data_dict["wav"]
201
+ spkid = data_dict["spkid"]
202
+
203
+ c_lengths = data_dict["c_lengths"]
204
+ mel_lengths = data_dict["mel_lengths"]
205
+ wav_lengths = data_dict["wav_lengths"]
206
+ f0_lengths = data_dict["f0_lengths"]
207
+
208
+ # data
209
+ if (use_cuda):
210
+ c, c_lengths = c.cuda(rank, non_blocking=True), c_lengths.cuda(rank, non_blocking=True)
211
+ mel, mel_lengths = mel.cuda(rank, non_blocking=True), mel_lengths.cuda(rank, non_blocking=True)
212
+ wav, wav_lengths = wav.cuda(rank, non_blocking=True), wav_lengths.cuda(rank, non_blocking=True)
213
+ f0, f0_lengths = f0.cuda(rank, non_blocking=True), f0_lengths.cuda(rank, non_blocking=True)
214
+ spkid = spkid.cuda(rank, non_blocking=True)
215
+ uv = uv.cuda(rank, non_blocking=True)
216
+
217
+ # forward
218
+ y_hat, ids_slice, LF0, y_ddsp, kl_div, predict_mel, mask, \
219
+ pred_lf0, loss_f0, norm_f0 = net_g(c, c_lengths, f0,uv, mel, mel_lengths, spk_id=spkid)
220
+ y_ddsp = y_ddsp.unsqueeze(1)
221
+
222
+ # Discriminator
223
+ y = commons.slice_segments(wav, ids_slice * hps.data.hop_length, hps.train.segment_size) # slice
224
+ y_ddsp_mel = mel_spectrogram_torch(
225
+ y_ddsp.squeeze(1),
226
+ hps.data.n_fft,
227
+ hps.data.acoustic_dim,
228
+ hps.data.sampling_rate,
229
+ hps.data.hop_length,
230
+ hps.data.win_size,
231
+ hps.data.fmin,
232
+ hps.data.fmax
233
+ )
234
+
235
+ y_logspec = torch.log(spectrogram_torch(
236
+ y.squeeze(1),
237
+ hps.data.n_fft,
238
+ hps.data.sampling_rate,
239
+ hps.data.hop_length,
240
+ hps.data.win_size
241
+ ) + 1e-7)
242
+
243
+ y_ddsp_logspec = torch.log(spectrogram_torch(
244
+ y_ddsp.squeeze(1),
245
+ hps.data.n_fft,
246
+ hps.data.sampling_rate,
247
+ hps.data.hop_length,
248
+ hps.data.win_size
249
+ ) + 1e-7)
250
+
251
+ y_mel = mel_spectrogram_torch(
252
+ y.squeeze(1),
253
+ hps.data.n_fft,
254
+ hps.data.acoustic_dim,
255
+ hps.data.sampling_rate,
256
+ hps.data.hop_length,
257
+ hps.data.win_size,
258
+ hps.data.fmin,
259
+ hps.data.fmax
260
+ )
261
+ y_hat_mel = mel_spectrogram_torch(
262
+ y_hat.squeeze(1),
263
+ hps.data.n_fft,
264
+ hps.data.acoustic_dim,
265
+ hps.data.sampling_rate,
266
+ hps.data.hop_length,
267
+ hps.data.win_size,
268
+ hps.data.fmin,
269
+ hps.data.fmax
270
+ )
271
+
272
+ y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
273
+ loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(y_d_hat_r, y_d_hat_g)
274
+ loss_disc_all = loss_disc
275
+
276
+ optim_d.zero_grad()
277
+ loss_disc_all.backward()
278
+ grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
279
+ optim_d.step()
280
+
281
+ # loss
282
+ y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
283
+
284
+ loss_mel = F.l1_loss(y_mel, y_hat_mel) * 45
285
+ loss_mel_dsp = F.l1_loss(y_mel, y_ddsp_mel) * 45
286
+ loss_spec_dsp = F.l1_loss(y_logspec, y_ddsp_logspec) * 45
287
+
288
+ loss_mel_am = F.mse_loss(mel * mask, predict_mel * mask) # * 10
289
+
290
+ loss_fm = feature_loss(fmap_r, fmap_g)
291
+ loss_gen, losses_gen = generator_loss(y_d_hat_g)
292
+
293
+ loss_fm = loss_fm / 2
294
+ loss_gen = loss_gen / 2
295
+ loss_gen_all = loss_gen + loss_fm + loss_mel + loss_mel_dsp + kl_div + loss_mel_am + loss_spec_dsp +\
296
+ loss_f0
297
+
298
+ loss_gen_all = loss_gen_all / hps.train.accumulation_steps
299
+
300
+ loss_gen_all.backward()
301
+ if ((global_step + 1) % hps.train.accumulation_steps == 0):
302
+ grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
303
+ optim_g.step()
304
+ optim_g.zero_grad()
305
+
306
+ if rank == 0:
307
+ if (global_step + 1) % (hps.train.accumulation_steps * 10) == 0:
308
+ print(["step&time&loss", global_step, time.asctime(time.localtime(time.time())), loss_gen_all])
309
+
310
+ if global_step % hps.train.log_interval == 0:
311
+ lr = optim_g.param_groups[0]['lr']
312
+ losses = [loss_gen_all, loss_mel]
313
+ logger.info('Train Epoch: {} [{:.0f}%]'.format(
314
+ epoch,
315
+ 100. * batch_idx / len(train_loader)))
316
+ logger.info([x.item() for x in losses] + [global_step, lr])
317
+
318
+ scalar_dict = {"loss/total": loss_gen_all,
319
+ "loss/mel": loss_mel,
320
+ "loss/adv": loss_gen,
321
+ "loss/fm": loss_fm,
322
+ "loss/mel_ddsp": loss_mel_dsp,
323
+ "loss/spec_ddsp": loss_spec_dsp,
324
+ "loss/mel_am": loss_mel_am,
325
+ "loss/kl_div": kl_div,
326
+ "loss/lf0": loss_f0,
327
+ "learning_rate": lr}
328
+ image_dict = {
329
+ "train/lf0": utils.plot_data_to_numpy(LF0[0,0, :].cpu().numpy(), pred_lf0[0,0, :].detach().cpu().numpy()),
330
+ "train/norm_lf0": utils.plot_data_to_numpy(LF0[0,0, :].cpu().numpy(), norm_f0[0,0, :].detach().cpu().numpy()),
331
+ }
332
+ utils.summarize(
333
+ writer=writer,
334
+ global_step=global_step,
335
+ scalars=scalar_dict,
336
+ images=image_dict)
337
+
338
+ if global_step % hps.train.eval_interval == 0:
339
+ # logger.info(['All training params(G): ', utils.count_parameters(net_g), ' M'])
340
+ # print('Sub training params(G): ', \
341
+ # 'text_encoder: ', utils.count_parameters(net_g.module.text_encoder), ' M, ', \
342
+ # 'decoder: ', utils.count_parameters(net_g.module.decoder), ' M, ', \
343
+ # 'mel_decoder: ', utils.count_parameters(net_g.module.mel_decoder), ' M, ', \
344
+ # 'dec: ', utils.count_parameters(net_g.module.dec), ' M, ', \
345
+ # 'dec_harm: ', utils.count_parameters(net_g.module.dec_harm), ' M, ', \
346
+ # 'dec_noise: ', utils.count_parameters(net_g.module.dec_noise), ' M, ', \
347
+ # 'posterior: ', utils.count_parameters(net_g.module.posterior_encoder), ' M, ', \
348
+ # )
349
+
350
+ evaluate(hps, net_g, eval_loader, writer_eval)
351
+ utils.save_checkpoint(net_g, optim_g, hps.train.learning_rate, epoch,
352
+ os.path.join(hps.model_dir, "G_{}.pth".format(global_step)))
353
+ utils.save_checkpoint(net_d, optim_d, hps.train.learning_rate, epoch,
354
+ os.path.join(hps.model_dir, "D_{}.pth".format(global_step)))
355
+ keep_ckpts = getattr(hps.train, 'keep_ckpts', 0)
356
+ if keep_ckpts > 0:
357
+ utils.clean_checkpoints(path_to_models=hps.model_dir, n_ckpts_to_keep=keep_ckpts, sort_by_time=True)
358
+
359
+ net_g.train()
360
+ global_step += 1
361
+
362
+ if rank == 0:
363
+ logger.info('====> Epoch: {}'.format(epoch))
364
+
365
+
366
+ def evaluate(hps, generator, eval_loader, writer_eval):
367
+ generator.eval()
368
+ image_dict = {}
369
+ audio_dict = {}
370
+ with torch.no_grad():
371
+ for batch_idx, data_dict in enumerate(eval_loader):
372
+ if batch_idx == 8:
373
+ break
374
+ c = data_dict["c"]
375
+ mel = data_dict["mel"]
376
+ f0 = data_dict["f0"]
377
+ uv = data_dict["uv"]
378
+ wav = data_dict["wav"]
379
+ spkid = data_dict["spkid"]
380
+
381
+ wav_lengths = data_dict["wav_lengths"]
382
+
383
+ # data
384
+ if (use_cuda):
385
+ c = c.cuda(0)
386
+ wav = wav.cuda(0)
387
+ mel = mel.cuda(0)
388
+ f0 = f0.cuda(0)
389
+ uv = uv.cuda(0)
390
+ spkid = spkid.cuda(0)
391
+ # remove else
392
+ c = c[:1]
393
+ wav = wav[:1]
394
+ mel = mel[:1]
395
+ f0 = f0[:1]
396
+ spkid = spkid[:1]
397
+ if use_cuda:
398
+ y_hat, y_harm, y_noise, _ = generator.module.infer(c, f0=f0,uv=uv, g=spkid)
399
+ else:
400
+ y_hat, y_harm, y_noise, _ = generator.infer(c, f0=f0,uv=uv, g=spkid)
401
+
402
+ y_hat_mel = mel_spectrogram_torch(
403
+ y_hat.squeeze(1),
404
+ hps.data.n_fft,
405
+ hps.data.acoustic_dim,
406
+ hps.data.sampling_rate,
407
+ hps.data.hop_length,
408
+ hps.data.win_size,
409
+ hps.data.fmin,
410
+ hps.data.fmax
411
+ )
412
+ image_dict.update({
413
+ f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
414
+ })
415
+ audio_dict.update( {
416
+ f"gen/audio_{batch_idx}": y_hat[0, :, :],
417
+ f"gen/harm": y_harm[0, :, :],
418
+ "gen/noise": y_noise[0, :, :]
419
+ })
420
+ # if global_step == 0:
421
+ image_dict.update({f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())})
422
+ audio_dict.update({f"gt/audio_{batch_idx}": wav[0, :, :wav_lengths[0]]})
423
+
424
+ utils.summarize(
425
+ writer=writer_eval,
426
+ global_step=global_step,
427
+ images=image_dict,
428
+ audios=audio_dict,
429
+ audio_sampling_rate=hps.data.sampling_rate
430
+ )
431
+ generator.train()
432
+
433
+
434
+ if __name__ == "__main__":
435
+ main()
utils.py ADDED
@@ -0,0 +1,517 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import glob
3
+ import re
4
+ import sys
5
+ import argparse
6
+ import logging
7
+ import json
8
+ import subprocess
9
+ import random
10
+
11
+ import librosa
12
+ import numpy as np
13
+ from scipy.io.wavfile import read
14
+ import torch
15
+ from torch.nn import functional as F
16
+ from modules.commons import sequence_mask
17
+ from hubert import hubert_model
18
+ MATPLOTLIB_FLAG = False
19
+
20
+ logging.basicConfig(stream=sys.stdout, level=logging.DEBUG)
21
+ logger = logging
22
+
23
+ f0_bin = 256
24
+ f0_max = 1100.0
25
+ f0_min = 50.0
26
+ f0_mel_min = 1127 * np.log(1 + f0_min / 700)
27
+ f0_mel_max = 1127 * np.log(1 + f0_max / 700)
28
+
29
+
30
+ # def normalize_f0(f0, random_scale=True):
31
+ # f0_norm = f0.clone() # create a copy of the input Tensor
32
+ # batch_size, _, frame_length = f0_norm.shape
33
+ # for i in range(batch_size):
34
+ # means = torch.mean(f0_norm[i, 0, :])
35
+ # if random_scale:
36
+ # factor = random.uniform(0.8, 1.2)
37
+ # else:
38
+ # factor = 1
39
+ # f0_norm[i, 0, :] = (f0_norm[i, 0, :] - means) * factor
40
+ # return f0_norm
41
+ # def normalize_f0(f0, random_scale=True):
42
+ # means = torch.mean(f0[:, 0, :], dim=1, keepdim=True)
43
+ # if random_scale:
44
+ # factor = torch.Tensor(f0.shape[0],1).uniform_(0.8, 1.2).to(f0.device)
45
+ # else:
46
+ # factor = torch.ones(f0.shape[0], 1, 1).to(f0.device)
47
+ # f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
48
+ # return f0_norm
49
+ def normalize_f0(f0, x_mask, uv, random_scale=True):
50
+ # calculate means based on x_mask
51
+ uv_sum = torch.sum(uv, dim=1, keepdim=True)
52
+ uv_sum[uv_sum == 0] = 9999
53
+ means = torch.sum(f0[:, 0, :] * uv, dim=1, keepdim=True) / uv_sum
54
+
55
+ if random_scale:
56
+ factor = torch.Tensor(f0.shape[0], 1).uniform_(0.8, 1.2).to(f0.device)
57
+ else:
58
+ factor = torch.ones(f0.shape[0], 1).to(f0.device)
59
+ # normalize f0 based on means and factor
60
+ f0_norm = (f0 - means.unsqueeze(-1)) * factor.unsqueeze(-1)
61
+ if torch.isnan(f0_norm).any():
62
+ exit(0)
63
+ return f0_norm * x_mask
64
+
65
+
66
+ def plot_data_to_numpy(x, y):
67
+ global MATPLOTLIB_FLAG
68
+ if not MATPLOTLIB_FLAG:
69
+ import matplotlib
70
+ matplotlib.use("Agg")
71
+ MATPLOTLIB_FLAG = True
72
+ mpl_logger = logging.getLogger('matplotlib')
73
+ mpl_logger.setLevel(logging.WARNING)
74
+ import matplotlib.pylab as plt
75
+ import numpy as np
76
+
77
+ fig, ax = plt.subplots(figsize=(10, 2))
78
+ plt.plot(x)
79
+ plt.plot(y)
80
+ plt.tight_layout()
81
+
82
+ fig.canvas.draw()
83
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
84
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
85
+ plt.close()
86
+ return data
87
+
88
+
89
+
90
+ def interpolate_f0(f0):
91
+ '''
92
+ 对F0进行插值处理
93
+ '''
94
+
95
+ data = np.reshape(f0, (f0.size, 1))
96
+
97
+ vuv_vector = np.zeros((data.size, 1), dtype=np.float32)
98
+ vuv_vector[data > 0.0] = 1.0
99
+ vuv_vector[data <= 0.0] = 0.0
100
+
101
+ ip_data = data
102
+
103
+ frame_number = data.size
104
+ last_value = 0.0
105
+ for i in range(frame_number):
106
+ if data[i] <= 0.0:
107
+ j = i + 1
108
+ for j in range(i + 1, frame_number):
109
+ if data[j] > 0.0:
110
+ break
111
+ if j < frame_number - 1:
112
+ if last_value > 0.0:
113
+ step = (data[j] - data[i - 1]) / float(j - i)
114
+ for k in range(i, j):
115
+ ip_data[k] = data[i - 1] + step * (k - i + 1)
116
+ else:
117
+ for k in range(i, j):
118
+ ip_data[k] = data[j]
119
+ else:
120
+ for k in range(i, frame_number):
121
+ ip_data[k] = last_value
122
+ else:
123
+ ip_data[i] = data[i]
124
+ last_value = data[i]
125
+
126
+ return ip_data[:,0], vuv_vector[:,0]
127
+
128
+
129
+ def compute_f0_parselmouth(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
130
+ import parselmouth
131
+ x = wav_numpy
132
+ if p_len is None:
133
+ p_len = x.shape[0]//hop_length
134
+ else:
135
+ assert abs(p_len-x.shape[0]//hop_length) < 4, "pad length error"
136
+ time_step = hop_length / sampling_rate * 1000
137
+ f0_min = 50
138
+ f0_max = 1100
139
+ f0 = parselmouth.Sound(x, sampling_rate).to_pitch_ac(
140
+ time_step=time_step / 1000, voicing_threshold=0.6,
141
+ pitch_floor=f0_min, pitch_ceiling=f0_max).selected_array['frequency']
142
+
143
+ pad_size=(p_len - len(f0) + 1) // 2
144
+ if(pad_size>0 or p_len - len(f0) - pad_size>0):
145
+ f0 = np.pad(f0,[[pad_size,p_len - len(f0) - pad_size]], mode='constant')
146
+ return f0
147
+
148
+ def resize_f0(x, target_len):
149
+ source = np.array(x)
150
+ source[source<0.001] = np.nan
151
+ target = np.interp(np.arange(0, len(source)*target_len, len(source))/ target_len, np.arange(0, len(source)), source)
152
+ res = np.nan_to_num(target)
153
+ return res
154
+
155
+ def compute_f0_dio(wav_numpy, p_len=None, sampling_rate=44100, hop_length=512):
156
+ import pyworld
157
+ if p_len is None:
158
+ p_len = wav_numpy.shape[0]//hop_length
159
+ f0, t = pyworld.dio(
160
+ wav_numpy.astype(np.double),
161
+ fs=sampling_rate,
162
+ f0_ceil=800,
163
+ frame_period=1000 * hop_length / sampling_rate,
164
+ )
165
+ f0 = pyworld.stonemask(wav_numpy.astype(np.double), f0, t, sampling_rate)
166
+ for index, pitch in enumerate(f0):
167
+ f0[index] = round(pitch, 1)
168
+ return resize_f0(f0, p_len)
169
+
170
+ def f0_to_coarse(f0):
171
+ is_torch = isinstance(f0, torch.Tensor)
172
+ f0_mel = 1127 * (1 + f0 / 700).log() if is_torch else 1127 * np.log(1 + f0 / 700)
173
+ f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * (f0_bin - 2) / (f0_mel_max - f0_mel_min) + 1
174
+
175
+ f0_mel[f0_mel <= 1] = 1
176
+ f0_mel[f0_mel > f0_bin - 1] = f0_bin - 1
177
+ f0_coarse = (f0_mel + 0.5).long() if is_torch else np.rint(f0_mel).astype(np.int)
178
+ assert f0_coarse.max() <= 255 and f0_coarse.min() >= 1, (f0_coarse.max(), f0_coarse.min())
179
+ return f0_coarse
180
+
181
+
182
+ def get_hubert_model():
183
+ vec_path = "hubert/checkpoint_best_legacy_500.pt"
184
+ print("load model(s) from {}".format(vec_path))
185
+ from fairseq import checkpoint_utils
186
+ models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
187
+ [vec_path],
188
+ suffix="",
189
+ )
190
+ model = models[0]
191
+ model.eval()
192
+ return model
193
+
194
+ def get_hubert_content(hmodel, wav_16k_tensor):
195
+ feats = wav_16k_tensor
196
+ if feats.dim() == 2: # double channels
197
+ feats = feats.mean(-1)
198
+ assert feats.dim() == 1, feats.dim()
199
+ feats = feats.view(1, -1)
200
+ padding_mask = torch.BoolTensor(feats.shape).fill_(False)
201
+ inputs = {
202
+ "source": feats.to(wav_16k_tensor.device),
203
+ "padding_mask": padding_mask.to(wav_16k_tensor.device),
204
+ "output_layer": 9, # layer 9
205
+ }
206
+ with torch.no_grad():
207
+ logits = hmodel.extract_features(**inputs)
208
+ feats = hmodel.final_proj(logits[0])
209
+ return feats.transpose(1, 2)
210
+
211
+
212
+ def get_content(cmodel, y):
213
+ with torch.no_grad():
214
+ c = cmodel.extract_features(y.squeeze(1))[0]
215
+ c = c.transpose(1, 2)
216
+ return c
217
+
218
+
219
+
220
+ def load_checkpoint(checkpoint_path, model, optimizer=None, skip_optimizer=False):
221
+ assert os.path.isfile(checkpoint_path)
222
+ checkpoint_dict = torch.load(checkpoint_path, map_location='cpu')
223
+ iteration = checkpoint_dict['iteration']
224
+ learning_rate = checkpoint_dict['learning_rate']
225
+ if optimizer is not None and not skip_optimizer and checkpoint_dict['optimizer'] is not None:
226
+ optimizer.load_state_dict(checkpoint_dict['optimizer'])
227
+ saved_state_dict = checkpoint_dict['model']
228
+ if hasattr(model, 'module'):
229
+ state_dict = model.module.state_dict()
230
+ else:
231
+ state_dict = model.state_dict()
232
+ new_state_dict = {}
233
+ for k, v in state_dict.items():
234
+ try:
235
+ # assert "dec" in k or "disc" in k
236
+ # print("load", k)
237
+ new_state_dict[k] = saved_state_dict[k]
238
+ assert saved_state_dict[k].shape == v.shape, (saved_state_dict[k].shape, v.shape)
239
+ except:
240
+ print("error, %s is not in the checkpoint" % k)
241
+ logger.info("%s is not in the checkpoint" % k)
242
+ new_state_dict[k] = v
243
+ if hasattr(model, 'module'):
244
+ model.module.load_state_dict(new_state_dict)
245
+ else:
246
+ model.load_state_dict(new_state_dict)
247
+ print("load ")
248
+ logger.info("Loaded checkpoint '{}' (iteration {})".format(
249
+ checkpoint_path, iteration))
250
+ return model, optimizer, learning_rate, iteration
251
+
252
+
253
+ def save_checkpoint(model, optimizer, learning_rate, iteration, checkpoint_path):
254
+ logger.info("Saving model and optimizer state at iteration {} to {}".format(
255
+ iteration, checkpoint_path))
256
+ if hasattr(model, 'module'):
257
+ state_dict = model.module.state_dict()
258
+ else:
259
+ state_dict = model.state_dict()
260
+ torch.save({'model': state_dict,
261
+ 'iteration': iteration,
262
+ 'optimizer': optimizer.state_dict(),
263
+ 'learning_rate': learning_rate}, checkpoint_path)
264
+
265
+ def clean_checkpoints(path_to_models='logs/44k/', n_ckpts_to_keep=2, sort_by_time=True):
266
+ """Freeing up space by deleting saved ckpts
267
+
268
+ Arguments:
269
+ path_to_models -- Path to the model directory
270
+ n_ckpts_to_keep -- Number of ckpts to keep, excluding G_0.pth and D_0.pth
271
+ sort_by_time -- True -> chronologically delete ckpts
272
+ False -> lexicographically delete ckpts
273
+ """
274
+ ckpts_files = [f for f in os.listdir(path_to_models) if os.path.isfile(os.path.join(path_to_models, f))]
275
+ name_key = (lambda _f: int(re.compile('._(\d+)\.pth').match(_f).group(1)))
276
+ time_key = (lambda _f: os.path.getmtime(os.path.join(path_to_models, _f)))
277
+ sort_key = time_key if sort_by_time else name_key
278
+ x_sorted = lambda _x: sorted([f for f in ckpts_files if f.startswith(_x) and not f.endswith('_0.pth')], key=sort_key)
279
+ to_del = [os.path.join(path_to_models, fn) for fn in
280
+ (x_sorted('G')[:-n_ckpts_to_keep] + x_sorted('D')[:-n_ckpts_to_keep])]
281
+ del_info = lambda fn: logger.info(f".. Free up space by deleting ckpt {fn}")
282
+ del_routine = lambda x: [os.remove(x), del_info(x)]
283
+ rs = [del_routine(fn) for fn in to_del]
284
+
285
+ def summarize(writer, global_step, scalars={}, histograms={}, images={}, audios={}, audio_sampling_rate=22050):
286
+ for k, v in scalars.items():
287
+ writer.add_scalar(k, v, global_step)
288
+ for k, v in histograms.items():
289
+ writer.add_histogram(k, v, global_step)
290
+ for k, v in images.items():
291
+ writer.add_image(k, v, global_step, dataformats='HWC')
292
+ for k, v in audios.items():
293
+ writer.add_audio(k, v, global_step, audio_sampling_rate)
294
+
295
+
296
+ def latest_checkpoint_path(dir_path, regex="G_*.pth"):
297
+ f_list = glob.glob(os.path.join(dir_path, regex))
298
+ f_list.sort(key=lambda f: int("".join(filter(str.isdigit, f))))
299
+ x = f_list[-1]
300
+ print(x)
301
+ return x
302
+
303
+
304
+ def plot_spectrogram_to_numpy(spectrogram):
305
+ global MATPLOTLIB_FLAG
306
+ if not MATPLOTLIB_FLAG:
307
+ import matplotlib
308
+ matplotlib.use("Agg")
309
+ MATPLOTLIB_FLAG = True
310
+ mpl_logger = logging.getLogger('matplotlib')
311
+ mpl_logger.setLevel(logging.WARNING)
312
+ import matplotlib.pylab as plt
313
+ import numpy as np
314
+
315
+ fig, ax = plt.subplots(figsize=(10,2))
316
+ im = ax.imshow(spectrogram, aspect="auto", origin="lower",
317
+ interpolation='none')
318
+ plt.colorbar(im, ax=ax)
319
+ plt.xlabel("Frames")
320
+ plt.ylabel("Channels")
321
+ plt.tight_layout()
322
+
323
+ fig.canvas.draw()
324
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
325
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
326
+ plt.close()
327
+ return data
328
+
329
+
330
+ def plot_alignment_to_numpy(alignment, info=None):
331
+ global MATPLOTLIB_FLAG
332
+ if not MATPLOTLIB_FLAG:
333
+ import matplotlib
334
+ matplotlib.use("Agg")
335
+ MATPLOTLIB_FLAG = True
336
+ mpl_logger = logging.getLogger('matplotlib')
337
+ mpl_logger.setLevel(logging.WARNING)
338
+ import matplotlib.pylab as plt
339
+ import numpy as np
340
+
341
+ fig, ax = plt.subplots(figsize=(6, 4))
342
+ im = ax.imshow(alignment.transpose(), aspect='auto', origin='lower',
343
+ interpolation='none')
344
+ fig.colorbar(im, ax=ax)
345
+ xlabel = 'Decoder timestep'
346
+ if info is not None:
347
+ xlabel += '\n\n' + info
348
+ plt.xlabel(xlabel)
349
+ plt.ylabel('Encoder timestep')
350
+ plt.tight_layout()
351
+
352
+ fig.canvas.draw()
353
+ data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
354
+ data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
355
+ plt.close()
356
+ return data
357
+
358
+
359
+ def load_wav_to_torch(full_path):
360
+ sampling_rate, data = read(full_path)
361
+ return torch.FloatTensor(data.astype(np.float32)), sampling_rate
362
+
363
+
364
+ def load_filepaths_and_text(filename, split="|"):
365
+ with open(filename, encoding='utf-8') as f:
366
+ filepaths_and_text = [line.strip().split(split) for line in f]
367
+ return filepaths_and_text
368
+
369
+
370
+ def get_hparams(init=True):
371
+ parser = argparse.ArgumentParser()
372
+ parser.add_argument('-c', '--config', type=str, default="./configs/base.json",
373
+ help='JSON file for configuration')
374
+ parser.add_argument('-m', '--model', type=str, required=True,
375
+ help='Model name')
376
+
377
+ args = parser.parse_args()
378
+ model_dir = os.path.join("./logs", args.model)
379
+
380
+ if not os.path.exists(model_dir):
381
+ os.makedirs(model_dir)
382
+
383
+ config_path = args.config
384
+ config_save_path = os.path.join(model_dir, "config.json")
385
+ if init:
386
+ with open(config_path, "r") as f:
387
+ data = f.read()
388
+ with open(config_save_path, "w") as f:
389
+ f.write(data)
390
+ else:
391
+ with open(config_save_path, "r") as f:
392
+ data = f.read()
393
+ config = json.loads(data)
394
+
395
+ hparams = HParams(**config)
396
+ hparams.model_dir = model_dir
397
+ return hparams
398
+
399
+
400
+ def get_hparams_from_dir(model_dir):
401
+ config_save_path = os.path.join(model_dir, "config.json")
402
+ with open(config_save_path, "r") as f:
403
+ data = f.read()
404
+ config = json.loads(data)
405
+
406
+ hparams =HParams(**config)
407
+ hparams.model_dir = model_dir
408
+ return hparams
409
+
410
+
411
+ def get_hparams_from_file(config_path):
412
+ with open(config_path, "r") as f:
413
+ data = f.read()
414
+ config = json.loads(data)
415
+
416
+ hparams =HParams(**config)
417
+ return hparams
418
+
419
+
420
+ def check_git_hash(model_dir):
421
+ source_dir = os.path.dirname(os.path.realpath(__file__))
422
+ if not os.path.exists(os.path.join(source_dir, ".git")):
423
+ logger.warn("{} is not a git repository, therefore hash value comparison will be ignored.".format(
424
+ source_dir
425
+ ))
426
+ return
427
+
428
+ cur_hash = subprocess.getoutput("git rev-parse HEAD")
429
+
430
+ path = os.path.join(model_dir, "githash")
431
+ if os.path.exists(path):
432
+ saved_hash = open(path).read()
433
+ if saved_hash != cur_hash:
434
+ logger.warn("git hash values are different. {}(saved) != {}(current)".format(
435
+ saved_hash[:8], cur_hash[:8]))
436
+ else:
437
+ open(path, "w").write(cur_hash)
438
+
439
+
440
+ def get_logger(model_dir, filename="train.log"):
441
+ global logger
442
+ logger = logging.getLogger(os.path.basename(model_dir))
443
+ logger.setLevel(logging.DEBUG)
444
+
445
+ formatter = logging.Formatter("%(asctime)s\t%(name)s\t%(levelname)s\t%(message)s")
446
+ if not os.path.exists(model_dir):
447
+ os.makedirs(model_dir)
448
+ h = logging.FileHandler(os.path.join(model_dir, filename))
449
+ h.setLevel(logging.DEBUG)
450
+ h.setFormatter(formatter)
451
+ logger.addHandler(h)
452
+ return logger
453
+
454
+
455
+ def repeat_expand_2d(content, target_len):
456
+ # content : [h, t]
457
+
458
+ src_len = content.shape[-1]
459
+ target = torch.zeros([content.shape[0], target_len], dtype=torch.float).to(content.device)
460
+ temp = torch.arange(src_len+1) * target_len / src_len
461
+ current_pos = 0
462
+ for i in range(target_len):
463
+ if i < temp[current_pos+1]:
464
+ target[:, i] = content[:, current_pos]
465
+ else:
466
+ current_pos += 1
467
+ target[:, i] = content[:, current_pos]
468
+
469
+ return target
470
+
471
+ def load_wav(wav_path, raw_sr, target_sr=16000, win_size=800, hop_size=200):
472
+ audio = librosa.core.load(wav_path, sr=raw_sr)[0]
473
+ if raw_sr != target_sr:
474
+ audio = librosa.core.resample(audio,
475
+ raw_sr,
476
+ target_sr,
477
+ res_type='kaiser_best')
478
+ target_length = (audio.size // hop_size +
479
+ win_size // hop_size) * hop_size
480
+ pad_len = (target_length - audio.size) // 2
481
+ if audio.size % 2 == 0:
482
+ audio = np.pad(audio, (pad_len, pad_len), mode='reflect')
483
+ else:
484
+ audio = np.pad(audio, (pad_len, pad_len + 1), mode='reflect')
485
+ return audio
486
+
487
+ class HParams():
488
+ def __init__(self, **kwargs):
489
+ for k, v in kwargs.items():
490
+ if type(v) == dict:
491
+ v = HParams(**v)
492
+ self[k] = v
493
+
494
+ def keys(self):
495
+ return self.__dict__.keys()
496
+
497
+ def items(self):
498
+ return self.__dict__.items()
499
+
500
+ def values(self):
501
+ return self.__dict__.values()
502
+
503
+ def __len__(self):
504
+ return len(self.__dict__)
505
+
506
+ def __getitem__(self, key):
507
+ return getattr(self, key)
508
+
509
+ def __setitem__(self, key, value):
510
+ return setattr(self, key, value)
511
+
512
+ def __contains__(self, key):
513
+ return key in self.__dict__
514
+
515
+ def __repr__(self):
516
+ return self.__dict__.__repr__()
517
+